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Abstract

The development of Large Language Models
(LLMs) relies on extensive text corpora, which
are often unevenly distributed across languages.
This imbalance results in LLMs performing
significantly better on high-resource languages
like English, German, and French, while their
capabilities in low-resource languages remain
inadequate. Currently, there is a lack of quan-
titative methods to evaluate the performance
of LLMs in these low-resource languages. To
address this gap, we propose the Language
Ranker, an intrinsic metric designed to bench-
mark and rank languages based on LLM perfor-
mance using internal representations. By com-
paring the LLM’s internal representation of var-
ious languages against a baseline derived from
English, we can assess the model’s multilingual
capabilities in a robust and language-agnostic
manner. Our analysis reveals that high-resource
languages exhibit higher similarity scores with
English, demonstrating superior performance,
while low-resource languages show lower simi-
larity scores, underscoring the effectiveness of
our metric in assessing language-specific ca-
pabilities. Besides, the experiments show that
there is a strong correlation between the LLM’s
performance in different languages and the pro-
portion of those languages in its pre-training
corpus. These insights underscore the efficacy
of the Language Ranker as a tool for evaluating
LLM performance across different languages,
particularly those with limited resources.

1 Introduction

Large Language Models (LLMs), such as GPT-4,
Claude-3 and LlaMa-3, have demonstrated surpris-
ing performance in various NLP tasks (Achiam
et al., 2023; Ouyang et al., 2022; Touvron et al.,
2023; Team et al., 2024; Jiang et al., 2023; Bai et al.,
2023). However, the majority of the text datasets
are presented in high-resource languages such as
English (Xie et al., 2024). According to the statis-
tics, for GPT-3 model approximately 92.65% of the

training tokens are English and all other languages
share the remaining 7.35% training tokens (Ope-
nAl, 2023). Similarly, English accounts for 89.70%
of data for pre-training LlaMa2 (Touvron et al.,
2023). This disparity leads to a bias where LL.Ms
exhibit superior performance in high-resource lan-
guages like English, German, and French but strug-
gle significantly with low-resource languages.

The imbalance in language representation during
the training phase of LLMs means these models are
less proficient in low-resource languages. For ex-
ample, LLM cannot understand the true meaning of
some slang terms with specific cultural background,
such as Chinese idioms (Zhang et al., 2023). Addi-
tionally, recent studies have shown that pre-trained
models perform poorly in languages with insuffi-
cient training data (Lankford et al., 2024). These
observations highlight the need for a metric that
quantitatively assesses LLM performance across
different languages, especially for those languages
with limited resources.

In this paper, we introduce Language Ranker,
a novel method that leverages internal represen-
tations to quantitatively evaluate the multilingual
capabilities of LLMs, particularly focusing on low-
resource languages. We establish the representation
of LLMs on the English corpus as a baseline and
measure the similarity between this baseline and
representations from other languages. This similar-
ity metric serves as the performance score for each
language. We validate our approach by applying
the Language Ranker to five state-of-the-art LLMs:
LlaMa2 (Touvron et al., 2023), LlaMa3 (Meta-Al,
2024), Qwen (Bai et al., 2023), Mistral-v0.1 (Jiang
et al., 2023), and Gemma (Team et al., 2024). We
also compare the Language Ranker’s performance
with the proportion of each language in the training
datasets and against other established benchmarks.
Through comprehensive experiments, our major
observations can be summarized as follows:



* We demonstrate that high-resource languages
show higher similarity scores with English,
whereas low-resource languages exhibit lower
similarity scores, validating the effectiveness of
the Language Ranker in measuring language-
specific performance.

* We uncover a strong correlation between the
LLM performance and the proportion of lan-
guages in the pre-training corpus, providing in-
sights into the impact of training data distribution
on LLM performance.

* We show that high-resource languages are more
evenly distributed in the embedding space, while
low-resource languages tend to be narrowly clus-
tered. This distribution analysis further supports
our intrinsic metric’s reliability in assessing lan-
guage performance.

2 The Proposed Method

In this section, we will give an introduction to
our analysis method. First, we will introduce the
dataset that we used in our experiment. Then, we
will introduce how to obtain the similarity between
English and other languages, as well as how to
compare different LLMs’ performances.

2.1 Probing Datasets

We use OPUS-100 (Zhang et al., 2020) as our
evaluation datasets. OPUS-100 is an English-
centric multilingual corpus that covers 100 lan-
guages. Each sample consists of text in a non-
English language as the original data, with its En-
glish translation serving as the target data. For
example, {"German": "Ich wollte dir erst noch
etwas zeigen.","English": "I wanted to show you
something first."}. After filtering, there are 94 sub-
sets containing English, including high-resource
languages such as German, French, and Chinese,
as well as low-resource languages such as Oriya,
Kannada, and Kazakh. Each subset contains 2000
samples.

2.2 Similarity Measurement

We employ cosine similarity to measure the LLMs’
performance gap between the target language and
English. Specifically, given two sentences X =
{z;}7_, and Y = {y;}I", representing the text in
English and the text in the target language. We use
the representation obtained after LLM mapping of
the last token x,, and y,, as the representation of
the text and calculate the similarity between them.

As we know, LLM consists of several layers of
Transformer blocks (Vaswani et al., 2017). There-
fore, after each layer of mapping by the transformer
block, we can get a representation vector z!, and
yin, Il =1...H, where H represents the number of
the layer of LLMs. According to (Li et al., 2024),
the intermediate representation can be briefly sum-
marized by the following equations:

271 = MLP(z' + MHA(z")) 1=1.H, (1)

where MHA means multi-head attention or multi-
group attention, and MLP means standard multi-
layer perceptron layer. Next, we take xﬁl and yfn
to calculate the similarity. To implement a more
robust similarity measure, we use the average sim-
ilarity obtained by several intermediate layers as
the final similarity. This process can be described
as follows:

1 ‘lsub‘

Sim = Stm;, where Sim; = ———
| sub| ; ' RS
(2)

where [z, = {5, 10, 15,20, 25} is the subset of the
layers we selected. Finally, we use Sim to evaluate
the performance gap between English and Non-
English corpus.

2.3 Rank Correlation Measurement

When we get the similarity between each non-
English representation and the English represen-
tation, we sort them according to the similarity
to get a sorted ranking list of all languages. To
measure the similarity of the sorted ranking lists
of two LLMs, we use the longest common par-
tial order sublist to measure. It can be defined
as follows: For two sorted lists A and B, find a
sublist C' that is a subset of A and B such that
for any number of index i1 < o < ... < 1y,
Index(C;, )<Index(Cj,)<...<Index(Cj, ) is true for
both A and B, and the longest sublist C that makes
it true is called the longest common partial order
sublist of A and B. We use the ratio of the length
of the longest common partial order sublist of two
LLMs to the total length of the ranking list as a
metric to measure the correlation.

3 Experiments

In our experiments, we utilize five prominent open-
source large models: LlaMa2 (Touvron et al.,
2023), LlaMa3 (Meta-Al, 2024), Qwen (Bai et al.,
2023), Mistral-v0.1 (Jiang et al., 2023), and
Gemma (Team et al., 2024).
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Figure 1: Performance of different LLMs for ten kinds of language. High-resource languages: German, Spanish,

French, Indonesian and Chinese; and low-resource languages: Igbo, Kazakh, Kannada, Oriya and Turkmen.

We conduct experiments to answer the follow-
ing research questions: RQ1: Can the Language
Ranker effectively quantify the performance of
LLMs across multiple languages? (Section 3.1)
RQ2: How consistent are the performance rankings
of different LLMs when evaluated across a diverse
set of languages? (Section 3.2) RQ3: Is the pro-
posed cosine similarity metric correlated with the
proportion of a language in the LLMs’ pre-training
corpus? (Section 3.3) RQ4: Is the proposed cosine
similarity metric correlated with performance on
other benchmark tasks for quantifying the multilin-
gual capabilities of LLMs? (Section 3.4)

3.1 Can Language Ranker Quantify LLM
Performance Across Languages?

To visualize the performance of different LL.Ms
in these languages, we selected 10 representative
languages to display their inference results. They
consist of five high-resource languages, including
German, Spanish, French, Indonesian, and Chinese,
and five low-resource languages, including Igbo,
Kazakh, Kannada, Oriya, and Turkmen. Figure 1
shows detailed results, where the X-axis represents
different layers of LLMs, while the Y-axis repre-
sents the similarity between the target language
and English for each layer. From Figure 1, we can
observe that high-resource languages have repre-
sentations more similar to English, whereas low-

resource languages show less similarity. Specifi-
cally, German, Spanish, French, and Malay gen-
erally maintain cosine similarity scores above 0.6,
with Spanish and French often showing the high-
est scores, indicating that these languages are bet-
ter represented in the models’ embeddings. In
contrast, low-resource languages, such as Igbo,
Kazakh, Kannada, Oriya, and Turkmen, display
significantly lower cosine similarity scores, often
below 0.4. These results show the disparities in
performance across languages and highlights the
utility of the Language Ranker in quantifying these
differences robustly.

3.2 Comparison Across Different LLMs

In this section, we analyze how various LLMs per-
form across multiple languages using the Language
Ranker. We focus on understanding the consistency
of language performance among different LLMs,
including models with varying architectures and
training specifics. We have the following findings:

(1) Different models display similar results
across languages. Figure 1 presents the cosine
similarity scores across various layers for four dif-
ferent 7B parameter LLMs: LLaMa2, Gemma,
Mistral, and Qwen. Four LLMs display a similar
trend where high-resource languages (i.e., German,
Spanish, French, Malay, and Chinese) consistently
exhibit higher cosine similarity scores compared to
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Figure 2: Rank correlation between different LLMs.
This is calculated using metric introduced in Section
2.3. It shows high correlations across LLMs.

low-resource languages (i.e., Igbo, Kazakh, Kan-
nada, Oriya, and Turkmen). Figure 2 further cor-
roborates these findings by comparing the rank cor-
relation of the similarity scores across the LLMs.
Each LLM’s ranking is used as a baseline, and the
remaining three models exhibit ranking patterns
that are largely similar to this baseline. This sim-
ilarity indicates that despite differences in model
architecture or training specifics, the relative per-
formance of languages remains consistent across
these four models.

(2) Fine-tuning on specific languages will im-
prove its performance. According to the technical
report of Qwen (Bai et al., 2023), Qwen has ad-
ditional fine-tuning on the Chinese corpus, which
leads to better performance in Chinese. In Figure 1,
we observe that for LlaMa2, Gemma, and Mistral,
the performance of Chinese is slightly lower than
that of other high-resource languages. However,
for Qwen, the performance of Chinese is roughly
comparable to other high-resource languages and
even shows a gradual improvement in the last few
layers. This improvement is more clear in Qwen,
mainly due to additional fine-tuning of the Qwen
model family on the Chinese corpus, as noted in
the technical report of Qwen.

(3) Comparison of LlaMa2 and LlaMa3. We
also explore the performance of LlaMa2 7B and
LlaMa3 8B. From Figure 3, we can observe that
in some high-resource languages, such as Ger-
man, French, and Dutch, both LlaMa2 and LlaMa3
perform well, and LlaMa3 performs better than
LlaMa2, for low-resource languages, both perform
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Figure 3: Similarity scores of LlaMa2 7B and LlaMa3
8B. From left to right, the languages are Czech (cs), Ko-
rean (ko), German (de), Arabic (ar), Italian (it), Bengali
(bn), French (fr), Turkish (tr), Turkmen (tk), Hindi (hi),
Dutch (nl), Kazakh (kk), Kannada (kn), and Thai (th).

Language Proportion Similarity Language Proportion Similarity
German 0.17% 0.723 | Welsh <0.01% 0.396
French 0.16% 0.737 | Persian <0.01% 0.300
Swedish 0.15% 0.662 | Urdu <0.01% 0.275
Chinese 0.13% 0.552 | Kannada <0.01% 0.236

Table 1: The proportion of different languages in the
LlaMa?2 pre-training corpus and the similarity metric
we proposed. The English language ratio is 89.7%.

poorly, and LlaMa3 performs worse than LlaMa2.
This phenomenon suggests that there is a certain
consistency in the performance of high-resource
languages and low-resource languages in similarity
metrics, which can be used to distinguish high-
resource and low-resource languages.

3.3 Relationship to Ratio of Training Corpus?

In this section, we explore the relationship between
the proportion of each language in the LLaMa2
pre-training corpus and their corresponding perfor-
mance as measured by the similarity metric. Ac-
cording to the technical report of LlaMa2 (Tou-
vron et al., 2023), we obtain the proportion of the
pre-training corpus of some languages. Table 1 il-
lustrates this relationship by listing a selection of
languages with their proportion in the training data
and their similarity scores relative to English. The
table is divided into two parts: the left side lists
high-resource languages with relatively higher pro-
portions in the LL.aMa2 pre-training corpus, and
the right side lists low-resource languages with very
low proportions (< 0.01%). For example, German,
with a proportion of 0.17%, has a high similarity
score of 0.723, indicating strong performance in
comparison to English. This trend suggests that lan-



Language ARC MMLU

LlaMa2 7B Gemma 7B  Mistral 7B Qwen 7B LlaMa2 7B Gemma 7B  Mistral 7B Qwen 7B
Chinese 27% 71% 57% 66% 32% 54% 37% 44%
German 27% 68% 63% 32% 25% 57% 47% 27%
French 31% 76% 59% 42% 24% 58% 48% 28%
Spanish 31% 77% 60% 46% 29% 56% 52% 33%
Italian 29% 77% 67% 44% 23% 56% 44% 32%
Kannada 24% 48% 27% 21% 21% 40% 22% 19%
Hindi 28% 60% 42% 22% 25% 45% 32% 23%
Armenian 19% 40% 36% 20% 20% 36% 30% 25%
Marathi 28% 46% 26% 25% 27% 42% 30% 26%
Telugu 30% 42% 30% 30% 24% 33% 34% 23%

Table 2: Performance on two inference tasks
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Figure 4: Visualization of the embedding space of Gemma 7B for eight languages. Four figures at the top are
high-resource languages, Four figures at the bottom are low-resource languages.

guages with a higher proportion in the pre-training
corpus tend to have higher similarity scores, reflect-
ing better model performance. In contrast, low-
resource languages like Kannada and Urdu, each
with proportions of less than 0.01%, have much
lower similarity scores (i.e., 0.236 and 0.275).

3.4 Correlation with Other Inference Tasks?

To more comprehensively reflect the performance
of LLMs in various languages, we evaluate the
multilingual reasoning ability of these LLMs.

We use MLMM-evaluation' as our benchmark
dataset to evaluate LLMs’ performances on rea-
soning tasks in various languages. The benchmark
dataset can be used to evaluate the LLM across 26
different languages. It consists of three datasets:

! https://github.com/nlp-uoregon/mlmm-evaluation

ARC (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), and MMLU (Hendrycks et al., 2020). We
chose ARC and MMLU for evaluation, and both
of them are multiple-choice datasets. The ARC
dataset consists of 7,787 multiple-choice science
questions drawn from a variety of sources. The
MMLU dataset contains multiple-choice questions
derived from diverse fields of knowledge. We
selected five high-resource languages (Chinese,
German, French, Spanish, Italian) and five low-
resource languages (Kannada, Hindi, Armenian,
Marathi, Telugu) for evaluation, randomly selected
100 samples from each language for 4-shot learn-
ing prediction, and used accuracy as the metric.
The LLMs evaluated are consistent with Figure 1:
LlaMa2 7B, Gemma 7B, Mistral 7B, and Qwen
7B.

The predicted result is shown in Table 2. From
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Similarity Score

Low-Low

Similarity Score

High-High Similarity Score High-Low
English-German 0.72 German-Silesian
Italian-French 0.68 French-Erzya
German-French  0.67 Italian-Romany
French-Chinese  0.59 Italian-Uighur

0.48
0.35
0.32
0.27

Azerbaijani-Turkmen
Hungarian-Yiddish
Kab-SMT

Mari-Tatar

0.51
0.24
0.36
0.48

Table 3: Similarity score of different language pairs of Gemma 7B.

Similarity Score

Low-Low

Similarity Score

High-High Similarity Score High-Low
English-German 0.72 German-Silesian
Italian-French 0.69 French-Erzya
German-French  0.68 Italian-Romany
French-Chinese  0.56 Italian-Uighur

0.44
0.31
0.15
0.20

Azerbaijani-Turkmen
Hungarian-Yiddish
Kab-SMT

Mari-Tatar

0.51
0.19
0.40
0.42

Table 4: Similarity score of different language pairs of LlaMa2 7B.

the result, we find that for Gemma, Mistral, and
Qwen, the performance of high-resource languages
is significantly better than that of low-resource
languages, and Gemma performs best. For the
LlaMa2, the performance in all languages is gener-
ally not as good as the first three LLMSs. This result
shows that LLM reasoning ability in low-resource
languages is worse than that in high-resource lan-
guages. This result proves that there are differences
in performance between high-resource and low-
resource languages in reasoning tasks, illustrating
the effectiveness of the proposed cosine similarity
metric.

4 Further Analysis of Proposed Metric

In the last section, we introduced and evaluated the
Language Ranker, demonstrating its ability to quan-
tify the multilingual capabilities of LLMs by com-
paring their internal representations against an En-
glish baseline. This provided a robust measure of
how LLMs perform across different languages, es-
pecially highlighting the disparities between high-
resource and low-resource languages.

Building on these insights, in this section, we delve
deeper into the proposed metric to explore its credi-
bility and reliability further. Specifically, we aim to
answer the following questions: RQ5: Is choosing
English as the benchmark a wise choice (Section
4.1)? RQ6: What does the subspace of each lan-
guage look like (Section 4.2)? RQ7: Is choosing
cosine similarity a wise choice (Section 4.3)?

4.1 Why Using English as Baseline?

In the above sections, we choose English as a base-
line. This is based on the a priori assumption that
low-resource languages generally perform worse
than high-resource languages. But if we choose

other high-resource languages as baselines, will
we get the same performance? In other words,
how can we ensure that our metric is not affected
by the English language itself? To answer this
question, we divided our probing datasets into
three types: High Resource-High Resource (H-
H), High Resource-Low Resource (H-L), and Low
Resource-Low Resource (L-L). To fulfill our re-
quirement, we utilize Tatoeba-Challenge (Tiede-
mann, 2020) as our dataset instead of opus-100 be-
cause the latter is an English-centric dataset which
means there is no Low Resource-Low Resource
language pair. Tatoeba-Challenge is a challenge
set for machine translation that contains 32G trans-
lation units in 2,539 bitexts. The whole data set
covers 487 languages linked to each other in 4,024
language pairs. We select four language pairs
for each group, English-German (en-de), English-
French (en-fr), German-French (de-fr), and Italian-
German (it-de) represent H-H; German - Silesian
(de-szl), French-Erzya (fr-myv), Italian - Romany
(it-ro) and Italian - Uighur (it-uig) represent H-L;
Azerbaijani-Turkmen (az-tr), Hungarian-Yiddish
(hu-yi), Kabyle-Standard Moroccan Tamazight
(kab-SMT) and Mari-Tatar (ma-ta) represent L-L.
The results are shown in Table 3 and Table 4.

From the results, we can observe that the score
of High-High is higher than the score of High-
Low and Low-Low universally. An obvious in-
ference is that the distribution of high-resource
languages is relatively close to each other, while
the distribution of low-resource languages varies
greatly, neither being close to each other nor to
high-resource languages. Therefore, the distribu-
tion of high-resource languages is relatively con-
sistent, while the distribution of low-resource lan-
guages varies greatly. Choosing English as the
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Figure 5: Box plot of the relationship between the double variance and similarity of Gemma 7B and Mistral 7B.

baseline is a convenient choice. Thus, we can also
choose other high-resource languages such as Ger-
man and French as the baseline.

4.2 Deeper Analysis of the Embedding Space

We explained why we chose English as the baseline
in the above section. Choosing English is actually
choosing a high-resource language as our baseline.
A question naturally arises: How can we make sure
that the performance of high-resource languages
is better than the performance of low-resource lan-
guages? The result of Table 2 has confirmed the
answer to the question by the reasoning task. To
answer this question more deeply, we need to ana-
lyze the distribution of the embedding of different
languages. As is shown in Figure 4, the top four
sub-figures are embedding spaces of high-resource
languages, while the bottom four sub-figures are
embedding spaces of low-resource languages. It
is obvious that high-resource languages are more
evenly distributed throughout the space, while low-
resource languages are more narrowly distributed,
and compressed into a near straight line. There-
fore, the performance of low-resource languages is
worse than that of high-resource languages, which
means it is suitable to choose a high-resource lan-
guage like English as the baseline.

4.3 Why Using Cosine Similarity?

Recent research (Steck et al., 2024) has shown
that cosine similarity is not always a reliable met-
ric. Inspired by Section 4.2, the quality of the
performance of various languages can be clearly
judged from the subspace distribution. Therefore,
we decided to quantify the performance of these
languages from a distribution perspective.

Back to Figure 4, the projection distributions of
high-resource languages in different directions are
relatively consistent, while the distribution of low-
resource languages is compressed approximately
into a straight line. The projection distributions
outside the straight line, such as the projections
perpendicular to the straight line, are crowded in
a smaller area. This suggests that we can use the
projection variance to approximately measure the
quality of the distribution.

According to PCA, we assume the embedding vec-
tors are { X}, (being centralized), the projection
direction is w, the project variance Var(X,w) can
be calculated as follows:

n

Var(X,w) = %Z(Xfw)Q - %ZMTXiXiTw
=1

=1

3

=wCov(X)w st. ww=1

It is obvious that Var(X,w) is the eigenvalue of
the Cov(X). For high-resource languages, projec-
tion variance in different directions should be close
to each other so that it can be evenly distributed in
all directions. The opposite is true for low-resource
languages. Therefore, we can extract the first K
eigenvalues {Var(X,w;)}*_, and calculate their
variance. The variance of the eigenvalues can be
used to measure the differences in the distribution
in each direction, which is called double variance.
This metric can be used to specifically measure the
quality of the distribution. The higher the double
variance, the more unbalanced the distribution and
the worse the performance, and the vice versa.

We employ the box plot to show the relationship be-
tween the proposed cosine similarity metric and the
double variance metric more clearly. From the re-
sults of Table 5, we can observe that for each LLM,



Gemma 7B

Mistral 7B

High-resource Low-resource High-resource Low-resource
I ge Double Var Similarity | I ge Double Var Similarity | Language Double Var Similarity | Language Double Var Similarity
Italian 0.04 0.66 | Nepali 0.75 0.42 | Italian 0.12 0.59 | Nepali 0.60 0.28
French 0.09 0.69 | Kazakh 0.85 0.38 | French 0.17 0.65 | Kazakh 0.32 0.32
Spanish 0.06 0.68 | Burmese 0.36 0.30 | Spanish 0.17 0.64 | Burmese 0.40 0.20
German 0.10 0.72 | Pashto 0.72 0.36 | German 0.19 0.66 | Pashto 0.73 0.29

Table 5: Similarity scores and double variance results for some languages on Gemma 7B and Mistral 7B.

the languages in the left part are some common
high-resource languages, which have higher sim-
ilarity and lower double variance, while the right
part is the opposite for low-resource languages.
The second observation is that as the variance in-
creases, the similarity score also tends to decrease.
The increase in variance means that the distribution
of the subspace becomes uneven and the similarity
score decreases accordingly. This shows that the
proposed cosine similarity metric can be utilized to
roughly measure the quality of distribution of the
subspace, which can thus measure the performance
of LLM in different languages.

5 Related Work

Representation Engineering. Representation en-
gineering has emerged as an effective approach to
enhance the interpretability and transparency of
LLMs. Researchers have been leveraging internal
representations to tackle various challenges. Zou
et al. (2023) summarizes the application of repre-
sentation engineering in bias, fairness, model edit-
ing, and other areas. Schwenk (2007) found that
the internal representation of LLM has a certain
correlation with time and space, and the internal
representation can be employed to represent time
and space. Li et al. (2024) found that the repre-
sentation of the attention head inside the LLM can
be used to indicate the correct reasoning direction,
probe analysis is further used to correct the inter-
nal representation direction to improve the LLM’s
performance. Marks and Tegmark (2023) study
the structure of LLM representations of true/false
statements, proved that language models linearly
represent the true/false of factual statements. Ju
et al. (2024) used probe technique to detect how
LLM stores knowledge layer by layer.

Multilingual Language Model. Recent research
such as (Qin et al., 2024) summarizes the re-
cent progress and future trends in multilingual
large language models. Ahuja et al. (2024) con-
structed a benchmark to evaluate LLM’s multilin-
gual ability comprising 22 datasets covering 83

languages. Huang et al. (2023); Qin et al. (2023)
have proven that LLM performance varies sub-
stantially across different languages and they em-
ploy a prompt technique to improve task perfor-
mance across languages. Wendler et al. (2024)
explores how LlaMa2 works in multilingual tasks
and what role English plays in these tasks. The im-
balance distribution of training corpus in different
languages leads to the bias of LLM towards some
high-resource languages such as English (Blasi
et al., 2021). Some approaches employ multi-
lingual language modeling to alleviate the phe-
nomenon (Shen et al., 2024; Kalyan et al., 2021;
Conneau et al., 2019). These studies show the im-
portance of strengthening the cross-lingual capabil-
ities of the pre-trained model. Schifer et al. (2024)
found that the presence of a primary language in
the training process of LLMs can improve the per-
formance of low-resource languages and lead to
a more consistent representation of LLMs in dif-
ferent languages. Liu et al. (2024) found that for
English-centric LL.Ms, although translation into
English helps improve the performance of NLP
tasks, it is not the best choice for all situations.

6 Conclusions and Future Work

In this work, we propose the Language Ranker
to evaluate the performance of LLMs across di-
verse languages by comparing their internal repre-
sentations to English. The results show that high-
resource languages show higher similarity scores
with English, while low-resource languages have
lower scores, validating the effectiveness of our
metric in assessing language performance. Besides,
there is a strong correlation between the perfor-
mance of LLMs in different languages and the
proportion of those languages in the pre-training
corpus. Further, results indicate that high-resource
languages are more evenly distributed in the em-
bedding space, whereas low-resource languages
tend to be narrowly clustered. In the future, we
plan to design more comprehensive benchmarks to
measure LLM’s capabilities in different languages.



Limitations

The proposed Language Ranker approach provides
an initial quantitative way to analyze LLM per-
formance across languages. We acknowledge that
the language ranker method we proposed offers
only a rough measurement. While our findings in-
dicate a correlation between the similarity scores
and the proportion of each language in the pre-
training dataset, these scores alone are not suffi-
cient to precisely measure the exact proportions.
Our intent was to provide an initial quantitative
approach to explore this relationship, and we recog-
nize the need for more comprehensive methods and
additional metrics to accurately assess the impact
of pre-training data distribution across languages.
Furthermore, the method does not account for po-
tential biases or skews that could be present in the
multilingual evaluation datasets themselves. The
existence of such biases can also introduce noise
in the resulting rankings of language abilities for
different LLMs.
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A Appendix

A.1 Ranking Result For LLMs

We give the similarity scores of the four LLMs used
in the experiment on 18 high-resource languages.

Results are shown in the following tables.

Language Similarity Score

Language

Similarity Score

A.2 Details of experiment in Table 4 and

Table 3

We selected data from the Tatoeba-Challenge repos-
itory®. Since the number of samples for some low-
resource language pairs is small, we extracted 100
samples for each language pair. If there are less
than 100, we extracted all samples and extracted
them according to the test-dev-train priority.

German 0.723
French 0.737
Spanish 0.768
Italian 0.706
Russian 0.734
Dutch 0.709
Polish 0.664
Malay 0.651
Swedish  0.661

Western Frisian
Tamil

Gujarati
Kurdish

Pashto
Assamese
Central Khmer
Panjabi
Ambharic

0.378
0.347
0.313
0.308
0.284
0.260
0.240
0.218
0.202

Table 6: The similarity score of LlaMa2 7B.

Language Similarity Score

Language

Similarity Score

German 0.719
French 0.691
Spanish 0.683
Italian 0.662
Russian 0.674
Dutch 0.658
Polish 0.618
Malay 0.615
Swedish  0.629

Western Frisian
Tamil

Gujarati
Kurdish

Pashto
Assamese
Central Khmer
Panjabi
Ambaric

0.443
0.420
0.433
0.358
0.362
0.396
0.330
0.379
0.298

Table 7: The similarity score of Gemma 7B.

Language Similarity Score

Language

Similarity Score

German 0.639
French 0.623
Spanish 0.616
Italian 0.571
Russian 0.611
Dutch 0.566
Polish 0.514
Malay 0.497
Swedish  0.532

Western Frisian
Tamil

Gujarati
Kurdish

Pashto
Assamese
Central Khmer
Panjabi
Ambharic

0.346
0.279
0.270
0.262
0.267
0.276
0.252
0.213
0.191

Table 8: The similarity score of Mistral 7B.

Language Similarity Score

Language

Similarity Score

German 0.805
French 0.793
Spanish 0.800
Italian 0.773
Russian 0.794
Dutch 0.773
Polish 0.752
Malay 0.730
Swedish  0.759

Western Frisian
Tamil

Gujarati
Kurdish

Pashto
Assamese
Central Khmer
Panjabi
Ambharic

0.441
0.510
0.469
0.436
0.448
0.507
0.407
0.385
0.470

Table 9: The similarity score of Qwen 7B.
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High-High Similarity Score _High-Low Similarity Score_Low-Low Similarity Score
English-German 0,64 German-Silesian0.43 Azerbaijani-Turkmen 051
Italian-French 0.60 French-Erzya 0.30 Hungarian-Yiddish 0.18
German-French ~ 0.62 Italian-Romany ~ 0.25 Kab-SMT 039
French-Chinese  0.57 Italian-Uighur  0.24 Mari-Tatar 046

Table 10: Similarity score of different language pairs of

mistral 7B.

Similarity Score _High-Low

Similarity Score

Low-Low

Similarity Score

0.81 German-Silesian

0.75 French-Erzya
German-French  0.80 Italian-Romany
French-Chinese  0.71 Italian-Uighur

0.58
0.51
0.53
0.49

Azerbaijani-Turkmen
Hungarian-Yiddish
Kab-SMT
Mari-Tatar

0.67
0.39
0.55
0.55

Table 11: Similarity score of different language pairs of

qwen 7B.

*https://github.com/Helsinki-NLP/Tatoeba-

Challenge/tree/master/data
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Figure 6: Simlarity scores curves of LlaMa2 13B and Qwen 13B.
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Figure 7: Simlarity scores curves of Bloom 3B and Bloom 7B.

A.3 Performance of LLMs with Other Sizes
A.3.1 LlaMa2 13B and Qwen 13B

We also explore the performance of the similarity
metric in LLM of 13B parameters, We use LlaMa2
13B and Qwen 13B to display the results. From Fig-
ure 6 we can observe that the partial order results
of LLM-13B are roughly the same as those of LLM
7B, and there is a clear gap between high-resource
languages and low-resource languages.

A.3.2 Bloom 3B and Bloom 7B

Figure 7 shows the result of Bloom 3B and
Bloom 7B. Except for the last few layers of the
model, there are obvious differences between high-
resource languages and low-resource languages
which are similar to the above LLLMs, while there
are smaller differences within the same category
of languages. The score is higher than LlaMa2,
Gemma, Mistral, and Qwen.
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