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ABSTRACT

Dataset pruning, while effective for reducing training data size, often leads to
models vulnerable to adversarial attacks. This paper introduces a novel approach
to creating adversarially robust coresets. We first theoretically analyze how exist-
ing pruning methods result in non-smooth loss surfaces, increasing susceptibility
to attacks. To address this, we propose two key innovations: 1) a Frequency-
Selective Excitation Network (FSE-Net) that dynamically selects important fre-
quency components, smoothing the loss surface while reducing storage require-
ments, and 2) a “Joint-entropy” score for selecting stable and informative sam-
ples. Our method significantly outperforms state-of-the-art pruning algorithms
across various adversarial attacks and pruning ratios. On CIFAR-10, our approach
achieves up to 58.19% accuracy under AutoAttack with an 80% pruning ratio,
compared to 42.98% for previous methods. Moreover, our frequency pruning
technique improves robustness even on full datasets, demonstrating its potential
for enhancing model security while reducing computational costs.

1 INTRODUCTION

Dataset pruning aims to select a small subset of training data that can be used to efficiently train
future models while maintaining high accuracy. A common approach to coreset selection involves
assigning importance score to each example and selecting the most important ones (Ash et al., 2019)

Figure 1: Sensitivity maps us-
ing SmoothGrad that highlight key
components (green points) influ-
encing model predictions. From
left to right: the original im-
age, the sensitivity map for the
model trained with a 50% fre-
quency pruning ratio, and the
model trained on the original
dataset. All the original figures
come from Imagenet-1K.

Current state-of-the-art (SOTA) methods face challenges in
that the model trained on the coreset often has low adversarial
robustness. For instance, on CIFAR-10, a SOTA method CCS
(Zheng et al., 2022) achieves 86.81% accuracy with a 90%
pruning ratio, but this drops to just 37.86% when subjected to
AutoAttack (Croce & Hein, 2020). This significant accuracy
decline remains unexplained and poses a serious obstacle to
further advancements in dataset pruning.

Traditional algorithms enhance robustness through adversar-
ial training, which iteratively introduces perturbations to the
training set. This significantly increases training costs, mak-
ing it impractical for edge devices with limited resources (Bai
et al., 2021). These devices typically use pruned datasets for
training, rendering the overhead of adversarial training unsuit-
able.

We present theoretical and empirical insights into low adver-
sarial robustness in existing models and introduce a novel core-
set selection framework. Our analysis reveals how current
coreset selection methods lead to non-smooth local minimum
geometry (Definition 1), reducing adversarial robustness. We
propose two algorithms to address this problem: 1) We de-
signed a neural network to select important frequency compo-
nents. This improves adversarial robustness by reducing logit
entropy with extra benefits to reduce data storage which is
valuable for memory-limited edge devices and 2) for the training processing action analysis, we
introduced a data importance score based on entropy variation during training, helping to select a
stable coreset that maintains performance and further boosts adversarial robustness. In experiments,
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we can apply method 1) to the entire dataset or combine methods 1) and 2) to generate a coreset with
stronger adversarial robustness. All lemmas and theorems are rigorously proven in the Appendix..

The main contribution of our paper is: 1) To the best of our knowledge, this is the first work to
address adversarial robustness in the context of dataset pruning. 2) We proposed a learnable fre-
quency pruning algorithm that enhances adversarial robustness while reducing training data storage
requirements. 3) We introduced a data importance score, based on analyzing variations in model
logit entropy throughout the training process, to select a coreset that enhances the model’s robust-
ness against adversarial attacks. 4) We conducted extensive experiments across various datasets and
adversarial attacks to demonstrate the efficiency of our algorithm.

2 RELATED WORKS

2.1 DATASET PRUNING

Dataset Pruning, also known as Coreset Selection, aims to shrink the dataset scale by selecting
important samples according to some predefined criteria. Entropy (Coleman et al., 2019) explores
the uncertainty and decision boundary with the predicted outputs. GraNd/EL2N (Paul et al., 2021)
calculates the importance of a sample with its gradient magnitude. Forgetting (Toneva et al., 2018)
defines forgetting events as an accuracy drop at consecutive epochs, and hard samples with the
most forgetting events are important. AUM (Pleiss et al., 2020) identifies data by computing the
Area Under the Margin, the difference between the true label logits and the largest other logits. CCS
(Zheng et al., 2022) extends previous methods by pruning hard samples and using stratified sampling
to achieve good coverage of data distributions at a large pruning ratio. While these algorithms
propose various methods to enhance coreset performance, none consider the adversarial robustness
of the model when trained on the coreset selected by these methods.

2.2 ADVERSARIAL ATTACK

Adversarial attacks manipulate machine learning models by introducing subtle perturbations to input
data, causing incorrect predictions. FGSM (Goodfellow et al., 2014) generates adversarial examples
using the gradient of a model’s loss function. PGD (Madry, 2017) extends FGSM by iteratively
applying small perturbations. AutoAttack (Croce & Hein, 2020) combines multiple methods for
automatic evaluation without manual tuning. C&W attack (Madry, 2017) finds the smallest pertur-
bation causing misclassification. Despite extensive research in deep learning, no existing algorithms
specifically evaluate the impact of adversarial attacks on models trained with pruned datasets.

3 METHODOLOGY

3.1 THEORY ANALYSIS

Drawing from the findings in Stutz et al. (2021) and Liu et al. (2020), which establish a correlation
between loss landscape flatness and adversarial robustness, we posit that enhancing a model’s re-
silience to adversarial attacks necessitates the smoothing of its local minimum geometry shown in
Definition 1.

Definition 1 (Smooth Local Minimum Geometry). Local minimum geometry stands for the geomet-
ric characteristics of the loss landscape in the immediate vicinity of the converged solution. For a
model with parameters θ and loss function L, a smoother local minimum geometry at the converged
solution θ∗ implies that for a given perturbation ε, where ∥ε∥ ≤ δ for some small δ > 0, the change
in loss ∆L = L(θ∗ + ε) − L(θ∗) is statistically smaller compared to models with less smooth
geometries.

Dataset pruning aims to construct a coreset S = {(xm, ym)}Mm=1, where S ⊂ D. The objective
of dataset pruning is to identify a coreset such that a model trained on S closely approximates the
performance of a model trained on the full dataset D. This can be formulated as follows:

E(x,y)∼S,θS∼P(θS) [∇θSL(fθS (x), y)] ≈ E(x,y)∼D,θD∼P(θD) [∇θDL(fθD (x), y)] (1)
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(a) EL2N Loss Landscape
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(b) Forgetting Loss Landscape
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(c) Entropy Loss Landscape

Figure 2: We compare training ResNet-18 on the top 50% hardest (red lines), top 50% easiest (blue
lines), and a random 50% (black lines) of CIFAR-10 images. Local minimum geometry is visualized
based on (a) EL2N, (b) Forgetting, and (c) Entropy scores. The hardest images result in the least
smooth geometry. The figures follow the same setup as Li et al. (2018).

where ∇θ is the gradient operator with respect to the model parameters θ, L(·) is the loss function,
θS and θD are the parameters of the models trained on S and D respectively, fθS represents the
model trained on subset S, and fθD represents the model trained on the full dataset D, y is true label
to input x (He et al., 2023). The traditional coreset selection method prioritizes selecting subsets that
are difficult for the model to learn which are called “hard samples”. Hard samples are characterized
by producing larger gradients during training, leading to lower prediction confidence and requiring
more substantial weight updates (Paul et al., 2021).
Theorem 1 (Hard Samples and Local Minimum Geometry). Formally, we compare the local mini-
mum geometry at the converged solution θ∗ for hard samples xh and randomly sampled data points
xr. For a given perturbation ε, where ∥ε∥ ≤ δ for some small δ > 0, hard samples are more likely
to induce less smooth geometries, which can be characterized as:

Exh
[∆Lh] > η · Exr [∆Lr] (2)

where ∆Lh = |L(θ∗ + ε, xh) − L(θ∗, xh)| and ∆Lr = |L(θ∗ + ε, xr) − L(θ∗, xr)|. η > 1 is a
threshold constant. The expectation Exh

is taken over the distribution of hard samples, while Exr is
taken over the randomly selected data distribution.

Theorem 1 shows that achieving a smooth local minimum geometry with a coreset requires more
than traditional pruning methods. Focusing only on the hardest samples leads to non-smooth local
minimum geometry as demonstrated in Fig. 2a, Fig. 2b and Fig. 2c.

However, a smoother local minimum geometry does not always improve performance. Excessive
smoothness can significantly degrade model capacity, resulting in poor generalization (Mei et al.,
2022), so we need to find a balance point between smooth local minimum geometry and the capacity
of the model. We can now formulate our goal to find a coreset as follows:

min
S⊂D

E(x,y)∼S

[
max
∥δ∥≤ϵ

∆L(fθS + δ, x, y)

]
s.t. |C(fθS )− C(fθD )| ≤ ηc

where ηc stands for a threshold value and C(fθ) stands for model capacity, this formulation indicates
the goal of selecting a coreset that minimizes the impact of perturbations on the local minimum
geometry while maintaining a model capacity similar to that of the model trained on the full dataset.

Our algorithm can be summarized as follows: 1) We apply a learnable frequency pruning technique
to preprocess the original dataset, targeting the inherent frequency characteristics of each sample for
static, sample-level optimization (see Section 3.2). 2) We evaluate the importance of each sample
by capturing the training dynamics and using this information to calculate a “Joint-Entropy” score
for each sample (see Section 3.3).
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Figure 3: (a) shows the local minimum geometry of ResNet-18 trained on the CIFAR-10 dataset with
different frequency pruning levels: 90% (blue), 80% (green), 50% (black), and no pruning (red).
The results demonstrate that frequency pruning smooths the local minimum geometry. Figures (b)
and (c) display the training loss (blue) and generation error (red) over 500 epochs for a ResNet-18
model trained on a CIFAR-10 coreset and the model was attacked by AutoAttack. In (b), the model
is trained on the top 50% of images with the highest JE scores, while in (c) the bottom 50% with the
lowest JE scores.

3.2 ENERGY-BASED LEARNABLE FREQUENCY COMPONENT SELECTION

The motivation of our algorithm is that (Zhang & Zhu, 2019) demonstrates adversarial training can
improve the model’s adversarial robustness by shifting the model’s focus from texture and color
to shape and silhouette features. Frequency pruning removes textural details while preserving key
shape features, helping the model focus more on shape, as shown in Fig. 1. We proposed that
a carefully designed frequency pruning algorithm could potentially achieve comparable results to
adversarial training, offering a resource-conservation approach to improve model robustness. Our
approach adaptively selects important frequency components for each image, aiming to both smooth
the model’s local minimum geometry and maintain the model’s capacity.
Lemma 1 (Relationship between Frequency Alterations and local minimum geometry Smoothness).
Let x ∈ X denote an original image and x̃ ∈ X denote the image after frequency pruning. Let fθ
be the model with parameters θ. Set H(·) as the entropy function and fθ(x̃) represents the logits
output by the model for input x̃. Let pi be the predicted probability for class i, computed from the
logits using the softmax function:

pi =
exp(fθ(x̃)i)∑K
j=1 exp(fθ(x̃)j)

(3)

where fθ(x̃)i is the i-th element of the logits vector fθ(x̃), and K is the number of classes. The
entropy of the model’s output is then defined as:

H(fθ(x̃)) = −
K∑
i=1

pi log pi (4)

We propose that the relationship between the entropy and the gradient norm can be expressed as:

H(fθ(x̃)) ∝ ∥∇θL(fθ(x), y)∥ (5)

where H(fθ(x̃)) is the entropy of the model’s output probabilities and ∥∇θL(fθ(x), y)∥ is the norm
of the gradient of the loss with respect to the model parameters θ. Based on this relationship we
suggest that lower entropy of the output probabilities leads to a smoother local minimum geometry.

According to Lemma 1, we know that we can smooth the local minimum geometry by reducing
the entropy of the model’s logits (referred to as “logit entropy”). We introduce Frequency-Selective
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Excitation Network (FSE-Net), a trainable model for dynamic frequency component selection. The
decision-making process has three steps: 1) Compression: Global average pooling captures fre-
quency information. 2) Motivation: A fully connected layer learns nonlinear relationships and gen-
erates importance weights. 3) Recalibration: Sigmoid-normalized weights are multiplied with the
original frequency components to assign importance scores to each component. (The network struc-
ture is provided in Appendix E) and its loss function is:

L(θ) = H(fθ(xf ))− λ

 1

|D|
∑

(x̃,y)∈D

1argmax fθ(xf )=y

 (6)

We aim to minimize the following loss function using gradient descent, where xf is the image after
frequency pruning (applying FSE-Net to prune frequency components and then convert back to the
spatial domain), and λ is a hyperparameter. Additionally, the second term of the loss function is
crucial to preserve the main features of the image to maintain the model’s capacity. Let X̂i,j be
the (i, j)-th coefficient of the Discrete Cosine Transform (DCT) of an image X . We use DCT,
not DFT/FFT because DCT coefficients are real, while DFT coefficients include imaginary parts,
making them harder for FSE-Net to learn (Xu et al., 2020).

Theorem 2 (Biased Learning in DCT Frequency Selection). Let F = f1, . . . , fn be the set of
frequency components obtained after applying Discrete Cosine Transform (DCT) to an input signal,
with corresponding energies E = E1, . . . , En. Let FH and FL denote the sets of high-energy and
low-energy components respectively. Given a selection process S : F → [0, 1]n and a loss function
L(S(F)). Considering the inherent energy disparity in DCT coefficients where:

min
fi∈FH ,fj∈FL

Ei

Ej
≫ 1 (7)

The learning process is prone to exhibit a significant bias towards high-energy frequency compo-
nents, ultimately resulting in limited representational capacity and reduced effectiveness in captur-
ing the full spectrum of frequency information.

Theorem 2 shows that models tend to focus on high-energy frequency features and ignore low-
energy ones, resulting in suboptimal outcomes (Allen-Zhu et al., 2019). To mitigate this issue, we
fix the selection of high-energy components and focus our learnable selection process on low-energy
frequency components. Define the energy of each frequency component as E(i, j) = |X̂i,j |2. Let
E(1) ≥ E(2) ≥ · · · ≥ E(n) be the sorted energies of all frequency components, Let E(k) represent
the energy of the k-th highest frequency component. The frequency component selection mechanism
of FSE-Net, denoted as Fsel, can be modeled as:

Fsel(Xc, Ec; θF , k, ktotal) =

{
1 if Ec ≥ E(k) or (Ec < E(k) and g(Xc; θF ) ≥ sktotal−k)

0 otherwise
(8)

where θF represents the set of learnable parameters from FSE-Net, Ec denotes the energy of the fre-
quency component Xc, and g(Xc; θF ) is implemented as a neural network with sigmoid activation
in the final layer. It takes Xc as input and outputs an importance score. sktotal−k is the (ktotal−k)-th
highest score among the components with Ec < E(k) where ktotal is the total number of frequency
components we want to preserve.

The selection process directly chooses the top k frequency components with the highest energy, then
selects the top ktotal − k components with the highest importance scores from the remaining lower-
energy components. The frequency component Xc is retained when Fsel(Xc, Ec; θF , k, ktotal) = 1.
This mechanism ensures that FSE-Net can thoroughly learn both high-energy and low-frequency
features. The number of k chosen through ablation experiments in Fig. 4c. Fig. 3a illustrates how
our frequency pruning algorithm smooths the model’s local minimum geometry, leading to enhanced
adversarial robustness. The algorithm flow is shown in Appendix A.
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3.3 ENHANCE CORESET ROBUSTNESS BY REWARD SCORE

In this section, we propose a novel coreset selection algorithm that assesses the impact of images on
shaping the decision surface throughout training. Drawing from reinforcement learning (Kaelbling
et al., 1996) and Markov decision processes (Hordijk & Kallenberg, 1979), we assign each image a
reward based on its actions during training and calculate the accumulated reward as its final score.

To track the temporal dynamics of model parameter changes, we define H(fθ(x̃)))t as the logit
entropy at epoch t. Our method aims to balance exploration in the early stages and exploitation in
the later stages of training, as suggested by (Petzka & Sminchisescu, 2021). In the early training
stage, we encourage the model to explore a larger parameter space to capture more features and
escape local minima (Soloperto et al., 2023). Later in training, we aim to reduce gradient variance,
signaling stable optimization toward the global minimum. To quantify this balance, we introduce a
local variance function V (t, w):

V (t, w) = Var
({

H(fθ(x̃))i | max(0, t− w

2
) ≤ i < min(T, t+

w

2
+ 1)

})
(9)

Where T is the total number of epochs and w is the window size for local variance calculation.

To encourage initial exploration followed by convergence, we design a reward function
R(t, V (t, w)):

R(t, V (t, w)) =

{
−V (t, w) if t < τT

+V (t, w) if t ≥ τT
(10)

Where τ ∈ (0, 1) determines the transition point between the exploration and exploitation phases.
This reward function assigns different rewards to images based on their behavior at each stage,
ensuring alignment with our optimization goals. In the early stage (t < τT ), negative rewards
for low variance encourage the exploration of a larger parameter space. In the later stage (t ≥
τT ), positive rewards for high variance promote convergence to smooth local minima, we set τ =
2/3 through ablation experiments. The overall optimization objective is captured by a cumulative
discounted reward S:

S =

T−1∑
t=0

γtR(t, V (t, w)) + γTRT (11)

Here, the image with a lower score is considered more important, γ ∈ (0, 1) is a discount factor pri-
oritizing more recent rewards, we set γ = 0.99 similar to the setting in many tasks in Reinforcement
Learning (Yoshida et al., 2013). R(t, V (t, w)) represents the reward at time step t. The term RT is
a terminal reward defined as:

RT = Var({H(fθ(x̃))0, H(fθ(x̃))1, ...,H(fθ(x̃))T−1}) (12)

The terminal reward RT is based on the model’s entropy variance across all epochs, accounting for
the stability of the entire training optimization. We ranked the CIFAR-10 images by their scores in
ascending order. Fig.3c shows the model trained on the top 50% of images (those with the lowest
scores), while Fig.3b shows the model trained on the bottom 50% of images (those with the highest
scores). We observe two key differences between these models: 1) Generation Loss Behavior: In
the model trained on the top 50% of images, the generation loss exhibits greater fluctuations before
epoch 350 (about two-thirds of total epochs), followed by a smoother trajectory. This suggests
an initial exploration of a larger parameter space before converging to a smooth global minimum.
2) Final Performance: The model trained on the top 50% achieves a lower final generation loss
compared to the other model. This indicates better overall performance and improved generalization
capability. To enhance coreset diversity, we employ a stratified sampling algorithm as proposed by
Zheng et al. (2022). This method involves ranking images based on their scores in ascending order,
followed by the application of stratified sampling to select the final coreset.
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Pruning Algorithm Attack
Prune Rate

CIFAR-10 CIFAR-100

90% 80% 70% 60% 50% 90% 80% 70% 60% 50%

Random
AA 15.27 21.55 20.85 22.33 21.53 12.27 16.55 16.88 17.03 17.57

PGD-20 16.27 20.55 19.85 21.33 20.53 11.97 15.59 16.78 17.23 16.57
C&W 16.39 20.45 18.83 20.53 20.77 12.97 14.59 15.78 16.23 14.57

Entropy
AA 21.65 21.27 30.92 23.28 20.74 11.56 14.33 17.98 15.33 17.71

PGD-20 20.68 20.87 20.92 21.28 22.74 12.16 14.03 16.18 15.13 17.01
C&W 20.44 20.78 20.21 21.17 22.83 12.44 12.35 17.18 16.37 17.51

CCSFEM
AA 37.86 40.98 41.02 40.18 41.28 15.11 16.85 18.05 18.19 17.92

PGD-20 38.97 40.11 39.99 39.76 41.91 13.98 15.92 13.09 14.08 17.91
C&W 38.99 40.33 40.02 39.96 42.05 12.17 16.15 17.91 18.60 17.27

Ours-JE
AA 40.16 44.32 42.97 41.38 40.65 16.15 17.12 21.37 20.09 18.65

PGD-20 39.16 39.32 41.07 40.88 42.95 14.76 16.88 17.01 16.89 18.05
C&W 39.06 39.72 41.37 40.96 43.05 12.99 17.32 18.07 19.88 18.95

Ours-LF
AA 55.7 58.19 53.46 51.14 51.04 20.99 24.94 25.07 25.31 23.41

PGD-20 56.18 56.05 51.9 50.61 50.07 23.72 21.64 21.36 24.39 23.75
C&W 56.42 56.21 54.14 54.38 55.32 22.37 24.23 25.48 26.39 28.69

Ours-JELF
AA 46.54 47.35 48.89 49.72 48.18 20.39 20.53 22.47 22.94 22.85

PGD-20 47.24 48.59 49.64 50.25 50.01 18.09 19.71 20.98 21.85 22.48
C&W 47.61 48.12 49.01 48.19 48.66 18.99 20.01 21.54 22.03 21.99

Table 1: We assess CIFAR-10 and CIFAR-100 performance under various adversarial attacks and
dataset pruning ratios. On CIFAR-10, accuracy is 43.86% for AutoAttack, 42.83% for PGD-20, and
43.65% for C&W. On CIFAR-100, accuracy is 18.51% under AutoAttack, 18.59% under PGD-20,
and 19.57% under C&W. “CCSFEM” uses forgetting, EL2N, and AUM scores with CCS to compute
the mean accuracy. “Ours-JE” applies the joint-entropy score with CCS sampling, “Ours-LF” uses
Learnable Frequency Pruning on the total dataset, and “Ours-JELF” combines Learnable Frequency
Pruning (preserving 50% of frequency components) with joint-entropy based coreset selection using
CCS sampling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use three datasets: CIFAR-10, CIFAR-100, and ImageNet-1K. All attacks were constrained by
the ℓ∞ norm with a perturbation budget of ϵ = 8

255 . For CIFAR-10 and CIFAR-100, we trained
ResNet-18 models from scratch. We applied three different attack algorithms on the entire test
sets: AutoAttack (AA) (Croce & Hein, 2020), PGD-20 (Madry, 2017), and C&W attack (Carlini
& Wagner, 2017). For PGD-20, we used 20 iterations with a step size of ϵ = 2

255 . For C&W, we
used 100 iterations with a learning rate of 0.01. AutoAttack was applied with its default settings.
For ImageNet-1K, we trained a ResNet-34 model and evaluated the robustness using AutoAttack on
1000 randomly selected points from the validation set. All datasets were normalized before feeding
into the models, and standard data augmentations were applied.

4.2 BASELINES

Since our work tackles a less-studied problem of high adversarial-robustness dataset pruning with
no known clear solution, it is important to set an adequate baseline for comparison. We compare our
approaches with six original dataset pruning algorithms: 1) Random: Uniform random sampling.
2) Entropy: Selects highest entropy examples. 3) Forgetting: Chooses examples with highest
Forgetting scores. 4) EL2N: Selects based on highest EL2N scores. 5) AUM: Chooses examples
with highest Area Under the Margin scores. 6) CCS: Uses stratified sampling across importance
scores. These algorithms test the result without adversarial attack, providing a comparison baseline
for our work.

In this experiment, we apply various pruning methods. For “Random”, “Entropy”, “CCSEFM”,
“Ours-JE”, and “Ours-JELF”, we employ sample-wise pruning, where the pruning rate represents
the percentage of images removed from the dataset. For “Ours-LF”, we use frequency-domain
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pruning, where the pruning rate indicates the percentage of frequency components removed from
each image.

Original Adversarial Training Sample Adversarial Training pre-trained Adversarial Training
50% coreset Original Dataset 50% coreset Original Dataset 50% coreset Original Dataset

TDFAT Acc:45.41 Acc: 48.66 Acc:30.05 Acc: 38.72 Acc:35.41 Acc: 40.66
Time: 59.58s Time: 119.69s Time: 18.53s Time: 39.69s Time: 10.15s Time: 17.66s

CURC Acc: 44.92 Acc: 52.48 Acc: 31.21 Acc: 36.05 Acc:38.92 Acc:41.48
Time:74.12s Time:149.52s Time:17.87s Time:38.52s Time:9.31s Time: 17.92s

RATTE Acc: 45.98 Acc: 48.2 Acc: 34.05 Acc: 37.15 Acc:36.23 Acc:41.03
Time: 64.33s Time: 131.35s Time: 17.23s Time: 38.35s Time: 10.21s Time: 17.85s

FATSC Acc: 17.21 Acc: 23.68 Acc: 20.82 Acc: 23.77 Acc:12.22 Acc:16.93
Time: 59.82s Time: 122.71s Time: 17.12s Time: 39.71s Time: 9.32s Time:18.87s

ours-LF Acc:48.18 Acc:51.04 Acc:50.07 Acc:51.04 Acc:50.01 Acc:48.18
Time:9.51s Time:17.64s Time:9.51s Time:17.64s Time:9.69s Time:17.64s

Table 2: We compare recent adversarial training (AT) algorithms with our Learnable Frequency
Pruning method. “Time” refers to the average time required per epoch to train ResNet-18 on the
same batch size and GPU. Adversarial robustness was evaluated against AutoAttack using both the
full CIFAR-10 training set and a 50% coreset selected by the “Ours-JE” strategy. “Original Ad-
versarial Training” applies standard AT on the entire dataset, while “Sample Adversarial Training”
applies adversarial perturbations to a random subset of images each epoch, leaving the rest un-
changed to match our method’s training cost. Finally, “ pre-trained Adversarial Training” uses a
pre-trained ResNet-18 model with high adversarial robustness to generate adversarial perturbations
without further optimization during training, ensuring no additional Time. We train datasets of the
same size for an equal number of epochs under identical conditions.

4.3 PERFORMANCE COMPARISON

Table ?? shows the performance of our algorithm on CIFAR-10 and CIFAR-100 under different
adversarial attacks. We observe the following key findings: 1) The state-of-the-art (SOTA) dataset
pruning algorithm demonstrates low accuracy under adversarial attacks (e.g., only 41.28% with a
50% pruning ratio under AutoAttack in CIFAR-10). 2) Without frequency pruning, the “ours-JE”
approach significantly outperforms SOTA algorithms across all pruning ratios and adversarial at-
tacks. 3) On the original dataset, “Ours-LF” achieves better performance than without pruning,
indicating that it not only enhances robustness against adversarial attacks but also reduces storage
costs. 4) On pruned datasets, “Ours-JELF” outperforms SOTA pruning methods, highlighting the
ability of our approach to improve the adversarial robustness of the model in dataset pruning scenar-
ios. Table 3 presents similar findings, demonstrating the effectiveness of our algorithm in enhancing
adversarial robustness on the model trained on the ImageNet-1K dataset.

4.4 ABLATION EXPERIMENT

To demonstrate the effectiveness of our Learnable Frequency Pruning algorithm in enhancing model
robustness, we compared it with recent adversarial training methods: TDFAT (Tong et al., 2024),
RATTE (Jin et al., 2023), FATSC (Zhao et al., 2023), and CURC (Gowda et al., 2024). These
methods, which involve iterative optimization, significantly increase training costs. To ensure a fair
comparison, we adjusted the number of perturbed images to match the training time of these methods
with our algorithm, and we also used a pre-trained ResNet-18 model with high adversarial robust-
ness to generate perturbations without further optimization. As shown in Table 2, while adversarial
training on the full dataset provides better performance, it greatly increases training costs. When the
cost is reduced to match our algorithm, the performance of adversarial training drops significantly,
making it less suitable for resource-limited environments. We also evaluated the impact of different
values of τT (Fig. 4a), λ (Fig. 4b), and k (Fig. 4c), along with various coreset selection strategies
combined with Learnable Frequency Pruning (Fig. 5). The best results from our experiments are
presented.
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Figure 4: (a) evaluates the time threshold τT from Section 3.3, adjusting τT to select coresets and
prune 50% of frequency components, let PGD-20 as an adversarial attack. Setting the threshold to
(2/3)T yields the best result. (b) examines the effect of adjusting λ in Section 3.2, which controls the
loss function in Learnable Frequency Pruning. Using “Ours-JE” for coreset selection and pruning
50% of frequency components, PGD-20 as an adversarial attack, we find that λ = 0.1 yields the best
result. (c) compares different values of k from Section 3.2 using “Ours-JE” for coreset selection and
pruning 50% of frequency components, let PGD-20 as an adversarial attack. The best performance
is achieved with k = 100, using PGD-20 as the adversarial attack.

Pruning Ratio

90% 80% 70% 60% 50%

Random 15.87 20.51 20.15 18.39 18.58
Entropy 16.87 18.06 21.02 18.11 17.28
CCSFEM 15.86 16.96 18.02 17.11 19.28
ours-JE 19.16 21.51 22.17 21.18 20.96
ours-LF 25.6 27.19 26.46 27.44 27.14
ours-JELF 23.54 26.15 25.03 25.22 24.95

Table 3: Performance on Imagenet-1K using differ-
ent pruning strategies. The original dataset accuracy is
20.16% under AutoAttack. “Ours-JE” refers to core-
set selection using the joint-entropy score with CCS
sample strategy, while “Ours-LF” applies Learnable
Frequency Pruning. “Ours-JELF” combines Learnable
Frequency Pruning (preserving 50% of frequency com-
ponents) with coreset selection using the joint-entropy
score with the CCS sample strategy.
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CCS-Forgetting
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Figure 5: Compares different coreset
selection algorithms on CIFAR-10, fol-
lowed by Learnable Frequency Pruning
with a 50% pruning ratio, PGD-20 as an
adversarial attack. “Ours-JE” achieves
the best performance.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

We introduce Adversarial Attack Robust Dataset Pruning, a method that enhances model robustness
against adversarial attacks on pruned datasets. Our approach improves robustness in two ways: First,
we use a Learnable Frequency Pruning algorithm to smooth the model’s local minimum geometry,
increasing robustness without additional training costs and reducing storage needs. Second, we
propose a “joint-entropy” data importance score for better coreset selection. Experiments show our
method surpasses existing pruning strategies in adversarial robustness across various datasets and
attacks. This work is the first to address adversarial robustness in dataset pruning.

We recognize several limitations and areas for future work. First, our algorithm does not consider
the link between image distribution and adversarial robustness, which could be explored further.
Improving the sampling method beyond the traditional CCS algorithm may enhance results. Ad-
ditionally, while we focus on adversarial robustness in dataset pruning, the research could extend
to areas like Dataset Distillation and Neural Network pruning to improve the model’s adversarial
robustness.
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A ALGORITHM FLOW

Algorithm 1 shows the algorithm flow of FSE-Net, Figure 6 shows the whole process of how to
combine FSE-Net and the coreset selection to get the final coreset.

Algorithm 1 Frequency Selection with FSE-Net for Improved Robustness

Require: Images X , Labels Y , Model fθ, Parameters k, ktotal, Learning rate η, Hyperparameter λ,
The (i, j)-th DCT coefficient X̂i,j .

1: Xf ← DCT(X )
2: Calculate energy for each frequency component: E(i, j) = |X̂i,j |2
3: Sort frequency components based on energy E and select top-k components
4: Initialize FSE-Net parameters θ(0)F for selecting remaining frequency components
5: for t = 0 to T − 1 do
6: Define Fsel(Xc, Ec; θ

(t)
F , k, ktotal):

7: if Ec ≥ E(k) or (Ec < E(k) and g(Xc; θ
(t)
F ) ≥ sktotal−k):

8: return 1
9: else:

10: return 0
11: x̃← IDCT(Xf ⊙ Fsel)
12: Compute logits: fθ(x̃)← fθ(x̃)

13: Compute probabilities: pi =
exp(fθ(x̃)i)∑K

j=1 exp(fθ(x̃)j)

14: Compute entropy: H(fθ(x̃)) = −
∑K

i=1 pi log pi

15: L(θ
(t)
F )← H(fθ(x̃))− λ

(
1

|D|
∑

(x̃,y)∈D 1argmax fθ(x̃)=y

)
16: θ

(t+1)
F ← θ

(t)
F − η∇θFL(θ

(t)
F )

17: end for
18: Define final selection function F final

sel using θ
(T )
F

19: X̃ ← {IDCT(Xf ⊙ F final
sel )|Xf ∈ DCT(X )}

20: Return X̃ ,Y

Input Images Frequency Domain Transform Learnable Component Selection

Inverse TransformJE Score CalculationScore-based Ranking

CCS Sampling Final Coreset

Figure 6: Flowchart of the coreset generation process.
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B EXPERIMENT SETTING

In this section, we will show the details of our algorithm. For the Learnable frequency pruning
experiments, we set (Pruning ratio, Total Number of preserved frequency components, top k, λ) to
show the setting details. For CIFAR-10 and dataset, our settings are (90%, 102, 30, 0.05) (80%, 204,
50, 0.01) (70%, 308, 80, 0.08) (60%, 410, 100, 0.1) (50%, 512, 100, 0.1) (30%, 717, 100, 0.05),
the Learnable pruning ratio will be optimized for 300 epochs and we set the batch size 128. We
trained We use ResNet18 (He et al., 2016) as the network architecture for CIFAR-10. We train the
whole dataset with 200 epochs with a 256 batch size. We use the SGD optimizer (0.9 momentum
and 0.0002 weight decay) with a 0.1 initial learning rate. For the ”ours-JE” algorithm, we calculated
the logit entropy every five epochs, we set the time threshold as (2/3)T and the size of the window
to 3, we used the setting of CCS same as the Original paper’s setting (Zheng et al., 2022).

For CIFAR-100, our settings are (90%, 102, 30, 0.1) (80%, 204, 50, 0.08) (70%, 308, 80, 0.13)
(60%, 410, 100, 0.15) (50%, 512, 100, 0.13) (30%, 717, 100, 0.09), the Learnable pruning ratio will
be optimized for 300 epochs and we set the batch size 128. We trained We use ResNet18 (He et al.,
2016) as the network architecture for CIFAR-10. We train the whole dataset with 200 epochs with
a 256 batch size. We use the SGD optimizer (0.9 momentum and 0.0002 weight decay) with a 0.1
initial learning rate. For the ”ours-JE” algorithm, we calculated the logit entropy every five epochs,
we set the time threshold as (2/3)T and the size of the window to 3, we used the setting of CCS
same as the Original paper’s setting (Zheng et al., 2022).

For Imagenet-1K, because the input images are sized 224 * 224 *3, For every channel, our settings
are (90%, 5018, 600, 0.05) (80%, 10036, 1000, 0.02) (70%, 15053, 1000, 0.05) (60%, 20071, 1000
,0.1) (50%, 25090, 1000, 0.1) (30%, 35123, 1000,0.1) We use ResNet34 to train the dataset and
We use the SGD optimizer (0.9 momentum and 0.0001 weight decay) with a 0.1 initial learning
rate. The learning rate scheduler is the cosine annealing learning rate scheduler. For the ”ours-JE”
algorithm, we calculated the logit entropy every two epochs, we set the time threshold as (2/3)T
and the size of the window to 3, and we used the setting of CCS same as the Original paper’s setting
(Zheng et al., 2022)

C PROOF

C.1 PROOF OF THEROM 1

Theorem 1 (Hard Samples and Local Minimum Geometry). Formally, for a model with parameters
θ and loss function L, we compare the local minimum geometry at the converged solution θ∗ for
hard samples xh and randomly sampled data points xr. For a given perturbation ε, where ∥ε∥ ≤ δ
for some small δ > 0, hard samples are more likely to induce less smooth geometries, which can be
characterized as:

Exh
[∆Lh] > η · Exr [∆Lr] (13)

where ∆Lh = |L(θ∗ + ε, xh) − L(θ∗, xh)|, ∆Lr = |L(θ∗ + ε, xr) − L(θ∗, xr)|, and η > 1 is a
threshold constant. The expectation Exh

is taken over the distribution of hard samples, while Exr is
taken over the random sample data distribution.

Proof:

We begin by defining hard samples. For a hard sample xh and a randomly sampled data point xr,
we assume:

∥∇w∗L(w∗, xh)∥
Exr

[∥∇w∗L(w∗, xr)∥]
≥ γ (14)

where γ > 1 is a threshold constant and w∗ represents the converged model parameters.

To establish the relationship between gradients and the local geometry of the loss surface, we in-
troduce the concept of directional derivatives. For any sample x and unit vector u, the directional
derivative of the loss function is defined as:
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DuL(w∗, x) = lim
t→0

L(w∗ + tu, x)− L(w∗, x)

t
(15)

This directional derivative is related to the gradient through the following equation:

DuL(w∗, x) = ∇w∗L(w∗, x) · u (16)

Now, consider a small perturbation ε applied to the parameters w∗. We define a unit vector u = ε
∥ε∥

in the direction of this perturbation. Using this, we can approximate the change in loss due to the
perturbation:

∆L ≈ |∇w∗L(w∗, x) · ε| = ∥ε∥|DuL(w∗, x)| (17)

Applying the expectation operator to both sides:

Ex[∆L] ≈ ∥ε∥Ex[|DuL(w∗, x)|] (18)
≤ ∥ε∥Ex[∥∇w∗L(w∗, x)∥] (by Cauchy-Schwarz inequality) (19)

From our initial assumption, we can state:

Exh
[∥∇w∗L(w∗, xh)∥] ≥ γ · Exr [∥∇w∗L(w∗, xr)∥] (20)

Combining these results, we obtain:

Exh
[∆Lh] ≈ ∥ε∥Exh

[∥∇w∗L(w∗, xh)∥] (21)
≥ ∥ε∥γ · Exr [∥∇w∗L(w∗, xr)∥] (22)
≈ γ · Exr

[∆Lr] (23)

Since γ > 1, we can choose η = γ − ϵ for some small ϵ > 0, ensuring η > 1. This allows us to
conclude:

Exh
[∆Lh] > η · Exr

[∆Lr] (24)

This result holds for sufficiently small ∥ε∥, where our approximations remain accurate.

Thus, we have demonstrated that for sufficiently small perturbations, the expected change in loss for
hard samples is more than η times the expected change for randomly sampled data points, where
η > 1. This indicates that hard samples induce less smooth geometries in the vicinity of local
minima, consistent with the statement of the theorem.

This proof highlights the unique characteristics of hard samples relative to the entire data distribution
(as represented by random sampling), rather than just in comparison to easy samples. It emphasizes
the importance of hard samples in the model training process and their impact on the geometry of
local minima.

C.2 PROOF OF LEMMA 1

Lemma 1 (Relationship between Frequency Alterations and local minimum geometry Smoothness).
Let x ∈ X denote an original image and x̃ ∈ X denote the image after frequency pruning. Let fθ
be the model with parameters θ. Set H(·) as the entropy function and fθ(x̃) represents the logits
output by the model for input x̃. Let pi be the predicted probability for class i, computed from the
logits using the softmax function:
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pi =
exp(fθ(x̃)i)∑K
j=1 exp(fθ(x̃)j)

(25)

where fθ(x̃)i is the i-th element of the logits vector fθ(x̃), and K is the number of classes. The
entropy of the model’s output is then defined as:

H(fθ(x̃)) = −
K∑
i=1

pi log pi (26)

We propose that the relationship between the entropy and the gradient norm can be expressed as:

H(fθ(x̃)) ∝ ∥∇θL(fθ(x), y)∥ (27)

where H(fθ(x̃)) is the entropy of the model’s output probabilities and ∥∇θL(fθ(x), y)∥ is the norm
of the gradient of the loss with respect to the model parameters θ. Based on this relationship we
suggest that lower entropy of the output probabilities leads to a smoother local minimum geometry.

Proof:

To prove Lemma 1, we begin with the cross-entropy loss function:

L(fθ(x), y) = −
K∑
i=1

yi log pi (28)

where yi is the one-hot encoded true label, and pi is the predicted probability for class i.

The gradient of this loss with respect to the logits fθ(x̃)j is:

∂L
∂fθ(x̃)j

= pj − yj (29)

Now, consider the entropy of the model’s output:

H(fθ(x̃)) = −
K∑
i=1

pi log pi (30)

We observe that when the model is very confident (low entropy), one pi will be close to 1 and the
rest close to 0. In this case, both the entropy and the gradient norm will be small. Conversely, when
the model is uncertain (high entropy), the pi values will be more evenly distributed, resulting in
larger values for both the entropy and the gradient norm.

To illustrate this more formally, let’s consider the extreme cases:

1. Maximum certainty: One pi = 1, rest are 0

• Entropy: H = 0

• Gradient: ∥∇fθ(x̃)L∥ = 0 (assuming correct prediction)

2. Maximum uncertainty: All pi = 1
K

• Entropy: H = logK (maximum)

• Gradient: ∥∇fθ(x̃)L∥ =
√∑K

j=1(
1
K − yj)2 (maximum)

These extreme cases demonstrate that as entropy increases, so does the gradient norm.

Furthermore, we can express the gradient norm as:
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∥∇fθ(x̃)L∥
2 =

K∑
j=1

(pj − yj)
2 =

K∑
j=1

p2j − 2py + 1 (31)

Note that
∑K

j=1 p
2
j is minimized when all pj are equal (high entropy) and maximized when one pj

is 1 and the rest are 0 (low entropy), which aligns with the behavior of the entropy.

Finally, by the chain rule,∇θL = ∂fθ(x̃)
∂θ ∇fθ(x̃)L. Assuming ∂fθ(x̃)

∂θ is bounded, we can conclude:

H(fθ(x̃)) ∝ ∥∇θL(fθ(x), y)∥ (32)

This establishes a proportional relationship between the entropy of the model’s output and the norm
of the gradient of the loss with respect to the model parameters. Given that the gradient norm
represents the rate of change of the loss function at a specific point, a higher gradient norm indicates
a steeper loss function surface. Consequently, the geometry of the local minimum becomes more
precipitous.

Conversely, lower entropy of the output probabilities leads to smaller gradient norms, resulting in a
smoother local minimum geometry. This proves the relationship proposed in Lemma 1.

C.3 PROOF OF THEOREM 2

Theorem 2 (Biased Learning in DCT Frequency Selection). Let F = f1, . . . , fn be the set of
frequency components obtained after applying Discrete Cosine Transform (DCT) to an input signal,
with corresponding energies E = E1, . . . , En. Let FH and FL denote the sets of high-energy and
low-energy components respectively. Given a selection process S : F → [0, 1]n and a loss function
L(S(F)), and considering the inherent energy disparity in DCT coefficients where:

min
fi∈FH ,fj∈FL

Ei

Ej
≫ 1 (33)

The learning process is prone to exhibit a significant bias towards high-energy frequency compo-
nents, ultimately resulting in limited representational capacity and reduced effectiveness in captur-
ing the full spectrum of frequency information.

Proof:

We will prove this theorem by demonstrating that the gradient of the loss function with respect to the
selection process is biased towards high-energy components, leading to their preferential selection.

Let S(F) = [s1, ..., sn] where si ∈ [0, 1] represents the selection probability for frequency compo-
nent fi. The loss function L(S(F)) can be expressed as a function of these selection probabilities.

Consider the gradient of the loss function with respect to the selection probabilities:

∇SL =

[
∂L

∂s1
, ...,

∂L

∂sn

]
(34)

Now, let’s examine the impact of selecting a frequency component on the reconstructed signal. The
contribution of a frequency component fi to the reconstructed signal is proportional to its energy
Ei. Therefore, we can express the partial derivative of the loss with respect to si as:

∂L

∂si
∝ Ei · gi (35)

where gi is some function of the frequency component that depends on the specific loss function
used.

Given the energy disparity stated in the theorem:
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min
fi∈FH ,fj∈FL

Ei

Ej
≫ 1 (36)

We can conclude that for any pair of components fi ∈ FH and fj ∈ FL:∣∣∣∣ ∂L∂si
∣∣∣∣≫ ∣∣∣∣ ∂L∂sj

∣∣∣∣ (37)

This inequality holds true unless the function gi heavily penalizes high-energy components, which
is unlikely in most practical loss functions designed for signal reconstruction or classification tasks.

As a result, during the optimization process, the selection probabilities for high-energy components
will be updated more aggressively compared to low-energy components:

∆si ≫ ∆sj , ∀fi ∈ FH , fj ∈ FL (38)

Over multiple iterations, this leads to:

si ≫ sj , ∀fi ∈ FH , fj ∈ FL (39)

This bias in the selection process results in the preferential selection of high-energy components,
while low-energy components are largely ignored or underrepresented.

The consequence of this biased selection is twofold:

1. Limited Representational Capacity: By predominantly selecting high-energy components, the
model fails to capture the fine details and nuances often represented by low-energy components.
This limits the model’s ability to represent complex patterns in the data.

2. Reduced Effectiveness: The model’s focus on high-energy components may lead to overfit-
ting dominant features while missing subtle but potentially important information in the low-energy
spectrum. This can result in reduced generalization capability and overall effectiveness of the model.

Therefore, we have proven that the learning process in DCT frequency selection, given the inher-
ent energy disparity in DCT coefficients, is prone to exhibit a significant bias towards high-energy
frequency components. This bias ultimately results in limited representational capacity and reduced
effectiveness in capturing the full spectrum of frequency information.

C.4 ADVERSARIAL ROBUSTNESS AND LOSS LANDSCAPE

C.4.1 ADVERSARIAL ROBUSTNESS MEASURE

To rigorously establish the relationship between a smooth (flat) loss landscape and higher adversar-
ial robustness, we begin by defining the adversarial robustness measure in terms of the ”Expected
Distortion Rate (EDR)” of the loss function with respect to input perturbations. By connecting
this metric to the gradient norm of the loss and demonstrating how smoother loss landscapes yield
smaller gradient norms, we can show that a flatter landscape reduces such distortion. This ulti-
mately supports the conclusion that smoother loss landscapes enhance adversarial robustness by
limiting variations in loss under input perturbations.

To measure adversarial robustness, we define the Expected Distortion Rate (EDR). This measure
captures the sensitivity of the model’s loss function to adversarial perturbations in the input space.
The mathematical definition is:

EDRθ = Ex∼X [|L(θ, x+ δx, y)− L(θ, x, y)|] ,

where:

• X is a compact subset of Rn, representing the input space.

• θ denotes the model parameters.
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• L(·) is the loss function of the model.
• y is the ground truth label corresponding to the input x.
• The perturbation from different kinds of adversarial attacks can be measured in L1, L2, or
L∞ norms. We specifically use the L2 norm, where ∥δx∥2 ≤ ϵ for ϵ > 0.

A smaller EDRθ indicates better robustness, as it implies that adversarial attacks induce minimal
changes in the loss.

C.4.2 HOW TO DESCRIBE THE SMOOTHNESS OF THE LOSS LANDSCAPE

Based on the loss landscape visualization depicted in Figure 2a, 2b and 2c, we observe that the
geometric characteristics of the loss landscape are predominantly determined by two fundamental
components. The smoothness of the loss landscape is a critical factor in determining the robustness
of a model. This section explains how to characterize smoothness using first-order (gradient) and
second-order (Hessian) properties.

The local behavior of the loss function L(θ, x, y) around a point x0 can be described as follows:

1. The gradient∇xL(θ, x0, y0) determines the direction and rate of steepest ascent in the loss
surface.

2. The Hessian∇2
xL(θ, x0, y0) quantifies the curvature of the loss surface, describing how the

gradient changes in different directions.

To achieve a smoother loss landscape, it is important to minimize both the magnitude of the gradient
and the spectral norm of the Hessian matrix. Prior research has proposed diverse metrics to charac-
terize the smoothness of loss landscapes and their correlation with model generalization, including
Volume ε-Flatness (Hochreiter & Schmidhuber, 1997), Hessian-based measures (Dinh et al., 2017)
and gradient-based analysis (Zhang et al., 2023). Our work adopts a more comprehensive approach
by jointly analyzing both gradient and curvature characteristics across extended regions of the loss
surface. This broader perspective is particularly vital for understanding adversarial robustness, as
adversarial perturbations can push model predictions far from local minima, where the geometric
properties of non-minimal regions become crucial determinants of model behavior.

To formally quantify smoothness, we use the concept of Lipschitz smoothness. A function f : Rn →
R is β-smooth if:

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2, ∀x, y ∈ Rn,

where β is the Lipschitz constant of the gradient. For the loss function L(θ, x, y), this implies that
the spectral norm of the Hessian is bounded as:

∥∇2
xL(θ, x0, y0)∥2 ≤ β.

C.4.3 RELATING THE EDR TO THE GRADIENT AND HESSIAN

We now connect the smoothness of the loss landscape to the adversarial robustness measure (EDR).
The analysis is divided into two cases based on the magnitude of the perturbation δx.

When δx is small, we can approximate the loss function using the second-order Taylor expansion:

L(θ, x+ δx, y) = L(θ, x, y) +∇xL(θ, x, y)
⊤δx +

1

2
δ⊤x ∇2

xL(θ, x+ ξδx, y)δx +O(∥δx∥3),

where ξ ∈ [0, 1], L(θ, x, y) is the original loss value, representing the base value before perturbation.
The term ∇xL(θ, x, y)

⊤δx is the first-order approximation, which is the inner product of the gra-
dient and the perturbation. The term 1

2δ
⊤
x ∇2

xL(θ, x+ ξδx, y)δx is the second-order approximation,
capturing the local curvature of the loss landscape. Finally, O(∥δx∥3) contains all terms of order 3
and higher.

|L(θ, x+ δx, y)− L(θ, x, y)| ≤ ∥∇xL(θ, x, y)∥q∥δx∥p +
β

2
∥δx∥22.

Taking the expectation over the data distribution x ∼ X , the EDR can be bounded as:

EDRθ ≤ Ex∼X

[
∥∇xL(θ, x, y)∥q∥δx∥p +

β

2
∥δx∥22

]
.
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where ∥ · ∥p and ∥ · ∥q are dual norms satisfying 1
p + 1

q = 1. In this proof, we choose p = q = 2,
which makes the analysis of the gradient and Hessian easier (from the Cauchy-Schwarz inequality).

This bound characterizes how the expected distortion depends on both the average gradient magni-
tude and the curvature of the loss landscape across the data distribution.

For larger perturbations where higher-order terms are non-negligible, we use integral approximation:

L(θ, x+ δx, y) ≈ L(θ, x, y) +

∫ x+δx

x

∇xL(θ, z, y)dz.

Applying the Mean Value Inequality for vector-valued functions:

|L(θ, x+ δx, y)− L(θ, x, y)| ≤ sup
z∈conv(x,x+δx)

∥∇xL(θ, z, y)∥q∥δx∥p,

where conv(x, x + δx) represents the convex hull between x and x + δx. Thus, the EDR can be
bounded as:

EDRθ ≤ Ex∼X

[
sup

z∈B(x,ϵ)

∥∇xL(θ, z, y)∥q∥δx∥p

]
.

C.4.4 FINAL BOUND

From both Taylor expansion and integral approximation analyses, we can establish the relationship
between loss landscape smoothness and model adversarial robustness:

The Expected Distortion Rate (EDR) can be bounded as:

EDRθ ≤ Ex∼X

[
∥∇xL(θ, x, y)∥q∥δx∥p +

β

2
∥δx∥22

]
,

where the first-order effect is controlled by the gradient magnitude, and the second-order effect is
governed by the Hessian bound β. Smaller gradients and a smaller β result in tighter bounds on loss
changes.

We can define:

T = Ex∼X

[
∥∇xL(θ, x, y)∥q∥δx∥p +

β

2
∥δx∥22

]
.

Alternatively, the EDR can also be bounded as:

EDRθ ≤ Ex∼X

[
sup

z∈B(x,ϵ)

∥∇xL(θ, z, y)∥q∥δx∥p

]
,

which we can define as:

I = Ex∼X

[
sup

z∈B(x,ϵ)

∥∇xL(θ, z, y)∥q∥δx∥p

]
.

This indicates that loss changes are controlled by the gradient magnitude, with smoother regions
(characterized by smaller gradients) leading to smaller distortions. Robustness is inherently depen-
dent on the smoothness properties of the function.

Finally, given a perturbation magnitude ϵ = ∥δx∥ and a threshold ϵ0, we can establish a comprehen-
sive bound:

EDRθ ≤
{
min{T, I}, if ϵ ≤ ϵ0,

I, if ϵ > ϵ0.
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Here, ϵ0 marks the critical threshold where Taylor expansion remains valid. For small perturbations
(ϵ ≤ ϵ0), both bounds hold, and we can leverage the tighter one. For large perturbations (ϵ > ϵ0),
only the integral approximation bound remains valid.

D MEMORY AND TIME LOSS

Our learnable frequency pruning algorithm offers the additional advantage of reducing dataset stor-
age costs. By pruning certain frequency components while preserving others, storing the coreset
in the frequency domain significantly lowers storage requirements, as many frequency components
are removed. If we want to use this method, we will need an extra time cost because we need to
transform the image from the frequency domain to spatial domain. Now we will discuss the time
cost of IDCT processing.

D.1 COMPUTATIONAL COMPLEXITY

The computational complexity of 2D-DCT is O(N2 logN) and the computational complexity of
2D-IDCT is also O(N2 logN), N stands for the width and height of the image.

D.2 COMPUTATIONAL COST

In this section we will show the time cost detail of our algorithm, Table 4(a) shows the time cost of
Using DCT on CIFAR-10, CIFAR-100, and Imagenet-1K. We can find that the time cost of GPU is
far less than using CPU, and the time cost of CPU is also really small which shows that on some
edge devices which do not have GPU to run deep learning algorithms, we can run DCT using CPU.
The reason why the imagenet-1K time cost is far higher than CIFAR-10 and CIFAR-100 is that the
imagenet-1K trainset is really large containing 1281167 images and every image size of 224 × 224.
The storage of imagenet-1k is about 138GB which is hard to deploy on a single-edge device, so
in practical using we always choose to separate this dataset into many different subsets and deploy
them on different devices. In this project, we use the GPU model NVIDIA A100-SXM4-40GB

Table 4(b) highlights the time cost comparison for applying IDCT on various datasets using CPU
and GPU implementations. The data clearly demonstrates that our algorithm achieves remarkable
efficiency in performing IDCT, with minimal time consumption across all tested datasets. This
observation underscores the computational feasibility of our approach, as the IDCT step does not
introduce significant overhead to the overall pruning process.

The frequency pruning can reduce the storage of the dataset. By applying DCT and leveraging
sparsity in the frequency domain, we store only significant non-zero coefficients using an optimized
sparse storage format. Each non-zero coefficient requires 6 bytes: 4 bytes for the float32 value and
2 bytes for packed indices. Since the image size is 32×32, we can efficiently encode both row and
column indices using 5 bits each, combining them into a single 16-bit integer.

Time of using CPU Time of using GPU

CIFAR-10 15.57s 3.43s
CIFAR-100 15.43s 3.49s
Imagenet-1k 5381.93s 548.06s

(a) DCT Time Comparison

Time of using CPU Time of using GPU

CIFAR-10 15.13s 0.95s
CIFAR-100 15.09s 1.55s
Imagenet-1k 673.38s 164.74s

(b) IDCT Time Comparison

Table 4: Time comparison for different datasets using DCT and IDCT on CPU and GPU.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In the practical experiments, we only care about the time cost of IDCT if we store the frequency
components, we need to use it to process the dataset. By applying DCT and leveraging sparsity
in the frequency domain, we store only significant non-zero coefficients using an optimized sparse
storage format. Each non-zero coefficient requires 6 bytes: 4 bytes for the float32 value and 2 bytes
for packed indices. Since the image size is 32×32, we can efficiently encode both row and column
indices using 5 bits each, combining them into a single 16-bit integer. The results of the practical
storage compression ratio on CIFAR-10 are shown in Table 5.

Pruning Ratio Elements per Image Storage per Image (bytes) Total Storage Percentage of Original

50% 1,536 9,216 220 MB 75%
70% 922 5,532 132 MB 45%
80% 614 3,684 88 MB 30%
90% 307 1,842 44 MB 15%

Table 5: Storage requirements for different pruning ratios on CIFAR-10.

E DETAILED STRUCTURE OF FSE-NET

Model Structure:
SEBlock(

(avg pool): AdaptiveAvgPool2d(output size=1)
(fc): Sequential(

(0): Linear(in features=N, out features=N/16, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in features=N/16, out features=N, bias=False)
(3): Sigmoid()

)
)

Figure 7: Detailed architecture of FSE-Net, where N represents the input channel dimension.

Figure 7 presents the architectural overview of our proposed FSE-Net. The network incorporates
a feature selective enhancement mechanism that adaptively models channel-wise feature interde-
pendencies. The selective attention mechanism helps the network focus on the most discriminative
features, thereby improving the overall performance of the model.

F TESTING ON DIFFERENT ADVERSARIAL ATTACKS

Tables 6 and 7 provide a comprehensive comparison of our algorithm’s performance against various
types of adversarial attacks, specifically l2-AA (adversarial attacks constrained in the l2 norm),
l0-AA (attacks constrained in the l0 norm, targeting sparsity), and s-AA (structured adversarial
attacks). These tables highlight the robustness of our approach by demonstrating superior accuracy
and resilience under these diverse adversarial scenarios. Table 8 demonstrates the effectiveness of
our algorithm against adaptive attack.
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l2-AA l1-AA

p 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Random
18.87
±0.12

23.51
±0.32

23.15
±0.27

21.39
±0.20

21.58
±0.29

15.87
±0.62

20.51
±0.75

20.15
±0.68

18.39
±0.55

18.58
±0.83

Entropy
24.65
±0.45

24.27
±0.31

33.92
±0.18

26.28
±0.41

23.74
±0.25

21.65
±0.78

21.27
±0.67

30.92
±0.85

23.28
±0.72

20.74
±0.63

CSFEM
40.86
±0.34

44.98
±0.38

44.02
±0.21

43.18
±0.44

44.28
±0.26

37.86
±0.83

40.98
±0.58

41.02
±0.79

40.18
±0.87

41.28
±0.68

ours-JE
43.16
±0.19

47.32
±0.29

46.97
±0.14

44.38
±0.27

43.65
±0.43

40.16
±0.72

44.32
±0.84

42.97
±0.61

41.38
±0.76

40.65
±0.89

ours-LF
58.70
±0.23

62.19
±0.46

56.46
±0.36

55.14
±0.31

54.04
±0.20

55.70
±0.86

58.19
±0.65

53.46
±0.77

51.14
±0.59

51.04
±0.81

ours-JELF
49.83
±0.22

50.32
±0.41

51.19
±0.25

52.72
±0.37

51.21
±0.24

46.83
±0.69

47.32
±0.88

48.19
±0.66

49.72
±0.74

48.21
±0.57

Table 6: Performance of CIFAR-10 dataset on ResNet-18 under l2-AA (Croce & Hein, 2020) and
l1-AA (Croce & Hein, 2021) attacks. We run every experiment five times and report their mean and
standard deviation.

Method 90% 80% 70% 60% 50%

Random 7.87±0.62 9.51±0.75 9.15±0.68 7.39±0.55 7.58±0.83
Entropy 10.65±0.78 10.27±0.67 19.92±0.85 12.28±0.72 9.74±0.63
CSFEM 26.86±0.83 29.98±0.58 30.02±0.79 29.18±0.87 30.28±0.68
ours-JE 29.16±0.72 33.32±0.84 31.97±0.61 30.38±0.76 29.65±0.89
ours-LF 44.70±0.86 45.19±0.65 42.46±0.77 40.14±0.59 40.04±0.81
ours-JELF 35.83±0.69 36.32±0.88 37.19±0.66 38.72±0.74 37.21±0.57

Table 7: Performance of CIFAR-10 dataset on ResNet-18 under s-AA (Zhong et al., 2024), we run
every experiment five times and get their mean and standard deviation.

Method 90% 80% 70% 60% 50%

Random 13.97±0.62 18.61±0.75 18.25±0.68 16.49±0.55 16.68±0.83
Entropy 19.85±0.78 19.47±0.67 29.12±0.85 21.48±0.72 18.94±0.63
CSFEM 35.96±0.83 39.08±0.58 39.12±0.79 38.28±0.87 35.38±0.68
ours-JE 38.36±0.72 42.52±0.84 41.17±0.61 39.58±0.76 38.85±0.89
ours-LF 55.50±0.86 57.99±0.65 53.26±0.77 50.94±0.59 50.84±0.81
ours-JELF 46.63±0.69 47.12±0.88 47.99±0.66 49.52±0.74 48.01±0.57

Table 8: Performance of CIFAR-10 dataset on ResNet-18 under l1-APGD (Croce & Hein, 2021),
we run every experiment five times and get their mean and standard deviation.

G DETAILED EXPERIMENT RESULT OF OUR BASELINE EXPERIMENTS

Table 9 presents comprehensive experimental results, where each configuration was repeated five
times to ensure statistical reliability. We report both the mean accuracy and standard deviation
(shown as ±) to demonstrate the consistency and robustness of our method across multiple runs.
Tables 11a and 11b present ablation studies on two key hyperparameters: learning rate and number
of iterations, which guided our selection of optimal values for the proposed method. Table 10a,
Table 10b and Table 10c demonstrate the transferability of our method across different lightweight
architectures (ShuffleNet, MobileNet-v2, and EfficientNet-B0). Our LF-based approach maintains
consistent superior robustness on both networks against various attacks, showing strong generaliza-
tion capability across different model architectures compared to baseline methods.
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Pruning Algorithm Attack
Prune Rate

CIFAR-10 CIFAR-100

90% 80% 70% 60% 50% 90% 80% 70% 60% 50%

Random
AA 15.27±0.63 21.55±0.75 20.85±0.58 22.33±0.67 21.53±0.72 12.27±0.55 16.55±0.68 16.88±0.71 17.03±0.64 17.57±0.59

PGD-20 16.27±0.65 20.55±0.73 19.85±0.62 21.33±0.69 20.53±0.77 11.97±0.58 15.59±0.66 16.78±0.74 17.23±0.61 16.57±0.57
C&W 16.39±0.68 20.45±0.71 18.83±0.64 20.53±0.76 20.77±0.79 12.97±0.54 14.59±0.69 15.78±0.72 16.23±0.63 14.57±0.56

Entropy
AA 21.65±0.67 21.27±0.74 30.92±0.59 23.28±0.65 20.74±0.73 11.56±0.57 14.33±0.70 17.98±0.75 15.33±0.62 17.71±0.58

PGD-20 20.68±0.64 20.87±0.72 20.92±0.61 21.28±0.68 22.74±0.76 12.16±0.56 14.03±0.67 16.18±0.73 15.13±0.65 17.01±0.60
C&W 20.44±0.66 20.78±0.70 20.21±0.63 21.17±0.75 22.83±0.78 12.44±0.53 12.35±0.71 17.18±0.74 16.37±0.64 17.51±0.55

CCSFEM
AA 37.86±0.69 40.98±0.73 41.02±0.60 40.18±0.66 41.28±0.74 15.11±0.59 16.85±0.72 18.05±0.76 18.19±0.63 17.92±0.57

PGD-20 38.97±0.63 40.11±0.71 39.99±0.62 39.76±0.67 41.91±0.75 13.98±0.55 15.92±0.68 13.09±0.72 14.08±0.66 17.91±0.61
C&W 38.99±0.65 40.33±0.69 40.02±0.64 39.96±0.74 42.05±0.77 12.17±0.52 16.15±0.73 17.91±0.75 18.60±0.65 17.27±0.54

Ours-JE
AA 40.16±0.68 44.32±0.72 42.97±0.61 41.38±0.65 40.65±0.73 16.15±0.58 17.12±0.71 21.37±0.77 20.09±0.64 18.65±0.56

PGD-20 39.16±0.62 39.32±0.70 41.07±0.63 40.88±0.66 42.95±0.74 14.76±0.54 16.88±0.69 17.01±0.71 16.89±0.67 18.05±0.62
C&W 39.06±0.64 39.72±0.68 41.37±0.65 40.96±0.73 43.05±0.76 12.99±0.51 17.32±0.72 18.07±0.76 19.88±0.66 18.95±0.53

Ours-LF
AA 55.7±0.67 58.19±0.71 53.46±0.62 51.14±0.64 51.04±0.72 20.99±0.57 24.94±0.70 25.07±0.78 25.31±0.65 23.41±0.55

PGD-20 56.18±0.61 56.05±0.69 51.9±0.64 50.61±0.65 50.07±0.73 23.72±0.53 21.64±0.70 21.36±0.70 24.39±0.68 23.75±0.63
C&W 56.42±0.63 56.21±0.67 54.14±0.66 54.38±0.72 55.32±0.75 22.37±0.50 24.23±0.71 25.48±0.77 26.39±0.67 28.69±0.52

Ours-JELF
AA 46.54±0.66 47.35±0.70 48.89±0.63 49.72±0.63 48.18±0.71 20.39±0.56 20.53±0.69 22.47±0.79 22.94±0.66 22.85±0.54

PGD-20 47.24±0.60 48.59±0.68 49.64±0.65 50.25±0.64 50.01±0.72 18.09±0.52 19.71±0.71 20.98±0.69 21.85±0.69 22.48±0.64
C&W 47.61±0.62 48.12±0.66 49.01±0.67 48.19±0.71 48.66±0.74 18.99±0.49 20.01±0.72 21.54±0.78 22.03±0.68 21.99±0.51

Table 9: We assess CIFAR-10 and CIFAR-100 performance under various adversarial attacks and
dataset pruning ratios. CCSFEM” uses forgetting, EL2N, and AUM scores with CCS to compute
the mean accuracy. Ours-JE” applies the joint-entropy score with CCS sampling, Ours-LF” uses
Learnable Frequency Pruning on the total dataset, and Ours-JELF” combines Learnable Frequency
Pruning (preserving 50% of frequency components) with joint-entropy based coreset selection using
CCS sampling, we run every experiment five times and get their mean and standard deviation.
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Pruning Algorithm Attack Pruning Rate (%)

90 80 70 60 50

Random
AA 11.27±0.45 17.55±0.33 16.85±0.42 18.33±0.36 17.53±0.41

PGD-20 12.27±0.44 16.55±0.35 15.85±0.38 17.33±0.43 16.53±0.42
C&W 12.39±0.36 16.45±0.47 14.83±0.35 16.53±0.39 16.77±0.38

Entropy
AA 17.65±0.41 17.27±0.37 26.92±0.49 19.28±0.38 16.74±0.45

PGD-20 16.68±0.43 16.87±0.39 16.92±0.42 17.28±0.51 18.74±0.37
C&W 16.44±0.38 16.78±0.52 16.21±0.35 17.17±0.46 18.83±0.44

CCSFEM
AA 33.86±0.43 36.98±0.38 37.02±0.50 36.18±0.39 37.28±0.47

PGD-20 34.97±0.34 36.11±0.55 35.99±0.43 35.76±0.44 37.91±0.36
C&W 34.99±0.51 36.33±0.44 36.02±0.39 35.96±0.53 38.05±0.37

Ours-JE
AA 36.16±0.44 40.32±0.35 38.97±0.56 37.38±0.42 36.65±0.39

PGD-20 35.16±0.37 35.32±0.54 37.07±0.41 36.88±0.34 38.95±0.50
C&W 35.06±0.55 35.72±0.43 37.37±0.38 36.96±0.47 39.05±0.39

Ours-LF
AA 51.70±0.39 54.19±0.53 49.46±0.44 47.14±0.36 47.04±0.54

PGD-20 52.18±0.52 52.05±0.41 47.90±0.45 46.61±0.56 46.07±0.35
C&W 52.42±0.45 52.21±0.50 50.14±0.33 50.38±0.43 51.32±0.55

Ours-JELF
AA 42.54±0.49 43.35±0.36 44.89±0.54 45.72±0.37 44.18±0.47

PGD-20 43.24±0.38 44.59±0.51 45.64±0.42 46.25±0.55 46.01±0.34
C&W 43.61±0.46 44.12±0.36 45.01±0.53 44.19±0.43 44.66±0.56

(a) ShuffleNet

Pruning Algorithm Attack Pruning Rate (%)

90 80 70 60 50

Random
AA 13.77±0.41 19.85±0.36 19.15±0.42 20.83±0.37 19.93±0.44

PGD-20 14.77±0.45 18.85±0.34 18.15±0.38 19.83±0.43 18.93±0.43
C&W 14.89±0.35 18.75±0.48 17.13±0.37 18.93±0.38 19.17±0.37

Entropy
AA 20.15±0.42 19.77±0.37 29.42±0.50 21.78±0.40 19.24±0.46

PGD-20 19.18±0.44 19.37±0.38 19.42±0.43 19.78±0.52 21.24±0.36
C&W 18.94±0.40 19.28±0.53 18.71±0.34 19.67±0.47 21.33±0.43

CCSFEM
AA 36.36±0.44 39.48±0.37 39.52±0.51 38.68±0.38 39.78±0.48

PGD-20 37.47±0.33 38.61±0.56 38.49±0.42 38.26±0.45 40.41±0.35
C&W 37.49±0.52 38.83±0.43 38.52±0.38 38.46±0.54 40.55±0.38

Ours-JE
AA 38.66±0.45 42.82±0.34 41.47±0.57 39.88±0.43 39.15±0.38

PGD-20 37.66±0.36 37.82±0.55 39.57±0.42 39.38±0.33 41.45±0.51
C&W 37.56±0.56 38.22±0.42 39.87±0.37 39.46±0.48 41.55±0.38

Ours-LF
AA 54.20±0.38 56.69±0.54 51.96±0.43 49.64±0.35 49.54±0.55

PGD-20 54.68±0.53 54.55±0.40 50.40±0.46 49.11±0.57 48.57±0.34
C&W 54.92±0.44 54.71±0.51 52.64±0.32 52.88±0.44 53.82±0.56

Ours-JELF
AA 45.04±0.50 45.85±0.37 47.39±0.55 48.22±0.36 46.68±0.48

PGD-20 45.74±0.37 47.09±0.52 48.14±0.43 48.75±0.56 48.51±0.33
C&W 46.11±0.47 46.62±0.35 47.51±0.54 46.69±0.42 47.16±0.57

(b) MobileNet-v2

Pruning Algorithm Attack Pruning Rate (%)

90 80 70 60 50

Random
AA 14.89±0.43 21.23±0.35 20.45±0.44 21.98±0.38 21.03±0.42

PGD-20 15.77±0.46 20.05±0.37 19.35±0.40 20.83±0.45 19.98±0.44
C&W 15.89±0.38 19.95±0.45 17.93±0.37 19.98±0.41 20.27±0.40

Entropy
AA 21.15±0.42 20.77±0.39 30.42±0.47 22.78±0.40 20.24±0.43

PGD-20 20.18±0.45 20.37±0.41 20.42±0.44 20.78±0.49 22.24±0.39
C&W 19.94±0.40 20.28±0.50 19.71±0.37 20.67±0.44 22.33±0.42

CCSFEM
AA 37.36±0.45 40.48±0.40 40.52±0.48 39.68±0.41 40.78±0.45

PGD-20 38.47±0.36 39.05±0.53 39.49±0.45 39.26±0.46 41.41±0.38
C&W 38.49±0.49 39.83±0.46 39.52±0.41 39.46±0.51 41.55±0.39

Ours-JE
AA 39.66±0.46 43.82±0.37 42.47±0.54 40.88±0.44 40.15±0.41

PGD-20 38.66±0.39 38.82±0.52 41.07±0.43 40.38±0.36 42.45±0.48
C&W 38.56±0.53 39.22±0.45 40.87±0.40 40.46±0.45 42.55±0.41

Ours-LF
AA 55.20±0.41 57.69±0.51 52.96±0.46 50.64±0.38 50.54±0.52

PGD-20 55.68±0.50 55.55±0.43 51.40±0.47 50.11±0.54 49.57±0.37
C&W 55.92±0.47 55.71±0.48 53.64±0.35 53.88±0.45 54.82±0.53

Ours-JELF
AA 46.04±0.47 46.89±0.38 48.39±0.52 49.22±0.39 47.68±0.45

PGD-20 46.74±0.40 48.09±0.49 49.14±0.44 49.75±0.53 49.51±0.36
C&W 47.11±0.44 47.62±0.38 48.51±0.51 47.69±0.51 48.16±0.43

(c) EfficientNet-B0

Table 10: Performance comparison of different pruning algorithms under various attacks on CIFAR-
10 with different network architectures. Each experiment is repeated five times to obtain the mean
and standard deviation.
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Learning Rate 0.1 0.05 0.01 0.005 0.001 0.0001

Accuracy (%) 48.18 47.11 47.09 46.88 46.75 47.08

(a) Learning Rate vs. Accuracy

Iterations 40000 50000 30000 45000 15000 20000

Accuracy (%) 48.18 47.02 46.99 47.18 46.15 47.11

(b) Iterations vs. Accuracy

Table 11: Ablation study on hyper-parameters when using ”Ours-JELF” under Autoattack and prun-
ing ratio 50% on CIFAR-10.

H VISUALLIZATION OF OUR CORESET SELECTION

As illustrated in Figure 8, two key observations emerge: 1) The visual fidelity remains remarkably
preserved even after 50% frequency component pruning, and their differences are hard to check
in visualization, demonstrating the effectiveness of our frequency pruning strategy in maintaining
essential image characteristics. 2) Images selected for the coreset exhibit notably distinct structural
features compared to their non-selected counterparts.

Figure 9 illustrates that while the exact loss landscapes vary across 5 independent runs, the bold lines
are averages, light-colored lines are for other cases, the relative smoothness characteristics between
different methods remain consistent, validating the reliability of our comparative analysis.

(a) Original images selected into coreset when
pruning ratio = 90%.

(b) Original images not be selected into coreset
when pruning ratio = 90%.

(c) Images with 50% frequency pruning ratio se-
lected into coreset when pruning ratio = 90%.

(d) Images with 50% frequency pruning ratio not
be selected into coreset when pruning ratio = 90%.

Figure 8: Visuallization of CIFAR-10 trainset.
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(a) Entropy Loss Landscape.
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(b) Forgetting Loss Landscape.

Figure 9: Plot the line with 5 runs, the lighter color indicates the result in five parts, and the darker
line indicates the average value.
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I ADDITIONAL EXPERIMENT RESULTS ON ADVERSARIAL ROBUSTNESS

Table 12a, Table 12b and Table 12c shows more results when the model was attacked by adversarial
samples, we can find that our algorithms have a better performance on improve the adversarial
robustness of the model compare with traditional dataset pruning algorithms.

Pruning Algorithms (Attack) Pruning Ratio

95% 90% 80% 70% 60% 50% 30%

Random (AA) 11.59 12.27 16.55 16.88 17.03 17.57 16.66
Entropy (AA) 10.50 11.56 14.33 17.98 15.33 17.71 17.81

CCSFEM (AA) 11.01 15.11 16.85 18.05 18.19 17.92 16.17
ours-JE (AA) 12.92 16.15 17.12 21.37 20.09 18.65 17.99
ours-LF (AA) 13.37 20.99 24.94 25.07 25.31 23.41 23.89

ours-JELF (AA) 14.10 20.39 20.53 22.47 22.94 22.85 22.15

(a) CIFAR-100 results.

Pruning Algorithms (Attack) Pruning Ratio

95% 90% 80% 70% 60% 50% 30%

Random (AA) 18.59 15.27 21.55 20.85 22.33 21.53 19.66
Entropy (AA) 18.50 21.65 21.27 30.92 23.28 20.74 21.83

CCSFEM (AA) 20.82 37.86 40.98 41.02 40.18 41.28 41.12
ours-JE (AA) 22.92 40.16 44.32 42.97 41.38 40.65 41.70
ours-LF (AA) 40.70 55.70 58.19 53.46 51.14 51.04 51.37

ours-JELF (AA) 37.10 46.54 47.35 48.89 49.72 48.18 47.46

(b) CIFAR-10 results.

Pruning Algorithms (Attack) Pruning Ratio

95% 90% 80% 70% 60% 50% 30%

Random (AA) 10.59 15.87 20.51 20.15 18.39 18.58 19.46
Entropy (AA) 11.82 16.87 18.06 21.02 18.11 17.28 20.72

CCSFEM (AA) 12.82 15.86 16.96 18.02 17.11 19.28 19.72
ours-JE (AA) 14.92 19.16 21.51 22.17 21.18 20.96 21.78
ours-LF (AA) 23.50 25.60 27.19 26.46 27.44 27.14 26.31

ours-JELF (AA) 20.10 23.54 26.15 25.03 25.22 24.95 24.89

(c) ImageNet-1K results.

Table 12: Comparison of pruning algorithms under different adversarial attacks for (a) CIFAR-
100, (b) CIFAR-10, and (c) ImageNet-1K datasets. “Ours-JE” refers to coreset selection using the
joint-entropy score with CCS sample strategy, “Ours-LF” applies Learnable Frequency Pruning, and
“Ours-JELF” combines Learnable Frequency Pruning (preserving 50% of frequency components)
with coreset selection using the joint-entropy score and CCS sample strategy. Each subfigure illus-
trates the robustness of the methods across different pruning ratios.

J ADDITIONAL EXPERIMENT RESULTS ON CLEAN DATASET

Table 13a and Table 13b show that our algorithms are better than SOTA dataset pruning algorithms
which show that our algorithms also have a better performance on a clean dataset which shows
that our dataset pruning also have potential to improve the performance of dataset pruning without
adversarial attack.
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Pruning Rate 30% 50% 70% 80% 90%

Random 94.33 93.4 90.94 87.98 79.04
Entropy 94.44 92.11 85.67 79.08 66.52
Forgetting 95.36 95.29 90.56 62.74 34.03
EL2N 95.44 94.61 87.48 70.32 22.33
AUM 95.07 95.26 91.36 57.84 28.06
CCSFEM 95.17 94.67 92.74 90.55 86.15
Ours-LF 95.35 94.67 94.33 93.21 89.82
Ours-JE 95.15 94.07 92.03 90.98 85.86
Ours-JELF 95.11 94.02 91.93 90.18 84.86
Ours-FEMLF 95.19 95.07 93.23 91.98 87.06

(a) Comparison on CIFAR-10 without adversarial attack. The accuracy on the whole dataset is
95.41%.

Pruning Rate 30% 50% 70% 80% 90%

Random 74.59 71.07 65.3 57.36 44.76
Entropy 72.26 63.26 50.49 41.83 28.96
Forgetting 76.91 68.6 38.06 24.23 15.93
EL2N 76.25 65.90 34.42 15.51 8.36
AUM 76.93 67.42 30.64 16.38 8.77
CCSFEM 76.33 73.44 68.30 63.01 54.39
Ours-LF 78.38 77.24 74.97 71.85 61.94
Ours-JE 75.15 72.07 68.03 60.98 53.86
Ours-JELF 75.11 74.02 68.13 59.19 54.16
Ours-FEMLF 77.33 75.45 67.30 63.81 55.39

(b) Comparison on CIFAR-100 without adversarial attack. The accuracy on the whole dataset is
78.21%.

Table 13: Comparison of different pruning methods across various pruning rates on CIFAR-10
and CIFAR-100 without adversarial attack. “Ours-LF” applies Learnable Frequency Pruning, and
“Ours-FEMLF” combines Learnable Frequency Pruning with CCSFEM coreset selection algorithm.
Accuracy on the full dataset is shown for reference in each subtable.

K ANOTHER EXPERIMENT RESULTS ON USING ADVERSARIAL TRAINING ON
PRUNED DATASET

In this section, we present additional results evaluating adversarial training on pruned datasets. Ta-
ble 14a and Table 14b compare different adversarial training methods under various attack scenar-
ios. In Table 14a, we include comparisons with AWP (Wu et al., 2020) and TRADES (Zhang et al.,
2019), showing that our algorithm outperforms these state-of-the-art methods in dataset pruning
scenarios. Table 14c further demonstrates that our method achieves superior results on CIFAR-100,
outperforming other adversarial training algorithms even on more complex datasets.
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Original Adversarial Training Sample Adversarial Training Pre-trained Adversarial Training
50% coreset Original Dataset 50% coreset Original Dataset 50% coreset Original Dataset

TDFAT Acc:46.41 Acc:56.05 Acc:26.05 Acc:39.72 Acc:36.32 Acc:41.66
Time:59.58s Time:119.69s Time:18.53s Time:39.69s Time:10.35s Time:17.66s

CURC Acc:45.92 Acc:54.02 Acc:30.21 Acc:35.15 Acc:39.88 Acc:42.18
Time:74.12s Time:149.52s Time:17.87s Time:38.52s Time:9.41s Time:18.71s

RATTE Acc:43.91 Acc:53.98 Acc:32.05 Acc:34.92 Acc:35.15 Acc:39.73
Time:64.33s Time:131.35s Time:17.23s Time:38.35s Time:10.01s Time:17.67s

AWP Acc:42.11 Acc:55.89 Acc:28.21 Acc:25.15 Acc:36.88 Acc:33.18
Time:78.12s Time:155.59s Time:18.89s Time:37.31s Time:9.61s Time:18.55s

TRADES (1/λ = 6) Acc:42.01 Acc:52.95 Acc:31.05 Acc:32.62 Acc:33.11 Acc:35.73
Time:62.13s Time:130.05s Time:17.18s Time:38.27s Time:10.05s Time:16.67s

FATSC Acc:14.99 Acc:34.21 Acc:22.82 Acc:25.61 Acc:15.21 Acc:19.79
Time:59.82s Time:122.71s Time:17.12s Time:39.71s Time:9.82s Time:18.98s

ours-LF Acc:50.01 Acc:55.32 Acc:50.01 Acc:50.07 Acc:50.01 Acc:50.07
Time:9.51s Time:17.64s Time:9.51s Time:17.64s Time:9.69s Time:17.66s

(a) Comparison under PGD-20 (On CIFAR-10).

Original Adversarial Training Sample Adversarial Training Pre-trained Adversarial Training
50% coreset Original Dataset 50% coreset Original Dataset 50% coreset Original Dataset

TDFAT Acc:44.41 Acc:48.33 Acc:27.05 Acc:40.52 Acc:35.82 Acc:42.96
Time:58.68s Time:118.59s Time:18.53s Time:38.69s Time:10.35s Time:17.59s

CURC Acc:45.92 Acc:52.48 Acc:32.32 Acc:36.28 Acc:37.98 Acc:43.23
Time:75.02s Time:148.62s Time:17.87s Time:38.52s Time:9.71s Time:18.85s

RATTE Acc:45.09 Acc:52.12 Acc:34.65 Acc:36.91 Acc:38.19 Acc:40.83
Time:65.13s Time:130.75s Time:17.23s Time:38.35s Time:10.01s Time:17.87s

FATSC Acc:19.79 Acc:28.19 Acc:26.87 Acc:27.68 Acc:20.51 Acc:22.77
Time:58.12s Time:121.88s Time:17.12s Time:39.71s Time:9.92s Time:17.96s

ours-LF Acc:48.66 Acc:50.07 Acc:48.66 Acc:50.07 Acc:48.66 Acc:50.07
Time:10.51s Time:17.14s Time:9.51s Time:17.64s Time:9.49s Time:17.87s

(b) Comparison under C&W (On CIFAR-10).

Original Adversarial Training Sample Adversarial Training Pre-trained Adversarial Training
50% coreset Original Dataset 50% coreset Original Dataset 50% coreset Original Dataset

TDFAT Acc:21.41 Acc:25.69 Acc:12.09 Acc:15.72 Acc:12.01 Acc:12.36
Time:59.58s Time:120.79s Time:18.53s Time:39.69s Time:10.15s Time:17.66s

CURC Acc:22.92 Acc:24.48 Acc:12.33 Acc:14.15 Acc:12.91 Acc:13.08
Time:74.32s Time:151.52s Time:17.87s Time:38.52s Time:9.31s Time:17.96s

RATTE Acc:21.97 Acc:22.59 Acc:13.05 Acc:15.15 Acc:14.33 Acc:15.03
Time:64.33s Time:131.35s Time:17.27s Time:38.39s Time:10.29s Time:17.88s

FATSC Acc:14.24 Acc:17.39 Acc:16.82 Acc:17.78 Acc:11.02 Acc:13.93
Time:59.89s Time:122.72s Time:17.18s Time:39.77s Time:9.35s Time:18.77s

ours-LF Acc:22.85 Acc:23.14 Acc:22.85 Acc:23.14 Acc:22.85 Acc:23.14
Time:9.53s Time:16.94s Time:9.88s Time:17.14s Time:9.19s Time:18.64s

(c) Comparison under AutoAttack (On CIFAR-100).

Table 14: We compare recent adversarial training algorithms with our Learnable Frequency Pruning
method under different adversarial attacks: PGD-20, C&W, and AutoAttack. “Original Adversarial
Training” applies standard AT on the entire dataset, while “Sample Adversarial Training” applies
adversarial perturbations to a random subset of images each epoch, leaving the rest unchanged to
match our method’s training cost. Finally, “ pre-trained Adversarial Training” uses a pre-trained
ResNet-18 model with high adversarial robustness to generate adversarial perturbations without
further optimization during training, ensuring no additional Time. We train datasets of the same size
for an equal number of epochs under identical conditions.

28


	Introduction
	Related Works
	Dataset Pruning
	Adversarial Attack

	Methodology
	Theory Analysis
	Energy-based Learnable Frequency component selection
	Enhance Coreset robustness by reward score 

	Experiments
	Experimental Setup
	Baselines
	PERFORMANCE COMPARISON
	ABLATION EXPERIMENT

	Conclusion, Limitation, and Future Work
	Algorithm Flow
	Experiment Setting
	Proof
	Proof of Therom 1
	Proof of Lemma 1
	Proof of Theorem 2
	Adversarial Robustness and loss landscape
	Adversarial Robustness Measure
	How to Describe the Smoothness of the Loss Landscape
	 Relating the EDR to the Gradient and Hessian
	Final Bound


	Memory and Time Loss
	computational complexity
	computational cost

	Detailed Structure of FSE-Net
	Testing on different adversarial attacks
	Detailed experiment result of our baseline experiments
	Visuallization of our coreset selection 
	Additional experiment results on Adversarial Robustness
	Additional experiment results on Clean dataset
	Another experiment results on using Adversarial Training on Pruned dataset

