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ABSTRACT

The attention mechanism in Transformers is an important primitive for accurate
and scalable sequence modeling. Its quadratic-compute and linear-memory com-
plexity however remain significant bottlenecks. Linear attention and state-space
models enable linear-time, constant-memory sequence modeling and can moreover
be trained efficiently through matmul-rich parallelization across sequence length.
However, at their core these models are still RNNs, and thus their use of a fixed-size
hidden state to model the context is a fundamental limitation. This paper develops
log-linear attention, an attention mechanism that balances linear attention’s effi-
ciency and the expressiveness of softmax attention. Log-linear attention replaces
the fixed-size hidden state with a logarithmically growing set of hidden states. We
show that with a particular growth function, log-linear attention admits a similarly
matmul-rich parallel form whose compute cost is log-linear in sequence length.
Log-linear attention is a general framework and can be applied on top of existing
linear attention variants. As case studies, we instantiate log-linear variants of two
recent architectures—Mamba-2 and Gated DeltaNet—and find they perform well
compared to their linear-time variants.

1 INTRODUCTION

The attention layer (Bahdanau et al.,2014) is a core building block of modern deep learning archi-
tectures, most notably in the Transformer architecture (Vaswani et al.,|2017). For training, attention
can be parallelized across sequence length through reformulating the computation as a series of
matrix-matrix multiplications (matmuls), which can enable efficient training on modern accelerators
such as GPUs and TPUs. However, the compute cost of attention grows quadratically and its memory
cost grows linearly with respect to sequence length; despite the wallclock efficiency improvements
obtained from hardware-optimized implementations (Dao et al., 2022bj; |Dao, [2024} [Shah et al.| [2024;
Liu et al.| 2024; Kwon et al., [2023), this quadratic-compute linear-memory cost is a fundamental
limitation in enabling new applications and serves as a significant bottleneck in existing ones.

Linear attention (Katharopoulos et al.,2020) replaces the softmax kernel with a simple linear kernel
(i.e., dot product) to derive the “attention” scores. The use of a linear kernel makes it possible
to reformulate linear attention as a linear RNN with matrix-valued hidden states, and thus linear
attention enables linear-time, constant-memory sequence modelingm For training, linear attention
can be parallelized across sequence length via a chunking mechanism where a sequence is split
up into chunks and the computations across chunks are performed in parallel (Hua et al.| 2022}
Sun et al.| 2023} [Yang et al., [2024bj [Dao & Gul 2024). The complexity of this chunkwise parallel
algorithm is subquadratic in sequence length but still rich in matmulsE] leading to hardware-efficient
implementations (Yang & Zhang] [2024;|Qin et al.| 2024a}; [Beck et al., 2025a)) that obtain practical
wallclock improvements over optimized implementations of softmax attention. While early versions
of linear attention generally underperformed softmax attention (Kasai et al.,[2021; |Peng et al., 2021}
Maoj Qin et al., [2022f [Sun et al., 2023)), modern variants with data-dependent multiplicative gates
(Yang et al.l 2024b; |Qin et al., [2024b; [Peng et al., [2024)—which include state-space models (SSMs)
such as Mamba (Gu & Dao, [2024; \Dao & Gul [2024))—and delta-rule-based structured transition
matrices (Schlag et al.,[2021};|Yang et al.,|2024bza} |Grazzi et al.| 2025} |Siems et al.| [2025] |Peng et al.|
2025) have led to significant improvements. However, despite these improvements linear attention’s
use of a fixed-sized hidden state is a fundamental limitations when it comes to certain capabilities
such as associative recall over a given context (Arora et al.,[2024).

'Thus there are three senses in which linear attention is linear: the use of a linear kernel, its reformulation as
a linear RNN where the hidden state is a linear function of the previous state, and its linear-time complexity.

Unlike parallel scan (Blellochl [1990) which can also parallelize linear attention across sequence length but
consists mostly of elementwise operations instead of matmuls.
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Model \ A M (Data Dependent?)  Training Algorithm / Time  Decoding Time and Space

Attention | o(QK ") Mask (X) FlashAttention O (T2) o(T) o(T)

Linear Attention | QK" Mask (X) Chunk-recurrent O (T") O(1) O(1)

RetNet | QK" Semiseparable (X) Chunk-recurrent O(T") O(1) O(1)

Mamba-2 | QK" Semiseparable (v') Chunk-recurrent O(T) O(1) O(1)

Multi-Hyena | QK" Toeplitz (X) FFT O(T log T") O(log?T)  O(T)

DeltaNet | T (QK')  Mask (X) Chunk-recurrent O(T") O(1) O(1)

Gated DeltaNet | 7w (QK ")  Semiseparable (v') Chunk-recurrent O (T") O(1) O(1)
Log-Linear Mamba-2 | QK" Hierarchical (v) Chunk-scan O(T log T') O(logT) O(log T)
Log-Linear Gated DeltaNet | 7w (QK ')  Hierarchical (v) Chunk-scan O(T log T') O(logT) O(logT)

Table 1: Summary of efficient attention mechanisms under the unified formulation: P = A © M, 0 = PV.
M is a lower-triangle (causal) matrix. We use symbol Tk (A) = (AOL) (I+KK' © (I- L))71 for
notational brevity, where L is a lower-triangular matrix of 1s. Here decoding time is the time per step, and
decoding space refers to the overall memory complexity during generation.

This paper develops log-linear attention as a middle ground between linear attention and full softmax
attention. Instead of using a single hidden state matrix to represent the history (as in linear atten-
tion/SSMs), log-linear attention maintains a growing set of hidden states where the set size grows
logarithmically with respect to sequence length. With a particular choice of the growth function, we
show that log-linear attention admits a matmul-rich “parallel form” for training which involves replac-
ing the lower-triangular causal mask in ordinary linear attention with a data-dependent hierarchical
matrix, which enables subquadratic training; in particular we show that the compute cost of log-linear
attention is log-linear in sequence length (hence the name), while its memory cost is logarithmic.
Log-linear attention is a general framework for sequence modeling and can be used to generalize
existing linear attention models. As case studies, we use the framework on two popular recent models,
Mamba-2 (Dao & Gul 2024) and Gated DeltaNet (Yang et al.,|2024a)), to derive log-linear variants of
both models, and find that these variants perform well compared to their original linear variants.

2 BACKGROUND: A STRUCTURED MATRIX VIEW OF EFFICIENT ATTENTION

Given an input sequence of length 7' and the corresponding key, query, value matrices
K.Q,V ¢ RT*X4 softmax attention obtains the output O € R7* for all time steps via
O = softmax(QK'™ ® M)V, where M € {—00,0}7*T is a causal masking matrix. This in-
curs O(T?) compute and O(T) memory, which makes it costly to apply to long sequences. As a
response, there has been much recent work on efficient alternatives with sub-quadratic compute and
sub-linear memory, including linear attention, state-space models, and long convolution models.
Despite their differences, many of these approaches can be captured by the following equation:

P=AoM, O=PV, )]

where A € RT*T is an attention-like matrix (e.g., QK" in the case of ordinary linear attention) and
M € RT*T is a lower-triangular causal masking matrix (e.g., M € {0, 1}7>7 for linear attention).
By separating out the interaction terms A and the (potentially data-dependent) masking matrix M,
this abstraction reveals commonalities across a broad class of models, as shown in Table Different
structures imposed on M can lead to efficient training and inference algorithms. We now describe
key models that fit within this framework.

Linear attention. Linear attention |Katharopoulos et al.|(2020) simply removes the softmax opera-
tion, resulting in the following parallel for

O0=(QK'oM)V, M, =1{i<j}
Linear attention can be reparameterized into the following “recurrent form” for inference,
St =Si1+uk/, o =S,
which enables linear-time constant-memory sequence modeling.

Linear attention with (data-dependent) gates. Vanilla linear attention lacks a forgetting mech-
anism, which has been shown to be crucial in ordinary RNNs. One way to incorporate such a
mechanism is through a scalar gate oy € (0, 1), which results in recurrence S; = a;S;_1 + 'utk:tT .

3Here we work linear attention without any feature maps or normalization, since most recent works have
found them to be unnecessary (although see (Kacham et al.| [2023; Buckman et al.; |Arora et al.,[2024)).
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This has the following corresponding parallel form:

O0=(QK' oM)V, M, = H Q. )
k=j-+1

Originally introduced by Peng et al.| (2021)), gated linear attention has enjoyed a resurgence in recent
years (Qin et al., [2024b; [Peng et al.| 2024} [Yang et al.} 2023 Katschl,[2023) and are an instance of
time-varying SSMs (Gu & Daol 2024; Dao & Gu,|2024). Well-known models in this family include
RetNet (Sun et al., [2023)), which uses a data-independent gate o; = «, and Mamba-2 (Dao & Gul
2024), which uses the above data-dependent gate. [Dao & Gu|(2024) show that with a scalar gating
factor, M has a 1-semiseparable structure where every submatrix in the lower triangular portion has
rank at most 1, which can enable efficient training.

Linear attention with the delta rule. DeltaNet (Schlag et al.l [2021)) is a type of linear attention
layer which updates the hidden state via the delta rule (Widrow et al., |1960))"| where the recurrent
form is given b

St = St,1 (I — ktk;r) + ’Utkt—r, Oy = Stqt-

While the original work used a purely recurrent form, |Yang et al.| (2024b) recently show that it is
possible to parallelize DeltaNet across sequence length through leveraging a compact representation
of Householder matrices (Bischof & Loan| 1985} Joffrain et al.|, 2006)), resulting in the following
parallel form (cf. (Yang et al.,|2024b| §3.2)):

0=[(QKToL) I+KK & (L-1) oM |V

A

where L and M are lower-triangular matrices consisting of 1s. Since A itself is already lower-
triangular, the causal masking matrix M is not strictly necessary in the above. However, by changing
M to have 1-semiseparable structure as in Mamba-2, we can recover Gated DeltaNet (Yang et al.,
20244a), whose recurrence is given by S; = «;S; 1 (I — k¢k,' ) + v;k/ . Linear attention with such
data-dependent structured transition matrices has been shown to be theoretically more expressive
than linear attention with multiplicative gates when it comes to certain types of state-tracking tasks
(Merrill et al. [2024f |Grazzi et al} 2025} [Siems et al., 2025} [Peng et al., [2025)), which make these
layers attractive targets to generalize via our log-linear attention framework.

Long convolution models. Long-convolution sequence models, where the convolution kernel
size equals the sequence length, can also be cast into this framework. For example, Toeplitz
neural network (Qin et al., 2023) and MultiHyena Massaroli et al| (2023) layers are given by
O = (QK" ® T},) V, where T}, is a causal Toeplitz matrix generated by a long convolution kernel
h e RT,ie., Tyi,j] = h[i — j] fori > j and O otherwise. Other long convolutional variants like
H3 (Fu et al.l 2023) and Hyena (Poli et al.| [2023) also admit a precise attention-style formulation
(Massaroli et al.,|2023). While the decoding speed of long convolution models can be improved from
O(T) to (’)(log2 T') per step (Oncescu et al., [2025)), their memory cost remains linear, i.e., the same
as in softmax attention. However, some long convolution models such as S4 (Gu et al.| [2022)) admit a
reparameterization into a time-invariant SSM and thus enjoy constant-memory inference. There has
also been efforts to distill long convolution models into RNNs (Massaroli et al., 2023} |Qin & Zhong,
2023), but these inherit the memory bottleneck of RNNs.

Relationship between masking structure and efficient algorithms. Using an unstructured M
(e.g., a random lower-triangular matrix) degrades both compute and memory complexity to softmax
attention-levels, despite the absence of softmax; i.e., the structure of M is essential for training/infer-
ence efficiency, not just the removal of softmax. In linear attention where M is a lower-triangular
matrix of 1’s, we can compute O chunkwise, leading to an O(T") algorithmE] This algorithm general-
izes to the gated case where M has 1-semiseparable structure as shown in (Dao & Gul 2024). Long
convolution models can use FFT to bring down the cost to O(T log T)).

*Linear attention with the delta rule is also an instance of a fast-weight programmer (Schmidhuber, 1992).

>The actual DeltaNet recurrence is given by S; = S;_1 (I — Bik:k, ) + vik, where j3; is a data-dependent
scalar value in either (0, 1) or (0, 2), but we set 3; = 1 here for notational brevity.

SThis algorithm depends on the chunk size C, but since C' is a hyperparameter this is still linear in 7.
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3 LOG-LINEAR ATTENTION | / ) ‘LinearAttenti(/)‘n

@ @

The previous section showed that the structure of the
masking matrix M determines how compute and mem-
ory scale with sequence length. Semiseparable struc-
tures cover many efficient architectures, yielding O(T")

training time and O(1) decoding memory. This moti- Log-Linear Attention
vates two questions: (i) what additional structures allow g B g f
Q) o) 1o @

greater flexibility while retaining subquadratic training I . .
complexity, and (ii) can such models admit a recurrent ;7 7/ /
form with sublinear decoding memory?

I

ol
We answer both by introducing log-linear attention, /
which shapes M to achieve O(T log T') computation
and O(log T') memory. Concretely, log-linear attention \ ﬁ LTV
replaces the semiseparable mask with a hierarchical El ﬂ?} @%ﬁ
one, extending linear attention beyond semiseparable
temporal structure and accommodating a broader class Figure 1: Standard linear attention (top) vs. log-
structures for A. As case studies, we instantiate log- 1in€ar attention (bottom). The input consists of
linear variants of Mamba-2 and Gated DeltaNet. query, key, and value vectors.

HENN |

During decoding, log-linear attention employs a Fenwick tree scheme (Fenwick, [1994) that partitions
inputs into power-of-two segments. Each position summarizes its prefix, enabling queries to attend to
O(log T') hidden states across multiple scales (Fig. . This design preserves fine-grained access to
recent tokens while requiring only O(log T') time and memory. We first focus on the simplest form of
linear attention (without gating) in § [3.T]and show how log-linear attention extends it by maintaining
independent recurrent states across temporal segments. Practical gated variants are presented in § [3.4]

3.1 FENWICK TREE PARTITIONING AND HIERARCHICAL MATRICES

From a decoding perspective, attention can be viewed as =0 t=1 t=2 t=3 t=4 t=5
a mechanism that partitions the prefix [0, ¢) into a set of (] (@]
buckets, each summarizing a portion of the past. In vanilla === - e
attention, every token forms its own bucket, resulting in ¢ DDDD 7777777777777
buckets of size 1, each stored as a fixed-size state (the KV e i (o |
caches. At the other extreme, linear attention (and state- D s
space models) aggregates the entire prefix into a single .- T T A AR

bucket of size ¢, again represented by a fixed-size state.

~
1
o
-
1
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|
l
|
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Log-linear attention strikes a balance by partitioning the BY
prefix into buckets of exponentially increasing size via
a Fenwick-tree decomposition (Ryabkol, [1992; [Fenwick| N O I S O
1994). This induces a natural inductive bias: recent tokens  gjgyre 2: Fenwick tree bucket assignments.
are retained at high resolution, while more distant tokens

are summarized more coarsely. The partition contains at most L = O(log T') disjoint buckets indexed

by level ¢|'| Each bucket By) has size |Bt(£)| = 2= for £ > 1, plus a sentinel bucket Bﬁo) of size 1.
See Fig. 2| for an illustration.

Log-linear attention maintains a separate recurrent memory SE“ € R?*9 for each bucket. At time ,

the contribution of bucket ¢ to the output is weighted by a nonnegative coefficient )\I(f), parameterized

as a linear function of the current input ;. This allows the model to adaptively emphasize different

"More precisely, this divides the prefix [0,¢) into up to L = [log,t + 1] + 1 disjoint buckets. This
decomposition is guided by the function lssb(t) = max {£ € N | 2° divides t}, which identifies the least
significant set bit in the binary representation of ¢. Conceptually, the partitioning proceeds greedily, at each step
subtracting the largest power of two that fits within the remaining segment of the prefix,

(0) :
f =
@_ J?t ifi=0 © {bzw}n (i) ey @
b= bgiil)—f“b(bﬁiil)) otherwise Bri=y bl IMZI.SSb <bt )—H
1% otherwise
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temporal scales. The output is computed as,

L-1 L—1
o= Nqf ( > vskj> =3 N4 8. 3)
=0 =0

SGBED

We observe that when all ,\3) are the same (or more generally when the /\§‘Z) and )\Eé/) are linearly
related across time) log-linear attention collapses to linear attention. Allowing distinct ASP is therefore

essential for capturing multi-scale temporal structure.

Parallel form. The recurrent form in Eq. 3] is conceptually simple but inefficient on modern
accelerators, which are optimized for high-throughput matrix—matrix multiplication. To leverage
this hardware and enable parallelization across time, we reformulate the expression in a matrix-
multiplication—friendly form as in §2}

AESp s <t
0 otherwise,

O0=(QK'oM*)V, M= { 4

—_———
P
where {(t, s) denotes the bucket level of token s relative to time ¢ under Fenwick-tree partitioning.
For readability, we omit explicit (¢, s) indices when unambiguous. The matrix P is a hierarchical
matrix which inherits structured low-rank pattern from the hierarchical partitioning, given below. In
we exploit this structure to design a parallel training algorithm with O(T log T') complexity.

(2" aq ko
AVal ko AVq[ ks

|: 42] [ko] T )‘;mq;k?

as] Lkt AP gl ks A2 g ks
0
gs | |k2 Aél) 5 ka )‘él])q;ks
k3
o] Lhs [ qﬂ BﬂT A\ ag ke
- ar] ks NP SENC

Remark. The matrix M* (and A) is a lower-triangular instance of a hierarchical () ma-
trix—specifically, of the HODLR (Hierarchically Off-Diagonal Low-Rank) type. When constructed
using schemes like the Fenwick tree, it inherits the recursive partitioning and low-rank off-diagonal
blocks that define H matrices. This establishes a direct connection between log-linear attention and
hierarchical matrices: the attention operator corresponds to structured matrix multiplication with an
H matrix. We refer to M* as a quasi-H matrix—a specialized class lying between general H and
semiseparable matrices, designed to support O(log T')-space recurrence. See Section for details.

3.2 MEMORY-EFFICIENT DECODING
Let Issb(t) denote the index of the least significant set bit in the binary representation of ¢. The states
{SEZ) }e evolve according to the following recurrence (using linear attention for simplicity):

vk, if /=0 At each step, the immediate term v;k, enters the finest
. level; buckets up to lssb(t) merge and promote one level
0 f0<l<1ssb(t i - .
S)EZ): ' if0<b= Issb(t) coarser. When ¢ is a power of two the hierarchy expands by

) ey e . . . L .
v—0Si-1 if€=lssb(t)+1  one bucket. This Fenwick-like organization enables online
Sge_)l if £>1ssb(¢)+1 processing with O(log T') memory while retaining efficient
multiscale access.

3.3 EFFICIENT ALGORITHM FOR TRAINING

Chunkwise parallelism for linear attention (Sun et al., 2023} |Yang et al., 2023 |Dao & Gu, 2024)
partitions a sequence of length 7" into chunks of size C, which are processed in parallel while
exchanging only limited information across boundaries. This approach balances two extremes: it
avoids the prohibitive cost of global attention while exposing substantially more parallelism than
purely recurrent execution. We extend this idea to the log-linear setting and develop an efficient
chunkwise training algorithm.
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Figure 3: Left: Decomposition of the matrix M*. Right: Chunkwise algorithm (Algorithm . Level 0 handles
intra-chunk computations using a quadratic (in chunk size) algorithm, which is efficient due to small chunk
sizes. Levels 1 and above perform inter-chunk computations by invoking existing inter-chunk primitives multiple
times, with overall complexity logarithmic in the number of chunks.

For a given chunk size C', the matrix M* admits the structured decomposition,

L1 ONgS s ©
M" =D+ Y MO, M= At Mg, ifs € l_ft , )
Py 0, otherwise.

where D is block-diagonal with % causal blocks {DI*]} of size (C'x(C), capturing intra-chunk

interactions via (D[1),, = A9 ++ M. The remaining {M(“)} encode inter-chunk dependencies in

blockwise low-rank form. Indexing begins at /¢, the level aligned to chunk size C; levels ¢ < ¢
collapse into D (Fig. [3] left).

Building on this structure, we propose a chunkwise algorithm for log-linear attention (Algorithm [T}).
As summarized in Fig. [3] (right), the method introduces only a logarithmic overhead compared with
standard linear attention. Computation proceeds in two stages:

Intra-chunk stage (¢ < /). The block-diagonal component D is treated as a dense matrix within
each chunk. Each block costs O(C?), giving a total complexity of O(TC).

Inter-chunk stage (¢ > /). The matrices {M©)} reduce to scaled sequentially semi-separable
structures (Eq.[5). With efficient state-passing primitives (e.g., Mamba-2, Gated DeltaNet), inter-
chunk dependencies are computed using only O(log %) primitive calls. Each call requires O(T)

time and memoryﬂ leading to an overall complexity of O(T log %)

Our algorithm extends the classical parallel prefix-sum (scan) to a hierarchical setting—a chunkwise
parallel scan. Unlike token-level scans, which often suffer from memory-bandwidth bottlenecks
during training (Yang et al.,|2023)), the chunkwise formulation reorganizes recurrent updates into
parallel chunk operations. Concretely, it executes O(log T') independent scans (one per memory level),
each implementable with standard methods such as the Blelloch scan (Blellochl|1990). Layer-specific

weights (e.g., )\iz)) can easily be incorporated into these scans.

3.4 LOG-LINEAR VARIANTS OF MAMBA-2 AND GATED DELTANET

We next apply the above construction to Mamba-2 Dao & Gu| (2024) and Gated DeltaNet |Yang
et al.| (2024a). As discussed in §2] both models use gating mechanisms that induce a sequentially
semiseparable (SSS) temporal structure in the mask M* (with M,;; = HZ: j+1 s see Eq. . The
two architectures differ in how they parameterize the transition matrix A.

Our approach preserves the original form of A in each model while composing the attention mask
with its log-linear variant M = M® ® MHH We refer to the resulting models as log-linear Mamba-2

SAt level £, M) contains ﬁ chunks of size 2¢~*C. Redundant work can be avoided, reducing cost by
a constant factor of two.

“More precisely, the elementwise product of an SSS matrix and an H matrix remains an A matrix. We
separate them here for clarity.
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Figure 4: Training throughput (left; higher is better) and kernel runtime for a forward and backward pass (right;
lower is better) across varying sequence lengths. Log-Linear Mamba-2 (naive) denotes repeated application of
the existing Mamba-2 primitives, while Log-Linear Mamba-2 uses a custom implementation with optimizations
such as level fusion. The throughput drop at sequence length 131K is due to gradient checkpointing to reduce
memory usage. Experiments were run on an H100 GPU with batch size 2, 48 heads, head dimension 64, state
dimension 128, and chunk size 64. We use MVA for (Log-Linear) Mamba-2, and GQA for FlashAttention-2.

and log-linear Gated DeltaNet. Their parallel forms are given by,
0= (QKT oM® o MH) A% Log-Linear Mamba-2
0= ((QKT oL) (I+ KK' o (L - I))71 oMS o MH) V  Log-Linear Gated DeltaNet

More broadly, any linear-attention mechanism with structured memory and an efficient chunkwise-
parallel primitive can be “lifted” to a log-linear variant by composing its temporal mask with M.

3.5 IMPLEMENTATION

We implemented the chunkwise parallel scan algorithm in Triton 2019). The custom
kernel for log-linear Mamba-2 outperforms FlashAttention-2 12024) (forward + backward)
at sequence lengths beyond 8K. In full training setups, throughput depends on model architecture.
Notably, log-linear Mamba-2 (with MLP) surpasses Transformer throughput at 32K, despite additional
layers like depthwise convolutions absent in the Transformer. See Fig.[d]and Sec. [C|for details.

4 EXPERIMENTS

We conduct a suite of experiments across both synthetic and real-world benchmarks. We emphasize
that our experiments are not necessarily intended position log-linear attention as the best subquadratic
architecture, but rather to highlight the promise of our framework compared to sensible baselines.

4.1 SYNTHETIC BENCHMARK Dimension | 16 32 64

We begin by evaluating models on the multi-query Trﬁiﬂigzezf 4 9%2939) s 1%4999) % 6%6919)

associative recall (MQAR) task (Arora et al.,[2023), a Wi Log-Linear | 559(9.1) 76.5(48) 92.9(2.7)

standard diagnostic benchmark for testing in-context ~ Gated DeltaNet | 38.4 (1.0)  79.0 (2.1) >99
recall. Our setup closely follows [Arora et al.| (2024): W/ Log-Linear | 400(14) 84412 29
models are trained and evaluated on 256-token se- Table 2: Average accuracies and standard devi-
quences containing 4 to 64 key-value pairs (exclud- ations (in parentheses) on MQAR over 5 seeds.
ing the length generalization component), with tuned Training was early stopped when accuracy ex-
learning rates. For log-linear models, we also tune ceeded 99%.

the A\ parameterization. We run each configuration with five seeds. Training was early stopped when
accuracy exceeded 99%. Additional experimental details are provided in §D] As shown in Table[2]
log-linear attention performs well—even when applied on top of associative recall-optimized models
like Gated DeltaNet.

4.2 LANGUAGE MODELING

Long-Data-Collections dataset) | using a sequence length of 16K. All models have 21 layers and
use a hidden size of 1536. We use a Transformer with 16 attention heads and a RoPE base of 500K,
a modified Mamba-2 with 48 heads and MLP layers, and a Gated DeltaNet with 6 heads. The
Transformer, Mamba-2, and Gated DeltaNet models contain 693M, 802M, and 793M parameters,

We perform academic-scale larﬁlage modeling pretraining from scratch using 50B tokens on the

Yhttps://huggingface.co/datasets/togethercomputer/Long-Data—-Collections)
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Figure 5: Per-position loss on Book3 samples (about 39M tokens) with running average of window size 501.
respectively. For the log-linear variants, we apply a linear layer on top of the hidden states to compute

the per-head values )\ga. This adds less than 3% additional parameters for Mamba-2 (825M) and less
than 0.4% for Gated DeltaNet (796M). Since Mamba-2 and Gated DeltaNet have more parameters
than ordinary Transformers, we also include a (roughly) parameter-matched Transformer variant
with 24 layers (778M parameters) for comparison. For our log-linear variants, we use the default
hyperparameters from the baselines (§D). We also evaluated a parameter-matched Hyena model [Poli
et al.| (2023), which also has log-linear compute (but linear memory). As its WikiText perplexity
(around 29) was substantially higher than that of the other models (<23), our main experiments focus
on the Transformer, Mamba-2, and Gated DeltaNet families.

. . Model Wiki. LMB. LMEval
Standard benchmarks. Following prior work (Dao & ode i v
ppl)  ppll  average?
Gu, [2024; [Yang et al.l [2024a), we evaluate models on -
WikiText lexit d 1 hot Transformer 21.56 22.14 44.0
ikiText perplexity and several zero-shot commonsense /24 Layers 213 217 45.6
reasoning benchmarks (Table[6). These are short-context ~ Hyena 2950 / /
tasks and are therefore largely insensitive to model state x/ain(};‘ﬁnm o0 e s
size. As such, we generally expect the log-linear vari-  Gaed DeltaNet | 21.73  19.71 450
ants to perform comparably to their linear counterparts. W/ Log-Linear | 2145  18.09 455

Log-Linear Mamba-2 improves upon its linear counter-

part in perplexity and in half of the commonsense rea- 1able3: PPL and commonsense reasoning.

soning tasks. Log-Linear Gated DeltaNet shows stronger gains, outperforming its linear ver-
sion in perplexity and in all but one reasoning benchmark. Notably, it also outperforms a layer-
matched Transformer across all metrics and a parameter-matched Transformer on half of them.

Per-position loss. Follow- S-NIAH-1 S-NIAH-2 S-NIAH-3

. - (pass-key retrieval) (number in haystack) (uuid in haystack)

ing |Lin et al.| (2025), we re- Model | 4K 8K 16K 4K 8K 16K | 4K 8K 16K

9

port the model’s loss at each Transformer | 726 760 166 | 1000 998 900 | 774 670 446

token position to evaluate its wi24 Layers | 924 784 898 | 1000 1000 996 | 840 636 364
o Mamba-2 | 904 568 216 | 724 280 186 | 40 36 08

ability to handle long contexts w/Log-Linear | 1000 998 724 | 898 682 128 | 336 226 20
: : Gated DeltaNet | 1000 100.0 1000 | 958 468 50 | 662 146 6.0

(Fig. EI) If the loss Steadll}' wl Log-Linear | 1000 1000 1000 | 956 596 92 | 488 130 88

decreases as the token posi-

- . MK-NIAH-1 MQ-NIAH MV-NIAH
tion 1n(freases, lt Sugge.StS the (multi-key line retrieval) (multi-query) (multi-value)
model is effectively using the Model | 4K 8K 16K | 4K 8K 16K | 4K 8K 16K
full context. However, if the Transformer | 794  83.0 614 | 589 480 298 | 37.5 341 215

: w24 Layers | 626 832 752 | 546 460 345 | 484 454 323

IOS.S le\.fel.s O.ff after a certain Mamba-2 | 272 186 136 | 287 194 13 | 279 148 44
point, it indicates the model w/Log-Linear | 432 398 212 | 266 224 66 | 281 228 89
. Gated DeltaNet | 23.0 212 52 206 169 72 | 162 145 70

struggles to make use of infor- Wi Log-Linear | 494 278 102 | 349 220 98 | 314 250 133

mation that is too far back in
the sequence. For this analy-

Table 4: NIAH experiments with three single/multi-needle tasks.

sis, we use 39M tokens from Book-3E| To improve visualization, we apply a running average
with a window size of 501. We observe that extending both Mamba-2 and Gated DeltaNet to their
log-linear counterparts consistently reduces the (smoothed) loss across various positions, indicating
improved long-range context utilization. Log-Linear Gated DeltaNet also closely tracks the perfor-
mance of the layer-matched Transformer, although a performance gap remains when compared to the
parameter-matched Transformer.

yictor-wu/book3
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Needle-In-A-Haystack. We use the Needle-In-A-Haystack (NIAH, Table[dand Fig. [I0) benchmark
from RULER (Hsieh et al.l [2024), where the model must retrieve a value (the “needle”) based on
a key hidden in a long context (the “haystack”). In the simpler single-needle tasks, the log-linear
variant of Mamba-2 outperformed its linear counterpart on 8 out of 9 metrics. Gated DeltaNet, which
already achieved perfect accuracy in several cases, saw improvements in 3 metrics, with 3 remaining
unchanged. For the more challenging multi-needle tasks, Log-Linear Mamba-2 again improved in 8
out of 9 metrics, while Log-Linear Gated DeltaNet achieved improvements across all metrics.

Other tasks. Due to space we show the results on the in-context retrieval benchmark (Arora et al.,
2023)) and LongBench (Bai et al.||2023) in the appendix.

5 DISCUSSION AND LIMITATIONS

While log-linear attention improves upon linear attention in many cases, there are still quite a few
tasks where it did not improve upon the linear attention baselines. Due to compute resources we
were unable to experiment with different parameterizations of the A terms (or hyperparameters in
general)E] and it is possible that optimal parameterization of A could lead to improved results. We
also still observe a significant performance gap compared to Transformers across all benchmarks.

The engineering complexity of log-linear attention is higher. Inter-chunk computations conceptually
resemble multiple applications of linear attention primitives, but intra-chunk operations require
bespoke implementations. These intra-chunk mechanisms are a primary factor behind the speed
differences. Additionally, the backward pass is more intricate, as it requires (manually) computing
the gradients not only for the standard attention components but also for the additional A terms.

The use of Fenwick-tree partitioning (§3.1) introduces an inductive bias: recent tokens are allocated
more fine-grained memory, while distant tokens are compressed more aggressively. This design
reflects a natural assumption rooted in hierarchical matrix which posits that interactions between
distant elements can be approximated in low-rank form. While intuitive and inspired by physical
phenomena, this inductive bias may not be optimal for all applications. Future work could explore
extensions that enable more flexible structures while preserving computational efficiency.

Finally, in this work, we extended two existing linear-attention/SSM architectures to their log-linear
counterparts, namely Mamba-2 (Dao & Gu}[2024) and Gated DeltaNet (Yang et al.} [2024a). Several
other promising architectures, including XLSTM (Beck et al.} 2024} 2025b) and MesaNet (Von Oswald
et al.} 2023} [von Oswald et al.| [2025)), may likewise benefit from log-linear formulations. Developing
and evaluating log-linear variants of these models is an exciting direction for future research.

6 RELATED WORK

Structured matrices for deep learning architectures. Modern architectures combine token- and
channel-mixing layers, both based on matrix multiplications. Recent work replaces dense layers with
structured matrices. For channel mixing, approaches include Butterfly (Dao et al.| [2020), Monarch
matrices (Dao et al.|; 2022a), and more recently, Block Tensor-Train matrices (Qiu et al., 2024). Token
mixing has been exemplified by the family of linear attention models (Katharopoulos et al., [2020)
and their various kernelizations (Xiong et al.,|2021). Dao & Gu|(2024) generalize these approaches
by extending low-rank structures to semiseparable matrices, enabling efficient recurrent inference
and subsuming many recent recurrent models. Another line uses sparse patterns like sliding-window
attention, alongside several hybrid methods (Nguyen et al.,|2021}; |Arora et al.| 2025; Munkhdalai
et al.| [2024).

Log-linear complexity sequence modeling. Several prior efforts have focused on reducing the
quadratic cost of attention to log-linear time complexity (Kitaev et al.,[2020; Shi et al.,2023; |Cunning+
ham et al., 2024} Qin et al.l 2023} |[Fu et al., 2023} Madaan et al.;|Ye et al.|[2019). Approaches such as
LogSparse Transformer (Li et al.,|2019) and Informer (Zhou et al.| 2021) introduce sparse attention
patterns to improve computational efficiency, particularly in time-series applications. Reformer (Ki+
taev et al.,[2020) employs locality-sensitive hashing (LSH) to efficiently cluster similar queries and
keys. Multi-resolution attention (Zeng et al., 2022) adopts a hierarchical approach, progressively
refining attention scores from coarse to fine granularity, while Fast Multipole Attention (Kang et al.,
2024)) adapts the classical fast multipole method to efficiently model long-range interactions. A

2We were only able to run our 700M-800M parameter language models just once due to compute constraints.
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similar viewpoint connects log-linear attention to dilated convolution (Van Den Oord et al., [2016])
through their hierarchical mixing structure. Dilated convolution extends convolution, which cor-
responds to Toeplitz matrices, whereas we operate primarily with semi-separable and hierarchical
matrices. In our work, we leverage the Fenwick tree data structure—a specialized binary indexed
tree that enables efficient prefix sum calculations and updates in logarithmic time—to design an
efficient attention layer during both training and decoding phases. While [Zhu & Soricut| (2021)
also employ hierarchical matrices for attention, their formulation is fully parallel and targeted at
modest sequence lengths. In contrast, our approach adopts a chunkwise-parallel strategy with a
custom Triton implementation optimized for long-sequence training. Concurrently, |Yau et al.| (2025)
propose a related architecture with O(log 7') memory, using a relaxed prefix-scan algorithm for state
aggregation that accommodates arbitrary (potentially non-associative) functions.

7 CONCLUSION

We introduced Log-Linear Attention, a general framework that extends a broad class of linear attention
and state-space models to their log-linear counterparts—models with logarithmically growing state
size. This framework offers both theoretical insights and practical benefits, linking structured matrix
theory with hardware-efficient computation. As a case study, we applied this approach to two recent
architectures: Mamba-2 and Gated DeltaNet.
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Model \ Temporal Structure Hidden Size Structure

Mamba-2 | Semiseparable Scaled Identity
Gated DeltaNet | Semiseparable Identity plus Low-Rank
Log-Linear Mamba-2 | Hierarchical Scaled Identity
Log-Linear Gated DeltaNet | Hierarchical Identity plus Low-Rank

Table S: Structural comparison of different attention variants.

A GENERALIZING LOG-LINEAR ATTENTION TO MORE EXPRESSIVE LINEAR
RNNSs

The main paper adopts the following unified view of efficient attention (Eq.[I)):
P=AoM, O=PV,

This formulation reveals that the key difference between linear and log-linear attention lies in the
structure of the mask matrix M € RT*T, Variations among linear attention models—such as
Mamba-2 and Gated DeltaNet—stem from different parameterizations of A. While this perspective
offers a unifying and intuitive framework that captures a wide range of attention mechanisms, it
comes with an important limitation: the state-transition terms are restricted to be scalars (in the case
of Mamba-2) or identity-plus-rank-one matrices (in the case of Gated DeltaNet).

In this section, we introduce a more general framework that relaxes this scalar constraint by allowing

state-transition terms (including the thus )\gf) terms) to be matrix-valued. This extension enables

richer and more expressive attention mechanisms while preserving computational efficiency.

Linear Attention as an SSS Tensor. Consider the standard linear attention mechanism with
data-dependent gating and an SSS (sequentially semiseparable) mask M®:

P=QK'oM®, O=PV.

In the main paper, we extend the SSS mask M to a hierarchical form M™. Notice that in Mamba-2,
the resulting matrix P also inherits the same structural property, with its SSS-rank governed by the
hidden dimension d:

Pis=Q;(C;---Cyer1) K/, where C; = oL
We now define a 4D tensor M € R(TxT)x(dxd) qych that:
Pt,s = QtMt,sK;ra where Mt,s = Ct cee CS+1.

Each entry M, , € R%*? is a matrix, making M® a 4D tensor. We refer to this as an SSS tensor due
to its sequentially semiseparable-like structure along the temporal dimension, though this term is not
yet formalized in the literature.

This tensor-centric view naturally accommodates matrix-valued state transitions C; € R%*? with
arbitrary structure, offering a richer representation than scalar- or identity-plus-rank-one-based
approaches. In particular, models such as Mamba-2 and Gated DeltaNet can be interpreted as
operating on 4D tensors with different hidden-dimension structures, while still preserving temporal
semiseparabilityE]

s+1 s+1
Mamba-2: My, =[] avI, Gated DeltaNet: M7, = [[ o (1- Brkik;))
t'=t t'=t

Log-Linear Attention as an H Tensor. We can apply our log-linear attention to these more flexible
(linear) RNNs by incorporating matrix-valued, level- and data-dependent terms Ay) € Rdxd;

s+1 s+1
Mamba-2: M;{S = Ay) H apl, Gated DeltaNet: MZ:[S = Aﬁ” H oy (I- Bokyky )

t=t t'=t

BStrictly speaking, Gated DeltaNet also need to include a term 3; from S;v:k; . For clarity, we omit it here,
as it can be absorbed into other terms.
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Figure 6: Visualization adapted from Massei et al.| (2020); Kressner et al.[(2019): This example illustrates a
cluster tree of depth 3 along with the corresponding block partitions at each level. Blocks marked with stripes are
stored as low-rank matrices in the HODLR format, while those filled with solid color represent dense matrices.

This formulation highlights a key insight: both Mamba-2 and Gated DeltaNet share a common
semiseparable structure in the temporal dimension, but differ in how they structure the hidden
dimension. Mamba-2 relies on scaled identities, while Gated DeltaNet applies identity-minus-rank-
one modifications. Table [§] summarizes these distinctions.

B LOG-LINEAR ATTENTION AS ‘H MATRICES

We begin by introducing two classes of Hierarchical matrices (H matrices) following Massei et al.
(2020): HODLR (Hierarchically Off-Diagonal Low-Rank) matrices and HSS (Hierarchically Semi-
Separable) matrices. We then show how Log-Linear Attention corresponds to a specific subclass of
‘H matrices that occupies an intermediate position between these two. Finally, we discuss a further
variant of H matrices that, in principle, allows for more refined partitioning—potentially enhancing
approximation quality at the cost of increased (though constant-factor) computational complexity.

B.1 HODLR MATRICES

HODLR (Hierarchically Off-Diagonal Low-Rank) matrices are structured matrices built via recursive
partitioning, where off-diagonal blocks are low-rank at every level. This structure is formalized using
a cluster tree[Massei et al.|(2020). Let T be the matrix dimension, and let 7 be a perfectly balanced
binary tree of depth L whose nodes are subsets of {1,...,T}. We say T is a cluster tree if: (1) the
rootis Z = {1,...,T}; (2) each level partitions indices into contiguous blocks; (3) every node W5

at level ¢ has two children Iéf:i) and Iéf_l) that form a disjoint partition of the parent. See Fig.@
for a visual example of such a hierarchical partitioning.

Now, let M € RT*7T be a square matrix and 7 a cluster tree as described above. We say that M is a
(T, k)-HODLR matrix if,

rank (M[ZEZ),IJ(Z)]) <k, Vv IYSE),I](»E) € sibilings (7))

This hierarchical low-rank structure enables efficient O(T log T') storage and matrix-vector multipli-
cation, making HODLR matrices a core component in fast algorithms for dense matrix computations.
HODLR belongs to the broader class of rank-structured matrices known as Hierarchical matrices (H
matrices).

B.2 HSS MATRICES

The O(T log T') memory complexity of HODLR matrices arises from their recursive structure: they
consist of O(log T') levels, each storing low-rank factorizations that require O(T') space. In cases
where these low-rank factors exhibit linear dependencies across levels, it is possible to exploit these
relationships through nested hierarchical low-rank representations, potentially reducing the memory
complexity to O(T') by eliminating the logarithmic factor Massei et al. (2020).
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Let Ii(g) and I](-Z) denote a pair of sibling clusters at level  in the cluster tree 7. Define n(*) = 261 as
the block size at level ¢. The off-diagonal block corresponding to these clusters can be parameterized
as:

Mz, 7" = u{"x{") (V(O)T where U V{0 e Rxk 50 ¢ gk
i 07 i g J J i Vg v g

We call M matrix a Hierarchically Semiseparable matrices (HSS) if low-rank factors at different
levels are linearly related through some “translation operators” Tg), T(\I}]) € R2k*k guch that,

-1 (0=1)
U(@) _ Ul(.1 ) 0 T(Z)- V(g) _ le 0
% 0 U('Zfl) U, j 0 V(.Zfl)

12 J2

Y4
T,

More broadly, HSS matrices belong to a subclass of 7 matrices known as 72 matrices.

B.3 QUASI-HIERARCHICAL MATRIX.

As discussed above, when the low-rank basis matrices U®¥) and V) exhibit linear relationships
across levels ¢, the matrix M reduces to a semiseparable form. In this case, both storage and
matrix-vector multiplication complexities can be reduced to O(T'). Otherwise, M retains the general
hierarchical structure with O(T log T') complexity.

We define a Quasi-Hierarchical Matrix as one in which only one of the basis sequences, either U(*)
or VI satisfies such a linear nesting property across levels, while the other does not. The matrix
M™ used in the Log-Linear model (Eq. |4) is an instance of this structure.

Both Hierarchical and Quasi-Hierarchical matrices incur O(T log T') complexity for storage and
computation during training. However, the use of Quasi-Hierarchical matrices plays a crucial role
in enabling O(log T') complexity during inference. We are not aware of a recurrent algorithm for
general Hierarchical matrices that achieves logarithmic inference complexitym

Reparameterization. More precisely, Eq. | represents a Quasi-Hierarchical matrix that has been
specifically re-parameterized as a composition of the scalar weights A(©) and a sequentially semisep-
arable (SSS) matrix MS. This reparameterization serves two purposes: first, to highlight the
connection between our use of H matrices and the SSS format adopted in prior work; and second, to
enable the block decomposition into a hierarchy of SSS matrices, as shown in Eq.[5

We present this re-parameterization below, along with its 4D tensor variant discussed in §A] where
we additionally assume that the matrices U; and V; are invertible.

Matrix: Tensor:
i Jj+1
MZ{J = Z.(Z)Ui'l}j & )\,Ee) H o Mz’fj = T,EZ)UZ'V;r = Ay) H C;
t=j+1 t=i

J

0 J
1 -
| | OTt TEZ) = AZ(-Z), U, = | | Ct, \f]T = | | Ct !
t=1 t=0

i
¢ ¢

= Ti( )= )\E ), u; 1= Hat, vj 1=

t=0 t=0

e AP = 1Oy, a =1 AP =1OU V], C =R;'R,,

Tt

B.4 H MATRICES WITH STRONG AND WEAK ADMISSIBILITY

In the recurrent formulation of Log-Linear Attention, although there are O(log T') states correspond-
ing to different hierarchical levels, roughly half of them are zero in practice. This sparsity arises from
the specific structure of HODLR matrices, which belong to a broader class of H matrices known as
weakly admissible Hackbusch et al.| (2004)).

“In fact, our initial attempts involved using fully Hierarchical matrices, but we were unable to derive a
recurrent formulation with O(log T') complexity. This motivated the design of Quasi-Hierarchical matrices
specifically to support efficient recurrence.
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Figure 8: Left: H matrices with strong admissibility. Right:

‘H matrices with weak admissibility.

Figures 8| and[7illustrate an alternative structure based on strong (or standard) admissibility. Unlike
the weakly admissible variant, strongly admissible H matrices allow for finer-grained partitioning of

the matrix, and their corresponding recurrent forms utilize all

While strong admissibility can yield more accurate approx

hierarchical levels.

imations, it comes with a significant

computational cost|{Hackbusch et al.[|(2004)). In our early experiments, using strong admissibility in

a Triton implementation resulted in up to a 4x slowdown,

with only marginal improvements in

accuracy. As a result, we adopt the weakly admissible structure throughout this work and refer to it

simply as the H-matrix.

C IMPLEMENTATIONS

import torch
import numpy as np
import torch.nn.functional as F

def segsum(x):
T x.size(-1)
X_cumsum torch.cumsum (x, dim=-1)
X_segsum x_cumsum([..., :, None] - x_cumsum[...,
mask torch.tril (torch.ones (T, T, device=x.device,
X_segsum x_segsum.masked_fill (~mask, -torch.inf)
return x_segsum

None, :]
dtype=bool))

level_mask (level, T):
if level

def

return torch.eye (T, dtype=torch.bool)
i, j = torch.meshgrid(torch.arange(T), torch.arange(T), indexing:
half = 1 << (level - 1)
clipped = 1 - (i % (1 << level - 1))
valid = (1 % (1 << level) >= half) & (j + half >= clipped) & (Jj
return valid
def construct_H_matrix(a, L):
T = a.size(-1)
A = torch.exp(segsum(a))
return sum([A * L[..., level, :].unsqueeze(-1l) * level _mask (leve

nI1

def hattention(X, A, B, C, L, block_len=8):
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wnn

Arguments:

X: (batch, length, n_heads, d_head)

A: (batch, length, n_heads)

B: (batch, length, n_heads, d_state

©3 g length, n_heads, d_state

g length, n_heads, num_levels) where num _levels = log2(length) + 1
Return

Y: (batch, length, n_heads, d_head

wnn

T = X.shape[l]

assert X.dtype == A.dtype == B.dtype == C.dtype
assert X.shape[l] % block_len ==

input_shape = X.shape

# Rearrange into blocks/chunks

b, cl = X.shape[0], X.shape[l]

c = cl // block_len
L = [x.reshape(b, c,

X, A, B, C,

A = A.permute (0, 3,

1, 2)

block_len, =*x.sh
# (batch, n_heads, c,

ape(2:])
block_len

for x in (X, A, B, C, L)

)

A_cumsum = torch.cumsum (A, dim=-1) # (batch, n_heads, c, block_len)
num_intra_chunk_levels = int (np.log2(block_len)) + 1
num_inter_chunk_levels = int (np.log2(T)) + 1 - num_intra_chunk_levels

# Partition the lambda into intra-chunk and inter-chunk lambda

L_intra, L_inter = L[..., :num_intra_chunk_levels], L[..., num_intra_chunk_levels:]

L_intra = L_intra.permute(0, 3, 1, 4, 2) # (batch, n_heads, num_chunks, num_levels, block_len)
# Intra-chunk Computation

H = construct_H matrix (A, L_intra) # Materialize the H matrix as a dense matrix

Y _diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C,

# Inter-chunk Computation

decay_state

s = torch.exp ((A_cumsum|[...,

states = torch.einsum("bclhn,bhcl,bclhp->bchpn",
= F.pad(torch.exp(segsum(A_cumsum([..., -1])),
state_decay_out = torch.exp (A_cumsum)

decay_chunk

de

=

mask =

states
Y _off =

C,
sta

= torch.einsum("bhzc, bchpn->bzhpn",

torch.einsum (
"bclhn, bchpn,bhcl,bclh->bclhp",

tes,

state_decay_out,

L_i
)

return

Y_off = torch.zeros_like(Y_diag)

nterf[...

Y_off

, level]

compute_Y_off_ level (states

’

level) :
level_mask (level + 1, c).unsqueeze (0).unsqueeze (0)
decay_chunk_level = decay_chunk x mask

for i in range (num_inter_chunk_levels):
Y _off += compute_Y_off_level (states, i)

Y = (Y_off + Y_diag) .reshape (input_shape)

return Y

-1:] - A_cumsum))

B,

H, X)

B, decay_states, X)

(0,

0, 1, 0))[..., :=1, :]

decay_chunk_level, states)

Algorithm 1 Chunkwise Log-Linear Attention Algorithm

: end for

end for
: end for
:return Y

TN X X} AUNREWL 2

—_—

s fort € [T/C] do
Y = (QuKpy © M[f) Vi

: for £ € [log, (T'/C)] do
fort € [T/C] do

Y[t] = Y[t] + maskg) (AE:? ® Q[t]s[t])
Sii1) = masky’ (AgSiy) +masky’ (K Vi)

A naive implementation computes each level independently using a Mamba-2-style primitive, then
sums the outputs—Ieading to redundant memory access and kernel launches. To improve efficiency,
we fuse computation across four levels into a single Triton kernel, which we found optimal given
SRAM constraints on an H100.

For backpropagation, we unify gradient computation across all levels for VK and V'V by analytically
factoring their dependencies. This reduces kernel count and improves memory efficiency, achieving
over 3x speedup compared to the naive multi-level version.
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D ADDITIONAL EXPERIMENT DETAILS

For the implementation benchmarks, all experiments were conducted on an H100 GPU with a batch
size of 2, using 48 attention heads, a head dimension of 64, and a chunk size of 64. In Mamba-2-style
models, the attention heads are applied to V (MVA pattern), whereas in FlashAttention-2, we adopt
GQA-style attention by applying heads to Q. The dimensions of the Q and K states are set to 128,
aligning with common training configurations.

For the MQAR experiments, we largely follow the setup described in |Arora et al.|(2024)). Models
are trained and evaluated on 256-token sequences containing between 4 and 64 key-value pairs. We
do not evaluate on sequences longer than those used in training (i.e., no length generalization). In
(Log-Linear) Mamba-2 models, both the state and head dimensions are set to 16. For (Log-Linear)
Gated DeltaNet, we use two attention heads by default, except for models with a dimension of 16,
where a single head is used. We tune the learning rate and, for Log-Linear models, also tune the
parameterization of A\. We run each configuration with five seeds. Training was early stopped when
accuracy exceeded 99%.

For the language modeling experiments, each run was performed on 8xA100 or 8 xH100 GPUs over
the course of several days. We do not tie word embeddings, use a vocabulary size of 32,000, and set
the initializer range to 0.006. Training is performed with a global batch size of approximately 524K
tokens for 95K steps (roughly 50B tokens). We use the flash-linear—attention and flame
libraries |Yang & Zhang|(2024); Zhang & Yang|(2025), following most of their default configurations.

1001 -A- Mamba-2
4 Log-Linear Mamba-2

90 -

80 -

704

60 -

50 A

Gated-DeltaNet

40 1 - Log-Linear Gated-DeltaNet
v

1‘6 3‘2 6‘4 1‘6 32 6‘4
Figure 9: MQAR experiments with early stopping at 99% accuracy.

Detailed Experimental Results. Figures[9and [I0]and Tables [6] and [7] provide detailed results.

Model | Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ) ppld acc T accT acc_ntT acctT acc T acc_n T

Transformer | 21.56 22.14 38.8 65.1 39.6 50.7 45.6 24.5 44.0
w/ 24 Layers | 21.13  21.17 39.3 66.6 40.4 53.3 47.8 26.4 45.6
Mamba-2 | 22.44 24.14 36.2 66.8 41.2 51.6 46.0 27.1 44.8

w/ Log-Linear | 22.11  21.86 37.0 66.6 41.1 51.7 45.5 27.4 44.9
Gated DeltaNet | 21.73  19.71 39.3 65.8 40.9 522 47.1 24.6 45.0
w/ Log-Linear | 21.44  18.08 40.5 66.1 41.4 539 46.9 24.9 45.6

Table 6: Performance comparison on language modeling and zero-shot commonsense reasoning.

E LLM USAGE

In this work, large language models (LLMs) were used to enhance writing by improving clarity and
conciseness, to identify relevant literature across and beyond the immediate domain, and to support
research ideation, particularly in mathematics and coding.
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Figure 10: Needle-In-A-Haystack experiments. See Table for details.

Model

512

SWDE
2048 16k

1024

SQuAD

512 1024 2048

16k

FDA

512 1024 2048 16k

Transformer
w/ 24 Layers
Mamba-2

w/ Log-Linear
Gated DeltaNet
w/ Log-Linear

473
53.8
42.5
41.9
41.0
46.2

44.6
50.9
37.7
35.6
32.5
39.4

45.2
50.3
30.7
28.4
272
353

45.4
50.8
30.6
28.5
27.8
35.1

34.0
30.7
21.6
25.8
23.8
252

345 345
312 312
21.7 219
259 259
24.1 243
252 253

34.5
30.9
22.0
26.1
23.7
25.3

722
73.8
53.7
53.0
572
64.9

70.8 729 722
76.0 744 738
380 238 213
37.5 205 16.6
43.7 332 305
53,5 39.1 30.5

Model

512

TriviaQA
2048

1024

Drop

16k | 512 1024 2048

16k

NQ

512 1024 2048

Transformer
w/ 24 Layers
Mamba-2

w/ Log-Linear
Gated DeltaNet
w/ Log-Linear

48.5
46.9
43.7
44.9
45.6
45.9

49.6
47.0
43.2
45.0
45.6
45.6

48.5
46.8
43.2
45.5
45.6
46.0

48.5
46.8
43.2
45.5
45.6
46.0

22.8
22.7
222
20.2
21.1
20.7

22.8 225
224 227
22.1 222
20.6 203
217 214
20.8 20.8

22.3
23.0
22.1
19.9
21.8
21.0

24.5
24.0
18.5
20.0
20.1
22.5

243
24.4
16.5
19.9
18.4
21.8

24.6
24.5
16.5
204
18.7
21.3

Table 7: Accuracy on retrieval tasks w/ input truncated to different lengths.
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Single-Doc QA | Multi-Doc QA | Summarization Few-shot Code
Model | NOA QQA MFQ | HQA 2WM Mus | GVR  QMS MNs | TRC TQA SSM | LCC  RBP

Transformer | 11.7 9.7 20.8 224 29.8 6.7 |13.1 94 32 |275 28.0 162|237 29.8
w/ 24 Layers | 10.7 18.4 26.1 |33.7 257 11.6|16.8 94 103|165 452 14.3|31.5 309
Mamba-2 | 9.1 174 109 |11.2 209 43 | 83 60 49 |20 226 88 |38.1 34.6

w/ Log-Linear | 9.8 9.6 154|115 220 5.1 | 54 11.1 45 |165 21.6 149 |31.2 30.3
Gated DeltaNet | 8.5 119 164|144 245 6.6 | 92 11.7 11.6|36.5 253 23.1|31.1 31.1
w/ Log-Linear | 99 6.1 17.6|17.7 252 75|55 119 19 | 8.0 41.1 232|283 29.6

Table 8: Accuracy on LongBench tasks (Bai et al.,|2023): Narrative QA, QasperQA, MultiField QA, HotpotQA,
2WikiMultiQA, Musique, GovReport, QMSum, MultiNews, TREC, TriviaQA, SamSum, LCC, and RepoBench-
P.
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