
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOG-LINEAR ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The attention mechanism in Transformers is an important primitive for accurate
and scalable sequence modeling. Its quadratic-compute and linear-memory com-
plexity however remain significant bottlenecks. Linear attention and state-space
models enable linear-time, constant-memory sequence modeling and can moreover
be trained efficiently through matmul-rich parallelization across sequence length.
However, at their core these models are still RNNs, and thus their use of a fixed-size
hidden state to model the context is a fundamental limitation. This paper develops
log-linear attention, an attention mechanism that balances linear attention’s effi-
ciency and the expressiveness of softmax attention. Log-linear attention replaces
the fixed-size hidden state with a logarithmically growing set of hidden states. We
show that with a particular growth function, log-linear attention admits a similarly
matmul-rich parallel form whose compute cost is log-linear in sequence length.
Log-linear attention is a general framework and can be applied on top of existing
linear attention variants. As case studies, we instantiate log-linear variants of two
recent architectures—Mamba-2 and Gated DeltaNet—and find they perform well
compared to their linear-time variants.

1 INTRODUCTION

The attention layer (Bahdanau et al., 2014) is a core building block of modern deep learning archi-
tectures, most notably in the Transformer architecture (Vaswani et al., 2017). For training, attention
can be parallelized across sequence length through reformulating the computation as a series of
matrix-matrix multiplications (matmuls), which can enable efficient training on modern accelerators
such as GPUs and TPUs. However, the compute cost of attention grows quadratically and its memory
cost grows linearly with respect to sequence length; despite the wallclock efficiency improvements
obtained from hardware-optimized implementations (Dao et al., 2022b; Dao, 2024; Shah et al., 2024;
Liu et al., 2024; Kwon et al., 2023), this quadratic-compute linear-memory cost is a fundamental
limitation in enabling new applications and serves as a significant bottleneck in existing ones.

Linear attention (Katharopoulos et al., 2020) replaces the softmax kernel with a simple linear kernel
(i.e., dot product) to derive the “attention” scores. The use of a linear kernel makes it possible
to reformulate linear attention as a linear RNN with matrix-valued hidden states, and thus linear
attention enables linear-time, constant-memory sequence modeling.1 For training, linear attention
can be parallelized across sequence length via a chunking mechanism where a sequence is split
up into chunks and the computations across chunks are performed in parallel (Hua et al., 2022;
Sun et al., 2023; Yang et al., 2024b; Dao & Gu, 2024). The complexity of this chunkwise parallel
algorithm is subquadratic in sequence length but still rich in matmuls,2 leading to hardware-efficient
implementations (Yang & Zhang, 2024; Qin et al., 2024a; Beck et al., 2025a) that obtain practical
wallclock improvements over optimized implementations of softmax attention. While early versions
of linear attention generally underperformed softmax attention (Kasai et al., 2021; Peng et al., 2021;
Mao; Qin et al., 2022; Sun et al., 2023), modern variants with data-dependent multiplicative gates
(Yang et al., 2024b; Qin et al., 2024b; Peng et al., 2024)—which include state-space models (SSMs)
such as Mamba (Gu & Dao, 2024; Dao & Gu, 2024)—and delta-rule-based structured transition
matrices (Schlag et al., 2021; Yang et al., 2024b;a; Grazzi et al., 2025; Siems et al., 2025; Peng et al.,
2025) have led to significant improvements. However, despite these improvements linear attention’s
use of a fixed-sized hidden state is a fundamental limitations when it comes to certain capabilities
such as associative recall over a given context (Arora et al., 2024).

1Thus there are three senses in which linear attention is linear: the use of a linear kernel, its reformulation as
a linear RNN where the hidden state is a linear function of the previous state, and its linear-time complexity.

2Unlike parallel scan (Blelloch, 1990) which can also parallelize linear attention across sequence length but
consists mostly of elementwise operations instead of matmuls.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Model A M (Data Dependent?) Training Algorithm / Time Decoding Time and Space

Attention σ(QK⊤) Mask (✗) FlashAttention O(T 2) O(T) O(T)

Linear Attention QK⊤ Mask (✗) Chunk-recurrent O(T) O(1) O(1)

RetNet QK⊤ Semiseparable (✗) Chunk-recurrent O(T) O(1) O(1)

Mamba-2 QK⊤ Semiseparable (✓) Chunk-recurrent O(T) O(1) O(1)

Multi-Hyena QK⊤ Toeplitz (✗) FFT O(T log T) O(log2 T) O(T)

DeltaNet TK(QK⊤) Mask (✗) Chunk-recurrent O(T) O(1) O(1)

Gated DeltaNet TK(QK⊤) Semiseparable (✓) Chunk-recurrent O(T) O(1) O(1)

Log-Linear Mamba-2 QK⊤ Hierarchical (✓) Chunk-scan O(T log T) O(log T) O(log T)

Log-Linear Gated DeltaNet TK(QK⊤) Hierarchical (✓) Chunk-scan O(T log T) O(log T) O(log T)

Table 1: Summary of efficient attention mechanisms under the unified formulation: P = A⊙M,O = PV.
M is a lower-triangle (causal) matrix. We use symbol TK (A) = (A⊙ L)

(
I+KK⊤ ⊙ (I− L)

)−1
for

notational brevity, where L is a lower-triangular matrix of 1s. Here decoding time is the time per step, and
decoding space refers to the overall memory complexity during generation.

This paper develops log-linear attention as a middle ground between linear attention and full softmax
attention. Instead of using a single hidden state matrix to represent the history (as in linear atten-
tion/SSMs), log-linear attention maintains a growing set of hidden states where the set size grows
logarithmically with respect to sequence length. With a particular choice of the growth function, we
show that log-linear attention admits a matmul-rich “parallel form” for training which involves replac-
ing the lower-triangular causal mask in ordinary linear attention with a data-dependent hierarchical
matrix, which enables subquadratic training; in particular we show that the compute cost of log-linear
attention is log-linear in sequence length (hence the name), while its memory cost is logarithmic.
Log-linear attention is a general framework for sequence modeling and can be used to generalize
existing linear attention models. As case studies, we use the framework on two popular recent models,
Mamba-2 (Dao & Gu, 2024) and Gated DeltaNet (Yang et al., 2024a), to derive log-linear variants of
both models, and find that these variants perform well compared to their original linear variants.

2 BACKGROUND: A STRUCTURED MATRIX VIEW OF EFFICIENT ATTENTION

Given an input sequence of length T and the corresponding key, query, value matrices
K,Q,V ∈ RT×d, softmax attention obtains the output O ∈ RT×d for all time steps via
O = softmax(QK⊤ ⊙ M)V, where M ∈ {−∞, 0}T×T is a causal masking matrix. This in-
curs O(T 2) compute and O(T) memory, which makes it costly to apply to long sequences. As a
response, there has been much recent work on efficient alternatives with sub-quadratic compute and
sub-linear memory, including linear attention, state-space models, and long convolution models.
Despite their differences, many of these approaches can be captured by the following equation:

P = A⊙M, O = PV, (1)

where A ∈ RT×T is an attention-like matrix (e.g., QK⊤ in the case of ordinary linear attention) and
M ∈ RT×T is a lower-triangular causal masking matrix (e.g., M ∈ {0, 1}T×T for linear attention).
By separating out the interaction terms A and the (potentially data-dependent) masking matrix M,
this abstraction reveals commonalities across a broad class of models, as shown in Table 1. Different
structures imposed on M can lead to efficient training and inference algorithms. We now describe
key models that fit within this framework.

Linear attention. Linear attention Katharopoulos et al. (2020) simply removes the softmax opera-
tion, resulting in the following parallel form3

O = (QK⊤ ⊙M)V, Mij = 1{i ≤ j}.

Linear attention can be reparameterized into the following “recurrent form” for inference,

St = St−1 + vtk
⊤
t , ot = Stqt,

which enables linear-time constant-memory sequence modeling.

Linear attention with (data-dependent) gates. Vanilla linear attention lacks a forgetting mech-
anism, which has been shown to be crucial in ordinary RNNs. One way to incorporate such a
mechanism is through a scalar gate αt ∈ (0, 1), which results in recurrence St = αtSt−1 + vtk

⊤
t .

3Here we work linear attention without any feature maps or normalization, since most recent works have
found them to be unnecessary (although see (Kacham et al., 2023; Buckman et al.; Arora et al., 2024)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This has the following corresponding parallel form:

O = (QK⊤ ⊙M)V, Mij =

i∏
k=j+1

αk. (2)

Originally introduced by Peng et al. (2021), gated linear attention has enjoyed a resurgence in recent
years (Qin et al., 2024b; Peng et al., 2024; Yang et al., 2023; Katsch, 2023) and are an instance of
time-varying SSMs (Gu & Dao, 2024; Dao & Gu, 2024). Well-known models in this family include
RetNet (Sun et al., 2023), which uses a data-independent gate αt = α, and Mamba-2 (Dao & Gu,
2024), which uses the above data-dependent gate. Dao & Gu (2024) show that with a scalar gating
factor, M has a 1-semiseparable structure where every submatrix in the lower triangular portion has
rank at most 1, which can enable efficient training.

Linear attention with the delta rule. DeltaNet (Schlag et al., 2021) is a type of linear attention
layer which updates the hidden state via the delta rule (Widrow et al., 1960),4 where the recurrent
form is given by5

St = St−1

(
I− ktk

⊤
t

)
+ vtk

⊤
t , ot = Stqt.

While the original work used a purely recurrent form, Yang et al. (2024b) recently show that it is
possible to parallelize DeltaNet across sequence length through leveraging a compact representation
of Householder matrices (Bischof & Loan, 1985; Joffrain et al., 2006), resulting in the following
parallel form (cf. (Yang et al., 2024b, §3.2)):

O =

(QK⊤ ⊙ L
) (

I+KK⊤ ⊙ (L− I)
)−1︸ ︷︷ ︸

A

⊙M

V

where L and M are lower-triangular matrices consisting of 1s. Since A itself is already lower-
triangular, the causal masking matrix M is not strictly necessary in the above. However, by changing
M to have 1-semiseparable structure as in Mamba-2, we can recover Gated DeltaNet (Yang et al.,
2024a), whose recurrence is given by St = αtSt−1(I− ktk

⊤
t) + vtk

⊤
t . Linear attention with such

data-dependent structured transition matrices has been shown to be theoretically more expressive
than linear attention with multiplicative gates when it comes to certain types of state-tracking tasks
(Merrill et al., 2024; Grazzi et al., 2025; Siems et al., 2025; Peng et al., 2025), which make these
layers attractive targets to generalize via our log-linear attention framework.

Long convolution models. Long-convolution sequence models, where the convolution kernel
size equals the sequence length, can also be cast into this framework. For example, Toeplitz
neural network (Qin et al., 2023) and MultiHyena Massaroli et al. (2023) layers are given by
O = (QK⊤ ⊙Th)V, where Th is a causal Toeplitz matrix generated by a long convolution kernel
h ∈ RT , i.e., Th[i, j] = h[i− j] for i ≥ j and 0 otherwise. Other long convolutional variants like
H3 (Fu et al., 2023) and Hyena (Poli et al., 2023) also admit a precise attention-style formulation
(Massaroli et al., 2023). While the decoding speed of long convolution models can be improved from
O(T) to O(log2 T) per step (Oncescu et al., 2025), their memory cost remains linear, i.e., the same
as in softmax attention. However, some long convolution models such as S4 (Gu et al., 2022) admit a
reparameterization into a time-invariant SSM and thus enjoy constant-memory inference. There has
also been efforts to distill long convolution models into RNNs (Massaroli et al., 2023; Qin & Zhong,
2023), but these inherit the memory bottleneck of RNNs.

Relationship between masking structure and efficient algorithms. Using an unstructured M
(e.g., a random lower-triangular matrix) degrades both compute and memory complexity to softmax
attention-levels, despite the absence of softmax; i.e., the structure of M is essential for training/infer-
ence efficiency, not just the removal of softmax. In linear attention where M is a lower-triangular
matrix of 1’s, we can compute O chunkwise, leading to an O(T) algorithm.6 This algorithm general-
izes to the gated case where M has 1-semiseparable structure as shown in (Dao & Gu, 2024). Long
convolution models can use FFT to bring down the cost to O(T log T).

4Linear attention with the delta rule is also an instance of a fast-weight programmer (Schmidhuber, 1992).
5The actual DeltaNet recurrence is given by St = St−1(I− βtktk

⊤
t) + vtk

⊤
t where βt is a data-dependent

scalar value in either (0, 1) or (0, 2), but we set βt = 1 here for notational brevity.
6This algorithm depends on the chunk size C, but since C is a hyperparameter this is still linear in T .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 LOG-LINEAR ATTENTION Linear Attention

Log-Linear Attention

+

+

+

Figure 1: Standard linear attention (top) vs. log-
linear attention (bottom). The input consists of
query, key, and value vectors.

The previous section showed that the structure of the
masking matrix M determines how compute and mem-
ory scale with sequence length. Semiseparable struc-
tures cover many efficient architectures, yielding O(T)
training time and O(1) decoding memory. This moti-
vates two questions: (i) what additional structures allow
greater flexibility while retaining subquadratic training
complexity, and (ii) can such models admit a recurrent
form with sublinear decoding memory?

We answer both by introducing log-linear attention,
which shapes M to achieve O(T log T) computation
and O(log T) memory. Concretely, log-linear attention
replaces the semiseparable mask with a hierarchical
one, extending linear attention beyond semiseparable
temporal structure and accommodating a broader class
structures for A. As case studies, we instantiate log-
linear variants of Mamba-2 and Gated DeltaNet.

During decoding, log-linear attention employs a Fenwick tree scheme (Fenwick, 1994) that partitions
inputs into power-of-two segments. Each position summarizes its prefix, enabling queries to attend to
O(log T) hidden states across multiple scales (Fig. 1). This design preserves fine-grained access to
recent tokens while requiring only O(log T) time and memory. We first focus on the simplest form of
linear attention (without gating) in § 3.1 and show how log-linear attention extends it by maintaining
independent recurrent states across temporal segments. Practical gated variants are presented in § 3.4.

3.1 FENWICK TREE PARTITIONING AND HIERARCHICAL MATRICES

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Figure 2: Fenwick tree bucket assignments.

From a decoding perspective, attention can be viewed as
a mechanism that partitions the prefix [0, t) into a set of
buckets, each summarizing a portion of the past. In vanilla
attention, every token forms its own bucket, resulting in t
buckets of size 1, each stored as a fixed-size state (the KV
caches. At the other extreme, linear attention (and state-
space models) aggregates the entire prefix into a single
bucket of size t, again represented by a fixed-size state.

Log-linear attention strikes a balance by partitioning the
prefix into buckets of exponentially increasing size via
a Fenwick-tree decomposition (Ryabko, 1992; Fenwick,
1994). This induces a natural inductive bias: recent tokens
are retained at high resolution, while more distant tokens
are summarized more coarsely. The partition contains at most L = O(log T) disjoint buckets indexed
by level ℓ.7 Each bucket B(ℓ)

t has size |B(ℓ)
t | = 2ℓ−1 for ℓ ≥ 1, plus a sentinel bucket B(0)

t of size 1.
See Fig. 2 for an illustration.

Log-linear attention maintains a separate recurrent memory S
(ℓ)
t ∈ Rd×d for each bucket. At time t,

the contribution of bucket ℓ to the output is weighted by a nonnegative coefficient λ(ℓ)
t , parameterized

as a linear function of the current input xt. This allows the model to adaptively emphasize different

7More precisely, this divides the prefix [0, t) into up to L = ⌈log2 t + 1⌉ + 1 disjoint buckets. This
decomposition is guided by the function lssb(t) = max {ℓ ∈ N | 2ℓ divides t}, which identifies the least
significant set bit in the binary representation of t. Conceptually, the partitioning proceeds greedily, at each step
subtracting the largest power of two that fits within the remaining segment of the prefix,

b
(i)
t =

{
t if i = 0

b
(i−1)
t −2

lssb
(
b
(i−1)
t

)
otherwise

, B(ℓ)
t =


{b(0)t } if ℓ = 0

{b(i+1)
t , · · · , b(i)t −1} if ℓ = lssb

(
b
(i)
t

)
+1

∅ otherwise

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

temporal scales. The output is computed as,

ot =

L−1∑
ℓ=0

λ
(ℓ)
t q⊤

t

(∑
s∈B(ℓ)

t

vsk
⊤
s

)
=

L−1∑
ℓ=0

λ
(ℓ)
t q⊤

t S
(ℓ)
t . (3)

We observe that when all λ(ℓ)
t are the same (or more generally when the λ

(ℓ)
t and λ

(ℓ′)
t are linearly

related across time) log-linear attention collapses to linear attention. Allowing distinct λ(ℓ)
t is therefore

essential for capturing multi-scale temporal structure.

Parallel form. The recurrent form in Eq. 3 is conceptually simple but inefficient on modern
accelerators, which are optimized for high-throughput matrix–matrix multiplication. To leverage
this hardware and enable parallelization across time, we reformulate the expression in a matrix-
multiplication–friendly form as in §2:

O =
(
QK⊤ ⊙MH)︸ ︷︷ ︸

P

V, MH
ts =

{
λ
ℓ(t,s)
t if s ≤ t,

0 otherwise,
(4)

where ℓ(t, s) denotes the bucket level of token s relative to time t under Fenwick-tree partitioning.
For readability, we omit explicit (t, s) indices when unambiguous. The matrix P is a hierarchical
matrix which inherits structured low-rank pattern from the hierarchical partitioning, given below. In
§3.3, we exploit this structure to design a parallel training algorithm with O(T log T) complexity.

λ
(0)
0 q⊤

0 k0

λ
(1)
1 q⊤

1 k0 λ
(0)
1 q⊤

1 k1

λ
(0)
2 q⊤

2 k2

λ
(1)
3 q⊤

3 k2 λ
(0)
3 q⊤

3 k3

λ
(0)
4 q⊤

4 k4

λ
(1)
5 q⊤

5 k4 λ
(0)
5 q⊤

5 k5

λ
(0)
6 q⊤

6 k6

λ
(1)
7 q⊤

7 k6 λ
(0)
7 q⊤

7 k7

[
λ
(2)
2 q2

λ
(2)
3 q3

] [
k0

k1

]⊤


λ
(3)
4 q4

λ
(3)
5 q5

λ
(3)
6 q6

λ
(3)
7 q7


k0

k2

k3

k1


⊤

[
λ
(2)
6 q6

λ
(2)
7 q7

] [
k4

k5

]⊤



Remark. The matrix MH (and A) is a lower-triangular instance of a hierarchical (H) ma-
trix—specifically, of the HODLR (Hierarchically Off-Diagonal Low-Rank) type. When constructed
using schemes like the Fenwick tree, it inherits the recursive partitioning and low-rank off-diagonal
blocks that define H matrices. This establishes a direct connection between log-linear attention and
hierarchical matrices: the attention operator corresponds to structured matrix multiplication with an
H matrix. We refer to MH as a quasi-H matrix—a specialized class lying between general H and
semiseparable matrices, designed to support O(log T)-space recurrence. See Section B.1 for details.

3.2 MEMORY-EFFICIENT DECODING

Let lssb(t) denote the index of the least significant set bit in the binary representation of t. The states
{S(ℓ)

t }ℓ evolve according to the following recurrence (using linear attention for simplicity):

S
(ℓ)
t =


vtk

⊤
t if ℓ=0

0 if 0<ℓ≤ lssb(t)∑ℓ−1
ℓ′=0 S

(ℓ′)
t−1 if ℓ= lssb(t)+1

S
(ℓ)
t−1 if ℓ> lssb(t)+1

At each step, the immediate term vtk
⊤
t enters the finest

level; buckets up to lssb(t) merge and promote one level
coarser. When t is a power of two the hierarchy expands by
one bucket. This Fenwick-like organization enables online
processing with O(log T) memory while retaining efficient
multiscale access.

3.3 EFFICIENT ALGORITHM FOR TRAINING

Chunkwise parallelism for linear attention (Sun et al., 2023; Yang et al., 2023; Dao & Gu, 2024)
partitions a sequence of length T into chunks of size C, which are processed in parallel while
exchanging only limited information across boundaries. This approach balances two extremes: it
avoids the prohibitive cost of global attention while exposing substantially more parallelism than
purely recurrent execution. We extend this idea to the log-linear setting and develop an efficient
chunkwise training algorithm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Level 1

(block low-rank)

Level 3

(block low-rank)

Level 2

(block low-rank)

Level 0

(block diagonal)

Figure 3: Left: Decomposition of the matrix MH. Right: Chunkwise algorithm (Algorithm 1). Level 0 handles
intra-chunk computations using a quadratic (in chunk size) algorithm, which is efficient due to small chunk
sizes. Levels 1 and above perform inter-chunk computations by invoking existing inter-chunk primitives multiple
times, with overall complexity logarithmic in the number of chunks.

For a given chunk size C, the matrix MH admits the structured decomposition,

MH = D+

L−1∑
ℓ=ℓC

M(ℓ), M
(ℓ)
ts =

{
λ
(ℓ)
t MS

ts, if s ∈ B(ℓ)
t ,

0, otherwise.
(5)

where D is block-diagonal with T
C causal blocks {D[k]} of size (C×C), capturing intra-chunk

interactions via (D[i])ts = λ
(ℓ)
iC+t M

S
ts. The remaining {M(ℓ)} encode inter-chunk dependencies in

blockwise low-rank form. Indexing begins at ℓC , the level aligned to chunk size C; levels ℓ < ℓC
collapse into D (Fig. 3, left).

Building on this structure, we propose a chunkwise algorithm for log-linear attention (Algorithm 1).
As summarized in Fig. 3 (right), the method introduces only a logarithmic overhead compared with
standard linear attention. Computation proceeds in two stages:

Intra-chunk stage (ℓ < ℓC). The block-diagonal component D is treated as a dense matrix within
each chunk. Each block costs O(C2), giving a total complexity of O(TC).

Inter-chunk stage (ℓ ≥ ℓC). The matrices {M(ℓ)} reduce to scaled sequentially semi-separable
structures (Eq. 5). With efficient state-passing primitives (e.g., Mamba-2, Gated DeltaNet), inter-
chunk dependencies are computed using only O

(
log T

C

)
primitive calls. Each call requires O(T)

time and memory,8 leading to an overall complexity of O(T log T
C).

Our algorithm extends the classical parallel prefix-sum (scan) to a hierarchical setting—a chunkwise
parallel scan. Unlike token-level scans, which often suffer from memory-bandwidth bottlenecks
during training (Yang et al., 2023), the chunkwise formulation reorganizes recurrent updates into
parallel chunk operations. Concretely, it executes O(log T) independent scans (one per memory level),
each implementable with standard methods such as the Blelloch scan (Blelloch, 1990). Layer-specific
weights (e.g., λ(ℓ)

t) can easily be incorporated into these scans.

3.4 LOG-LINEAR VARIANTS OF MAMBA-2 AND GATED DELTANET

We next apply the above construction to Mamba-2 Dao & Gu (2024) and Gated DeltaNet Yang
et al. (2024a). As discussed in §2, both models use gating mechanisms that induce a sequentially
semiseparable (SSS) temporal structure in the mask MS (with Mij =

∏i
k=j+1 αk; see Eq. 2). The

two architectures differ in how they parameterize the transition matrix A.

Our approach preserves the original form of A in each model while composing the attention mask
with its log-linear variant M = MS ⊙MH.9 We refer to the resulting models as log-linear Mamba-2

8At level ℓ, M(ℓ) contains T
2ℓ−1C

chunks of size 2ℓ−1C. Redundant work can be avoided, reducing cost by
a constant factor of two.

9More precisely, the elementwise product of an SSS matrix and an H matrix remains an H matrix. We
separate them here for clarity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4096 8192 16384 32768 65536 131072
Sequence Length

5 × 103

1 × 104

2 × 104

4 × 104

1 × 105

2 × 105

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

FlashAttention-2
Mamba-2
Log-Linear Mamba-2

4096 8192 16384 32768 65536 131072
Sequence Length

10 1

100

101

102

103

104

Ru
nt

im
e

(m
s)

FlashAttention-2
Mamba-2
Log-Linear Mamba-2 (naive)
Log-Linear Mamba-2

Figure 4: Training throughput (left; higher is better) and kernel runtime for a forward and backward pass (right;
lower is better) across varying sequence lengths. Log-Linear Mamba-2 (naive) denotes repeated application of
the existing Mamba-2 primitives, while Log-Linear Mamba-2 uses a custom implementation with optimizations
such as level fusion. The throughput drop at sequence length 131K is due to gradient checkpointing to reduce
memory usage. Experiments were run on an H100 GPU with batch size 2, 48 heads, head dimension 64, state
dimension 128, and chunk size 64. We use MVA for (Log-Linear) Mamba-2, and GQA for FlashAttention-2.

and log-linear Gated DeltaNet. Their parallel forms are given by,

O =
(
QKT ⊙MS ⊙MH) V Log-Linear Mamba-2

O =
((

QK⊤ ⊙ L
) (

I+KK⊤ ⊙ (L− I)
)−1 ⊙MS ⊙MH

)
V Log-Linear Gated DeltaNet

More broadly, any linear-attention mechanism with structured memory and an efficient chunkwise-
parallel primitive can be “lifted” to a log-linear variant by composing its temporal mask with MH.

3.5 IMPLEMENTATION

We implemented the chunkwise parallel scan algorithm in Triton (Tillet et al., 2019). The custom
kernel for log-linear Mamba-2 outperforms FlashAttention-2 (Dao, 2024) (forward + backward)
at sequence lengths beyond 8K. In full training setups, throughput depends on model architecture.
Notably, log-linear Mamba-2 (with MLP) surpasses Transformer throughput at 32K, despite additional
layers like depthwise convolutions absent in the Transformer. See Fig. 4 and Sec. C for details.

4 EXPERIMENTS

We conduct a suite of experiments across both synthetic and real-world benchmarks. We emphasize
that our experiments are not necessarily intended position log-linear attention as the best subquadratic
architecture, but rather to highlight the promise of our framework compared to sensible baselines.

4.1 SYNTHETIC BENCHMARK Dimension 16 32 64

Transformer ≥ 99 ≥ 99 ≥ 99
Mamba-2 46.9 (2.3) 75.1 (4.9) 89.6 (6.1)

w/ Log-Linear 55.9 (9.1) 76.5 (4.8) 92.9 (2.7)
Gated DeltaNet 38.4 (1.0) 79.0 (2.1) ≥ 99
w/ Log-Linear 40.0 (1.4) 84.4 (1.2) ≥ 99

Table 2: Average accuracies and standard devi-
ations (in parentheses) on MQAR over 5 seeds.
Training was early stopped when accuracy ex-
ceeded 99%.

We begin by evaluating models on the multi-query
associative recall (MQAR) task (Arora et al., 2023), a
standard diagnostic benchmark for testing in-context
recall. Our setup closely follows Arora et al. (2024):
models are trained and evaluated on 256-token se-
quences containing 4 to 64 key-value pairs (exclud-
ing the length generalization component), with tuned
learning rates. For log-linear models, we also tune
the λ parameterization. We run each configuration with five seeds. Training was early stopped when
accuracy exceeded 99%. Additional experimental details are provided in §D. As shown in Table 2,
log-linear attention performs well—even when applied on top of associative recall-optimized models
like Gated DeltaNet.

4.2 LANGUAGE MODELING

We perform academic-scale language modeling pretraining from scratch using 50B tokens on the
Long-Data-Collections dataset,10 using a sequence length of 16K. All models have 21 layers and
use a hidden size of 1536. We use a Transformer with 16 attention heads and a RoPE base of 500K,
a modified Mamba-2 with 48 heads and MLP layers, and a Gated DeltaNet with 6 heads. The
Transformer, Mamba-2, and Gated DeltaNet models contain 693M, 802M, and 793M parameters,

10https://huggingface.co/datasets/togethercomputer/Long-Data-Collections.

7

https://huggingface.co/datasets/togethercomputer/Long-Data-Collections

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

16
00

0

Position

2.56

2.58

2.60

2.62

2.64

2.66

Lo
ss

Transformer
Transformer (24 Layers)
Mamba-2
Log-Linear Mamba-2

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

16
00

0

Position

Transformer
Transformer (24 Layers)
Gated-DeltaNet
Log-Linear Gated-DeltaNet

Figure 5: Per-position loss on Book3 samples (about 39M tokens) with running average of window size 501.

respectively. For the log-linear variants, we apply a linear layer on top of the hidden states to compute
the per-head values λ(ℓ)

t . This adds less than 3% additional parameters for Mamba-2 (825M) and less
than 0.4% for Gated DeltaNet (796M). Since Mamba-2 and Gated DeltaNet have more parameters
than ordinary Transformers, we also include a (roughly) parameter-matched Transformer variant
with 24 layers (778M parameters) for comparison. For our log-linear variants, we use the default
hyperparameters from the baselines (§D). We also evaluated a parameter-matched Hyena model Poli
et al. (2023), which also has log-linear compute (but linear memory). As its WikiText perplexity
(around 29) was substantially higher than that of the other models (<23), our main experiments focus
on the Transformer, Mamba-2, and Gated DeltaNet families.

Model Wiki. LMB. LMEval
ppl ↓ ppl ↓ average ↑

Transformer 21.56 22.14 44.0
w/ 24 Layers 21.13 21.17 45.6
Hyena 29.50 / /
Mamba-2 22.44 24.14 44.8
w/ Log-Linear 22.11 21.86 44.9
Gated DeltaNet 21.73 19.71 45.0
w/ Log-Linear 21.45 18.09 45.5

Table 3: PPL and commonsense reasoning.

Standard benchmarks. Following prior work (Dao &
Gu, 2024; Yang et al., 2024a), we evaluate models on
WikiText perplexity and several zero-shot commonsense
reasoning benchmarks (Table 6). These are short-context
tasks and are therefore largely insensitive to model state
size. As such, we generally expect the log-linear vari-
ants to perform comparably to their linear counterparts.
Log-Linear Mamba-2 improves upon its linear counter-
part in perplexity and in half of the commonsense rea-
soning tasks. Log-Linear Gated DeltaNet shows stronger gains, outperforming its linear ver-
sion in perplexity and in all but one reasoning benchmark. Notably, it also outperforms a layer-
matched Transformer across all metrics and a parameter-matched Transformer on half of them.

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (uuid in haystack)

Model 4K 8K 16K 4K 8K 16K 4K 8K 16K

Transformer 72.6 76.0 16.6 100.0 99.8 90.0 77.4 67.0 44.6
w/ 24 Layers 92.4 78.4 89.8 100.0 100.0 99.6 84.0 63.6 36.4

Mamba-2 90.4 56.8 21.6 72.4 28.0 18.6 4.0 3.6 0.8
w/ Log-Linear 100.0 99.8 72.4 89.8 68.2 12.8 33.6 22.6 2.0

Gated DeltaNet 100.0 100.0 100.0 95.8 46.8 5.0 66.2 14.6 6.0
w/ Log-Linear 100.0 100.0 100.0 95.6 59.6 9.2 48.8 13.0 8.8

MK-NIAH-1 MQ-NIAH MV-NIAH
(multi-key line retrieval) (multi-query) (multi-value)

Model 4K 8K 16K 4K 8K 16K 4K 8K 16K

Transformer 79.4 83.0 61.4 58.9 48.0 29.8 37.5 34.1 21.5
w/ 24 Layers 62.6 83.2 75.2 54.6 46.0 34.5 48.4 45.4 32.3

Mamba-2 27.2 18.6 13.6 28.7 19.4 1.3 27.9 14.8 4.4
w/ Log-Linear 43.2 39.8 21.2 26.6 22.4 6.6 28.1 22.8 8.9

Gated DeltaNet 23.0 21.2 5.2 21.6 16.9 7.2 16.2 14.5 7.0
w/ Log-Linear 49.4 27.8 10.2 34.9 22.0 9.8 31.4 25.0 13.3

Table 4: NIAH experiments with three single/multi-needle tasks.

Per-position loss. Follow-
ing Lin et al. (2025), we re-
port the model’s loss at each
token position to evaluate its
ability to handle long contexts
(Fig. 5). If the loss steadily
decreases as the token posi-
tion increases, it suggests the
model is effectively using the
full context. However, if the
loss levels off after a certain
point, it indicates the model
struggles to make use of infor-
mation that is too far back in
the sequence. For this analy-
sis, we use 39M tokens from Book-3.11 To improve visualization, we apply a running average
with a window size of 501. We observe that extending both Mamba-2 and Gated DeltaNet to their
log-linear counterparts consistently reduces the (smoothed) loss across various positions, indicating
improved long-range context utilization. Log-Linear Gated DeltaNet also closely tracks the perfor-
mance of the layer-matched Transformer, although a performance gap remains when compared to the
parameter-matched Transformer.

11victor-wu/book3

8

victor-wu/book3

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Needle-In-A-Haystack. We use the Needle-In-A-Haystack (NIAH, Table 4 and Fig. 10) benchmark
from RULER (Hsieh et al., 2024), where the model must retrieve a value (the “needle”) based on
a key hidden in a long context (the “haystack”). In the simpler single-needle tasks, the log-linear
variant of Mamba-2 outperformed its linear counterpart on 8 out of 9 metrics. Gated DeltaNet, which
already achieved perfect accuracy in several cases, saw improvements in 3 metrics, with 3 remaining
unchanged. For the more challenging multi-needle tasks, Log-Linear Mamba-2 again improved in 8
out of 9 metrics, while Log-Linear Gated DeltaNet achieved improvements across all metrics.

Other tasks. Due to space we show the results on the in-context retrieval benchmark (Arora et al.,
2023) and LongBench (Bai et al., 2023) in the appendix.

5 DISCUSSION AND LIMITATIONS

While log-linear attention improves upon linear attention in many cases, there are still quite a few
tasks where it did not improve upon the linear attention baselines. Due to compute resources we
were unable to experiment with different parameterizations of the λ terms (or hyperparameters in
general),12 and it is possible that optimal parameterization of λ could lead to improved results. We
also still observe a significant performance gap compared to Transformers across all benchmarks.

The engineering complexity of log-linear attention is higher. Inter-chunk computations conceptually
resemble multiple applications of linear attention primitives, but intra-chunk operations require
bespoke implementations. These intra-chunk mechanisms are a primary factor behind the speed
differences. Additionally, the backward pass is more intricate, as it requires (manually) computing
the gradients not only for the standard attention components but also for the additional λ terms.

The use of Fenwick-tree partitioning (§3.1) introduces an inductive bias: recent tokens are allocated
more fine-grained memory, while distant tokens are compressed more aggressively. This design
reflects a natural assumption rooted in hierarchical matrix which posits that interactions between
distant elements can be approximated in low-rank form. While intuitive and inspired by physical
phenomena, this inductive bias may not be optimal for all applications. Future work could explore
extensions that enable more flexible structures while preserving computational efficiency.

Finally, in this work, we extended two existing linear-attention/SSM architectures to their log-linear
counterparts, namely Mamba-2 (Dao & Gu, 2024) and Gated DeltaNet (Yang et al., 2024a). Several
other promising architectures, including xLSTM (Beck et al., 2024; 2025b) and MesaNet (Von Oswald
et al., 2023; von Oswald et al., 2025), may likewise benefit from log-linear formulations. Developing
and evaluating log-linear variants of these models is an exciting direction for future research.

6 RELATED WORK

Structured matrices for deep learning architectures. Modern architectures combine token- and
channel-mixing layers, both based on matrix multiplications. Recent work replaces dense layers with
structured matrices. For channel mixing, approaches include Butterfly (Dao et al., 2020), Monarch
matrices (Dao et al., 2022a), and more recently, Block Tensor-Train matrices (Qiu et al., 2024). Token
mixing has been exemplified by the family of linear attention models (Katharopoulos et al., 2020)
and their various kernelizations (Xiong et al., 2021). Dao & Gu (2024) generalize these approaches
by extending low-rank structures to semiseparable matrices, enabling efficient recurrent inference
and subsuming many recent recurrent models. Another line uses sparse patterns like sliding-window
attention, alongside several hybrid methods (Nguyen et al., 2021; Arora et al., 2025; Munkhdalai
et al., 2024).

Log-linear complexity sequence modeling. Several prior efforts have focused on reducing the
quadratic cost of attention to log-linear time complexity (Kitaev et al., 2020; Shi et al., 2023; Cunning-
ham et al., 2024; Qin et al., 2023; Fu et al., 2023; Madaan et al.; Ye et al., 2019). Approaches such as
LogSparse Transformer (Li et al., 2019) and Informer (Zhou et al., 2021) introduce sparse attention
patterns to improve computational efficiency, particularly in time-series applications. Reformer (Ki-
taev et al., 2020) employs locality-sensitive hashing (LSH) to efficiently cluster similar queries and
keys. Multi-resolution attention (Zeng et al., 2022) adopts a hierarchical approach, progressively
refining attention scores from coarse to fine granularity, while Fast Multipole Attention (Kang et al.,
2024) adapts the classical fast multipole method to efficiently model long-range interactions. A

12We were only able to run our 700M-800M parameter language models just once due to compute constraints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

similar viewpoint connects log-linear attention to dilated convolution (Van Den Oord et al., 2016)
through their hierarchical mixing structure. Dilated convolution extends convolution, which cor-
responds to Toeplitz matrices, whereas we operate primarily with semi-separable and hierarchical
matrices. In our work, we leverage the Fenwick tree data structure—a specialized binary indexed
tree that enables efficient prefix sum calculations and updates in logarithmic time—to design an
efficient attention layer during both training and decoding phases. While Zhu & Soricut (2021)
also employ hierarchical matrices for attention, their formulation is fully parallel and targeted at
modest sequence lengths. In contrast, our approach adopts a chunkwise-parallel strategy with a
custom Triton implementation optimized for long-sequence training. Concurrently, Yau et al. (2025)
propose a related architecture with O(log T) memory, using a relaxed prefix-scan algorithm for state
aggregation that accommodates arbitrary (potentially non-associative) functions.

7 CONCLUSION

We introduced Log-Linear Attention, a general framework that extends a broad class of linear attention
and state-space models to their log-linear counterparts—models with logarithmically growing state
size. This framework offers both theoretical insights and practical benefits, linking structured matrix
theory with hardware-efficient computation. As a case study, we applied this approach to two recent
architectures: Mamba-2 and Gated DeltaNet.

REFERENCES

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. In Proceedings of ICML, 2024.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff, 2025. URL https://arxiv.org/abs/2402.18668.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of ICLR, 2014.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM:
Extended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAhq.

Maximilian Beck, Korbinian Pöppel, Phillip Lippe, and Sepp Hochreiter. Tiled flash linear attention:
More efficient linear rnn and xlstm kernels. arXiv preprint arXiv:2503.14376, 2025a.

Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M Blies, Günter Klam-
bauer, Sebastian Böck, and Sepp Hochreiter. xLSTM 7b: A recurrent LLM for fast and effi-
cient inference. In Forty-second International Conference on Machine Learning, 2025b. URL
https://openreview.net/forum?id=LV3DpKD08B.

Christian H. Bischof and Charles Van Loan. The WY representation for products of householder
matrices. In SIAM Conference on Parallel Processing for Scientific Computing, 1985. URL
https://api.semanticscholar.org/CorpusID:36094006.

Guy E Blelloch. Prefix sums and their applications. 1990.

Jacob Buckman, Carles Gelada, and Sean Zhang. Symmetric Power Transformers.

10

https://arxiv.org/abs/2402.18668
https://openreview.net/forum?id=ARAxPPIAhq
https://openreview.net/forum?id=LV3DpKD08B
https://api.semanticscholar.org/CorpusID:36094006

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Harry Jake Cunningham, Giorgio Giannone, Mingtian Zhang, and Marc Peter Deisenroth. Reparame-
terized multi-resolution convolutions for long sequence modelling. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=RwgNbIpCpk.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
Proceedings of ICLR, 2024.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Proceedings of ICML, 2024.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations, 2020. URL https://arxiv.org/abs/
1903.05895.

Tri Dao, Beidi Chen, Nimit Sharad Sohoni, Arjun D. Desai, Michael Poli, Jessica Grogan, Alexander
Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices
for efficient and accurate training. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 4690–4721. PMLR, 2022a. URL https://proceedings.mlr.
press/v162/dao22a.html.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Proceedings of NeurIPS, 2022b.

Peter M. Fenwick. A new data structure for cumulative frequency tables. Software: Practice
and Experience, 24, 1994. URL https://api.semanticscholar.org/CorpusID:
7519761.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=COZDy0WYGg.

Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano Pontil.
Unlocking state-tracking in linear RNNs through negative eigenvalues. In Proceedings of ICLR,
2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
Proceedings of CoLM, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In Proceedings of ICLR, 2022.

Wolfgang Hackbusch, Boris N Khoromskij, and Ronald Kriemann. Hierarchical matrices based on a
weak admissibility criterion. Computing, 73:207–243, 2004.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
International conference on machine learning, pp. 9099–9117. PMLR, 2022.

Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ortí, Robert A. van de Geijn, and Field G. Van
Zee. Accumulating householder transformations, revisited. ACM Trans. Math. Softw., 32:169–179,
2006. URL https://api.semanticscholar.org/CorpusID:15723171.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketching polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

11

https://openreview.net/forum?id=RwgNbIpCpk
https://openreview.net/forum?id=RwgNbIpCpk
https://arxiv.org/abs/1903.05895
https://arxiv.org/abs/1903.05895
https://proceedings.mlr.press/v162/dao22a.html
https://proceedings.mlr.press/v162/dao22a.html
https://api.semanticscholar.org/CorpusID:7519761
https://api.semanticscholar.org/CorpusID:7519761
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://api.semanticscholar.org/CorpusID:15723171

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanming Kang, Giang Tran, and Hans De Sterck. Fast multipole attention: A divide-and-conquer
attention mechanism for long sequences, 2024. URL https://arxiv.org/abs/2310.
11960.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A Smith. Finetuning pretrained transformers into rnns. In Proceedings of
EMNLP, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of ICML, 2020.

Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
Proceedings of ICLR, 2020.

Daniel Kressner, Stefano Massei, and Leonardo Robol. Low-rank updates and a divide-and-conquer
method for linear matrix equations. SIAM Journal on Scientific Computing, 41(2):A848–A876,
2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of SOSP, 2023.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Zhixuan Lin, Evgenii Nikishin, Xu He, and Aaron Courville. Forgetting transformer: Softmax atten-
tion with a forget gate. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=q2Lnyegkr8.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. In Proceedings of ICLR, 2024.

Lovish Madaan, Srinadh Bhojanapalli, Himanshu Jain, and Prateek Jain. Treeformer: Dense gradient
trees for efficient attention computation. In The Eleventh International Conference on Learning
Representations.

Huanru Henry Mao. Fine-Tuning Pre-trained Transformers into Decaying Fast Weights. In Proceed-
ings of EMNLP, pp. 10236–10242.

Stefano Massaroli, Michael Poli, Daniel Y Fu, Hermann Kumbong, Rom Nishijima Parnichkun,
David W. Romero, Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christo-
pher Re, Stefano Ermon, and Yoshua Bengio. Laughing hyena distillery: Extracting compact
recurrences from convolutions. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=OWELckerm6.

Stefano Massei, Leonardo Robol, and Daniel Kressner. hm-toolbox: Matlab software for hodlr and
hss matrices. SIAM Journal on Scientific Computing, 42(2):C43–C68, 2020.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In
Proceedings of ICML, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404.07143.

Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. Fmmformer: Efficient and
flexible transformer via decomposed near-field and far-field attention. In Proceedings of NeurIPS,
2021.

12

https://arxiv.org/abs/2310.11960
https://arxiv.org/abs/2310.11960
https://openreview.net/forum?id=q2Lnyegkr8
https://openreview.net/forum?id=OWELckerm6
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Costin-Andrei Oncescu, Sanket Purandare, Stratos Idreos, and Sham M. Kakade. Flash inference:
Near linear time inference for long convolution sequence models and beyond. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=cZWCjan02B.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 3, 2024.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, et al. Rwkv-7" goose" with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong. In
Proceedings of ICLR, 2021.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 28043–28078. PMLR, 2023. URL https://proceedings.mlr.press/
v202/poli23a.html.

Zhen Qin and Yiran Zhong. Accelerating toeplitz neural network with constant-time inference
complexity. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 12206–12215, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
750. URL https://aclanthology.org/2023.emnlp-main.750/.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In Proceedings of ICLR,
2022.

Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng
Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling. In Proceedings of ICLR,
2023.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning attention-
2: A free lunch for handling unlimited sequence lengths in large language models. arXiv preprint
arXiv:2401.04658, 2024a.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
HGRN2: Gated Linear RNNs with State Expansion. In Proceedings of CoLM, 2024b.

Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wilson.
Compute better spent: Replacing dense layers with structured matrices. ArXiv, abs/2406.06248,
2024. URL https://api.semanticscholar.org/CorpusID:270371652.

B. Ya. Ryabko. A fast on-line adaptive code. IEEE Trans. Inf. Theory, 38:1400–1404, 1992. URL
https://api.semanticscholar.org/CorpusID:206392294.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast Weight
Programmers. In Proceedings of ICML, 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
FlashAttention-3: Fast and accurate attention with asynchrony and low-precision. In Proceedings
of NeurIPS, 2024.

Jiaxin Shi, Ke Alexander Wang, and Emily B. Fox. Sequence modeling with multiresolution
convolutional memory, 2023. URL https://arxiv.org/abs/2305.01638.

13

https://openreview.net/forum?id=cZWCjan02B
https://openreview.net/forum?id=cZWCjan02B
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html
https://aclanthology.org/2023.emnlp-main.750/
https://api.semanticscholar.org/CorpusID:270371652
https://api.semanticscholar.org/CorpusID:206392294
https://arxiv.org/abs/2305.01638

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo Grazzi.
Deltaproduct: Improving state-tracking in linear rnns via householder products. arXiv preprint
arXiv:2502.10297, 2025.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, et al. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 12:1, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of NeurIPS, 2017.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maximilian
Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans, et al. Mesanet:
Sequence modeling by locally optimal test-time training. arXiv preprint arXiv:2506.05233, 2025.

Bernard Widrow, Marcian E Hoff, et al. Adaptive switching circuits. In IRE WESCON convention
record, volume 4, pp. 96–104. New York, 1960.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of AAAI, 2021.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
of linear attention mechanism, January 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In Proceedings of ICLR, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. In Proceedings of NeurIPS, 2024b.

Morris Yau, Sharut Gupta, Valerie Engelmayer, Kazuki Irie, Stefanie Jegelka, and Jacob Andreas.
Sequential-parallel duality in prefix scannable models. arXiv preprint arXiv:2506.10918, 2025.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, and Vikas Singh. Multi resolution analysis
(mra) for approximate self-attention, 2022. URL https://arxiv.org/abs/2207.10284.

Yu Zhang and Songlin Yang. Flame: Flash language modeling made easy, January 2025. URL
https://github.com/fla-org/flame.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of AAAI, 2021.

Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention for
sequences, 2021. URL https://arxiv.org/abs/2107.11906.

14

https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://arxiv.org/abs/2207.10284
https://github.com/fla-org/flame
https://arxiv.org/abs/2107.11906

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model Temporal Structure Hidden Size Structure
Mamba-2 Semiseparable Scaled Identity

Gated DeltaNet Semiseparable Identity plus Low-Rank
Log-Linear Mamba-2 Hierarchical Scaled Identity

Log-Linear Gated DeltaNet Hierarchical Identity plus Low-Rank

Table 5: Structural comparison of different attention variants.

A GENERALIZING LOG-LINEAR ATTENTION TO MORE EXPRESSIVE LINEAR
RNNS

The main paper adopts the following unified view of efficient attention (Eq. 1):

P = A⊙M, O = PV,

This formulation reveals that the key difference between linear and log-linear attention lies in the
structure of the mask matrix M ∈ RT×T . Variations among linear attention models—such as
Mamba-2 and Gated DeltaNet—stem from different parameterizations of A. While this perspective
offers a unifying and intuitive framework that captures a wide range of attention mechanisms, it
comes with an important limitation: the state-transition terms are restricted to be scalars (in the case
of Mamba-2) or identity-plus-rank-one matrices (in the case of Gated DeltaNet).

In this section, we introduce a more general framework that relaxes this scalar constraint by allowing
state-transition terms (including the thus λ(ℓ)

t terms) to be matrix-valued. This extension enables
richer and more expressive attention mechanisms while preserving computational efficiency.

Linear Attention as an SSS Tensor. Consider the standard linear attention mechanism with
data-dependent gating and an SSS (sequentially semiseparable) mask MS :

P = QK⊤ ⊙MS , O = PV.

In the main paper, we extend the SSS mask MS to a hierarchical form MH. Notice that in Mamba-2,
the resulting matrix P also inherits the same structural property, with its SSS-rank governed by the
hidden dimension d:

Pt,s = Qt (Ct · · ·Cs+1)K
⊤
s , where Ct = αtI.

We now define a 4D tensor MS ∈ R(T×T)×(d×d) such that:

Pt,s = QtMt,sK
⊤
s , where Mt,s = Ct · · ·Cs+1.

Each entry Mt,s ∈ Rd×d is a matrix, making MS a 4D tensor. We refer to this as an SSS tensor due
to its sequentially semiseparable-like structure along the temporal dimension, though this term is not
yet formalized in the literature.

This tensor-centric view naturally accommodates matrix-valued state transitions Ct ∈ Rd×d with
arbitrary structure, offering a richer representation than scalar- or identity-plus-rank-one-based
approaches. In particular, models such as Mamba-2 and Gated DeltaNet can be interpreted as
operating on 4D tensors with different hidden-dimension structures, while still preserving temporal
semiseparability.13

Mamba-2: MS
t,s =

s+1∏
t′=t

αt′I, Gated DeltaNet: MS
t,s =

s+1∏
t′=t

αt′
(
I− βt′kt′k

⊤
t′
)

Log-Linear Attention as an H Tensor. We can apply our log-linear attention to these more flexible
(linear) RNNs by incorporating matrix-valued, level- and data-dependent terms Λ(ℓ)

t ∈ Rd×d:

Mamba-2: MH
t,s = Λ

(ℓ)
t

s+1∏
t′=t

αt′I, Gated DeltaNet: MH
t,s = Λ

(ℓ)
t

s+1∏
t′=t

αt′
(
I− βt′kt′k

⊤
t′
)

13Strictly speaking, Gated DeltaNet also need to include a term βt from βtvtk
⊤
t . For clarity, we omit it here,

as it can be absorbed into other terms.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

I = {1, 2, 3, 4, 5, 6, 7, 8}

I(3)
1 = {1, 2, 3, 4} I(3)

2 = {5, 6, 7, 8}

I(2)
1 = {1, 2} I(2)

2 = {3, 4} I(2)
3 = {5, 6} I(2)

4 = {7, 8}

I(1)
1 = {1} I(1)

2 = {2} I(1)
3 = {3} I(1)

4 = {4} I(1)
5 = {5} I(1)

6 = {6} I(1)
7 = {7} I(1)

8 = {8}

ℓ = 3 ℓ = 2 ℓ = 1 ℓ = 0

Figure 6: Visualization adapted from Massei et al. (2020); Kressner et al. (2019): This example illustrates a
cluster tree of depth 3 along with the corresponding block partitions at each level. Blocks marked with stripes are
stored as low-rank matrices in the HODLR format, while those filled with solid color represent dense matrices.

This formulation highlights a key insight: both Mamba-2 and Gated DeltaNet share a common
semiseparable structure in the temporal dimension, but differ in how they structure the hidden
dimension. Mamba-2 relies on scaled identities, while Gated DeltaNet applies identity-minus-rank-
one modifications. Table 5 summarizes these distinctions.

B LOG-LINEAR ATTENTION AS H MATRICES

We begin by introducing two classes of Hierarchical matrices (H matrices) following Massei et al.
(2020): HODLR (Hierarchically Off-Diagonal Low-Rank) matrices and HSS (Hierarchically Semi-
Separable) matrices. We then show how Log-Linear Attention corresponds to a specific subclass of
H matrices that occupies an intermediate position between these two. Finally, we discuss a further
variant of H matrices that, in principle, allows for more refined partitioning—potentially enhancing
approximation quality at the cost of increased (though constant-factor) computational complexity.

B.1 HODLR MATRICES

HODLR (Hierarchically Off-Diagonal Low-Rank) matrices are structured matrices built via recursive
partitioning, where off-diagonal blocks are low-rank at every level. This structure is formalized using
a cluster tree Massei et al. (2020). Let T be the matrix dimension, and let T be a perfectly balanced
binary tree of depth L whose nodes are subsets of {1, . . . , T}. We say T is a cluster tree if: (1) the
root is I = {1, . . . , T}; (2) each level partitions indices into contiguous blocks; (3) every node I(ℓ)i

at level ℓ has two children I(ℓ−1)
2i−1 and I(ℓ−1)

2i that form a disjoint partition of the parent. See Fig. 6
for a visual example of such a hierarchical partitioning.

Now, let M ∈ RT×T be a square matrix and T a cluster tree as described above. We say that M is a
(T , k)-HODLR matrix if,

rank
(
M[I(ℓ)

i , I(ℓ)
j]
)
≤ k, ∀ I(ℓ)

i , I(ℓ)
j ∈ sibilings (T)

This hierarchical low-rank structure enables efficient O(T log T) storage and matrix-vector multipli-
cation, making HODLR matrices a core component in fast algorithms for dense matrix computations.
HODLR belongs to the broader class of rank-structured matrices known as Hierarchical matrices (H
matrices).

B.2 HSS MATRICES

The O(T log T) memory complexity of HODLR matrices arises from their recursive structure: they
consist of O(log T) levels, each storing low-rank factorizations that require O(T) space. In cases
where these low-rank factors exhibit linear dependencies across levels, it is possible to exploit these
relationships through nested hierarchical low-rank representations, potentially reducing the memory
complexity to O(T) by eliminating the logarithmic factor Massei et al. (2020).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Let I(ℓ)
i and I(ℓ)

j denote a pair of sibling clusters at level ℓ in the cluster tree T . Define n(ℓ) = 2ℓ−1 as
the block size at level ℓ. The off-diagonal block corresponding to these clusters can be parameterized
as:

M[I(ℓ)
i , I(ℓ)

j] = U
(ℓ)
i Σ

(ℓ)
i,j

(
V

(ℓ)
j

)⊤
, where U

(ℓ)
i ,V

(ℓ)
j ∈ Rn(ℓ)×k, Σ

(ℓ)
i,j ∈ Rk×k

We call M matrix a Hierarchically Semiseparable matrices (HSS) if low-rank factors at different
levels are linearly related through some “translation operators” T

(ℓ)
U ,T

(ℓ)
V ∈ R2k×k such that,

U
(ℓ)
i =

[
U

(ℓ−1)
i1

0

0 U
(ℓ−1)
i2

]
T

(ℓ)
U,i, V

(ℓ)
j =

[
V

(ℓ−1)
j1

0

0 V
(ℓ−1)
j2

]
T

(ℓ)
V,j

More broadly, HSS matrices belong to a subclass of H matrices known as H2 matrices.

B.3 QUASI-HIERARCHICAL MATRIX.

As discussed above, when the low-rank basis matrices U(ℓ) and V(ℓ) exhibit linear relationships
across levels ℓ, the matrix M reduces to a semiseparable form. In this case, both storage and
matrix-vector multiplication complexities can be reduced to O(T). Otherwise, M retains the general
hierarchical structure with O(T log T) complexity.

We define a Quasi-Hierarchical Matrix as one in which only one of the basis sequences, either U(ℓ)

or V(ℓ), satisfies such a linear nesting property across levels, while the other does not. The matrix
MH used in the Log-Linear model (Eq. 4) is an instance of this structure.

Both Hierarchical and Quasi-Hierarchical matrices incur O(T log T) complexity for storage and
computation during training. However, the use of Quasi-Hierarchical matrices plays a crucial role
in enabling O(log T) complexity during inference. We are not aware of a recurrent algorithm for
general Hierarchical matrices that achieves logarithmic inference complexity.14

Reparameterization. More precisely, Eq. 4 represents a Quasi-Hierarchical matrix that has been
specifically re-parameterized as a composition of the scalar weights λ(ℓ) and a sequentially semisep-
arable (SSS) matrix MS . This reparameterization serves two purposes: first, to highlight the
connection between our use of H matrices and the SSS format adopted in prior work; and second, to
enable the block decomposition into a hierarchy of SSS matrices, as shown in Eq. 5.

We present this re-parameterization below, along with its 4D tensor variant discussed in §A, where
we additionally assume that the matrices Ui and Vj are invertible.

Matrix: Tensor:

MH
i,j := τ

(ℓ)
i uivj ⇔ λ

(ℓ)
i

i∏
t=j+1

αt MH
i,j := T

(ℓ)
i UiV

⊤
j ⇔ Λ

(ℓ)
i

j+1∏
t=i

Ct

⇒ τ
(ℓ)
i := λ

(ℓ)
i , ui :=

i∏
t=0

αt, vj :=

j∏
t=0

1

αt
T

(ℓ)
i := Λ

(ℓ)
i , Ui :=

0∏
t=i

Ct, V
⊤
j :=

j∏
t=0

C−1
t

⇐ λ
(ℓ)
i := τ

(ℓ)
i uivi, at :=

rt−1

rt
Λ

(ℓ)
i := T

(ℓ)
i UiV

⊤
i , Ct := R−1

t Rt−1

B.4 H MATRICES WITH STRONG AND WEAK ADMISSIBILITY

In the recurrent formulation of Log-Linear Attention, although there are O(log T) states correspond-
ing to different hierarchical levels, roughly half of them are zero in practice. This sparsity arises from
the specific structure of HODLR matrices, which belong to a broader class of H matrices known as
weakly admissible Hackbusch et al. (2004).

14In fact, our initial attempts involved using fully Hierarchical matrices, but we were unable to derive a
recurrent formulation with O(log T) complexity. This motivated the design of Quasi-Hierarchical matrices
specifically to support efficient recurrence.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

+

+

++ +

+

+ +

+

+

Figure 7: Left: H matrices with strong admissibility. Right: H matrices with weak admissibility.

Figure 8: Left: H matrices with strong admissibility. Right: H matrices with weak admissibility.

Figures 8 and 7 illustrate an alternative structure based on strong (or standard) admissibility. Unlike
the weakly admissible variant, strongly admissible H matrices allow for finer-grained partitioning of
the matrix, and their corresponding recurrent forms utilize all hierarchical levels.

While strong admissibility can yield more accurate approximations, it comes with a significant
computational cost Hackbusch et al. (2004). In our early experiments, using strong admissibility in
a Triton implementation resulted in up to a 4x slowdown, with only marginal improvements in
accuracy. As a result, we adopt the weakly admissible structure throughout this work and refer to it
simply as the H-matrix.

C IMPLEMENTATIONS

1 import torch
2 import numpy as np
3 import torch.nn.functional as F
4
5
6 def segsum(x):
7 T = x.size(-1)
8 x_cumsum = torch.cumsum(x, dim=-1)
9 x_segsum = x_cumsum[..., :, None] - x_cumsum[..., None, :]

10 mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool))
11 x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
12 return x_segsum
13
14
15 def level_mask(level, T):
16 if level == 0:
17 return torch.eye(T, dtype=torch.bool)
18
19 i, j = torch.meshgrid(torch.arange(T), torch.arange(T), indexing="ij")
20 half = 1 << (level - 1)
21 clipped = i - (i % (1 << level - 1))
22 valid = (i % (1 << level) >= half) & (j + half >= clipped) & (j < clipped)
23 return valid
24
25
26 def construct_H_matrix(a, L):
27 T = a.size(-1)
28 A = torch.exp(segsum(a))
29 return sum([A * L[..., level, :].unsqueeze(-1) * level_mask(level, T) for level in range(int(np.log2(T)) +

1)])
30
31
32 def hattention(X, A, B, C, L, block_len=8):

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

33 """
34 Arguments:
35 X: (batch, length, n_heads, d_head)
36 A: (batch, length, n_heads)
37 B: (batch, length, n_heads, d_state)
38 C: (batch, length, n_heads, d_state)
39 L: (batch, length, n_heads, num_levels) where num_levels = log2(length) + 1
40 Return:
41 Y: (batch, length, n_heads, d_head)
42 """
43 T = X.shape[1]
44 assert X.dtype == A.dtype == B.dtype == C.dtype
45 assert X.shape[1] % block_len == 0
46 input_shape = X.shape
47 # Rearrange into blocks/chunks
48 b, cl = X.shape[0], X.shape[1]
49 c = cl // block_len
50 X, A, B, C, L = [x.reshape(b, c, block_len, *x.shape[2:]) for x in (X, A, B, C, L)]
51 A = A.permute(0, 3, 1, 2) # (batch, n_heads, c, block_len)
52 A_cumsum = torch.cumsum(A, dim=-1) # (batch, n_heads, c, block_len)
53
54 num_intra_chunk_levels = int(np.log2(block_len)) + 1
55 num_inter_chunk_levels = int(np.log2(T)) + 1 - num_intra_chunk_levels
56 # Partition the lambda into intra-chunk and inter-chunk lambda
57 L_intra, L_inter = L[..., :num_intra_chunk_levels], L[..., num_intra_chunk_levels:]
58 L_intra = L_intra.permute(0, 3, 1, 4, 2) # (batch, n_heads, num_chunks, num_levels, block_len)
59
60 # Intra-chunk Computation
61 H = construct_H_matrix(A, L_intra) # Materialize the H matrix as a dense matrix
62 Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, H, X)
63
64 # Inter-chunk Computation
65 decay_states = torch.exp((A_cumsum[..., -1:] - A_cumsum))
66 states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, X)
67 decay_chunk = F.pad(torch.exp(segsum(A_cumsum[..., -1])), (0, 0, 1, 0))[..., :-1, :]
68 state_decay_out = torch.exp(A_cumsum)
69
70 def compute_Y_off_level(states, level):
71 mask = level_mask(level + 1, c).unsqueeze(0).unsqueeze(0)
72 decay_chunk_level = decay_chunk * mask
73 states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk_level, states)
74 Y_off = torch.einsum(
75 "bclhn,bchpn,bhcl,bclh->bclhp",
76 C,
77 states,
78 state_decay_out,
79 L_inter[..., level],
80)
81 return Y_off
82
83 Y_off = torch.zeros_like(Y_diag)
84 for i in range(num_inter_chunk_levels):
85 Y_off += compute_Y_off_level(states, i)
86
87 Y = (Y_off + Y_diag).reshape(input_shape)
88 return Y

Algorithm 1 Chunkwise Log-Linear Attention Algorithm

1: for t ∈ [T/C] do
2: Y[t] =

(
Q[t]K

⊤
[t] ⊙MH

[t]

)
V[t]

3: end for
4:
5: for ℓ ∈ [log2 (T/C)] do
6: for t ∈ [T/C] do
7: Y[t] = Y[t] + mask(ℓ)

Q

(
Λ

(ℓ)

[t] ⊙Q[t]S[t]

)
8: S[t+1] = mask(ℓ)

A

(
A[t]S[t]

)
+ mask(ℓ)

K

(
K[t]V

⊤
[t]

)
9: end for

10: end for
11: return Y

A naive implementation computes each level independently using a Mamba-2-style primitive, then
sums the outputs—leading to redundant memory access and kernel launches. To improve efficiency,
we fuse computation across four levels into a single Triton kernel, which we found optimal given
SRAM constraints on an H100.

For backpropagation, we unify gradient computation across all levels for ∇K and ∇V by analytically
factoring their dependencies. This reduces kernel count and improves memory efficiency, achieving
over 3× speedup compared to the naive multi-level version.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENT DETAILS

For the implementation benchmarks, all experiments were conducted on an H100 GPU with a batch
size of 2, using 48 attention heads, a head dimension of 64, and a chunk size of 64. In Mamba-2-style
models, the attention heads are applied to V (MVA pattern), whereas in FlashAttention-2, we adopt
GQA-style attention by applying heads to Q. The dimensions of the Q and K states are set to 128,
aligning with common training configurations.

For the MQAR experiments, we largely follow the setup described in Arora et al. (2024). Models
are trained and evaluated on 256-token sequences containing between 4 and 64 key-value pairs. We
do not evaluate on sequences longer than those used in training (i.e., no length generalization). In
(Log-Linear) Mamba-2 models, both the state and head dimensions are set to 16. For (Log-Linear)
Gated DeltaNet, we use two attention heads by default, except for models with a dimension of 16,
where a single head is used. We tune the learning rate and, for Log-Linear models, also tune the
parameterization of λ. We run each configuration with five seeds. Training was early stopped when
accuracy exceeded 99%.

For the language modeling experiments, each run was performed on 8×A100 or 8×H100 GPUs over
the course of several days. We do not tie word embeddings, use a vocabulary size of 32,000, and set
the initializer range to 0.006. Training is performed with a global batch size of approximately 524K
tokens for 95K steps (roughly 50B tokens). We use the flash-linear-attention and flame
libraries Yang & Zhang (2024); Zhang & Yang (2025), following most of their default configurations.

16 32 64

40

50

60

70

80

90

100 Mamba-2
Log-Linear Mamba-2

16 32 64

Gated-DeltaNet
Log-Linear Gated-DeltaNet

Figure 9: MQAR experiments with early stopping at 99% accuracy.

Detailed Experimental Results. Figures 9 and 10 and Tables 6 and 7 provide detailed results.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑

Transformer 21.56 22.14 38.8 65.1 39.6 50.7 45.6 24.5 44.0
w/ 24 Layers 21.13 21.17 39.3 66.6 40.4 53.3 47.8 26.4 45.6

Mamba-2 22.44 24.14 36.2 66.8 41.2 51.6 46.0 27.1 44.8
w/ Log-Linear 22.11 21.86 37.0 66.6 41.1 51.7 45.5 27.4 44.9

Gated DeltaNet 21.73 19.71 39.3 65.8 40.9 52.2 47.1 24.6 45.0
w/ Log-Linear 21.44 18.08 40.5 66.1 41.4 53.9 46.9 24.9 45.6

Table 6: Performance comparison on language modeling and zero-shot commonsense reasoning.

E LLM USAGE

In this work, large language models (LLMs) were used to enhance writing by improving clarity and
conciseness, to identify relevant literature across and beyond the immediate domain, and to support
research ideation, particularly in mathematics and coding.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.2

0.4

0.6

0.8

1.0
single-1

0.2

0.4

0.6

0.8

1.0
single-2

0.0

0.2

0.4

0.6

0.8

single-3

4096 8192 16384

0.2

0.4

0.6

0.8

multi-key-1

4096 8192 16384
0.0

0.2

0.4

0.6
multi-query

4096 8192 16384

0.1

0.2

0.3

0.4

0.5
multi-value

Transformer
Transformer (24 Layers)

Mamba-2
Log-Linear Mamba-2

Gated-DeltaNet
Log-Linear Gated-DeltaNet

Figure 10: Needle-In-A-Haystack experiments. See Table 4 for details.

SWDE SQuAD FDA
Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048 16k

Transformer 47.3 44.6 45.2 45.4 34.0 34.5 34.5 34.5 72.2 70.8 72.9 72.2
w/ 24 Layers 53.8 50.9 50.3 50.8 30.7 31.2 31.2 30.9 73.8 76.0 74.4 73.8

Mamba-2 42.5 37.7 30.7 30.6 21.6 21.7 21.9 22.0 53.7 38.0 23.8 21.3
w/ Log-Linear 41.9 35.6 28.4 28.5 25.8 25.9 25.9 26.1 53.0 37.5 20.5 16.6

Gated DeltaNet 41.0 32.5 27.2 27.8 23.8 24.1 24.3 23.7 57.2 43.7 33.2 30.5
w/ Log-Linear 46.2 39.4 35.3 35.1 25.2 25.2 25.3 25.3 64.9 53.5 39.1 30.5

TriviaQA Drop NQ
Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048

Transformer 48.5 49.6 48.5 48.5 22.8 22.8 22.5 22.3 24.5 24.3 24.6
w/ 24 Layers 46.9 47.0 46.8 46.8 22.7 22.4 22.7 23.0 24.0 24.4 24.5

Mamba-2 43.7 43.2 43.2 43.2 22.2 22.1 22.2 22.1 18.5 16.5 16.5
w/ Log-Linear 44.9 45.0 45.5 45.5 20.2 20.6 20.3 19.9 20.0 19.9 20.4

Gated DeltaNet 45.6 45.6 45.6 45.6 21.1 21.7 21.4 21.8 20.1 18.4 18.7
w/ Log-Linear 45.9 45.6 46.0 46.0 20.7 20.8 20.8 21.0 22.5 21.8 21.3

Table 7: Accuracy on retrieval tasks w/ input truncated to different lengths.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Single-Doc QA Multi-Doc QA Summarization Few-shot Code
Model NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Transformer 11.7 9.7 20.8 22.4 29.8 6.7 13.1 9.4 3.2 27.5 28.0 16.2 23.7 29.8
w/ 24 Layers 10.7 18.4 26.1 33.7 25.7 11.6 16.8 9.4 10.3 16.5 45.2 14.3 31.5 30.9

Mamba-2 9.1 17.4 10.9 11.2 20.9 4.3 8.3 6.0 4.9 2.0 22.6 8.8 38.1 34.6
w/ Log-Linear 9.8 9.6 15.4 11.5 22.0 5.1 5.4 11.1 4.5 16.5 21.6 14.9 31.2 30.3

Gated DeltaNet 8.5 11.9 16.4 14.4 24.5 6.6 9.2 11.7 11.6 36.5 25.3 23.1 31.1 31.1
w/ Log-Linear 9.9 6.1 17.6 17.7 25.2 7.5 5.5 11.9 1.9 8.0 41.1 23.2 28.3 29.6

Table 8: Accuracy on LongBench tasks (Bai et al., 2023): Narrative QA, QasperQA, MultiField QA, HotpotQA,
2WikiMultiQA, Musique, GovReport, QMSum, MultiNews, TREC, TriviaQA, SamSum, LCC, and RepoBench-
P.

22

	Introduction
	Background: A Structured Matrix View of Efficient Attention
	Log-Linear Attention
	Fenwick Tree Partitioning and Hierarchical Matrices
	Memory-efficient decoding
	Efficient Algorithm for Training
	Log-Linear Variants of Mamba-2 and Gated DeltaNet
	Implementation

	Experiments
	Synthetic Benchmark
	Language Modeling

	Discussion and Limitations
	Related Work
	Conclusion
	Generalizing Log-Linear Attention to More Expressive Linear RNNs
	Log-Linear Attention as H Matrices
	HODLR Matrices
	HSS Matrices
	Quasi-Hierarchical Matrix.
	H Matrices with Strong and Weak Admissibility

	Implementations
	Additional Experiment Details
	LLM Usage

