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Abstract
Large Reasoning Models (LRMs) demonstrate
strong performance on complex tasks through
chain-of-thought (CoT) reasoning. However, they
suffer from high inference latency due to lengthy
reasoning chains and the substantial computa-
tional requirements of large models. In this paper,
we propose SpecCoT, a collaborative framework
that combines large and small models for effective
yet efficient reasoning. Unlike traditional specula-
tive decoding, which operates at the token level,
SpecCoT adopts a step-level verification strategy:
the large model first establishes the reasoning di-
rection, and for each intermediate step, the small
model generates multiple candidate drafts in par-
allel. The large model then verifies these drafts,
either selecting the most suitable one or reject-
ing them all and generating its own response.
This SpecCoT approach balances reasoning qual-
ity with inference efficiency through fine-grained
model cooperation. Experiments across diverse
tasks show that SpecCoT reduces inference la-
tency by 1.7-4.1× while maintaining comparable
accuracy to standard large model inference.

1. Introduction
Large Reasoning Models (LRMs) leveraging chain-of-
thought (CoT) (Wei et al., 2022b) offer powerful reasoning
but suffer from high inference latency, hindering their appli-
cation in time-sensitive scenarios (Jaech et al., 2024; Team,
2025; DeepSeek-AI et al., 2025). Current acceleration meth-
ods, such as model distillation or CoT shortening (Wang
et al., 2025b; Liu et al., 2024; Xia et al., 2025), face a criti-
cal trade-off: large models are inefficient for simple tasks,
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while smaller or compressed models fail on complex ones,
motivating adaptive frameworks (Xia et al., 2025; Zhang
et al., 2025; Liu et al., 2024).

Inspired by the success of speculative decoding (Leviathan
et al., 2023; Chen et al., 2023; Xia et al., 2024) in model
collaboration, we propose SpecCoT (Speculative Chain-
of-Thought). This framework employs a small model to
generate multiple candidate reasoning steps in parallel for
each intermediate stage. A large model then performs step-
wise verification of these drafts, intervening to generate its
own reasoning step only when all candidates are deemed
unacceptable. This strategic delegation enhances efficiency
by reserving the large model primarily for validation and
critical reasoning tasks, thereby preserving overall accuracy
while reducing computational overhead.

Experimental evaluations demonstrate that SpecCoT re-
duces inference latency by up to 4.1× while maintaining
comparable accuracy to standard approaches. The effective-
ness of SpecCoT stems from its collaborative framework
that combines parallel candidate generation with dynamic
verification, where the large model intervenes only when
necessary, effectively balancing reasoning quality with com-
putational efficiency.

Our key contributions include:
• We propose SpecCoT, a collaborative reasoning frame-

work that strategically delegates reasoning steps be-
tween large and small models to achieve an optimal
balance between reasoning quality and computational
efficiency.

• We develop a novel parallel verification mechanism
with dynamic fallback, enabling efficient step-wise
evaluation of multiple reasoning candidates while pre-
serving accuracy through selective large model inter-
vention.

• Comprehensive experiments across diverse reasoning
benchmarks demonstrate that SpecCoT reduces infer-
ence latency by 1.7-4.1× while maintaining compara-
ble accuracy to standard large model inference.

2. Motivation
Complex reasoning tasks present unique challenges and
opportunities for models of different sizes. This section ex-
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plores their inherent trade-offs in reasoning versus efficiency
and identifies key optimization opportunities.

2.1. Model Size vs. Reasoning Efficiency

Small models generate content faster but with reduced
reasoning reliability. Small models offer substantial gen-
eration speed advantages (3-4× faster token generation),
but this does not guarantee faster overall reasoning perfor-
mance. Their limited reasoning capabilities result in verbose
solutions (up to 4× more tokens, Table 1), yielding similar
end-to-end latency compared to large models. This verbosity
often indicates underlying reasoning deficiencies, such as
incoherent logic or circular arguments.

Table 1: Performance and efficiency tradeoffs in DeepSeek
R1 distilled Qwen models in GSM8K.

Distill-Qwen 1.5B 7B 14B 32B

Accuracy (%) 75.51 87.49 90.83 91.58
Avg Time (s) 10.94 5.20 6.86 10.33
Avg Token 2736.46 974.19 758.51 634.11
Speed (token/s) 256.38 200.41 120.39 67.90

Large models demonstrate superior reasoning capabil-
ities with built-in reflection mechanisms. Large mod-
els, despite slower token generation rates, exhibit ad-
vanced reasoning abilities beyond computational scale.
Their key advantage lies in intrinsic reflection capabili-
ties—monitoring reasoning processes, detecting errors, and
self-correcting—maintaining logical consistency. Empiri-
cally, large models achieve higher accuracy (91% vs 75%)
while using fewer tokens (less than 1/4 compared to small
models) to reach solutions.

2.2. Collaborative Reasoning Principles

Complex reasoning can be decomposed into sub-tasks of
varying difficulty. Complex reasoning involves sub-tasks
of varying difficulty. Pivotal stages like initial analysis or
strategy formulation require sophisticated reasoning capa-
bilities. However, many intermediate steps—calculations,
logical deductions, case analyses—are more straightforward
and can be effectively handled by small models despite their
end-to-end limitations. This suggests opportunities for effi-
cient model deployment through strategic task allocation.

Reasoning quality depends on logical correctness rather
than exact expression. Unlike tasks requiring precise word-
ing, reasoning quality hinges on logical correctness rather
than exact expression. This differs fundamentally from
speculative decoding, which demands precise token-level
replication. Since multiple valid formulations can convey
the same logical step, reasoning naturally accommodates
collaboration—allowing small models to contribute effec-
tively despite variations in their outputs.
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Figure 1: Performance analysis of Best-of-N sampling and
initial guidance impact on reasoning tasks.

2.3. Optimization Potential for Small Models

High-quality initial guidance impacts subsequent rea-
soning. High-quality initial guidance critically impacts
subsequent reasoning. A well-structured initial analysis de-
composes complex problems, establishes a clear framework,
and crucially helps prevent error accumulation, as early mis-
takes often cascade. Leveraging more capable models at this
initial stage offers substantial benefits for the entire solution.

Parallel candidate generation enables efficient explo-
ration. Parallel candidate generation enables efficient ex-
ploration. While individual small model generations may
lack reliability, generating multiple candidates in paral-
lel significantly increases the chance of obtaining high-
quality reasoning steps. Optimized inference frameworks
like vLLM(Kwon et al., 2023) make this multi-candidate
generation’s overhead manageable, allowing parallel solu-
tion space exploration to overcome small model limitations.

3. Method
Speculative Chain-of-Thought (SpecCoT) is a collaborative
framework leveraging the complementary strengths of large
and small language models. It decomposes CoT reasoning
into speculative iterations: large models provide initial guid-
ance and verification, while small models generate multiple
diverse intermediate reasoning steps. This approach main-
tains reasoning quality with efficiency gains from parallel
candidate generation.

3.1. Formulation

Given problem x, SpecCoT generates a reasoning chain
C = {c1, ..., cn} for answer y. The target model generates
initial guidance g to provide a strong foundation. For each
subsequent step i, the draft model generates N candidate
continuations {ĉji}Nj=1 based on prior steps c1:i−1. The
target model then verifies and selects the best candidate or
regenerates the step if needed. Formally:

x
C−→ y, where C = {g} ∪ {c1, c2, ..., cn}. (1)
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Figure 2: Overview of SpecCoT. The process begins with an LLM generating initial guidance tokens (1), followed by a
small language model generating multiple candidate continuations for each reasoning step (2,4,7). For each step, the LLM
verifies and selects the most promising candidate (3,5,8) or regenerates the content itself if no candidate meets quality
standards (6). This collaborative approach combines the reasoning quality of large models with the computational efficiency
of small models, culminating in a final answer after multiple reasoning steps.

This approach maintains quality through target model guid-
ance and verification while reducing overhead via parallel
candidate generation by the draft model.

3.2. Initial Guidance

SpecCoT starts with a large target model MT generating an
initial k-token guidance g from input x:

g ∼MT (·|x), |g| = k (2)

where g forms the reasoning chain foundation. A strong
initial direction is crucial; MT ’s superior reasoning estab-
lishes a sound starting point, constraining the draft model’s
solution space and minimizing overhead.

3.3. Speculative Exploration

After initial guidance, SpecCoT uses a lightweight draft
model MD for efficient exploration at each step i, generating
N parallel candidate continuations simultaneously:

ĉji ∼MD(·|g, c1:i−1), j = 1, ..., N (3)

This parallel generation mitigates MD’s limitations and
leverages batch sampling efficiency. Diversity from multiple
candidates increases the chance of finding a high-quality
continuation.

3.4. Efficient Verification and Fallback

An efficient verification mechanism evaluates all candidates
via a single target model forward pass. Augmenting candi-

dates with a reject option allows MT to select a candidate
or signal the need for its own generation:

s = VT ({ĉji}
N
j=1 ∪ {reject}), (4)

where VT represents the verification function based on MT

that assesses logical coherence and reasoning progress. This
requires only one forward pass with a single token output.

The reject option provides key quality control. If all can-
didates are unsuitable (logical errors, insufficient progress),
MT rejects them and generates the step itself:

ci ∼MT (·|g, c1:i−1). (5)

This verification and fallback approach ensures reasoning
quality with minimal computational cost, balancing effi-
ciency and reliability through selective intervention.

3.5. Relation to Speculative Decoding

SpecCoT shares conceptual similarities with speculative de-
coding, as both leverage draft models for efficiency gains.
While speculative decoding operates at the token level, Spec-
CoT extends this concept to reasoning steps. This alignment
suggests potential for a unified framework operating at dif-
ferent granularities—using the same draft model for both
token-level and step-level speculation could enable hierar-
chical efficiency, with target model verification ensuring
quality at both levels.
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Figure 3: Accuracy comparison (%) of SpecCoT variants against baseline models across four reasoning benchmarks.
SpecCoT implementations use Deepseek-R1-Distill-Qwen-1.5B (RQwen-1.5B) as the draft model, with either QwQ-32B or
Deepseek-R1-Distill-Qwen-32B (RQwen-32B) as the target model.

Table 2: Performance across four mathematical reasoning tasks (GSM8K, MATH-500, GaoKao, AMC23). Metrics
include average tokens, latency (Lat, in seconds), and improvement ratio r of SpecCoT over baselines.

Model
GSM8K MATH-500 GaoKao AMC23

Token Lat r Token Lat r Token Lat r Token Lat r

RQwen-1.5B 1096.8 4.5 – 2609.3 10.6 – 3456.6 14.4 – 5298.8 21.64 –
QwQ-32B 2053.8 33.5 – 3086.8 50.8 – 4102.0 68.0 – 5885.8 97.78 –
SpecCoT(ours) 1023.3 10.1 3.3 1495.9 16.2 3.1 2316.5 30.1 2.3 3633.0 48.6 2.0
RQwen-32B 574.3 9.3 – 1998.6 32.6 – 2833.4 46.7 – 4605.5 76.2 –
SpecCoT(ours) 239.1 2.9 3.2 636.9 7.8 4.1 1674.7 24.0 1.9 3031.6 44.7 1.7

4. Experiments
4.1. Setup

SpecCoT is evaluated using RQwen-1.5B (DeepSeek-AI
et al., 2025) (Deepseek-R1-Distill-Qwen series) as the draft
model, and QwQ-32B (Team, 2025) or RQwen-32B as tar-
get models. Evaluation datasets include GSM8K (Cobbe
et al., 2021), MATH-500 (Hendrycks et al., 2021), GaoKao-
En-2023 (Liao et al., 2024), and AMC23 (MAA, 2023),
covering diverse reasoning complexities. Experiments were
conducted on 4 NVIDIA A100 GPUs using vLLM (Kwon
et al., 2023) with 5 runs per configuration, 8192 max tokens,
and temperature 0.6. Baselines are vanilla model inference.

4.2. Main Results

Accuracy Improvement. Figure 3 shows SpecCoT sub-
stantially outperforms the draft model, approaching target
model accuracy on GSM8K and MATH-500. On AMC23
and GaoKao, the QwQ-32B baseline occasionally under-
performs SpecCoT due to token needs, yet SpecCoT with
QwQ-32B as the target model generally outperforms Spec-
CoT with RQwen-32B. These improvements stem from the
target model’s step-wise guidance and verification, which
corrects draft model errors early in the reasoning process.

Lower Latency. SpecCoT significantly improves compu-
tational efficiency. With QwQ-32B as the target model, it
achieves approximately 3× speedup on GSM8K/MATH-
500, and 2.0-2.3× on GaoKao/AMC23. With RQwen-32B,
speedups range from 1.7× (AMC23) to 4.1× (MATH-500).
Diminishing gains on harder tasks are expected due to in-
creased target model intervention, demonstrating the frame-
work’s balance between efficiency and quality requirements.

Token Efficiency. SpecCoT significantly reduces token
consumption. With QwQ-32B as the target model, token
usage decreases by approximately 50-52% on GSM8K and
MATH-500. Using RQwen-32B, reductions reach 59-68%
on these datasets. The gains result from early selection of
optimal reasoning paths, preventing wasteful exploration
and reducing the need for extensive large model generation,
thereby producing concise yet accurate solutions.

5. Conclusion
We presented SpecCoT, demonstrating efficient CoT rea-
soning through strategic large-small model collaboration.
By combining parallel candidate generation with selective
verification, SpecCoT achieves 1.7-4.1× speedup while
maintaining comparable accuracy across diverse reasoning
benchmarks.
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A. Appendix
A.1. Pseudo code of SpecCoT

Algorithm 1 Speculative Chain-of-Thought

1: Input: Input x, target model MT , draft model MD, candidates N , temperature τ

2: Output: Reasoning chain C, answer y
3: Reasoning chain C ← ∅
4: Initial guidance: g ←MT (x)

5: repeat
6: i← |C|+ 1

7: candidates← ∅
8: for j = 1 to N do
9: ĉji ←MD(g, C, τ)

10: candidates← candidates ∪{ĉji}
11: end for
12: candidates← candidates ∪{reject}
13: s← VT (candidates)
14: if s = N + 1 then
15: ci ←MT (g, C)

16: else
17: ci ← candidates[s]
18: end if
19: C ← C ∪ {ci}
20: if reasoning complete then
21: Extract y from C

22: Return C, y

23: end if
24: until reasoning complete =0

A.2. Ablations
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Figure 4: Ablation studies and sensitivity analysis of SpecCoT performance.

Number of initial tokens. Initial tokens are guiding tokens generated by the target model at the start of collaboration
(zero means the draft model begins). Results show guiding tokens improved accuracy across three datasets, with a slight,
acceptable inference time increase (still substantially lower than the base model). This accuracy gain stems from high-quality
target model guidance preventing early draft model mistakes and effectively steering its generation.

Number of Drafts. The number of drafts dictates how many candidate continuations the draft model generates per step.
Increasing drafts (Fig. 4(b)) doesn’t guarantee higher accuracy but substantially lowers the fallback rate (notably at 10
drafts), as the target model more often finds acceptable candidates. While multiple drafts improve the chance of producing
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a suitable continuation, they don’t fundamentally boost the draft model’s inherent problem-solving ability. For complex
junctures beyond the draft model’s capacity, target model intervention remains necessary.

Table 3: SpecCoT performance on MATH-500 and GSM8K. Metrics include accuracy (%), tokens, time (s), and fallback
rate (%) using two draft models (RQwen-1.5B and Qwen2.5-1.5B-Instruct) with three 32B target models (RQwen for
RQwen-32B, Qwen-Inst. for Qwen2.5-32B-Instruct, and QwQ for QwQ-32B).

Draft Model Metric MATH-500 GSM8K
RQwen Qwen-Inst. QwQ RQwen Qwen-Inst. QwQ

RQwen-1.5B

Accuracy 83.6 80.7 91.4 86.8 83.5 93.5
Tokens 242.2 265.1 1021.9 638.6 319.3 1495.9
Time 2.9 2.9 9.8 7.5 3.2 16.2

Fallback 8.6 2.5 6.5 16.4 2.7 14.5

Qwen2.5-1.5B
Instruct

Accuracy 75.7 77.0 81.8 68.5 67.0 74.4
Tokens 254.1 247.3 347.8 324.8 292.2 536.3
Time 5.5 2.9 5.0 6.3 3.4 8.6

Fallback 5.6 4.7 18.9 13.5 4.9 29.3

A.3. Analysis

A.3.1. IMPACT OF MODEL CAPABILITIES

To analyze how model capabilities affect collaboration, we tested various combinations of draft and target models. Target
models ranged from basic instruction-following (Qwen-32B-Instruct) to enhanced reasoning (RQwen-32B) and sophisticated
chain-of-thought reasoning (QwQ-32B), while draft models included reasoning-enhanced RQwen-1.5B and standard
Qwen2.5-1.5B. Results show that stronger target models achieve higher accuracy but require more computational resources,
with QwQ-32B reaching 93.5% accuracy but consuming 1495.9 tokens on average. When paired with RQwen-1.5B as the
draft model, even basic Qwen-32B-Instruct maintains good efficiency (265.1 tokens, 2.9s inference time) while achieving
80.7% accuracy. Draft model capability significantly impacts performance - RQwen-1.5B enables notably higher accuracy
across all target models (91.4% vs 81.8% with QwQ-32B on MATH-500) with lower fallback rates (6.5% vs 18.9%).
However, even with weaker Qwen2.5-1.5B drafts, QwQ-32B still achieves 74.4% accuracy on GSM8K, demonstrating the
robustness of our collaborative approach.

A.3.2. ANALYSIS OF FALLBACK RATE

The fallback rate represents the proportion of the draft model’s intermediate steps rejected by the target model. On relatively
simpler datasets like GSM8K, we observe low fallback rates of approximately 0.08, indicating that the draft model produces
acceptable steps for most reasoning stages(Fig. 4(c)). However, this rate increases dramatically to 0.47 on challenging
benchmarks like AMC23, reflecting the draft model’s diminished capability to generate reliable continuations for complex
problems. Our analysis reveals that dataset difficulty serves as the primary determinant of fallback rates. While increasing
the number of draft candidates moderately improves acceptance, this effect is less pronounced than the impact of inherent
problem complexity. Interestingly, we find that stronger target models tend to exhibit higher fallback rates, as their enhanced
reasoning capabilities enable more stringent evaluation of the draft model’s proposals.

A.3.3. IMPACT OF RESOURCE CONFIGURATIONS

To examine SpecCoT’s performance under different resource configurations, we evaluated the performance using vLLM with
2-way and 4-way tensor parallelism on 2 and 4 A100 GPUs, respectively. The results demonstrate consistent performance
improvements across both datasets. In terms of inference time, SpecCoT achieves the fastest processing speed in both
hardware settings, completing inference in 12.49s and 10.08s on GSM8K, and 20.55s and 16.17s on MATH-500 under
2-way and 4-way configurations. The throughput analysis reveals that while all models benefit from increased parallelism,
the efficiency gains vary. Large models like RQwen-32B and QwQ-32B show substantial throughput improvements (¿50%)
when scaling from 2 to 4 GPUs, while SpecCoT exhibits moderate gains of 23.52% on GSM8K and 24.95% on MATH-500.
This difference is attributed to the fact that larger target models benefit more from multi-GPU tensor parallelism compared
to the smaller draft model used in SpecCoT.
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Table 4: Inference efficiency comparison on GSM8K and MATH-500. Time (seconds), throughput (tokens/second), and
their improvements when scaling from 2×A100 to 4×A100 GPU configurations.

Dataset Model 2×A100
Time (s)

4×A100
Time (s) Time Speedup (%) 2×A100

Token/s
4×A100
Token/s Throughput Gain (%)

GSM8K

RQwen-1.5B 12.51 10.94 12.55% 236.23 256.38 8.53%
RQwen-32B 14.71 10.33 29.78% 44.56 67.90 52.38%
QwQ-32B 51.86 33.57 35.27% 41.17 63.31 53.78%
SpecCoT(ours) 12.49 10.08 19.30% 82.17 101.50 23.52%

MATH-500

RQwen-1.5B 34.28 33.13 3.35% 233.25 244.82 4.96%
RQwen-32B 69.20 43.96 36.47% 39.88 61.59 54.44%
QwQ-32B 81.54 53.96 33.83% 40.55 62.03 52.97%
SpecCoT(ours) 20.55 16.17 21.31% 74.00 92.46 24.95%

A.4. Related Works

A.4.1. EFFICIENT REASONING

Recent LLMs have adopted chain of thought (CoT) reasoning(Wei et al., 2022a), enhancing problem-solving capabilities
while introducing longer outputs and increased computational costs. Research on improving reasoning efficiency follows two
main approaches: length compression methods like TokenSkip(Xia et al., 2025), SoftCoT(Xu et al., 2025), and Compressed
CoT(Cheng & Van Durme, 2024) reduce verbose outputs while maintaining quality; early termination techniques such
as Dynasor(Fu et al., 2025) and NoThinking(Ma et al., 2025) optimize reasoning by identifying when to stop processing.
These advances enable LLM applications in resource-constrained environments without sacrificing quality. Several recent
works combine speculative decoding with CoT reasoning, including SCoT(Wang et al., 2025a) using LoRA-tuned draft
models, SpecReason(Pan et al., 2025) decomposing CoT into discrete speculative steps, and Speculative Thinking(Yang
et al., 2025) triggering large model intervention at critical junctures identified by reflection keywords.

Our approach differs fundamentally from these concurrent works in two critical aspects. First, unlike these methods, which
allow the small model to initiate reasoning, we use the large model to generate initial tokens, preventing the small model
from starting on a flawed reasoning path. Second, rather than operating on complete reasoning trajectories like SCoT, our
approach applies best-of-n selection and fallback at intermediate CoT steps, enabling the large model to guide the reasoning
process at multiple points. This ongoing involvement allows for earlier intervention when the small model shows signs of
error, leading to more accurate reasoning while maintaining efficiency.

A.4.2. SPECULATIVE DECODING

Speculative decoding mitigates inference latency in autoregressive language models by enabling parallel token generation
without compromising output quality. Inspired by speculative execution in computing (Burton, 1985), seminal works
by Leviathan et al.(Leviathan et al., 2023) and Chen et al.(Chen et al., 2023) demonstrated this approach’s effectiveness.
Implementation strategies vary widely: from leveraging smaller models(Leviathan et al., 2023; Chen et al., 2023; Spector &
Re, 2023) and target model components(Cai et al., 2023; Zhang et al., 2024) to utilizing n-gram tables(Fu et al., 2024) and
retrieval systems(He et al., 2023). Verification techniques have advanced from basic token-level checks(Leviathan et al.,
2023) to sophisticated tree-structured methods(Miao et al., 2024). Recent breakthroughs include feature-level processing in
EAGLE(Li et al., 2024a) and adaptive draft trees in EAGLE-2(Li et al., 2024b), delivering enhanced acceleration while
preserving or improving quality.
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