
SORNet: Spatial Object-Centric Representations for
Sequential Manipulation

Wentao Yuan
University of Washington

Chris Paxton
NVIDIA

Karthik Desingh
University of Washington

Dieter Fox
University of Washington, NVIDIA

https://wentaoyuan.github.io/sornet

Abstract: Sequential manipulation tasks require a robot to perceive the state of
an environment and plan a sequence of actions leading to a desired goal state,
where the ability to reason about spatial relations among object entities from raw
sensor inputs is crucial. Prior works relying on explicit state estimation or end-to-
end learning struggle with novel objects or new tasks. In this work, we propose
SORNet (Spatial Object-Centric Representation Network), which extracts object-
centric representations from RGB images conditioned on canonical views of the
objects of interest. We show that the object embeddings learned by SORNet gen-
eralize zero-shot to unseen object entities on three spatial reasoning tasks: spatial
relation classification, skill precondition classification and relative direction re-
gression, significantly outperforming baselines. Further, we present real-world
robotic experiments demonstrating the usage of the learned object embeddings in
task planning for sequential manipulation.
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Figure 1: We propose SORNet (Spatial Object-Centric Representation Network) that learns object embed-
dings useful for spatial reasoning tasks such as predicting spatial relations, classifying skill preconditions, and
regressing relative direction between objects.

1 Introduction

A crucial question for complex multi-step robotic tasks is how to represent relations between entities
in the world, particularly as they pertain to preconditions for various skills the robot might employ.
In goal-directed sequential manipulation tasks with long-horizon planning, it is common to use a
state estimator followed by a task and motion planner or other model-based system [1, 2, 3, 4, 5, 6].
A variety of powerful approaches exist for explicitly estimating the state of objects in the world,
e.g. [7, 8, 9, 10]. However, it is challenging to generalize these approaches to an arbitrary collection
of objects. In addition, the objects are often in contact in manipulation scenarios, where works
explicitly addressing the problem of generalizing to unseen objects [11, 12] still struggle.
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Fortunately, knowing exact poses of objects may not be necessary for manipulation. End-to-end
methods [13, 14, 15] leverage that fact and build networks that generates actions directly from sensor
inputs without explicitly representing objects. Nevertheless, these networks are very specific to the
tasks they are trained on. For example, it is non-trivial to use a network trained on stacking blocks
to unstack blocks.

In this work, we take an important step towards a manipulation framework that generalizes zero-shot
to novel tasks with unseen objects. Specifically, we propose a neural network that extracts object-
centric embeddings from raw RGB images conditioned on object queries, which we call SORNet,
or Spatial Object-Centric Representation Network. The design of SORNet allows it to generalize to
novel objects without retraining or finetuning. The object-centric embeddings produced by SORNet
can be combined with readout networks to inform a task and motion planner with implicit object
states relevant to goal-directed sequential manipulation tasks, e.g. logical preconditions for primitive
skills or continuous 3D directions from the end effector to objects in the scene.

To summarize, our contribution are: (1) a method for extracting object-centric embeddings from
RGB images that generalizes zero-shot to different number and type of objects; (2) a framework
for learning object embeddings that capture continuous spatial relations with only logical supervi-
sion; (3) a dataset containing sequences of RGB observations labeled with spatial predicates during
various tabletop rearrangement manipulation tasks.

We empirically evaluate the object-centric embeddings produced by SORNet on three different
downstream tasks: 1) classification of logical predicates for action preconditions; 2) visual question
and answering for spatial relations; 3) prediction of relative 3D direction between entities in ma-
nipulation scenes. In all three tasks, the models are tested on held-out objects that did not appear
in training data. In all tasks, SORNet obtains significant improvements over the baseline methods.
Finally, we evaluated SORNet with real-world robot experiments to showcase the transfer of the
learned object-centric embeddings to real-world observations.

2 Related Work

Sequential Manipulation In goal-directed sequential manipulation tasks with long-horizon plan-
ning, a class of work uses a pipeline approach requiring a state estimator followed by a task and
motion planner [1, 2, 3, 4, 5, 6], but the state estimator with an explicit state representation is often
restricted to an environment or a set of objects. Another class of work employs neural networks
to learn motor controls directly from raw sensor data, such as RGB images and joint encoder read-
ings [14, 16, 15, 17, 18, 19], but they are often not transferable to new tasks, especially tasks in-
volving long-horizon planning. Our work combines a network that estimates implicit states with a
symbolic planner to obtain the best of both worlds: generalization to new objects and to new tasks.

Learning Spatial Relations Learning spatial relations between object entities have been studied in
the field of 3D vision and robotics. Methods such as [20, 21, 22] predict discrete or continuous pair-
wise object relations from 3D inputs such as point clouds or voxels, assuming complete observation
of the scene and segmented objects with identities. In contrast, our approach does not make any
assumptions regarding the observability of the objects and does not require pre-processing of the
sensor data. The learning framework by Kase et al. [23] is most related to our approach, which takes
a sequence of sensor observations and classifies a set of pre-defined relational predicates which is
then used by a symbolic planner to produce a suitable operator. Compared to our approach, theirs is
limited by the number of objects in the scene and a fixed set of spatial predicates.

Visual Reasoning Recently, several advancements have been made on visual reasoning benchmarks
[24, 25, 26] using transformer networks [27]. Toward solving spatio-temporal reasoning task from
CLEVRER [25] and CATER [26], Ding et al. [28] proposed an object-based attention mechanism
and Zhou et al. [29] proposed a multi-hop transformer model. Both works assume a segmentation
model to produce object segments and performs language grounding to the segments to perform rea-
soning. Our SORNet architecture is simpler and can solve spatial-reasoning tasks for unseen object
instances without requiring a segmentation or object detection module. Furthermore, our work fo-
cuses on a relatively complex manipulation task domain involving manipulator in the observations.
Although our current work focuses on predicting spatial relations from a single RGB frame, the
object-centric embeddings could potentially be used for solving temporal-reasoning tasks.
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Figure 2: SORNet architecture. Input to the network is an RGB image and canonical views of the objects
of interest. The RGB image is broken into context patches which have the same size as the canonical views.
These patches are flattened and added with positional encoding and passed through a multi-layer multi-head
transformer [30]. The embeddings corresponding to the canonical views are used for the downstream tasks.

Figure 3: Examples of canonical object views used for training CLEVR (left) and Leonardo(right) dataset.
Lighting, texture and object poses vary across different views, and sometimes there is occlusion by the robot.

3 Methods

3.1 SORNet: Spatial Object-Centric Representation Network

Our object embedding network (SORNet) (Fig. 2) takes an RGB image and an arbitrary number of
canonical object views and outputs an embedding vector corresponding to each input object patch.
The architecture of the network is based on the Visual Transformer (ViT) [30]. The input image
is broken into a list of fixed-sized patches, which we call context patches. The context patches
are concatenated with the canonical object views to form a patch sequence. Each patch is first
flattened and then linearly projected into a token vector, then positional embedding is added to the
sequence of tokens. Following [30], we use a set of learnable vectors with the same dimension as the
token vectors as positional embeddings. The positional-embedded tokens are then passed through
a transformer encoder, which includes multiple layers of multi-head self-attention. The transformer
encoder outputs a sequence of embedding vectors. We discard the embedding for context patches
and keep those for the canonical object views.

We apply the same positional embedding to the canonical object views to make the output embed-
dings permutation equivariant. We also mask out the attention among canonical object views and
the attention from context patches to canonical object views to ensure the model uses information
from the context patches to make predictions. In this way, we can pass in an arbitrary number of
canonical object views in arbitrary order without changing model parameters during inference.

Intuitively, the canonical object views can be viewed as queries where the context patches serve
as keys to extract the spatial relations’ values. Note that the canonical object views are not crops
from the input image, but arbitrary views of the objects that may not match the objects’ appearance
in the scene. Our model learns to identify objects even under drastic change in lighting, pose and
occlusion. Fig. 3 shows some examples of canonical object views used in our experiments.
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Figure 4: Architecture of the readout networks, which uses the object embeddings from SORNet to predict
spatial relations, such as logical statements that can serve as skill preconditions or continuous 3D directions.
The readout network is flexible to accommodate any number of input object embeddings without changing its
parameters. MU and MB denote the number of unary and binary relation types respectively.

3.2 Readout Networks

The readout networks (Fig. 4) are responsible for predicting a list of relations using object embed-
dings. The relations can be logical statements, e.g., whether the blue block is stacked onto the green
block, or continuous quantities, e.g. which direction should the end effector move to reach the red
block. The readout networks consist of a collection of 2-layer MLPs, one for each type of relations.
Here we focus on unary and binary relations. Unary relations involve a single object or an object
and the environment, which could be the robot or a region on the table. Binary relations involve
two objects and, optionally, the environment. In principle, our framework is extensible to relations
involving more than two objects, but we leave that for future work.

The readout network for unary relations takes the list of object embeddings and outputs relations
pertaining to the object that the embedding is conditioned on. Taking the top is clear classifier
for an example, if the input embedding is conditioned on the blue block, the network will output
whether there is any object on top of the blue block. If the input embedding is conditioned on the
red block, the network will output whether there is any object on top of the red block.

The readout network for binary relations takes a list of binary object embeddings created by con-
catenating pairs of object embeddings and outputs relations corresponding to a pair of objects, e.g.,
whether the blue block is on top of the red block. Thus, with N object embeddings, there will be
N(N − 1) binary object embeddings and N(N − 1) output relations.

Parameters of the readout network are independent of the number of objects. The number of output
relations dynamically changes with the number of input object embeddings. For example, when are
7 unary relations and 2 binary relations, with 4 objects, the network generates 7×4+2×4×(4−1) =
52 outputs; with 5 objects, the network generates 7× 5+2× 5× (5− 1) = 75 outputs. In this way,
our overall model generalizes zero-shot to scenes with an arbitrary number of objects.

4 The Leonardo Dataset

To test the generalization of our model to new objects and tasks, we created a simulated tabletop
environment named Leonardo, where a Franka Panda robot manipulates a set of randomly colored
blocks. The robot is given a goal formulated as a list of predicates to be satisfied, and then use a
simple task planner [5] to find a sequence of actions to achieve that goal and a sample-based motion
planner [31] to generate trajectories and choose grasps. As we know the ground truth poses of the
blocks in the simulator, we can compute ground-truth logical predicates at every step of the planning
process. We used NVISII [32] to render the RGB observations. Domain randomization including
random lighting, background and perturbations to the camera position is applied while rendering.
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Figure 5: Sample scenes from training and testing scenarios in Leonardo dataset. Top row shows the initial
configuration of a task scenario and the bottom row shows the goal condition. The training scenarios contains
4 blocks with random colors with a single tower stack as a goal condition. The testing scenarios contain 4-6
blocks with specific colors with various goal conditions involving multi-tower stacking scenarios.

The training data contains 133796 sequences of a single task - stacking 4 blocks in a tower. The
block colors are randomly chosen from 405 xkcd colors1. The testing data contains 9526 sequences
with 4-6 blocks, chosen from colors that are not included in the training data: red, green, blue,
yellow, aqua, pink, purple. The testing tasks consists of 7 tasks different from training. Fig. 5 shows
some examples. Please see the supplement for full description of the testing tasks.

5 Results

5.1 CLEVR-CoGenT

We first evaluate our approach on a variant of the CLEVR dataset [24], a well established benchmark
for visual reasoning. CLEVR contains rendered RGB images with at most 10 objects per image.
There are 96 different objects in total (2 sizes, 8 colors, 2 materials, 3 shapes). Each image is
labeled with 4 types of spatial relations (right, front, left, behind) for each pair of objects.

Specifically, we use the CoGenT version of the dataset, which stands for Compositional General-
ization Test, where the data is generated in two different conditions. In condition A, cubes are gray,
blue, brown, or yellow and cylinders are red, green, purple, or cyan. Condition B is the opposite:
cubes are red, green, purple, or cyan and cylinders are gray, blue, brown, or yellow. Spheres can be
any color in both conditions. The models are trained on condition A and evaluated on condition B.
The training set (trainA) contains 70K images and the evaluation set (valB) contains 15K images.
Several prior works [33, 34] show significant generalization gap on CLEVR-CoGenT caused by the
visual model learning strong spurious biases between shape and color.

We generate a question for each spatial relation in the image, e.g. “Is the large red rubber cube in
front of the small blue metal sphere?” We filter out any query that is ambiguous, e.g. if there were
two large red cubes, one in front and one behind the small blue sphere. This results in around 2
million questions for both valA and valB sets. We compare against MDETR [34], which reports
state-of-the-art zero-shot result on CLEVR-CoGenT, i.e. there is no fine-tuning on any example
from condition B. The results are summarized in Table 1. Our model performs drastically better on
classifying spatial relations of unseen objects and shows a much smaller generalization gap between
valA and valB sets.

Unlike MDETR which takes text queries, our model takes visual queries in the form of canonical
object views (i.e. 2 canonical views for the objects mentioned in the question). To eliminate the in-
fluence of those factors, we report the performance of the MDETR model trained on the full CLEVR
dataset, denoted as MDETR-oracle. We can see that although SORNet is only trained on condition
A, it is able to achieve similar performance to MDETR-oracle. The zero-shot generalization ability
of our model can potentially be combined with other reasoning pipelines to improve generalization
performance on other types of queries as well.

1
https://xkcd.com/color/rgb/
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MDETR [34] MDETR-oracle [34] SORNet(ours)

ValA Accuracy 84.950 97.944 99.006
ValB Accuracy 59.627 98.052 98.222

Table 1: Zero-shot relation classification accuracy on CLEVR-CoGenT [24]. The MDETR-oracle model has
seen all the objects during training, where as MDETR and SORNet have only see objects in condition A.
SORNet takes canonical views as queries whereas MDETR takes text queries.

5.2 Predicate Classification

Next, we evaluate the task of predicate classification on the Leonardo dataset. We compare against 3
baselines that do not use object conditioning. The first two baselines use a ResNet18 and a ViT-B/32
respectively to directly predict 52 predicates. The last baseline uses the same architecture as ours, but
the embedding tokens come from 4 fixed class embedding vectors. We report 3 metrics: accuracy,
F-1 score and all-match accuracy across all predicates and among predicates within a category.
The accuracy and F-1 score are computed per predicate and averaged. For all-match accuracy, the
predicates are considered as a single vector, which most faithfully represents how the predicates are
treated by a planner. If any predicate is classified incorrectly, the prediction for the entire category
is considered as wrong. The models are tested on images where the objects are completely unseen
during training.

The results are summarized in Table 2. Models labeled with M-View are trained on 3 different views
of the scene as data augmentation. During testing, we aggregate the predictions from 3 views by
adding the logits. The M-View models are better at handling occlusions by leveraging multi-view in-
formation. The gripper state is concatenated to the object embedding in the SORNet variant denoted
by (G) in Table 2, which is better at classifying predicates correlated to the opening/closing of the
gripper, e.g. has obj. We can see that the non-object-conditioned baselines fail drastically when
applied to unseen objects zero-shot. Even after fine-tuning on 100 examples, they still significantly
underperform zero-shot SORNet. This demonstrates the generalizability of our model obtained via
conditioning on canonical object views.

Further, we tested our model on scenes with 5 to 6 objects, while it has only been trained on 4-object
scenes. We first treat the additional objects as distractors, which shows that it is not necessary to
acquire canonical views of every object in the scene if they are not of interest. We then treat all
objects as objects of interest. In this case, the number of binary predicates increases quadratically
with the number of objects in the scene, so the all-match accuracy naturally drops even if the average
accuracy and F-1 score remain the same. Note that none of the baselines can even be applied to these
scenes with more objects without introducing additional model parameters and retraining the model.

Finally, we run our best performing model on 30 real-world images of a robot performing various
manipulation tasks. The quantitative results are in Table 2 and Fig. 6 shows two qualitative examples
of the predicates predicted by our model. Our model transfers to real-world without losing much
accuracy. It does make some mistakes when encountered with novel scenarios never seen during
training, such as one block stacked in between two blocks (right plot in Fig. 6).

5.3 Skill Executability

We further evaluate the predicate prediction in the context of task planning. Each frame in the
Leonardo dataset is labeled with a primitive skill that will be executed, e.g. grasp the red block.
Each skill has a list of preconditions that needs to be satisfied before it can be executed, which
can be formulated as a vector of predicate values. In other words, if all of the predicates in the
preconditions are classified correctly, we can determine the executability of that skill correctly. In
Table 3, we report the accuracy for classifying the executability of skills in the Leonardo test set
using the predicate predictions.

This evaluation puts more emphasis on the predicates relevant to the manipulation of objects, e.g.
approach, aligned, which are rarely true in the training data. Our model is able to identify these
predicates correctly whereas the baselines fail completely on skills relevant to object manipulation,
i.e. grasp, align, place and lift.
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Accuracy

Method # pred all on surface has obj top clear stacked aligned approach

Majority 52 88.2 79.3 88.4 75.1 91.7 99.2 92.9

ResNet18 M-Head 0-shot 52 88.5 80.0 88.4 76.2 91.7 99.2 92.9
ViT-B/32 M-View 0-shot 52 88.5 80.2 88.4 76.2 91.7 99.2 92.9

ViT-B/32 M-Head M-View 0-shot 52 88.5 80.2 88.4 76.0 91.7 99.2 92.9

ResNet18 M-Head 100-shot 52 88.5 80.0 88.4 76.4 91.7 99.1 92.9
ViT-B/32 M-View 100-shot 52 88.6 79.9 88.3 78.7 91.7 99.1 92.8

ViT-B/32 M-Head M-View 100-shot 52 92.8 89.9 90.4 87.8 92.4 99.2 93.5

SORNet 0-shot 52 97.6 96.9 95.3 96.6 98.7 99.2 96.1
SORNet M-View 0-shot 52 98.9 99.0 95.9 99.2 99.6 99.4 97.3

SORNet M-View (G) 0-shot 52 98.9 98.9 98.8 98.5 99.5 99.3 96.6

SORNet M-View 1 distractor 0-shot 52 98.3 98.6 96.6 95.2 98.6 99.5 97.5
SORNet M-View 2 distractors 0-shot 52 97.6 98.2 96.7 89.9 97.7 99.5 97.3

SORNet M-View (G) 5 obj 0-shot 70 98.5 98.5 99.4 95.8 98.2 99.6 97.4
SORNet M-View (G) 6 obj 0-shot 102 98.0 98.3 99.6 93.9 96.8 99.7 97.7

SORNet M-View (G) real-world 0-shot 52 96.3 96.4 96.7 93.3 97.1 96.7 95.6

All-match Accuracy

Method # pred all on surface has obj top clear stacked aligned approach

ResNet18 M-Head 0-shot 52 0.0 0.3 53.5 30.4 30.1 89.8 71.6
ViT-B/32 M-View 0-shot 52 0.0 0.4 53.5 30.3 30.1 89.8 71.6

ViT-B/32 M-Head M-View 0-shot 52 0.0 0.3 53.5 30.3 30.1 89.8 71.6

ResNet18 M-Head 100-shot 52 0.0 0.3 53.5 30.9 30.1 89.8 71.6
ViT-B/32 M-View 100-shot 52 0.2 3.3 55.0 40.5 31.0 89.8 72.5

ViT-B/32 M-Head M-View 100-shot 52 4.1 21.7 62.4 63.8 40.0 89.8 75.0

SORNet 0-shot 52 43.8 66.4 81.4 87.8 87.9 90.5 86.1
SORNet M-View 0-shot 52 60.2 86.3 83.5 96.8 95.8 92.4 89.5

SORNet M-View (G) 0-shot 52 63.6 84.5 95.8 94.0 94.3 92.0 86.6

SORNet M-View 1 distractor 0-shot 52 50.1 80.9 86.3 82.7 85.9 94.4 91.0
SORNet M-View 2 distractors 0-shot 52 39.2 76.3 87.2 68.2 78.3 95.0 90.4

SORNet M-View (G) 5 obj 0-shot 70 45.5 74.8 97.6 81.1 72.6 92.0 87.5
SORNet M-View (G) 6 obj 0-shot 102 29.7 68.9 97.7 70.2 52.4 92.0 87.5

SORNet M-View (G) real-world 0-shot 52 26.7 63.3 93.3 80.0 76.7 90.0 80.0

F-1 Score

Method # pred all on surface has obj top clear stacked aligned approach

ResNet18 M-Head 0-shot 52 9.7 23.6 0.0 31.5 0.0 0.0 0.0
ViT-B/32 M-View 0-shot 52 11.9 37.4 0.0 28.9 0.0 0.0 0.1

ViT-B/32 M-Head M-View 0-shot 52 12.2 32.5 0.0 27.7 0.0 0.0 0.0

ResNet18 M-Head 100-shot 52 0.0 21.9 0.0 32.6 0.0 0.0 0.0
ViT-B/32 M-View 100-shot 52 0.0 37.7 6.3 46.5 0.0 0.0 7.3

ViT-B/32 M-Head M-View 100-shot 52 0.0 70.5 31.0 73.2 27.2 0.0 23.2

SORNet 0-shot 52 83.2 92.2 79.7 93.0 91.2 63.8 74.9
SORNet M-View 0-shot 52 88.9 97.5 82.0 98.4 97.3 70.5 81.7

SORNet M-View (G) 0-shot 52 89.5 97.1 94.7 96.8 96.4 69.9 76.7

SORNet M-View 1 distractor 0-shot 52 85.1 96.3 81.8 90.1 88.8 67.5 80.1
SORNet M-View 2 distractors 0-shot 52 80.2 95.2 80.2 79.4 81.4 60.7 75.3

SORNet M-View (G) 5 obj 0-shot 70 85.3 96.0 96.7 91.3 83.6 69.8 78.1
SORNet M-View (G) 6 obj 0-shot 102 79.9 95.5 97.0 87.5 69.2 70.0 77.9

SORNet M-View (G) real-world 0-shot 52 76.5 90.7 85.7 80.3 69.1 33.3 68.9

Table 2: Zero-shot predicate classification results on the Leonardo test data where the objects are held-out from
training. SORNet significantly outperforms baselines that are not object-conditioned, and is able to generalize
to scenes with a different number of objects without retraining or finetuning.

Figure 6: Visualization of predicted predicates in real-world scenes. Black means true positive, blue means
false positive and red means false negative. True negatives are not shown due to limited space.
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Accuracy

Method all approach grasp align place lift go home

ResNet18 M-View 27.0 88.7 0.0 0.0 0.0 0.0 100.0
ViT-B/32 M-View 27.4 90.6 0.0 0.0 0.0 0.0 100.0

ViT-B/32 M-Head M-View 27.3 90.4 0.0 0.0 0.0 0.0 100.0

SORNet 63.7 64.3 72.4 67.4 99.4 53.0 97.6
SORNet M-View 63.6 65.1 69.1 99.8 52.9 69.7 99.5

SORNet M-View (G) 76.3 98.7 68.1 99.9 99.9 69.7 100.0

Table 3: Skill executability accuracy on the Leonardo test data. SORNet is the only model that is able to
correctly determine the executability of skills relevant to the handling of objects.

Method ResNet18 ResNet18 (MV) ResNet18 (P) CLIP-ViT CLIP-ViT (P) SORNet (P) SORNet (P MV)

Obj-Obj 0.4308 0.6068 0.9876 0.9875 0.6145 0.1679 0.1458
EE-Obj 0.3251 0.3464 0.5929 0.6544 0.4960 0.1962 0.1777

Table 4: Euclidean error on regression of continuous 3D unit vector between entities in the scene. The regres-
sors are trained on 1000 examples with unseen objects. Methods labeled with P are pretrained on the Leonardo
dataset. Methods labeled with MV use 3 views.

5.4 Open Loop Planning

In this demo, we incorporate SORNet as a part of an open-loop planning pipeline in a real-world ma-
nipulation scenario. Specifically, given an initial frame, we use the predicates predicted by SORNet
M-View (G) to populate a state vector. A task and motion planner takes the state vector and desired
goal (formulated as a list of predicate values to be satisfied), and outputs a sequence of primitive
skills. The robot then executes this sequence of skills in an open loop fashion. This demonstrate that
how SORNet can be applied to sequential manipulation of unseen object in a zero-shot fashion, i.e.
without any fine-tuning on the test objects. Please refer to our supplementary video for the demo.

5.5 Relative Direction Prediction

Although the training objective of SORNet is purely logical, with large-scale pre-training, the object
embeddings learned by SORNet contains continuous spatial information. We demonstrate this fact
by using SORNet embeddings to predict the relative 3D direction between entities. Specifically,
we trained a regressor (same architecture as the classifier in Sec. 3.2) on top of frozen SORNet
embeddings to predict the continuous direction between two objects (Obj-Obj) or the direction the
end effector should move to reach a certain object (EE-Obj). The regressor is trained using L2 loss
on a 1000 examples with unseen objects, and tested on 3000 examples with the same objects.

The results are summarized in Table 4. SORNet is able to outperform models trained from scratch
with pose supervision (ResNet18) as well as models initialized with weights from large-scale
language-image pretraining [35] (CLIP-ViT). This demonstrates that our representation learning
technique is more suited to manipulation scenarios where more precise spatial information is cru-
cial. In our supplementary video, we showed that by predicting the direction for movement in an
online fashion, our model can be used for visual servoing to guide the robot to reach a target object.

6 Conclusion

We proposed SORNet (Spatial Object-Centric Representation Network) that learns object-centric
representations from RGB images. We show that the object embeddings produced by SORNet cap-
ture spatial relations which can be used in a downstream tasks such as spatial relation classification,
skill precondition classification and relative direction regression. Our method works on scenes with
an arbitrary number of unseen objects in a zero-shot fashion. With real-world robot experiments, we
demonstrate how SORNet can be used in manipulation of novel objects.
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[4] F. Rovida, B. Grossmann, and V. Krüger. Extended behavior trees for quick definition of flexible robotic
tasks. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6793–6800. IEEE, 2017.

[5] C. Paxton, N. Ratliff, C. Eppner, and D. Fox. Representing robot task plans as robust logical-dynamical
systems. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5588–5595. IEEE, 2019.

[6] Z. Sui, L. Xiang, O. C. Jenkins, and K. Desingh. Goal-directed robot manipulation through axiomatic
scene estimation. The International Journal of Robotics Research, 36(1):86–104, 2017.

[7] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object
pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[8] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel. Implicit 3d orientation learning
for 6d object detection from rgb images. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 699–715, 2018.

[9] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 683–698, 2018.

[10] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox. Poserbpf: A rao–blackwellized particle
filter for 6-d object pose tracking. IEEE Transactions on Robotics, 2021.

[11] C. Xie, Y. Xiang, A. Mousavian, and D. Fox. The best of both modes: Separately leveraging rgb and depth
for unseen object instance segmentation. In Conference on robot learning, pages 1369–1378. PMLR,
2020.

[12] Y. Xiang, C. Xie, A. Mousavian, and D. Fox. Learning rgb-d feature embeddings for unseen object
instance segmentation. arXiv preprint arXiv:2007.15157, 2020.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[14] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[15] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba.
One-shot imitation learning. In NIPS, 2017.

[16] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman. Deep predictive policy training using reinforce-
ment learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2351–2358. IEEE, 2017.

[17] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural task
graphs: Generalizing to unseen tasks from a single video demonstration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8565–8574, 2019.

[18] C. Paxton, Y. Bisk, J. Thomason, A. Byravan, and D. Foxl. Prospection: Interpretable plans from language
by predicting the future. In 2019 International Conference on Robotics and Automation (ICRA), pages
6942–6948. IEEE, 2019.

9



[19] T. Yu, P. Abbeel, S. Levine, and C. Finn. One-shot hierarchical imitation learning of compound visuomo-
tor tasks. arXiv preprint arXiv:1810.11043, 2018.

[20] B. Rosman and S. Ramamoorthy. Learning spatial relationships between objects. The International
Journal of Robotics Research, 30(11):1328–1342, 2011.

[21] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Krüger, and F. Guerin. Learning spatial relationships
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