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Abstract

The development of Large Language Models001
(LLMs) relies on extensive text corpora, which002
are often unevenly distributed across languages.003
This imbalance results in LLMs performing004
significantly better on high-resource languages005
like English, German, and French, while their006
capabilities in low-resource languages remain007
inadequate. Currently, there is a lack of quan-008
titative methods to evaluate the performance009
of LLMs in these low-resource languages. To010
address this gap, we propose the Language011
Ranker, an intrinsic metric designed to bench-012
mark and rank languages based on LLM perfor-013
mance using internal representations. By com-014
paring the LLM’s internal representation of var-015
ious languages against a baseline derived from016
English, we can assess the model’s multilingual017
capabilities in a robust and language-agnostic018
manner. Our analysis reveals that high-resource019
languages exhibit higher similarity scores with020
English, demonstrating superior performance,021
while low-resource languages show lower simi-022
larity scores, underscoring the effectiveness of023
our metric in assessing language-specific ca-024
pabilities. Besides, the experiments show that025
there is a strong correlation between the LLM’s026
performance in different languages and the pro-027
portion of those languages in its pre-training028
corpus. These insights underscore the efficacy029
of the Language Ranker as a tool for evaluating030
LLM performance across different languages,031
particularly those with limited resources.032

1 Introduction033

Large Language Models (LLMs), such as GPT-4,034

Claude-3 and LlaMa-3, have demonstrated surpris-035

ing performance in various NLP tasks (Achiam036

et al., 2023; Ouyang et al., 2022; Touvron et al.,037

2023; Team et al., 2024; Jiang et al., 2023; Bai et al.,038

2023). However, the majority of the text datasets039

are presented in high-resource languages such as040

English (Xie et al., 2024). According to the statis-041

tics, for GPT-3 model approximately 92.65% of the042

training tokens are English and all other languages 043

share the remaining 7.35% training tokens (Ope- 044

nAI, 2023). Similarly, English accounts for 89.70% 045

of data for pre-training LlaMa2 (Touvron et al., 046

2023). This disparity leads to a bias where LLMs 047

exhibit superior performance in high-resource lan- 048

guages like English, German, and French but strug- 049

gle significantly with low-resource languages. 050

The imbalance in language representation during 051

the training phase of LLMs means these models are 052

less proficient in low-resource languages. For ex- 053

ample, LLM cannot understand the true meaning of 054

some slang terms with specific cultural background, 055

such as Chinese idioms (Zhang et al., 2023). Addi- 056

tionally, recent studies have shown that pre-trained 057

models perform poorly in languages with insuffi- 058

cient training data (Lankford et al., 2024). These 059

observations highlight the need for a metric that 060

quantitatively assesses LLM performance across 061

different languages, especially for those languages 062

with limited resources. 063

In this paper, we introduce Language Ranker, 064

a novel method that leverages internal represen- 065

tations to quantitatively evaluate the multilingual 066

capabilities of LLMs, particularly focusing on low- 067

resource languages. We establish the representation 068

of LLMs on the English corpus as a baseline and 069

measure the similarity between this baseline and 070

representations from other languages. This similar- 071

ity metric serves as the performance score for each 072

language. We validate our approach by applying 073

the Language Ranker to five state-of-the-art LLMs: 074

LlaMa2 (Touvron et al., 2023), LlaMa3 (Meta-AI, 075

2024), Qwen (Bai et al., 2023), Mistral-v0.1 (Jiang 076

et al., 2023), and Gemma (Team et al., 2024). We 077

also compare the Language Ranker’s performance 078

with the proportion of each language in the training 079

datasets and against other established benchmarks. 080

Through comprehensive experiments, our major 081

observations can be summarized as follows: 082
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• We demonstrate that high-resource languages083

show higher similarity scores with English,084

whereas low-resource languages exhibit lower085

similarity scores, validating the effectiveness of086

the Language Ranker in measuring language-087

specific performance.088

• We uncover a strong correlation between the089

LLM performance and the proportion of lan-090

guages in the pre-training corpus, providing in-091

sights into the impact of training data distribution092

on LLM performance.093

• We show that high-resource languages are more094

evenly distributed in the embedding space, while095

low-resource languages tend to be narrowly clus-096

tered. This distribution analysis further supports097

our intrinsic metric’s reliability in assessing lan-098

guage performance.099

2 The Proposed Method100

In this section, we will give an introduction to101

our analysis method. First, we will introduce the102

dataset that we used in our experiment. Then, we103

will introduce how to obtain the similarity between104

English and other languages, as well as how to105

compare different LLMs’ performances.106

2.1 Probing Datasets107

We use OPUS-100 (Zhang et al., 2020) as our108

evaluation datasets. OPUS-100 is an English-109

centric multilingual corpus that covers 100 lan-110

guages. Each sample consists of text in a non-111

English language as the original data, with its En-112

glish translation serving as the target data. For113

example, {"German": "Ich wollte dir erst noch114

etwas zeigen.","English": "I wanted to show you115

something first."}. After filtering, there are 94 sub-116

sets containing English, including high-resource117

languages such as German, French, and Chinese,118

as well as low-resource languages such as Oriya,119

Kannada, and Kazakh. Each subset contains 2000120

samples.121

2.2 Similarity Measurement122

We employ cosine similarity to measure the LLMs’123

performance gap between the target language and124

English. Specifically, given two sentences X =125

{xi}ni=1 and Y = {yi}mi=1 representing the text in126

English and the text in the target language. We use127

the representation obtained after LLM mapping of128

the last token xn and ym as the representation of129

the text and calculate the similarity between them.130

As we know, LLM consists of several layers of 131

Transformer blocks (Vaswani et al., 2017). There- 132

fore, after each layer of mapping by the transformer 133

block, we can get a representation vector xln and 134

ylm, l = 1...H , where H represents the number of 135

the layer of LLMs. According to (Li et al., 2024), 136

the intermediate representation can be briefly sum- 137

marized by the following equations: 138

xl+1 = MLP(xl + MHA(xl)) l = 1...H, (1) 139

where MHA means multi-head attention or multi- 140

group attention, and MLP means standard multi- 141

layer perceptron layer. Next, we take xln and ylm 142

to calculate the similarity. To implement a more 143

robust similarity measure, we use the average sim- 144

ilarity obtained by several intermediate layers as 145

the final similarity. This process can be described 146

as follows: 147

Sim =
1

|lsub|

|lsub|∑
i=1

Simi, whereSimi =
xiny

i
m

||xin||||yim||
,

(2) 148

where lsub = {5, 10, 15, 20, 25} is the subset of the 149

layers we selected. Finally, we use Sim to evaluate 150

the performance gap between English and Non- 151

English corpus. 152

2.3 Rank Correlation Measurement 153

When we get the similarity between each non- 154

English representation and the English represen- 155

tation, we sort them according to the similarity 156

to get a sorted ranking list of all languages. To 157

measure the similarity of the sorted ranking lists 158

of two LLMs, we use the longest common par- 159

tial order sublist to measure. It can be defined 160

as follows: For two sorted lists A and B, find a 161

sublist C that is a subset of A and B such that 162

for any number of index i1 ≤ i2 ≤ ... ≤ in, 163

Index(Ci1)≤Index(Ci2)≤...≤Index(Cin) is true for 164

both A and B, and the longest sublist C that makes 165

it true is called the longest common partial order 166

sublist of A and B. We use the ratio of the length 167

of the longest common partial order sublist of two 168

LLMs to the total length of the ranking list as a 169

metric to measure the correlation. 170

3 Experiments 171

In our experiments, we utilize five prominent open- 172

source large models: LlaMa2 (Touvron et al., 173

2023), LlaMa3 (Meta-AI, 2024), Qwen (Bai et al., 174

2023), Mistral-v0.1 (Jiang et al., 2023), and 175

Gemma (Team et al., 2024). 176
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Figure 1: Performance of different LLMs for ten kinds of language. High-resource languages: German, Spanish,
French, Indonesian and Chinese; and low-resource languages: Igbo, Kazakh, Kannada, Oriya and Turkmen.

We conduct experiments to answer the follow-177

ing research questions: RQ1: Can the Language178

Ranker effectively quantify the performance of179

LLMs across multiple languages? (Section 3.1)180

RQ2: How consistent are the performance rankings181

of different LLMs when evaluated across a diverse182

set of languages? (Section 3.2) RQ3: Is the pro-183

posed cosine similarity metric correlated with the184

proportion of a language in the LLMs’ pre-training185

corpus? (Section 3.3) RQ4: Is the proposed cosine186

similarity metric correlated with performance on187

other benchmark tasks for quantifying the multilin-188

gual capabilities of LLMs? (Section 3.4)189

3.1 Can Language Ranker Quantify LLM190

Performance Across Languages?191

To visualize the performance of different LLMs192

in these languages, we selected 10 representative193

languages to display their inference results. They194

consist of five high-resource languages, including195

German, Spanish, French, Indonesian, and Chinese,196

and five low-resource languages, including Igbo,197

Kazakh, Kannada, Oriya, and Turkmen. Figure 1198

shows detailed results, where the X-axis represents199

different layers of LLMs, while the Y-axis repre-200

sents the similarity between the target language201

and English for each layer. From Figure 1, we can202

observe that high-resource languages have repre-203

sentations more similar to English, whereas low-204

resource languages show less similarity. Specifi- 205

cally, German, Spanish, French, and Malay gen- 206

erally maintain cosine similarity scores above 0.6, 207

with Spanish and French often showing the high- 208

est scores, indicating that these languages are bet- 209

ter represented in the models’ embeddings. In 210

contrast, low-resource languages, such as Igbo, 211

Kazakh, Kannada, Oriya, and Turkmen, display 212

significantly lower cosine similarity scores, often 213

below 0.4. These results show the disparities in 214

performance across languages and highlights the 215

utility of the Language Ranker in quantifying these 216

differences robustly. 217

3.2 Comparison Across Different LLMs 218

In this section, we analyze how various LLMs per- 219

form across multiple languages using the Language 220

Ranker. We focus on understanding the consistency 221

of language performance among different LLMs, 222

including models with varying architectures and 223

training specifics. We have the following findings: 224

(1) Different models display similar results 225

across languages. Figure 1 presents the cosine 226

similarity scores across various layers for four dif- 227

ferent 7B parameter LLMs: LLaMa2, Gemma, 228

Mistral, and Qwen. Four LLMs display a similar 229

trend where high-resource languages (i.e., German, 230

Spanish, French, Malay, and Chinese) consistently 231

exhibit higher cosine similarity scores compared to 232
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Figure 2: Rank correlation between different LLMs.
This is calculated using metric introduced in Section
2.3. It shows high correlations across LLMs.

low-resource languages (i.e., Igbo, Kazakh, Kan-233

nada, Oriya, and Turkmen). Figure 2 further cor-234

roborates these findings by comparing the rank cor-235

relation of the similarity scores across the LLMs.236

Each LLM’s ranking is used as a baseline, and the237

remaining three models exhibit ranking patterns238

that are largely similar to this baseline. This sim-239

ilarity indicates that despite differences in model240

architecture or training specifics, the relative per-241

formance of languages remains consistent across242

these four models.243

(2) Fine-tuning on specific languages will im-244

prove its performance. According to the technical245

report of Qwen (Bai et al., 2023), Qwen has ad-246

ditional fine-tuning on the Chinese corpus, which247

leads to better performance in Chinese. In Figure 1,248

we observe that for LlaMa2, Gemma, and Mistral,249

the performance of Chinese is slightly lower than250

that of other high-resource languages. However,251

for Qwen, the performance of Chinese is roughly252

comparable to other high-resource languages and253

even shows a gradual improvement in the last few254

layers. This improvement is more clear in Qwen,255

mainly due to additional fine-tuning of the Qwen256

model family on the Chinese corpus, as noted in257

the technical report of Qwen.258

(3) Comparison of LlaMa2 and LlaMa3. We259

also explore the performance of LlaMa2 7B and260

LlaMa3 8B. From Figure 3, we can observe that261

in some high-resource languages, such as Ger-262

man, French, and Dutch, both LlaMa2 and LlaMa3263

perform well, and LlaMa3 performs better than264

LlaMa2, for low-resource languages, both perform265

cs ko de ar it bn fr tr tk hi nl kk kn th
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Figure 3: Similarity scores of LlaMa2 7B and LlaMa3
8B. From left to right, the languages are Czech (cs), Ko-
rean (ko), German (de), Arabic (ar), Italian (it), Bengali
(bn), French (fr), Turkish (tr), Turkmen (tk), Hindi (hi),
Dutch (nl), Kazakh (kk), Kannada (kn), and Thai (th).

Language Proportion Similarity Language Proportion Similarity
German 0.17% 0.723 Welsh ≤ 0.01% 0.396
French 0.16% 0.737 Persian ≤ 0.01% 0.300
Swedish 0.15% 0.662 Urdu ≤ 0.01% 0.275
Chinese 0.13% 0.552 Kannada ≤ 0.01% 0.236

Table 1: The proportion of different languages in the
LlaMa2 pre-training corpus and the similarity metric
we proposed. The English language ratio is 89.7%.

poorly, and LlaMa3 performs worse than LlaMa2. 266

This phenomenon suggests that there is a certain 267

consistency in the performance of high-resource 268

languages and low-resource languages in similarity 269

metrics, which can be used to distinguish high- 270

resource and low-resource languages. 271

3.3 Relationship to Ratio of Training Corpus? 272

In this section, we explore the relationship between 273

the proportion of each language in the LLaMa2 274

pre-training corpus and their corresponding perfor- 275

mance as measured by the similarity metric. Ac- 276

cording to the technical report of LlaMa2 (Tou- 277

vron et al., 2023), we obtain the proportion of the 278

pre-training corpus of some languages. Table 1 il- 279

lustrates this relationship by listing a selection of 280

languages with their proportion in the training data 281

and their similarity scores relative to English. The 282

table is divided into two parts: the left side lists 283

high-resource languages with relatively higher pro- 284

portions in the LLaMa2 pre-training corpus, and 285

the right side lists low-resource languages with very 286

low proportions (≤ 0.01%). For example, German, 287

with a proportion of 0.17%, has a high similarity 288

score of 0.723, indicating strong performance in 289

comparison to English. This trend suggests that lan- 290

4



Language ARC MMLU

LlaMa2 7B Gemma 7B Mistral 7B Qwen 7B LlaMa2 7B Gemma 7B Mistral 7B Qwen 7B
Chinese 27% 71% 57% 66% 32% 54% 37% 44%
German 27% 68% 63% 32% 25% 57% 47% 27%
French 31% 76% 59% 42% 24% 58% 48% 28%
Spanish 31% 77% 60% 46% 29% 56% 52% 33%
Italian 29% 77% 67% 44% 23% 56% 44% 32%
Kannada 24% 48% 27% 21% 21% 40% 22% 19%
Hindi 28% 60% 42% 22% 25% 45% 32% 23%
Armenian 19% 40% 36% 20% 20% 36% 30% 25%
Marathi 28% 46% 26% 25% 27% 42% 30% 26%
Telugu 30% 42% 30% 30% 24% 33% 34% 23%

Table 2: Performance on two inference tasks

Figure 4: Visualization of the embedding space of Gemma 7B for eight languages. Four figures at the top are
high-resource languages, Four figures at the bottom are low-resource languages.

guages with a higher proportion in the pre-training291

corpus tend to have higher similarity scores, reflect-292

ing better model performance. In contrast, low-293

resource languages like Kannada and Urdu, each294

with proportions of less than 0.01%, have much295

lower similarity scores (i.e., 0.236 and 0.275).296

3.4 Correlation with Other Inference Tasks?297

To more comprehensively reflect the performance298

of LLMs in various languages, we evaluate the299

multilingual reasoning ability of these LLMs.300

We use MLMM-evaluation1 as our benchmark301

dataset to evaluate LLMs’ performances on rea-302

soning tasks in various languages. The benchmark303

dataset can be used to evaluate the LLM across 26304

different languages. It consists of three datasets:305

1
https://github.com/nlp-uoregon/mlmm-evaluation

ARC (Clark et al., 2018), HellaSwag (Zellers et al., 306

2019), and MMLU (Hendrycks et al., 2020). We 307

chose ARC and MMLU for evaluation, and both 308

of them are multiple-choice datasets. The ARC 309

dataset consists of 7,787 multiple-choice science 310

questions drawn from a variety of sources. The 311

MMLU dataset contains multiple-choice questions 312

derived from diverse fields of knowledge. We 313

selected five high-resource languages (Chinese, 314

German, French, Spanish, Italian) and five low- 315

resource languages (Kannada, Hindi, Armenian, 316

Marathi, Telugu) for evaluation, randomly selected 317

100 samples from each language for 4-shot learn- 318

ing prediction, and used accuracy as the metric. 319

The LLMs evaluated are consistent with Figure 1: 320

LlaMa2 7B, Gemma 7B, Mistral 7B, and Qwen 321

7B. 322

The predicted result is shown in Table 2. From 323
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High-High Similarity Score High-Low Similarity Score Low-Low Similarity Score
English-German 0.72 German-Silesian 0.48 Azerbaijani-Turkmen 0.51
Italian-French 0.68 French-Erzya 0.35 Hungarian-Yiddish 0.24
German-French 0.67 Italian-Romany 0.32 Kab-SMT 0.36
French-Chinese 0.59 Italian-Uighur 0.27 Mari-Tatar 0.48

Table 3: Similarity score of different language pairs of Gemma 7B.

High-High Similarity Score High-Low Similarity Score Low-Low Similarity Score
English-German 0.72 German-Silesian 0.44 Azerbaijani-Turkmen 0.51
Italian-French 0.69 French-Erzya 0.31 Hungarian-Yiddish 0.19
German-French 0.68 Italian-Romany 0.15 Kab-SMT 0.40
French-Chinese 0.56 Italian-Uighur 0.20 Mari-Tatar 0.42

Table 4: Similarity score of different language pairs of LlaMa2 7B.

the result, we find that for Gemma, Mistral, and324

Qwen, the performance of high-resource languages325

is significantly better than that of low-resource326

languages, and Gemma performs best. For the327

LlaMa2, the performance in all languages is gener-328

ally not as good as the first three LLMs. This result329

shows that LLM reasoning ability in low-resource330

languages is worse than that in high-resource lan-331

guages. This result proves that there are differences332

in performance between high-resource and low-333

resource languages in reasoning tasks, illustrating334

the effectiveness of the proposed cosine similarity335

metric.336

4 Further Analysis of Proposed Metric337

In the last section, we introduced and evaluated the338

Language Ranker, demonstrating its ability to quan-339

tify the multilingual capabilities of LLMs by com-340

paring their internal representations against an En-341

glish baseline. This provided a robust measure of342

how LLMs perform across different languages, es-343

pecially highlighting the disparities between high-344

resource and low-resource languages.345

Building on these insights, in this section, we delve346

deeper into the proposed metric to explore its credi-347

bility and reliability further. Specifically, we aim to348

answer the following questions: RQ5: Is choosing349

English as the benchmark a wise choice (Section350

4.1)? RQ6: What does the subspace of each lan-351

guage look like (Section 4.2)? RQ7: Is choosing352

cosine similarity a wise choice (Section 4.3)?353

4.1 Why Using English as Baseline?354

In the above sections, we choose English as a base-355

line. This is based on the a priori assumption that356

low-resource languages generally perform worse357

than high-resource languages. But if we choose358

other high-resource languages as baselines, will 359

we get the same performance? In other words, 360

how can we ensure that our metric is not affected 361

by the English language itself? To answer this 362

question, we divided our probing datasets into 363

three types: High Resource-High Resource (H- 364

H), High Resource-Low Resource (H-L), and Low 365

Resource-Low Resource (L-L). To fulfill our re- 366

quirement, we utilize Tatoeba-Challenge (Tiede- 367

mann, 2020) as our dataset instead of opus-100 be- 368

cause the latter is an English-centric dataset which 369

means there is no Low Resource-Low Resource 370

language pair. Tatoeba-Challenge is a challenge 371

set for machine translation that contains 32G trans- 372

lation units in 2,539 bitexts. The whole data set 373

covers 487 languages linked to each other in 4,024 374

language pairs. We select four language pairs 375

for each group, English-German (en-de), English- 376

French (en-fr), German-French (de-fr), and Italian- 377

German (it-de) represent H-H; German - Silesian 378

(de-szl), French-Erzya (fr-myv), Italian - Romany 379

(it-ro) and Italian - Uighur (it-uig) represent H-L; 380

Azerbaijani-Turkmen (az-tr), Hungarian-Yiddish 381

(hu-yi), Kabyle-Standard Moroccan Tamazight 382

(kab-SMT) and Mari-Tatar (ma-ta) represent L-L. 383

The results are shown in Table 3 and Table 4. 384

From the results, we can observe that the score 385

of High-High is higher than the score of High- 386

Low and Low-Low universally. An obvious in- 387

ference is that the distribution of high-resource 388

languages is relatively close to each other, while 389

the distribution of low-resource languages varies 390

greatly, neither being close to each other nor to 391

high-resource languages. Therefore, the distribu- 392

tion of high-resource languages is relatively con- 393

sistent, while the distribution of low-resource lan- 394

guages varies greatly. Choosing English as the 395
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Figure 5: Box plot of the relationship between the double variance and similarity of Gemma 7B and Mistral 7B.

baseline is a convenient choice. Thus, we can also396

choose other high-resource languages such as Ger-397

man and French as the baseline.398

4.2 Deeper Analysis of the Embedding Space399

We explained why we chose English as the baseline400

in the above section. Choosing English is actually401

choosing a high-resource language as our baseline.402

A question naturally arises: How can we make sure403

that the performance of high-resource languages404

is better than the performance of low-resource lan-405

guages? The result of Table 2 has confirmed the406

answer to the question by the reasoning task. To407

answer this question more deeply, we need to ana-408

lyze the distribution of the embedding of different409

languages. As is shown in Figure 4, the top four410

sub-figures are embedding spaces of high-resource411

languages, while the bottom four sub-figures are412

embedding spaces of low-resource languages. It413

is obvious that high-resource languages are more414

evenly distributed throughout the space, while low-415

resource languages are more narrowly distributed,416

and compressed into a near straight line. There-417

fore, the performance of low-resource languages is418

worse than that of high-resource languages, which419

means it is suitable to choose a high-resource lan-420

guage like English as the baseline.421

4.3 Why Using Cosine Similarity?422

Recent research (Steck et al., 2024) has shown423

that cosine similarity is not always a reliable met-424

ric. Inspired by Section 4.2, the quality of the425

performance of various languages can be clearly426

judged from the subspace distribution. Therefore,427

we decided to quantify the performance of these428

languages from a distribution perspective.429

Back to Figure 4, the projection distributions of 430

high-resource languages in different directions are 431

relatively consistent, while the distribution of low- 432

resource languages is compressed approximately 433

into a straight line. The projection distributions 434

outside the straight line, such as the projections 435

perpendicular to the straight line, are crowded in 436

a smaller area. This suggests that we can use the 437

projection variance to approximately measure the 438

quality of the distribution. 439

According to PCA, we assume the embedding vec- 440

tors are {Xi}ni=1(being centralized), the projection 441

direction is ω, the project variance V ar(X,ω) can 442

be calculated as follows: 443

V ar(X,ω) =
1

n

n∑
i=1

(XT
i ω)2 =

1

n

n∑
i=1

ωTXiX
T
i ω

= ωTCov(X)ω s.t. ωTω = 1

(3) 444

It is obvious that V ar(X,ω) is the eigenvalue of 445

the Cov(X). For high-resource languages, projec- 446

tion variance in different directions should be close 447

to each other so that it can be evenly distributed in 448

all directions. The opposite is true for low-resource 449

languages. Therefore, we can extract the first K 450

eigenvalues {V ar(X,ωi)}ki=1 and calculate their 451

variance. The variance of the eigenvalues can be 452

used to measure the differences in the distribution 453

in each direction, which is called double variance. 454

This metric can be used to specifically measure the 455

quality of the distribution. The higher the double 456

variance, the more unbalanced the distribution and 457

the worse the performance, and the vice versa. 458

We employ the box plot to show the relationship be- 459

tween the proposed cosine similarity metric and the 460

double variance metric more clearly. From the re- 461

sults of Table 5, we can observe that for each LLM, 462
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Gemma 7B Mistral 7B
High-resource Low-resource High-resource Low-resource

Language Double Var Similarity Language Double Var Similarity Language Double Var Similarity Language Double Var Similarity
Italian 0.04 0.66 Nepali 0.75 0.42 Italian 0.12 0.59 Nepali 0.60 0.28
French 0.09 0.69 Kazakh 0.85 0.38 French 0.17 0.65 Kazakh 0.32 0.32
Spanish 0.06 0.68 Burmese 0.36 0.30 Spanish 0.17 0.64 Burmese 0.40 0.20
German 0.10 0.72 Pashto 0.72 0.36 German 0.19 0.66 Pashto 0.73 0.29

Table 5: Similarity scores and double variance results for some languages on Gemma 7B and Mistral 7B.

the languages in the left part are some common463

high-resource languages, which have higher sim-464

ilarity and lower double variance, while the right465

part is the opposite for low-resource languages.466

The second observation is that as the variance in-467

creases, the similarity score also tends to decrease.468

The increase in variance means that the distribution469

of the subspace becomes uneven and the similarity470

score decreases accordingly. This shows that the471

proposed cosine similarity metric can be utilized to472

roughly measure the quality of distribution of the473

subspace, which can thus measure the performance474

of LLM in different languages.475

5 Related Work476

Representation Engineering. Representation en-477

gineering has emerged as an effective approach to478

enhance the interpretability and transparency of479

LLMs. Researchers have been leveraging internal480

representations to tackle various challenges. Zou481

et al. (2023) summarizes the application of repre-482

sentation engineering in bias, fairness, model edit-483

ing, and other areas. Schwenk (2007) found that484

the internal representation of LLM has a certain485

correlation with time and space, and the internal486

representation can be employed to represent time487

and space. Li et al. (2024) found that the repre-488

sentation of the attention head inside the LLM can489

be used to indicate the correct reasoning direction,490

probe analysis is further used to correct the inter-491

nal representation direction to improve the LLM’s492

performance. Marks and Tegmark (2023) study493

the structure of LLM representations of true/false494

statements, proved that language models linearly495

represent the true/false of factual statements. Ju496

et al. (2024) used probe technique to detect how497

LLM stores knowledge layer by layer.498

Multilingual Language Model. Recent research499

such as (Qin et al., 2024) summarizes the re-500

cent progress and future trends in multilingual501

large language models. Ahuja et al. (2024) con-502

structed a benchmark to evaluate LLM’s multilin-503

gual ability comprising 22 datasets covering 83504

languages. Huang et al. (2023); Qin et al. (2023) 505

have proven that LLM performance varies sub- 506

stantially across different languages and they em- 507

ploy a prompt technique to improve task perfor- 508

mance across languages. Wendler et al. (2024) 509

explores how LlaMa2 works in multilingual tasks 510

and what role English plays in these tasks. The im- 511

balance distribution of training corpus in different 512

languages leads to the bias of LLM towards some 513

high-resource languages such as English (Blasi 514

et al., 2021). Some approaches employ multi- 515

lingual language modeling to alleviate the phe- 516

nomenon (Shen et al., 2024; Kalyan et al., 2021; 517

Conneau et al., 2019). These studies show the im- 518

portance of strengthening the cross-lingual capabil- 519

ities of the pre-trained model. Schäfer et al. (2024) 520

found that the presence of a primary language in 521

the training process of LLMs can improve the per- 522

formance of low-resource languages and lead to 523

a more consistent representation of LLMs in dif- 524

ferent languages. Liu et al. (2024) found that for 525

English-centric LLMs, although translation into 526

English helps improve the performance of NLP 527

tasks, it is not the best choice for all situations. 528

6 Conclusions and Future Work 529

In this work, we propose the Language Ranker 530

to evaluate the performance of LLMs across di- 531

verse languages by comparing their internal repre- 532

sentations to English. The results show that high- 533

resource languages show higher similarity scores 534

with English, while low-resource languages have 535

lower scores, validating the effectiveness of our 536

metric in assessing language performance. Besides, 537

there is a strong correlation between the perfor- 538

mance of LLMs in different languages and the 539

proportion of those languages in the pre-training 540

corpus. Further, results indicate that high-resource 541

languages are more evenly distributed in the em- 542

bedding space, whereas low-resource languages 543

tend to be narrowly clustered. In the future, we 544

plan to design more comprehensive benchmarks to 545

measure LLM’s capabilities in different languages. 546
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Limitations547

The proposed Language Ranker approach provides548

an initial quantitative way to analyze LLM per-549

formance across languages. We acknowledge that550

the language ranker method we proposed offers551

only a rough measurement. While our findings in-552

dicate a correlation between the similarity scores553

and the proportion of each language in the pre-554

training dataset, these scores alone are not suffi-555

cient to precisely measure the exact proportions.556

Our intent was to provide an initial quantitative557

approach to explore this relationship, and we recog-558

nize the need for more comprehensive methods and559

additional metrics to accurately assess the impact560

of pre-training data distribution across languages.561

Furthermore, the method does not account for po-562

tential biases or skews that could be present in the563

multilingual evaluation datasets themselves. The564

existence of such biases can also introduce noise565

in the resulting rankings of language abilities for566

different LLMs.567
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A Appendix721

A.1 Ranking Result For LLMs722

We give the similarity scores of the four LLMs used723

in the experiment on 18 high-resource languages.724

Results are shown in the following tables.

Language Similarity Score Language Similarity Score
German 0.723 Western Frisian 0.378
French 0.737 Tamil 0.347
Spanish 0.768 Gujarati 0.313
Italian 0.706 Kurdish 0.308
Russian 0.734 Pashto 0.284
Dutch 0.709 Assamese 0.260
Polish 0.664 Central Khmer 0.240
Malay 0.651 Panjabi 0.218
Swedish 0.661 Amharic 0.202

Table 6: The similarity score of LlaMa2 7B.

725

Language Similarity Score Language Similarity Score
German 0.719 Western Frisian 0.443
French 0.691 Tamil 0.420
Spanish 0.683 Gujarati 0.433
Italian 0.662 Kurdish 0.358
Russian 0.674 Pashto 0.362
Dutch 0.658 Assamese 0.396
Polish 0.618 Central Khmer 0.330
Malay 0.615 Panjabi 0.379
Swedish 0.629 Amharic 0.298

Table 7: The similarity score of Gemma 7B.

Language Similarity Score Language Similarity Score
German 0.639 Western Frisian 0.346
French 0.623 Tamil 0.279
Spanish 0.616 Gujarati 0.270
Italian 0.571 Kurdish 0.262
Russian 0.611 Pashto 0.267
Dutch 0.566 Assamese 0.276
Polish 0.514 Central Khmer 0.252
Malay 0.497 Panjabi 0.213
Swedish 0.532 Amharic 0.191

Table 8: The similarity score of Mistral 7B.

Language Similarity Score Language Similarity Score
German 0.805 Western Frisian 0.441
French 0.793 Tamil 0.510
Spanish 0.800 Gujarati 0.469
Italian 0.773 Kurdish 0.436
Russian 0.794 Pashto 0.448
Dutch 0.773 Assamese 0.507
Polish 0.752 Central Khmer 0.407
Malay 0.730 Panjabi 0.385
Swedish 0.759 Amharic 0.470

Table 9: The similarity score of Qwen 7B.

A.2 Details of experiment in Table 4 and 726

Table 3 727

We selected data from the Tatoeba-Challenge repos- 728

itory2. Since the number of samples for some low- 729

resource language pairs is small, we extracted 100 730

samples for each language pair. If there are less 731

than 100, we extracted all samples and extracted 732

them according to the test-dev-train priority.

High-High Similarity Score High-Low Similarity Score Low-Low Similarity Score
English-German 0.64 German-Silesian 0.43 Azerbaijani-Turkmen 0.51
Italian-French 0.60 French-Erzya 0.30 Hungarian-Yiddish 0.18
German-French 0.62 Italian-Romany 0.25 Kab-SMT 0.39
French-Chinese 0.57 Italian-Uighur 0.24 Mari-Tatar 0.46

Table 10: Similarity score of different language pairs of
mistral 7B.

733

High-High Similarity Score High-Low Similarity Score Low-Low Similarity Score
English-German 0.81 German-Silesian 0.58 Azerbaijani-Turkmen 0.67
Italian-French 0.75 French-Erzya 0.51 Hungarian-Yiddish 0.39
German-French 0.80 Italian-Romany 0.53 Kab-SMT 0.55
French-Chinese 0.71 Italian-Uighur 0.49 Mari-Tatar 0.55

Table 11: Similarity score of different language pairs of
qwen 7B.

2https://github.com/Helsinki-NLP/Tatoeba-
Challenge/tree/master/data
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Figure 6: Simlarity scores curves of LlaMa2 13B and Qwen 13B.
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Figure 7: Simlarity scores curves of Bloom 3B and Bloom 7B.

A.3 Performance of LLMs with Other Sizes734

A.3.1 LlaMa2 13B and Qwen 13B735

We also explore the performance of the similarity736

metric in LLM of 13B parameters, We use LlaMa2737

13B and Qwen 13B to display the results. From Fig-738

ure 6 we can observe that the partial order results739

of LLM-13B are roughly the same as those of LLM740

7B, and there is a clear gap between high-resource741

languages and low-resource languages.742

A.3.2 Bloom 3B and Bloom 7B743

Figure 7 shows the result of Bloom 3B and744

Bloom 7B. Except for the last few layers of the745

model, there are obvious differences between high-746

resource languages and low-resource languages747

which are similar to the above LLMs, while there748

are smaller differences within the same category749

of languages. The score is higher than LlaMa2,750

Gemma, Mistral, and Qwen.751
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