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ABSTRACT

Dataset pruning, while effective for reducing training data size, often leads to
models vulnerable to adversarial attacks. This paper introduces a novel approach
to creating adversarially robust coresets. We first theoretically analyze how exist-
ing pruning methods result in non-smooth loss surfaces, increasing susceptibility
to attacks. To address this, we propose two key innovations: 1) a Frequency-
Selective Excitation Network (FSE-Net) that dynamically selects important fre-
quency components, smoothing the loss surface while reducing storage require-
ments, and 2) a “Joint-entropy” score for selecting stable and informative sam-
ples. Our method significantly outperforms state-of-the-art pruning algorithms
across various adversarial attacks and pruning ratios. On CIFAR-10, our approach
achieves up to 58.19% accuracy under AutoAttack with an 80% pruning ratio,
compared to 42.98% for previous methods. Moreover, our frequency pruning
technique improves robustness even on full datasets, demonstrating its potential

for enhancing model security while reducing computational costs.

1 INTRODUCTION

Dataset pruning aims to select a small subset of training data that can be used to efficiently train
future models while maintaining high accuracy. A common approach to coreset selection involves
assigning importance score to each example and selecting the most important ones (Ash et al.,2019)

Current state-of-the-art (SOTA) methods face challenges in
that the model trained on the coreset often has low adversarial
robustness. For instance, on CIFAR-10, a SOTA method CCS
(Zheng et al., 2022) achieves 86.81% accuracy with a 90%
pruning ratio, but this drops to just 37.86% when subjected to
AutoAttack (Croce & Hein, 2020). This significant accuracy
decline remains unexplained and poses a serious obstacle to
further advancements in dataset pruning.

Traditional algorithms enhance robustness through adversar-
ial training, which iteratively introduces perturbations to the
training set. This significantly increases training costs, mak-
ing it impractical for edge devices with limited resources (Bai
et al., 2021). These devices typically use pruned datasets for
training, rendering the overhead of adversarial training unsuit-
able.

We present theoretical and empirical insights into low adver-
sarial robustness in existing models and introduce a novel core-
set selection framework. Our analysis reveals how current
coreset selection methods lead to non-smooth local minimum
geometry (Definition [I), reducing adversarial robustness. We
propose two algorithms to address this problem: 1) We de-
signed a neural network to select important frequency compo-
nents. This improves adversarial robustness by reducing logit
entropy with extra benefits to reduce data storage which is

Figure 1: Sensitivity maps us-
ing SmoothGrad that highlight key
components (green points) influ-
encing model predictions. From
left to right: the original im-
age, the sensitivity map for the
model trained with a 50% fre-
quency pruning ratio, and the
model trained on the original
dataset. All the original figures
come from Imagenet-1K.

valuable for memory-limited edge devices and 2) for the training processing action analysis, we
introduced a data importance score based on entropy variation during training, helping to select a
stable coreset that maintains performance and further boosts adversarial robustness. In experiments,
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we can apply method 1) to the entire dataset or combine methods 1) and 2) to generate a coreset with
stronger adversarial robustness. All lemmas and theorems are rigorously proven in the Appendix..

The main contribution of our paper is: 1) To the best of our knowledge, this is the first work to
address adversarial robustness in the context of dataset pruning. 2) We proposed a learnable fre-
quency pruning algorithm that enhances adversarial robustness while reducing training data storage
requirements. 3) We introduced a data importance score, based on analyzing variations in model
logit entropy throughout the training process, to select a coreset that enhances the model’s robust-
ness against adversarial attacks. 4) We conducted extensive experiments across various datasets and
adversarial attacks to demonstrate the efficiency of our algorithm.

2 RELATED WORKS

2.1 DATASET PRUNING

Dataset Pruning, also known as Coreset Selection, aims to shrink the dataset scale by selecting
important samples according to some predefined criteria. Entropy (Coleman et al., [2019) explores
the uncertainty and decision boundary with the predicted outputs. GraNd/EL2N (Paul et al., [2021)
calculates the importance of a sample with its gradient magnitude. Forgetting (Toneva et al., [2018))
defines forgetting events as an accuracy drop at consecutive epochs, and hard samples with the
most forgetting events are important. AUM (Pleiss et al., 2020) identifies data by computing the
Area Under the Margin, the difference between the true label logits and the largest other logits. CCS
(Zheng et al .} |2022)) extends previous methods by pruning hard samples and using stratified sampling
to achieve good coverage of data distributions at a large pruning ratio. While these algorithms
propose various methods to enhance coreset performance, none consider the adversarial robustness
of the model when trained on the coreset selected by these methods.

2.2 ADVERSARIAL ATTACK

Adversarial attacks manipulate machine learning models by introducing subtle perturbations to input
data, causing incorrect predictions. FGSM (Goodfellow et al.,2014) generates adversarial examples
using the gradient of a model’s loss function. PGD (Madry, |2017) extends FGSM by iteratively
applying small perturbations. AutoAttack (Croce & Hein, 2020) combines multiple methods for
automatic evaluation without manual tuning. C&W attack (Madryl, |2017) finds the smallest pertur-
bation causing misclassification. Despite extensive research in deep learning, no existing algorithms
specifically evaluate the impact of adversarial attacks on models trained with pruned datasets.

3 METHODOLOGY

3.1 THEORY ANALYSIS

Drawing from the findings in |Stutz et al.|(2021) and |Liu et al.| (2020), which establish a correlation
between loss landscape flatness and adversarial robustness, we posit that enhancing a model’s re-
silience to adversarial attacks necessitates the smoothing of its local minimum geometry shown in
Definition[]l

Definition 1 (Smooth Local Minimum Geometry). Local minimum geometry stands for the geomet-
ric characteristics of the loss landscape in the immediate vicinity of the converged solution. For a
model with parameters 0 and loss function L, a smoother local minimum geometry at the converged
solution 0* implies that for a given perturbation €, where ||| < § for some small § > 0, the change
in loss AL = L(0* + €) — L(0%) is statistically smaller compared to models with less smooth
geometries.

Dataset pruning aims to construct a coreset S = {(zm, ym)}_,, where S C D. The objective

of dataset pruning is to identify a coreset such that a model trained on .S closely approximates the
performance of a model trained on the full dataset D. This can be formulated as follows:

E(z,y)~s,05~P0s) [VosL(fos (1), )] = Bz y)~p0p~P60) [Vopr L(fo, (), y)] (1)
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Figure 2: We compare training ResNet-18 on the top 50% hardest (red lines), top 50% easiest (blue
lines), and a random 50% (black lines) of CIFAR-10 images. Local minimum geometry is visualized
based on (a) EL2N, (b) Forgetting, and (c) Entropy scores. The hardest images result in the least
smooth geometry. The figures follow the same setup as|L1 et al. (2018).

where Vy is the gradient operator with respect to the model parameters 6, L£(-) is the loss function,
0s and Op are the parameters of the models trained on S and D respectively, fy, represents the
model trained on subset .S, and fy,, represents the model trained on the full dataset D, y is true label
to input = (He et al.,|2023)). The traditional coreset selection method prioritizes selecting subsets that
are difficult for the model to learn which are called “hard samples”. Hard samples are characterized
by producing larger gradients during training, leading to lower prediction confidence and requiring
more substantial weight updates (Paul et al., 2021).

Theorem 1 (Hard Samples and Local Minimum Geometry). Formally, we compare the local mini-
mum geometry at the converged solution 0* for hard samples xy, and randomly sampled data points
x,. For a given perturbation e, where ||e|| < § for some small 5 > 0, hard samples are more likely
to induce less smooth geometries, which can be characterized as:

E., [ALy] > n-E, [AL] (2)

where AL, = |L(0* + €, xp,) — L(0%,xp,)| and AL, = |L(0* + ¢,2,) — L(0%,2,)]. n> lisa
threshold constant. The expectation B, is taken over the distribution of hard samples, while E,,  is
taken over the randomly selected data distribution.

Theorem [I] shows that achieving a smooth local minimum geometry with a coreset requires more
than traditional pruning methods. Focusing only on the hardest samples leads to non-smooth local
minimum geometry as demonstrated in Fig. 2a] Fig.[2b|and Fig.

However, a smoother local minimum geometry does not always improve performance. Excessive
smoothness can significantly degrade model capacity, resulting in poor generalization (Mei et al.,
2022), so we need to find a balance point between smooth local minimum geometry and the capacity
of the model. We can now formulate our goal to find a coreset as follows:

in Epoe A d,,
min B y)~s \Hsl\?gxe L(fos +0,7,y)

S.t. |C(f93) - C(f9D)| < 7e

where 7, stands for a threshold value and C( fy) stands for model capacity, this formulation indicates
the goal of selecting a coreset that minimizes the impact of perturbations on the local minimum
geometry while maintaining a model capacity similar to that of the model trained on the full dataset.

Our algorithm can be summarized as follows: 1) We apply a learnable frequency pruning technique
to preprocess the original dataset, targeting the inherent frequency characteristics of each sample for
static, sample-level optimization (see Section 3.2). 2) We evaluate the importance of each sample
by capturing the training dynamics and using this information to calculate a “Joint-Entropy” score
for each sample (see Section 3.3).
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Figure 3: (a) shows the local minimum geometry of ResNet-18 trained on the CIFAR-10 dataset with
different frequency pruning levels: 90% (blue), 80% (green), 50% (black), and no pruning (red).
The results demonstrate that frequency pruning smooths the local minimum geometry. Figures (b)
and (c) display the training loss (blue) and generation error (red) over 500 epochs for a ResNet-18
model trained on a CIFAR-10 coreset and the model was attacked by AutoAttack. In (b), the model
is trained on the top 50% of images with the highest JE scores, while in (c) the bottom 50% with the
lowest JE scores.

3.2 ENERGY-BASED LEARNABLE FREQUENCY COMPONENT SELECTION

The motivation of our algorithm is that (Zhang & Zhul, 2019) demonstrates adversarial training can
improve the model’s adversarial robustness by shifting the model’s focus from texture and color
to shape and silhouette features. Frequency pruning removes textural details while preserving key
shape features, helping the model focus more on shape, as shown in Fig. [Tl We proposed that
a carefully designed frequency pruning algorithm could potentially achieve comparable results to
adversarial training, offering a resource-conservation approach to improve model robustness. Our
approach adaptively selects important frequency components for each image, aiming to both smooth
the model’s local minimum geometry and maintain the model’s capacity.

Lemma 1 (Relationship between Frequency Alterations and local minimum geometry Smoothness).
Let x € X denote an original image and & € X denote the image after frequency pruning. Let fo
be the model with parameters 0. Set H(-) as the entropy function and fy(Z) represents the logits
output by the model for input x. Let p; be the predicted probability for class i, computed from the
logits using the softmax function:

b= exp(fo(¥):) 3)

Yoy exp(fo(®);)

where fo(Z); is the i-th element of the logits vector fo(Z), and K is the number of classes. The
entropy of the model’s output is then defined as:

K
H(fo()) == pilogp; &)
i=1

We propose that the relationship between the entropy and the gradient norm can be expressed as:

H(fo(2)) o [VoL(fo(x), )l (5)

where H (fo(Z)) is the entropy of the model’s output probabilities and |V g L( fo(x), y)|| is the norm
of the gradient of the loss with respect to the model parameters 0. Based on this relationship we
suggest that lower entropy of the output probabilities leads to a smoother local minimum geometry.

According to Lemma [I, we know that we can smooth the local minimum geometry by reducing
the entropy of the model’s logits (referred to as “logit entropy”). We introduce Frequency-Selective
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Excitation Network (FSE-Net), a trainable model for dynamic frequency component selection. The
decision-making process has three steps: 1) Compression: Global average pooling captures fre-
quency information. 2) Motivation: A fully connected layer learns nonlinear relationships and gen-
erates importance weights. 3) Recalibration: Sigmoid-normalized weights are multiplied with the
original frequency components to assign importance scores to each component. (The network struc-
ture is provided in Appendix E) and its loss function is:

1
L(e) = H(f@(iﬂf)) —A ﬁ Z 1argmaxf9(9:f):y (6)
(z,y)€D

We aim to minimize the following loss function using gradient descent, where x is the image after
frequency pruning (applying FSE-Net to prune frequency components and then convert back to the
spatial domain), and X is a hyperparameter. Additionally, the second term of the loss function is
crucial to preserve the main features of the image to maintain the model’s capacity. Let )A(L j be
the (7, j)-th coefficient of the Discrete Cosine Transform (DCT) of an image X. We use DCT,
not DFT/FFT because DCT coefficients are real, while DFT coefficients include imaginary parts,
making them harder for FSE-Net to learn (Xu et al., [2020).

Theorem 2 (Biased Learning in DCT Frequency Selection). Let F = f1,..., f, be the set of
frequency components obtained after applying Discrete Cosine Transform (DCT) to an input signal,
with corresponding energies E = FE1, ..., E,. Let F and F1, denote the sets of high-energy and
low-energy components respectively. Given a selection process S : F — [0,1]" and a loss function
L(S(F)). Considering the inherent energy disparity in DCT coefficients where:

E;
min —>1 (7
fi€Fu,f;€FL Ej

The learning process is prone to exhibit a significant bias towards high-energy frequency compo-
nents, ultimately resulting in limited representational capacity and reduced effectiveness in captur-
ing the full spectrum of frequency information.

Theorem [2| shows that models tend to focus on high-energy frequency features and ignore low-
energy ones, resulting in suboptimal outcomes (Allen-Zhu et al.| 2019). To mitigate this issue, we
fix the selection of high-energy components and focus our learnable selection process on low-energy
frequency components. Define the energy of each frequency component as E(i,5) = | X;, % Let
EM > E® > ... > E) be the sorted energies of all frequency components, Let £(*) represent
the energy of the k-th highest frequency component. The frequency component selection mechanism
of FSE-Net, denoted as F.;, can be modeled as:

1 ifE.>E® or(E, < E® and g(X,;0F) > Sky0pur—k)
0 otherwise

FSEZ(XC7E0;9F)k7ktOtal) = { (8)

where 0 represents the set of learnable parameters from FSE-Net, E. denotes the energy of the fre-
quency component X, and g(X,;0r) is implemented as a neural network with sigmoid activation
in the final layer. It takes X as input and outputs an importance score. Sg,.,.,—k is the (kiotar — k)-th
highest score among the components with £, < E (k) where ktota 18 the total number of frequency
components we want to preserve.

The selection process directly chooses the top k frequency components with the highest energy, then
selects the top kiotq; — k components with the highest importance scores from the remaining lower-
energy components. The frequency component X is retained when Fse)(X., Ec; OF, k, kiotar) = 1.
This mechanism ensures that FSE-Net can thoroughly learn both high-energy and low-frequency
features. The number of & chosen through ablation experiments in Fig. Fig. |3a) illustrates how
our frequency pruning algorithm smooths the model’s local minimum geometry, leading to enhanced
adversarial robustness. The algorithm flow is shown in Appendix A.
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3.3 ENHANCE CORESET ROBUSTNESS BY REWARD SCORE

In this section, we propose a novel coreset selection algorithm that assesses the impact of images on
shaping the decision surface throughout training. Drawing from reinforcement learning (Kaelbling
et al.,[1996) and Markov decision processes (Hordijk & Kallenberg| [1979), we assign each image a
reward based on its actions during training and calculate the accumulated reward as its final score.

To track the temporal dynamics of model parameter changes, we define H(fy(Z))), as the logit
entropy at epoch ¢. Our method aims to balance exploration in the early stages and exploitation in
the later stages of training, as suggested by (Petzka & Sminchisescu, 2021)). In the early training
stage, we encourage the model to explore a larger parameter space to capture more features and
escape local minima (Soloperto et al., [2023). Later in training, we aim to reduce gradient variance,
signaling stable optimization toward the global minimum. To quantify this balance, we introduce a
local variance function V' (¢, w):

V(t,w) = Var ({H(fg(i:))i | max(0, ¢ — %) <i<min(T,t+ % + 1)}) )

Where T is the total number of epochs and w is the window size for local variance calculation.

To encourage initial exploration followed by convergence, we design a reward function
R(t,V(t,w)):

—V(t,w) ift<rT

+V(tw) ift>7T (10)

R(t,V(t,0)) = {

Where 7 € (0, 1) determines the transition point between the exploration and exploitation phases.
This reward function assigns different rewards to images based on their behavior at each stage,
ensuring alignment with our optimization goals. In the early stage (¢ < 77), negative rewards
for low variance encourage the exploration of a larger parameter space. In the later stage (¢t >
7T), positive rewards for high variance promote convergence to smooth local minima, we set 7 =
2/3 through ablation experiments. The overall optimization objective is captured by a cumulative
discounted reward S':

-1
S=> 'Rt V(t,w))++" Rr (11)

t=

Here, the image with a lower score is considered more important, v € (0, 1) is a discount factor pri-
oritizing more recent rewards, we set v = 0.99 similar to the setting in many tasks in Reinforcement
Learning (Yoshida et al.|[2013). R(¢, V (¢, w)) represents the reward at time step t. The term Ry is
a terminal reward defined as:

Ry = Var({H (fo(Z))o, H(fo(T))1, ., H(fo(Z))T-1}) (12)

The terminal reward R is based on the model’s entropy variance across all epochs, accounting for
the stability of the entire training optimization. We ranked the CIFAR-10 images by their scores in
ascending order. Fig[3c|shows the model trained on the top 50% of images (those with the lowest
scores), while Fig[3b] shows the model trained on the bottom 50% of images (those with the highest
scores). We observe two key differences between these models: 1) Generation Loss Behavior: In
the model trained on the top 50% of images, the generation loss exhibits greater fluctuations before
epoch 350 (about two-thirds of total epochs), followed by a smoother trajectory. This suggests
an initial exploration of a larger parameter space before converging to a smooth global minimum.
2) Final Performance: The model trained on the top 50% achieves a lower final generation loss
compared to the other model. This indicates better overall performance and improved generalization
capability. To enhance coreset diversity, we employ a stratified sampling algorithm as proposed by
Zheng et al.|(2022). This method involves ranking images based on their scores in ascending order,
followed by the application of stratified sampling to select the final coreset.
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| | Prune Rate
Pruning Algorithm | Attack | CIFAR-10 ‘ CIFAR-100
|

\ 90% | 80% | 70% | 60% | 50% | 90% | 80% | 70% | 60% | 50%

AA 15.27 | 21.55 | 20.85 | 22.33 | 21.53 | 12.27 | 16.55 | 16.88 | 17.03 | 17.57
Random PGD-20 | 16.27 | 20.55 | 19.85 | 21.33 | 20.53 | 11.97 | 15.59 | 16.78 | 17.23 | 16.57
C&W 16.39 | 20.45 | 18.83 | 20.53 | 20.77 | 12.97 | 14.59 | 15.78 | 16.23 | 14.57

AA 21.65 | 21.27 | 30.92 | 23.28 | 20.74 | 11.56 | 14.33 | 17.98 | 15.33 | 17.71
Entropy PGD-20 | 20.68 | 20.87 | 20.92 | 21.28 | 22.74 | 12.16 | 14.03 | 16.18 | 15.13 | 17.01
C&W | 2044 | 20.78 | 20.21 | 21.17 | 22.83 | 12.44 | 12.35 | 17.18 | 16.37 | 17.51

AA 37.86 | 40.98 | 41.02 | 40.18 | 41.28 | 15.11 | 16.85 | 18.05 | 18.19 | 17.92
CCSFEM PGD-20 | 38.97 | 40.11 | 39.99 | 39.76 | 41.91 | 13.98 | 1592 | 13.09 | 14.08 | 17.91
C&W | 38.99 | 40.33 | 40.02 | 39.96 | 42.05 | 12.17 | 16.15 | 17.91 | 18.60 | 17.27

AA 40.16 | 44.32 | 4297 | 41.38 | 40.65 | 16.15 | 17.12 | 21.37 | 20.09 | 18.65
Ours-JE PGD-20 | 39.16 | 39.32 | 41.07 | 40.88 | 42.95 | 14.76 | 16.88 | 17.01 | 16.89 | 18.05
C&W | 39.06 | 39.72 | 41.37 | 40.96 | 43.05 | 12.99 | 17.32 | 18.07 | 19.88 | 18.95

AA 55.7 | 58.19 | 53.46 | 51.14 | 51.04 | 20.99 | 24.94 | 25.07 25.31 | 23.41
Ours-LF PGD-20 | 56.18 | 56.05 | 51.9 | 50.61 | 50.07 | 23.72 | 21.64 | 21.36 24.39 | 23.75
C&W | 56.42 | 56.21 | 54.14 | 54.38 | 55.32 | 22.37 | 24.23 | 2548 26.39 | 28.69

AA 46.54 | 47.35 | 48.89 | 49.72 | 48.18 | 20.39 | 20.53 | 22.47 22.94 | 22.85
Ours-JELF PGD-20 | 47.24 | 48.59 | 49.64 | 50.25 | 50.01 | 18.09 | 19.71 | 20.98 21.85 | 22.48
C&W | 47.61 | 48.12 | 49.01 | 48.19 | 48.66 | 18.99 | 20.01 | 21.54 22.03 | 21.99

Table 1: We assess CIFAR-10 and CIFAR-100 performance under various adversarial attacks and
dataset pruning ratios. On CIFAR-10, accuracy is 43.86% for AutoAttack, 42.83% for PGD-20, and
43.65% for C&W. On CIFAR-100, accuracy is 18.51% under AutoAttack, 18.59% under PGD-20,
and 19.57% under C&W. “CCSFEM” uses forgetting, EL2N, and AUM scores with CCS to compute
the mean accuracy. “Ours-JE” applies the joint-entropy score with CCS sampling, “Ours-LF” uses
Learnable Frequency Pruning on the total dataset, and “Ours-JELF” combines Learnable Frequency
Pruning (preserving 50% of frequency components) with joint-entropy based coreset selection using
CCS sampling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use three datasets: CIFAR-10, CIFAR-100, and ImageNet-1K. All attacks were constrained by
the ¢, norm with a perturbation budget of ¢ = %. For CIFAR-10 and CIFAR-100, we trained
ResNet-18 models from scratch. We applied three different attack algorithms on the entire test
sets: AutoAttack (AA) (Croce & Heinl 2020), PGD-20 (Madry, [2017), and C&W attack (Carlini
& Wagner, 2017). For PGD-20, we used 20 iterations with a step size of € = % For C&W, we
used 100 iterations with a learning rate of 0.01. AutoAttack was applied with its default settings.
For ImageNet-1K, we trained a ResNet-34 model and evaluated the robustness using AutoAttack on
1000 randomly selected points from the validation set. All datasets were normalized before feeding
into the models, and standard data augmentations were applied.

4.2 BASELINES

Since our work tackles a less-studied problem of high adversarial-robustness dataset pruning with
no known clear solution, it is important to set an adequate baseline for comparison. We compare our
approaches with six original dataset pruning algorithms: 1) Random: Uniform random sampling.
2) Entropy: Selects highest entropy examples. 3) Forgetting: Chooses examples with highest
Forgetting scores. 4) EL2N: Selects based on highest EL2N scores. 5) AUM: Chooses examples
with highest Area Under the Margin scores. 6) CCS: Uses stratified sampling across importance
scores. These algorithms test the result without adversarial attack, providing a comparison baseline
for our work.

In this experiment, we apply various pruning methods. For “Random”, “Entropy”, “CCSEFM”,
“Ours-JE”, and “Ours-JELF”, we employ sample-wise pruning, where the pruning rate represents
the percentage of images removed from the dataset. For “Ours-LF”, we use frequency-domain
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pruning, where the pruning rate indicates the percentage of frequency components removed from
each image.

| Original Adversarial Training | Sample Adversarial Training | pre-trained Adversarial Training

| 50% coreset | Original Dataset | 50% coreset | Original Dataset | 50% coreset | Original Dataset

TDFAT Acc:45.41 Acc: 48.66 Acc:30.05 Acc: 38.72 Acc:35.41 Acc: 40.66
Time: 59.58s| Time: 119.69s | Time: 18.53s| Time: 39.69s | Time: 10.15s Time: 17.66s
CURC Acc: 44.92 Acc: 52.48 Acc: 31.21 Acc: 36.05 Acc:38.92 Acc:41.48
Time:74.12s Time:149.52s Time:17.87s Time:38.52s Time:9.31s Time: 17.92s
RATTE Acc: 45.98 Acc: 48.2 Acc: 34.05 Acc: 37.15 Acc:36.23 Acc:41.03
Time: 64.33s| Time: 131.35s | Time: 17.23s| Time: 38.35s | Time: 10.21s Time: 17.85s
FATSC Acc: 17.21 Acc: 23.68 Acc: 20.82 Acc: 23.77 Acc:12.22 Acc:16.93
Time: 59.82s| Time: 122.71s | Time: 17.12s| Time: 39.71s Time: 9.32s Time:18.87s
ours-LF Acc:48.18 Acc:51.04 Acc:50.07 Acc:51.04 Acc:50.01 Acc:48.18
Time:9.51s Time:17.64s Time:9.51s Time:17.64s Time:9.69s Time:17.64s

Table 2: We compare recent adversarial training (AT) algorithms with our Learnable Frequency
Pruning method. “Time” refers to the average time required per epoch to train ResNet-18 on the
same batch size and GPU. Adversarial robustness was evaluated against AutoAttack using both the
full CIFAR-10 training set and a 50% coreset selected by the “Ours-JE” strategy. “Original Ad-
versarial Training” applies standard AT on the entire dataset, while “Sample Adversarial Training”
applies adversarial perturbations to a random subset of images each epoch, leaving the rest un-
changed to match our method’s training cost. Finally, * pre-trained Adversarial Training” uses a
pre-trained ResNet-18 model with high adversarial robustness to generate adversarial perturbations
without further optimization during training, ensuring no additional Time. We train datasets of the
same size for an equal number of epochs under identical conditions.

4.3 PERFORMANCE COMPARISON

Table ?? shows the performance of our algorithm on CIFAR-10 and CIFAR-100 under different
adversarial attacks. We observe the following key findings: 1) The state-of-the-art (SOTA) dataset
pruning algorithm demonstrates low accuracy under adversarial attacks (e.g., only 41.28% with a
50% pruning ratio under AutoAttack in CIFAR-10). 2) Without frequency pruning, the “ours-JE”
approach significantly outperforms SOTA algorithms across all pruning ratios and adversarial at-
tacks. 3) On the original dataset, “Ours-LF” achieves better performance than without pruning,
indicating that it not only enhances robustness against adversarial attacks but also reduces storage
costs. 4) On pruned datasets, “Ours-JELF” outperforms SOTA pruning methods, highlighting the
ability of our approach to improve the adversarial robustness of the model in dataset pruning scenar-
ios. Table[3|presents similar findings, demonstrating the effectiveness of our algorithm in enhancing
adversarial robustness on the model trained on the ImageNet-1K dataset.

4.4 ABLATION EXPERIMENT

To demonstrate the effectiveness of our Learnable Frequency Pruning algorithm in enhancing model
robustness, we compared it with recent adversarial training methods: TDFAT (Tong et al., 2024)),
RATTE (Jin et al., 2023)), FATSC (Zhao et al.l 2023)), and CURC (Gowda et al., |2024). These
methods, which involve iterative optimization, significantly increase training costs. To ensure a fair
comparison, we adjusted the number of perturbed images to match the training time of these methods
with our algorithm, and we also used a pre-trained ResNet-18 model with high adversarial robust-
ness to generate perturbations without further optimization. As shown in Table [2| while adversarial
training on the full dataset provides better performance, it greatly increases training costs. When the
cost is reduced to match our algorithm, the performance of adversarial training drops significantly,
making it less suitable for resource-limited environments. We also evaluated the impact of different
values of 77 (Fig. da)), X (Fig.[4b), and k (Fig.[4c), along with various coreset selection strategies
combined with Learnable Frequency Pruning (Fig. [5). The best results from our experiments are
presented.
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(a) Different threshold on JE (b) Different result on A (c) Different result on choosing k

Figure 4: (a) evaluates the time threshold 71" from Section 3.3, adjusting 771" to select coresets and
prune 50% of frequency components, let PGD-20 as an adversarial attack. Setting the threshold to
(2/3)T yields the best result. (b) examines the effect of adjusting A in Section 3.2, which controls the
loss function in Learnable Frequency Pruning. Using “Ours-JE” for coreset selection and pruning
50% of frequency components, PGD-20 as an adversarial attack, we find that A = 0.1 yields the best
result. (c) compares different values of k from Section 3.2 using “Ours-JE” for coreset selection and
pruning 50% of frequency components, let PGD-20 as an adversarial attack. The best performance
is achieved with k£ = 100, using PGD-20 as the adversarial attack.

‘ Different coreset selection

Pruning Ratio | —o— OursJE
50 —m— CCS-Forgetting
| 90% | 80% | 70% | 60% | 50% | '/\\+ ceseLan
—4— CCS-Entropy
Random 15.87 | 20.51 | 20.15 | 18.39 | 18.58 49 €Cs-aum
Entropy 16.87 | 18.06 | 21.02 | 18.11 | 17.28 g
CCSFEM | 15.86 | 16.96 | 18.02 | 17.11 | 19.28 2
ours-JE 19.16 | 21.51 | 22.17 | 21.18 | 20.96 [
ours-LF 25.6 | 27.19 | 26.46 | 27.44 | 27.14 §A7
ours-JELF | 23.54 | 26.15 | 25.03 | 25.22 | 24.95 <
46 e
Table 3: Performance on Imagenet-1K using differ- \
. . . . . 45
ent pruning strategies. The original dataset accuracy is £ %

60 70 80
Pruning Ratio (%)

20.16% under AutoAttack. “Ours-JE” refers to core-
set selection using the joint-entropy score with CCS  Fjgure 5: Compares different coreset
sample strategy, while “Ours-LF” applies Learnable  selection algorithms on CIFAR-10, fol-
Frequency Pruning. “Ours-JELF” combines Learnable  Jowed by Learnable Frequency Pruning
Frequency Pruning (preserving 50% of frequency com-  with a 50% pruning ratio, PGD-20 as an
ponents) with coreset selection using the joint-entropy  adversarial attack. “Ours-JE” achieves
score with the CCS sample strategy. the best performance.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

We introduce Adversarial Attack Robust Dataset Pruning, a method that enhances model robustness
against adversarial attacks on pruned datasets. Our approach improves robustness in two ways: First,
we use a Learnable Frequency Pruning algorithm to smooth the model’s local minimum geometry,
increasing robustness without additional training costs and reducing storage needs. Second, we
propose a “joint-entropy” data importance score for better coreset selection. Experiments show our
method surpasses existing pruning strategies in adversarial robustness across various datasets and
attacks. This work is the first to address adversarial robustness in dataset pruning.

We recognize several limitations and areas for future work. First, our algorithm does not consider
the link between image distribution and adversarial robustness, which could be explored further.
Improving the sampling method beyond the traditional CCS algorithm may enhance results. Ad-
ditionally, while we focus on adversarial robustness in dataset pruning, the research could extend
to areas like Dataset Distillation and Neural Network pruning to improve the model’s adversarial
robustness.
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A ALGORITHM FLoOwW

Algorithm [I] shows the algorithm flow of FSE-Net, Figure [6] shows the whole process of how to
combine FSE-Net and the coreset selection to get the final coreset.

Algorithm 1 Frequency Selection with FSE-Net for Improved Robustness

Require: Images /X', Labels ), Model fy, Parameters k, k;.1q;, Learning rate ), Hyperparameter A,
The (4, j)-th DCT coefficient X ;.

I: X+ DCT(X)
2: Calculate energy for each frequency component: E(i,j) = |)A(1 ;12
3: Sort frequency components based on energy E and select top-k components
4: Initialize FSE-Net parameters 9}0) for selecting remaining frequency components
5:fort =0toT — 1do
6:  Define Fuor(Xe, Be; 0k, krorar):
7: if £, > E® or (B, < E™ and g(X;6%) > sp,...._x):
8: return 1
9: else:
10: return 0

11: &+« IDCT(X; ©® Fa)
12: Compute logits: fp(Z) « fo(Z)

13: Compute probabilities: p; = < o2fe(@):)

Zle exp(fo(Z);)
14: Compute entropy: H (fo(Z)) = — ZZK:1 p; log p;
t ~
5. LOY)  H(fo(@) — A (7o Sia.pen Lasmase o 5)=0)
16 0% 0% — vy, (6
17: end for ‘
18: Define final selection function F¥7"* using 6"

19: X « {IDCT(X; ® FI")|X; € DCT(X)}
20: Return X N

Input Images Frequency Domain Transform}—»{Learnable Component Selection}

\d
{Score—based RankingHJE Score Calculation}<—@

Y

Figure 6: Flowchart of the coreset generation process.
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B EXPERIMENT SETTING

In this section, we will show the details of our algorithm. For the Learnable frequency pruning
experiments, we set (Pruning ratio, Total Number of preserved frequency components, top k, \) to
show the setting details. For CIFAR-10 and dataset, our settings are (90%, 102, 30, 0.05) (80%, 204,
50, 0.01) (70%, 308, 80, 0.08) (60%, 410, 100, 0.1) (50%, 512, 100, 0.1) (30%, 717, 100, 0.05),
the Learnable pruning ratio will be optimized for 300 epochs and we set the batch size 128. We
trained We use ResNet18 (He et al., |2016) as the network architecture for CIFAR-10. We train the
whole dataset with 200 epochs with a 256 batch size. We use the SGD optimizer (0.9 momentum
and 0.0002 weight decay) with a 0.1 initial learning rate. For the ”ours-JE” algorithm, we calculated
the logit entropy every five epochs, we set the time threshold as (2/3)T and the size of the window
to 3, we used the setting of CCS same as the Original paper’s setting (Zheng et al., 2022).

For CIFAR-100, our settings are (90%, 102, 30, 0.1) (80%, 204, 50, 0.08) (70%, 308, 80, 0.13)
(60%, 410, 100, 0.15) (50%, 512, 100, 0.13) (30%, 717, 100, 0.09), the Learnable pruning ratio will
be optimized for 300 epochs and we set the batch size 128. We trained We use ResNet18 (He et al.,
2016) as the network architecture for CIFAR-10. We train the whole dataset with 200 epochs with
a 256 batch size. We use the SGD optimizer (0.9 momentum and 0.0002 weight decay) with a 0.1
initial learning rate. For the “ours-JE” algorithm, we calculated the logit entropy every five epochs,
we set the time threshold as (2/3)T" and the size of the window to 3, we used the setting of CCS
same as the Original paper’s setting (Zheng et al., 2022).

For Imagenet-1K, because the input images are sized 224 * 224 *3, For every channel, our settings
are (90%, 5018, 600, 0.05) (80%, 10036, 1000, 0.02) (70%, 15053, 1000, 0.05) (60%, 20071, 1000
,0.1) (50%, 25090, 1000, 0.1) (30%, 35123, 1000,0.1) We use ResNet34 to train the dataset and
We use the SGD optimizer (0.9 momentum and 0.0001 weight decay) with a 0.1 initial learning
rate. The learning rate scheduler is the cosine annealing learning rate scheduler. For the “ours-JE”
algorithm, we calculated the logit entropy every two epochs, we set the time threshold as (2/3)T
and the size of the window to 3, and we used the setting of CCS same as the Original paper’s setting
(Zheng et al | [2022)

C PROOF

C.1 PROOF OF THEROM 1

Theorem 1 (Hard Samples and Local Minimum Geometry). Formally, for a model with parameters
0 and loss function L, we compare the local minimum geometry at the converged solution 0* for
hard samples xy, and randomly sampled data points x,.. For a given perturbation e, where ||| < §
for some small 6 > 0, hard samples are more likely to induce less smooth geometries, which can be
characterized as:

E,, [ALy] > 1 By [AL] (13)

where AL, = |L(0* + e,xp) — L(0%,21)|, AL, = |L(0* +&,2,) — L(0*,2,)|, andn > 1isa
threshold constant. The expectation E, is taken over the distribution of hard samples, while E,,  is
taken over the random sample data distribution.

Proof:
We begin by defining hard samples. For a hard sample x;, and a randomly sampled data point x,.,

W€ assume:

[V L(w", 1) y
B, [V L(w*, )]

(14)

where v > 1 is a threshold constant and w™* represents the converged model parameters.

To establish the relationship between gradients and the local geometry of the loss surface, we in-
troduce the concept of directional derivatives. For any sample x and unit vector u, the directional
derivative of the loss function is defined as:

13
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L(w* + tu, z) — L{w*, )

D, L(w*,z) = %E}I(l) . (15)
This directional derivative is related to the gradient through the following equation:
D, L(w*, z) = Vy-L(w*, ) -u (16)

Now, consider a small perturbation € applied to the parameters w*. We define a unit vector u = ﬁ

in the direction of this perturbation. Using this, we can approximate the change in loss due to the
perturbation:

AL ~ |V L(w*, x) - ] = |le||| Do L(w™, )| 17

Applying the expectation operator to both sides:

Eo[AL] = [le]|Eq [ DuL(w”, z)]] (18)

~ |
< |eNEL[||Vw L(w*, x)||] (by Cauchy-Schwarz inequality) (19)
From our initial assumption, we can state:

Eg, [V Lw™, zp)[]] > 7 - Eq, [[[ Ve L(w", 2,)|] (20)

Combining these results, we obtain:

Eq, [ALL] = (€| Eg, [[|[Vwr L(w™, zp) ] 21
> |lelly - Eo, [V £L(w", z,) ] (22)
oy By, [A‘CT] (23)

Since v > 1, we can choose 17 = 7 — € for some small ¢ > 0, ensuring > 1. This allows us to
conclude:

E., [ALy] > n-E, [AL] (24)

This result holds for sufficiently small ||¢||, where our approximations remain accurate.

Thus, we have demonstrated that for sufficiently small perturbations, the expected change in loss for
hard samples is more than 7 times the expected change for randomly sampled data points, where
n > 1. This indicates that hard samples induce less smooth geometries in the vicinity of local
minima, consistent with the statement of the theorem.

This proof highlights the unique characteristics of hard samples relative to the entire data distribution
(as represented by random sampling), rather than just in comparison to easy samples. It emphasizes
the importance of hard samples in the model training process and their impact on the geometry of
local minima.

C.2 PROOF OF LEMMA 1

Lemma 1 (Relationship between Frequency Alterations and local minimum geometry Smoothness).
Let © € X denote an original image and T € X denote the image after frequency pruning. Let fy
be the model with parameters 0. Set H(-) as the entropy function and fy(Z) represents the logits
output by the model for input x. Let p; be the predicted probability for class i, computed from the
logits using the softmax function:

14
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P =

exp(fo(Z):) 25)
6

Zf:l exp(fo(2);)

where fo(Z); is the i-th element of the logits vector fo(Z), and K is the number of classes. The
entropy of the model’s output is then defined as:

K
H(fo()) == pilogp; (26)
i=1

We propose that the relationship between the entropy and the gradient norm can be expressed as:

H(fo(%)) o< [[VoL(fo(x),y)l @27)

where H( fo(Z)) is the entropy of the model’s output probabilities and ||V o L(fo(x),y)|| is the norm
of the gradient of the loss with respect to the model parameters 6. Based on this relationship we
suggest that lower entropy of the output probabilities leads to a smoother local minimum geometry.

Proof:

To prove Lemma(I] we begin with the cross-entropy loss function:

K
L(fo(x),y) = =Y yilogp; (28)
i=1

where y; is the one-hot encoded true label, and p; is the predicted probability for class <.

The gradient of this loss with respect to the logits fy(Z); is:

oL

YN (29)
ofe(z); 7 7
Now, consider the entropy of the model’s output:
K
H(fo(%)) = =) pilogpi (30)
i=1

We observe that when the model is very confident (low entropy), one p; will be close to 1 and the
rest close to 0. In this case, both the entropy and the gradient norm will be small. Conversely, when
the model is uncertain (high entropy), the p; values will be more evenly distributed, resulting in
larger values for both the entropy and the gradient norm.

To illustrate this more formally, let’s consider the extreme cases:

1. Maximum certainty: One p; = 1, rest are 0

* Entropy: H =0

* Gradient: ||V, (3)L|| = 0 (assuming correct prediction)
2. Maximum uncertainty: All p; = %

* Entropy: H = log K (maximum)

* Gradient: ||V, )Ll = Zszl(% — y;)? (maximum)

These extreme cases demonstrate that as entropy increases, so does the gradient norm.

Furthermore, we can express the gradient norm as:
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K K
Vg £IP = (p =) =D 15 — 2, + 1 31)

j=1 j=1

Note that Z]K:1 p? is minimized when all p; are equal (high entropy) and maximized when one p;
is 1 and the rest are O (low entropy), which aligns with the behavior of the entropy.

Finally, by the chain rule, VoL = afg—f)v fg(j)ﬁ. Assuming % is bounded, we can conclude:

H(fo(7)) o< [[VoL(fo(x),y)l (32)

This establishes a proportional relationship between the entropy of the model’s output and the norm
of the gradient of the loss with respect to the model parameters. Given that the gradient norm
represents the rate of change of the loss function at a specific point, a higher gradient norm indicates
a steeper loss function surface. Consequently, the geometry of the local minimum becomes more
precipitous.

Conversely, lower entropy of the output probabilities leads to smaller gradient norms, resulting in a
smoother local minimum geometry. This proves the relationship proposed in Lemmal I}

C.3 PROOF OF THEOREM 2

Theorem 2 (Biased Learning in DCT Frequency Selection). Let F = fi,..., f, be the set of
frequency components obtained after applying Discrete Cosine Transform (DCT) to an input signal,
with corresponding energies E = Ey, ... E,. Let Fg and Fi, denote the sets of high-energy and
low-energy components respectively. Given a selection process S : F — [0,1]™ and a loss function
L(S(F)), and considering the inherent energy disparity in DCT coefficients where:

E;
min —>1 (33)
fi€Fu,fi€FL Ej

The learning process is prone to exhibit a significant bias towards high-energy frequency compo-
nents, ultimately resulting in limited representational capacity and reduced effectiveness in captur-
ing the full spectrum of frequency information.

Proof:

We will prove this theorem by demonstrating that the gradient of the loss function with respect to the
selection process is biased towards high-energy components, leading to their preferential selection.

Let S(F) = [s1, ..., $n] Where s; € [0, 1] represents the selection probability for frequency compo-
nent f;. The loss function L(S(F)) can be expressed as a function of these selection probabilities.

Consider the gradient of the loss function with respect to the selection probabilities:

(34)

oL oL
L=|—, .., —
Vs [8317 785”]

Now, let’s examine the impact of selecting a frequency component on the reconstructed signal. The
contribution of a frequency component f; to the reconstructed signal is proportional to its energy
E;. Therefore, we can express the partial derivative of the loss with respect to s; as:

oL
8Si

o« Ej - g; (35)
where g; is some function of the frequency component that depends on the specific loss function

used.

Given the energy disparity stated in the theorem:
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E.
min L>1 (36)
fi€Fu,fi€FL Ej

We can conclude that for any pair of components f; € Fp and f; € Fr:

oL
asi

oL
aSj

(37

This inequality holds true unless the function g; heavily penalizes high-energy components, which
is unlikely in most practical loss functions designed for signal reconstruction or classification tasks.

As a result, during the optimization process, the selection probabilities for high-energy components
will be updated more aggressively compared to low-energy components:

ASi > AS]‘, sz EFH,fj € FL (38)

Over multiple iterations, this leads to:

S; > 85, Vfl G.FH,fj c Fr (39)

This bias in the selection process results in the preferential selection of high-energy components,
while low-energy components are largely ignored or underrepresented.

The consequence of this biased selection is twofold:

1. Limited Representational Capacity: By predominantly selecting high-energy components, the
model fails to capture the fine details and nuances often represented by low-energy components.
This limits the model’s ability to represent complex patterns in the data.

2. Reduced Effectiveness: The model’s focus on high-energy components may lead to overfit-
ting dominant features while missing subtle but potentially important information in the low-energy
spectrum. This can result in reduced generalization capability and overall effectiveness of the model.

Therefore, we have proven that the learning process in DCT frequency selection, given the inher-
ent energy disparity in DCT coefficients, is prone to exhibit a significant bias towards high-energy
frequency components. This bias ultimately results in limited representational capacity and reduced
effectiveness in capturing the full spectrum of frequency information.

C.4 ADVERSARIAL ROBUSTNESS AND LOSS LANDSCAPE
C.4.1 ADVERSARIAL ROBUSTNESS MEASURE

To rigorously establish the relationship between a smooth (flat) loss landscape and higher adversar-
ial robustness, we begin by defining the adversarial robustness measure in terms of the “Expected
Distortion Rate (EDR)” of the loss function with respect to input perturbations. By connecting
this metric to the gradient norm of the loss and demonstrating how smoother loss landscapes yield
smaller gradient norms, we can show that a flatter landscape reduces such distortion. This ulti-
mately supports the conclusion that smoother loss landscapes enhance adversarial robustness by
limiting variations in loss under input perturbations.

To measure adversarial robustness, we define the Expected Distortion Rate (EDR). This measure
captures the sensitivity of the model’s loss function to adversarial perturbations in the input space.
The mathematical definition is:

EDR0 = EwNX [|L(9,I + 5$7y) - L(Qa%ym 5

where:

* X is a compact subset of R", representing the input space.

* @ denotes the model parameters.
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» L(-) is the loss function of the model.
* y is the ground truth label corresponding to the input x.

* The perturbation from different kinds of adversarial attacks can be measured in L1, Ls, or
Lo, norms. We specifically use the Ly norm, where ||J,||2 < e fore > 0.

A smaller EDRy indicates better robustness, as it implies that adversarial attacks induce minimal
changes in the loss.

C.4.2 How TO DESCRIBE THE SMOOTHNESS OF THE LOSS LANDSCAPE

Based on the loss landscape visualization depicted in Figure and we observe that the
geometric characteristics of the loss landscape are predominantly determined by two fundamental
components. The smoothness of the loss landscape is a critical factor in determining the robustness
of a model. This section explains how to characterize smoothness using first-order (gradient) and
second-order (Hessian) properties.

The local behavior of the loss function L(6, x,y) around a point z¢ can be described as follows:

1. The gradient V, L(0, zq, yo) determines the direction and rate of steepest ascent in the loss
surface.

2. The Hessian V2 L(6, 20, yo) quantifies the curvature of the loss surface, describing how the
gradient changes in different directions.

To achieve a smoother loss landscape, it is important to minimize both the magnitude of the gradient
and the spectral norm of the Hessian matrix. Prior research has proposed diverse metrics to charac-
terize the smoothness of loss landscapes and their correlation with model generalization, including
Volume e-Flatness (Hochreiter & Schmidhuber, [1997), Hessian-based measures (Dinh et al., 2017)
and gradient-based analysis (Zhang et al., [2023)). Our work adopts a more comprehensive approach
by jointly analyzing both gradient and curvature characteristics across extended regions of the loss
surface. This broader perspective is particularly vital for understanding adversarial robustness, as
adversarial perturbations can push model predictions far from local minima, where the geometric
properties of non-minimal regions become crucial determinants of model behavior.

To formally quantify smoothness, we use the concept of Lipschitz smoothness. A function f : R" —
R is B-smooth if:
IVf(x) =Vl < Blz —yl2 Yo,y € R,

where £ is the Lipschitz constant of the gradient. For the loss function L(6, z,y), this implies that
the spectral norm of the Hessian is bounded as:

IV2L(0, 20, y0)|l2 < B.
C.4.3 RELATING THE EDR TO THE GRADIENT AND HESSIAN

We now connect the smoothness of the loss landscape to the adversarial robustness measure (EDR).
The analysis is divided into two cases based on the magnitude of the perturbation d,..

When §,, is small, we can approximate the loss function using the second-order Taylor expansion:
1
L(0, @ + 8,,y) = L(0,2,y) + Vo L(0,2,y) " 6, + §5IV§L(97 @+ €64,y)0z + O([|0: %),

where € € [0, 1], L(0, z, y) is the original loss value, representing the base value before perturbation.
The term V,L(6,x,y) "5, is the first-order approximation, which is the inner product of the gra-
dient and the perturbation. The term %5; V2L(0,x + &5, y)0, is the second-order approximation,

capturing the local curvature of the loss landscape. Finally, O(]|6,||?) contains all terms of order 3
and higher.

B
L0, 2 + 82, y) = L0 2, 9)| < IVaL(0, 2, 9)llalldx ]l + 51103

Taking the expectation over the data distribution x ~ &', the EDR can be bounded as:

B
EDRy < E,.x |[|V.L(0, $>y)||q”5w”p + §H6IH§
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where || - ||, and || - |4 are dual norms satisfying % + % = 1. In this proof, we choose p = q = 2,
which makes the analysis of the gradient and Hessian easier (from the Cauchy-Schwarz inequality).

This bound characterizes how the expected distortion depends on both the average gradient magni-
tude and the curvature of the loss landscape across the data distribution.

For larger perturbations where higher-order terms are non-negligible, we use integral approximation:

40,
LW$+&MD“MQ%M+/ V. L(0, 2 y)dz.

x

Applying the Mean Value Inequality for vector-valued functions:

|L(0, % + 0, y) = L(O,w,9)[ < sup [[VaL(0, 2,9)lqll0x ],

zeconv(x,z+5,)

where conv(z, z + J,) represents the convex hull between x and = + J,. Thus, the EDR can be
bounded as:

zEB(x,€)

C.4.4 FINAL BOUND

From both Taylor expansion and integral approximation analyses, we can establish the relationship
between loss landscape smoothness and model adversarial robustness:

The Expected Distortion Rate (EDR) can be bounded as:

B
EDRy < Epv [[|VaL(0, 2, y)lqll0x ]l + §H5mH§ ;

where the first-order effect is controlled by the gradient magnitude, and the second-order effect is
governed by the Hessian bound 5. Smaller gradients and a smaller S result in tighter bounds on loss
changes.

We can define:

p
T =B |I92206 20l lbul + 516018

Alternatively, the EDR can also be bounded as:

EDRy < E;x [ sup ||VmL(9727y)HqH5I|p] )
z€B(z,¢€)

which we can define as:

I=E,x l sup ||VzL(9,Zvy)||q||5x||p] :
zEB(z,€)

This indicates that loss changes are controlled by the gradient magnitude, with smoother regions
(characterized by smaller gradients) leading to smaller distortions. Robustness is inherently depen-
dent on the smoothness properties of the function.

Finally, given a perturbation magnitude € = ||0.|| and a threshold ¢, we can establish a comprehen-
sive bound:

EDR, < min{7T, I}, ife < e,
=11, if e > €.
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Here, ¢g marks the critical threshold where Taylor expansion remains valid. For small perturbations
(e < €p), both bounds hold, and we can leverage the tighter one. For large perturbations (¢ > ¢p),
only the integral approximation bound remains valid.

D MEMORY AND TIME LOSS

Our learnable frequency pruning algorithm offers the additional advantage of reducing dataset stor-
age costs. By pruning certain frequency components while preserving others, storing the coreset
in the frequency domain significantly lowers storage requirements, as many frequency components
are removed. If we want to use this method, we will need an extra time cost because we need to
transform the image from the frequency domain to spatial domain. Now we will discuss the time
cost of IDCT processing.

D.1 COMPUTATIONAL COMPLEXITY

The computational complexity of 2D-DCT is O(N?1log N) and the computational complexity of
2D-IDCT is also O(N?log N), N stands for the width and height of the image.

D.2 COMPUTATIONAL COST

In this section we will show the time cost detail of our algorithm, Table E[a) shows the time cost of
Using DCT on CIFAR-10, CIFAR-100, and Imagenet-1K. We can find that the time cost of GPU is
far less than using CPU, and the time cost of CPU is also really small which shows that on some
edge devices which do not have GPU to run deep learning algorithms, we can run DCT using CPU.
The reason why the imagenet-1K time cost is far higher than CIFAR-10 and CIFAR-100 is that the
imagenet-1K trainset is really large containing 1281167 images and every image size of 224 x 224.
The storage of imagenet-1k is about 138GB which is hard to deploy on a single-edge device, so
in practical using we always choose to separate this dataset into many different subsets and deploy
them on different devices. In this project, we use the GPU model NVIDIA A100-SXM4-40GB

Table f[(b) highlights the time cost comparison for applying IDCT on various datasets using CPU
and GPU implementations. The data clearly demonstrates that our algorithm achieves remarkable
efficiency in performing IDCT, with minimal time consumption across all tested datasets. This
observation underscores the computational feasibility of our approach, as the IDCT step does not
introduce significant overhead to the overall pruning process.

The frequency pruning can reduce the storage of the dataset. By applying DCT and leveraging
sparsity in the frequency domain, we store only significant non-zero coefficients using an optimized
sparse storage format. Each non-zero coefficient requires 6 bytes: 4 bytes for the float32 value and
2 bytes for packed indices. Since the image size is 32x32, we can efficiently encode both row and
column indices using 5 bits each, combining them into a single 16-bit integer.

Time of using CPU  Time of using GPU

CIFAR-10 15.57s 3.43s
CIFAR-100 15.43s 3.49s
Imagenet-1k 5381.93s 548.06s

(a) DCT Time Comparison

Time of using CPU  Time of using GPU

CIFAR-10 15.13s 0.95s
CIFAR-100 15.09s 1.55s
Imagenet-1k 673.38s 164.74s

(b) IDCT Time Comparison

Table 4: Time comparison for different datasets using DCT and IDCT on CPU and GPU.
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In the practical experiments, we only care about the time cost of IDCT if we store the frequency
components, we need to use it to process the dataset. By applying DCT and leveraging sparsity
in the frequency domain, we store only significant non-zero coefficients using an optimized sparse
storage format. Each non-zero coefficient requires 6 bytes: 4 bytes for the float32 value and 2 bytes
for packed indices. Since the image size is 32x32, we can efficiently encode both row and column
indices using 5 bits each, combining them into a single 16-bit integer. The results of the practical
storage compression ratio on CIFAR-10 are shown in Table[5]

Pruning Ratio  Elements per Image  Storage per Image (bytes)  Total Storage  Percentage of Original

50% 1,536 9,216 220 MB 75%
70% 922 5,532 132 MB 45%
80% 614 3,684 88 MB 30%
90% 307 1,842 44 MB 15%

Table 5: Storage requirements for different pruning ratios on CIFAR-10.

E DETAILED STRUCTURE OF FSE-NET

Model Structure:

SEBlock(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=N, out_features=N/16, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=N/16, out_features=N, bias=False)
(3): Sigmoid()

)

Figure 7: Detailed architecture of FSE-Net, where N represents the input channel dimension.

Figure [7] presents the architectural overview of our proposed FSE-Net. The network incorporates
a feature selective enhancement mechanism that adaptively models channel-wise feature interde-
pendencies. The selective attention mechanism helps the network focus on the most discriminative
features, thereby improving the overall performance of the model.

F TESTING ON DIFFERENT ADVERSARIAL ATTACKS

Tables [6]and [7] provide a comprehensive comparison of our algorithm’s performance against various
types of adversarial attacks, specifically /5-AA (adversarial attacks constrained in the /5 norm),
lo-AA (attacks constrained in the [y norm, targeting sparsity), and s-AA (structured adversarial
attacks). These tables highlight the robustness of our approach by demonstrating superior accuracy
and resilience under these diverse adversarial scenarios. Table [§] demonstrates the effectiveness of
our algorithm against adaptive attack.
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\ I-AA \ 11-AA
P ‘ 50% 60% 70% 80% 90% ‘ 50% 60% 70% 80% 90%
18.87 23.51 23.15 21.39 21.58|15.87 20.51 20.15 18.39 18.58
Random +0.12  £032 4027 +020 +029 | +0.62 +0.75 +£0.68 4055 +0.83
24.65 2427 33.92 2628 23.74|21.65 21.27 30.92 23.28 20.74
Entropy +045  +£031 4018 +041 +025 | +078 +0.67 +£085 +072  +0.63
40.86 4498 44.02 43.18 44.28 | 37.86 40.98 41.02 40.18 41.28
CSFEM +034 £038 4021 +044 +026 | +0.83 +058 +£079 +0.87 +0.68
43,16 47.32 46.97 4438 43.65|40.16 44.32 4297 41.38 40.65
ours-JE +0.19  £029 4014 +027 +043 | +072 +084 +£061 +076 +0.89
5870 62.19 56.46 55.14 54.04 | 55770 58.19 5346 51.14 51.04
ours-LF +023  +046 4036 +031 +020 | +0.86 +0.65 +£077 4059 +0.81
49.83 50.32 51.19 5272 51.21 |46.83 47.32 48.19 49.72 48.21
ours-JELF | +022 4041 4025 4037 4024 | +£069 4088 4066 +0.74 +0.57

Table 6: Performance of CIFAR-10 dataset on ResNet-18 under l5-AA (Croce & Heinl [2020) and
I1-AA (Croce & Hein| [2021)) attacks. We run every experiment five times and report their mean and
standard deviation.

Method 90 % 80% 70% 60 % 50%
Random 7.87£0.62 9.514+0.75 9.151+0.68 7.3910.55 7.58+0.83
Entropy 10.65+£0.78  10.27£0.67  19.924+0.85  12.284+0.72 9.74+0.63
CSFEM 26.86+0.83  29.984+0.58  30.02+0.79  29.18+0.87  30.28+0.68
ours-JE 29.16£0.72  33.32+£0.84  31.97+0.61  30.384+0.76  29.651+0.89

ours-LF 44.70+0.86  45.19+0.65  42.46+0.77  40.14£0.59  40.04£0.81
ours-JELF  35.83+0.69 36.32+0.88  37.19+£0.66  38.72+0.74  37.21+0.57

Table 7: Performance of CIFAR-10 dataset on ResNet-18 under s-AA (Zhong et al.} [2024), we run
every experiment five times and get their mean and standard deviation.

Method 90 % 80% 70% 60 % 50%

Random 13.97£0.62  18.61+0.75  18.25+0.68  16.49+0.55  16.68+0.83
Entropy 19.85+0.78  19.47+£0.67  29.124+0.85  21.48+0.72  18.94+0.63
CSFEM 35.96+0.83  39.084+0.58  39.12+0.79  38.28+0.87  35.38+0.68
ours-JE 38.36+£0.72  42.52+0.84  41.17+0.61  39.584+0.76 ~ 38.851+0.89
ours-LF 55.50+0.86  57.994+0.65  53.26+0.77  50.94£0.59  50.84+0.81

ours-JELF  46.63+0.69  47.12+0.88  47.99+0.66  49.52+0.74  48.01+£0.57

Table 8: Performance of CIFAR-10 dataset on ResNet-18 under /;-APGD (Croce & Heinl [2021)),
we run every experiment five times and get their mean and standard deviation.

G DETAILED EXPERIMENT RESULT OF OUR BASELINE EXPERIMENTS

Table [ presents comprehensive experimental results, where each configuration was repeated five
times to ensure statistical reliability. We report both the mean accuracy and standard deviation
(shown as +) to demonstrate the consistency and robustness of our method across multiple runs.
Tables [[Ta] and [TTH] present ablation studies on two key hyperparameters: learning rate and number
of iterations, which guided our selection of optimal values for the proposed method. Table [T0a]
Table[T0b] and Table [T0c demonstrate the transferability of our method across different lightweight
architectures (ShuffleNet, MobileNet-v2, and EfficientNet-B0). Our LF-based approach maintains
consistent superior robustness on both networks against various attacks, showing strong generaliza-
tion capability across different model architectures compared to baseline methods.

22



Under review as a conference paper at ICLR 2025

| | Prune Rate
Pruning Algorithm ‘ Attack ‘ CIFAR-10 ‘ CIFAR-100
| | 90% | 80% 70% 60% | S0% | 90% 80% | 70% | 60% 50%
AA 15.2740.63 | 21.5540.75 | 20.854+0.58 | 22.33+0.67 | 21.53:£0.72 | 12.2740.55 | 16.55+0.68 | 16.880.71 | 17.0340.64 | 17.57+0.59
Random PGD-20 | 16.2740.65 | 20.55+0.73 | 19.85+0.62 | 21.33£0.69 | 20.53+0.77 | 11.97£0.58 | 15.594+0.66 | 16.78+0.74 | 17.23+0.61 | 16.57+0.57
C&W | 16.3940.68 | 20.4540.71 | 18.83+0.64 | 20.53+0.76 | 20.7740.79 | 12.97+0.54 | 14.59+0.69 | 15.78:0.72 | 16.2340.63 | 14.57+0.56
AA 21.6540.67 | 21.27+0.74 | 30.9240.59 | 23.28+0.65 | 20.74+0.73 | 11.56+0.57 | 14.33+0.70 | 17.98+0.75 | 15.33+0.62 | 17.71£0.58
Entropy PGD-20 | 20.6840.64 | 20.87£0.72 | 20.92+0.61 | 21.2840.68 | 22.74+0.76 | 12.16+0.56 | 14.03+0.67 | 16.18+0.73 | 15.13+0.65 | 17.0140.60
C&W | 20.44+0.66 | 20.784+0.70 | 20.21:£0.63 | 21.174+0.75 | 22.83+0.78 | 12.44+0.53 | 12.35+0.71 | 17.18+0.74 | 16.37+0.64 | 17.514+0.55
AA 37.86+0.69 | 40.984+0.73 | 41.02+0.60 | 40.184+0.66 | 41.28+0.74 | 15.11£0.59 | 16.85+0.72 | 18.05+0.76 | 18.19+0.63 | 17.924+0.57
CCSFEM PGD-20 | 38.9740.63 | 40.11+0.71 | 39.99+0.62 | 39.76::0.67 | 41.914+0.75 | 13.98+0.55 | 15.92:0.68 | 13.0940.72 | 14.08+0.66 | 17.91-:0.61
C&W | 38.99£0.65 | 40.33+0.69 | 40.02+0.64 | 39.96+0.74 | 42.05+0.77 | 12.17+0.52 | 16.15£0.73 | 17.91£0.75 | 18.60£0.65 | 17.27+0.54
AA 40.16+0.68 | 44.3240.72 | 42.97+0.61 | 41.3840.65 | 40.65£0.73 | 16.15+0.58 | 17.12+0.71 | 21.37£0.77 | 20.09+0.64 | 18.6540.56
Ours-JE PGD-20 | 39.16+0.62 | 39.3240.70 | 41.07+0.63 | 40.88+0.66 | 42.95+0.74 | 14.76+0.54 | 16.88+0.69 | 17.01+0.71 | 16.8940.67 | 18.0540.62
C&W | 39.06£0.64 | 39.724+0.68 | 41.3740.65 | 40.96+0.73 | 43.05+0.76 | 12.99£0.51 | 17.32+0.72 | 18.074+0.76 | 19.88+0.66 | 18.95+0.53
AA 55.7£0.67 | 58.1940.71 | 53.46+0.62 51.14:+0.64 51.04--0.72 20.99+0.57 | 24.94:0.70 | 25.07-£0.78 | 25.3140.65 | 23.41+0.55
Ours-LF PGD-20 | 56.1840.61 | 56.05£0.69 | 51.9+0.64 50.61+0.65 50.07+£0.73 23.72+0.53 | 21.640.70 | 21.36+0.70 | 24.3940.68 | 23.75:0.63
C&W | 56.4240.63 | 56.21+0.67 | 54.14+0.66 54.38:£0.72 55.324+0.75 22.37+0.50 | 24.23:+£0.71 | 25.4840.77 | 26.39+0.67 | 28.69-+0.52
AA 46.54+0.66 | 47.35+0.70 | 48.89+0.63 49.72+0.63 48.18+0.71 20.39+0.56 | 20.53+0.69 | 22.47+0.79 | 22.94+0.66 | 22.85+0.54
Ours-JELF PGD-20 | 47.2440.60 | 48.59+0.68 | 49.64+0.65 50.25-£0.64 50.01+0.72 18.09+0.52 | 19.71-£0.71 | 20.9840.69 | 21.85+0.69 | 22.48--0.64
C&W | 47.61£0.62 | 48.12£0.66 | 49.01+0.67 48.19+0.71 48.66+0.74 18.99+0.49 | 20.01+0.72 | 21.54+0.78 | 22.03+0.68 | 21.9940.51

Table 9: We assess CIFAR-10 and CIFAR-100 performance under various adversarial attacks and
dataset pruning ratios. CCSFEM” uses forgetting, EL2N, and AUM scores with CCS to compute
the mean accuracy. Ours-JE” applies the joint-entropy score with CCS sampling, Ours-LF” uses
Learnable Frequency Pruning on the total dataset, and Ours-JELF” combines Learnable Frequency
Pruning (preserving 50% of frequency components) with joint-entropy based coreset selection using
CCS sampling, we run every experiment five times and get their mean and standard deviation.
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Pruning Rate (%)

Pruning Algorithm  Attack

90 80 70 60 50
AA 11.27£0.45 17.55£0.33 16.85+£0.42 18.33:0.36 17.53+£0.41
Random PGD-20 12.274+0.44 16.55+0.35 15.85+0.38 17.33+£0.43 16.53+0.42

C&W 12394036 16454047 14.83+£0.35 16.53+£0.39 16.77+0.38

AA 17.65+0.41 17.27£0.37 26.92+0.49 19.2840.38  16.74+£0.45
Entropy PGD-20 16.68+0.43 16.87+0.39 16.9240.42 17.28+0.51 18.74+0.37
C&W  16.44+0.38 16.78+0.52 16.21+0.35 17.17+£0.46 18.83+0.44

AA 33.8640.43 36.9840.38 37.02+£0.50 36.18+0.39 37.28+0.47
CCSFEM PGD-20 34.97+0.34 36.11£0.55 35.99+0.43 35.76+0.44 37.91+0.36
C&W 34994051 36.33+0.44 36.02+£0.39 35.96+0.53 38.05+0.37

AA 36.16+0.44 40.32+0.35 38.974+0.56 37.384+0.42 36.65+0.39
Ours-JE PGD-20 35.16+0.37 35.32+0.54 37.074£0.41 36.88+0.34 38.95+0.50
C&W  35.06+0.55 35.72+£0.43 37.37+£0.38 36.96+0.47 39.05+0.39

AA 51.704+0.39  54.1940.53 49.46+0.44 47.14+0.36 47.04+0.54
Ours-LF PGD-20 52.18+0.52 52.05+0.41 47.904+0.45 46.61:£0.56 46.07+0.35
C&W 52424045 52214050 50.14£0.33 50.38+0.43 51.32+0.55

AA 42.54+0.49 4335+0.36 44.89+0.54 457240.37 44.18+0.47
Ours-JELF PGD-20 43.24+0.38 44.59+0.51 45.6440.42 46.25+0.55 46.014+0.34
C&W  43.61+0.46 44.12+£0.36  45.01+£0.53 44.1940.43  44.66+0.56

(a) ShuffleNet

Pruning Rate (%)

Pruning Algorithm  Attack

90 80 70 60 50
AA 13.77£0.41  19.85£0.36  19.15+0.42 20.83+0.37 19.93+£0.44
Random PGD-20 14.77+0.45 18.85+0.34 18.15+0.38 19.83+0.43 18.93+0.43

C&W  14.894+0.35 18.75+0.48 17.13+£0.37 18.93+£0.38 19.17+0.37

AA 20.15+0.42  19.77£0.37  29.42+0.50 21.78+0.40 19.24+0.46
Entropy PGD-20 19.18+£0.44 19.37+0.38 19.4240.43 19.78+0.52 21.2440.36
C&W  18.944+0.40 19.2840.53 18.71£0.34 19.67+0.47 21.33+0.43

AA 36.36+0.44 39.48+0.37 39.52+0.51 38.68+0.38 39.78+0.48
CCSFEM PGD-20 37.47+0.33 38.61+0.56 38.49+0.42 3826045 40.41+0.35
C&W 37494052 38.83+0.43 38.52+0.38 38.46+0.54 40.55+0.38

AA 38.66+0.45 42.82+0.34 41.47+0.57 39.884+0.43 39.15+0.38
Ours-JE PGD-20 37.66+£0.36  37.82+0.55 39.574+0.42 39.38+0.33 41.45+0.51
C&W  37.56+0.56 38.2240.42 39.87£0.37 39.46+0.48 41.55+0.38

AA 54.204+0.38  56.69+0.54 51.96+£0.43 49.64+0.35 49.54+0.55
Ours-LF PGD-20 54.68+0.53 54.55+0.40 50.40+0.46 49.11:+£0.57 48.574+0.34
C&W 54924044 5471£0.51 52.64+0.32 52.88+0.44 53.82+0.56

AA 45.0440.50 45.85+£0.37 47.39+£0.55 48.22+0.36 46.68+0.48
Ours-JELF PGD-20 45.744+0.37 47.094£0.52 48.14+£0.43 48.75+0.56 48.51+0.33
C&W  46.11+0.47 46.624+0.35 47.51£0.54 46.69+0.42 47.16+0.57

(b) MobileNet-v2

Pruning Rate (%)

Pruning Algorithm  Attack

90 80 70 60 50
AA 14.89+0.43 21.23+£0.35 20.45+0.44 21.984+0.38 21.03+£0.42
Random PGD-20 15.774£0.46 20.05+£0.37 19.35+£0.40 20.83+0.45 19.98+0.44

C&W 15.894+0.38  19.95£0.45 17.93+£0.37 19.984+0.41 20.27+0.40

AA 21.15+0.42  20.774£0.39  30.42+£0.47 22.78+0.40 20.24+0.43
Entropy PGD-20 20.18+£0.45 20.37+0.41 20.4240.44 20.78+0.49 22.244+0.39
C&W  19.9440.40 20.2840.50 19.71+£0.37 20.674+0.44 22.33+0.42

AA 37.36+0.45 40.48+0.40 40.52+£0.48 39.68+0.41 40.78+0.45
CCSFEM PGD-20 38.47£0.36  39.05+0.53 39.4940.45 39.26+£0.46 41.41+0.38
C&W  38.49+0.49 39.83+£0.46 39.52+0.41 39.46+0.51 41.55+0.39

AA 39.664+0.46 43.82+0.37 42.47+0.54 40.88+0.44 40.15+0.41

Ours-JE PGD-20 38.664+0.39 38.82+0.52 41.07£0.43 40.38+0.36 42.45+0.48
C&W  38.5640.53 39.22+0.45 40.87+£040 40.4640.45 42.55+0.41

AA 55.204+0.41  57.6940.51 52.96+£0.46 50.64+0.38 50.5440.52

Ours-LF PGD-20  55.68+0.50 55.55+0.43 51.4040.47 50.11:£0.54 49.57+0.37
C&W 55924047 5571+£0.48 53.64+0.35 53.88+0.45 54.82+0.53

AA 46.04+0.47 46.89+0.38 48.39+£0.52 49.22+0.39 47.68+0.45
Ours-JELF PGD-20 46.744+0.40 48.09+0.49 49.14+0.44 49.75+0.53 49.51+0.36
C&W  47.11+0.44 47.624+0.38 48.51+£0.51 47.69+0.51 48.16+0.43

(c) EfficientNet-B0O

Table 10: Performance comparison of different pruning algorithms under various attacks on CIFAR-
10 with different network architectures. Each experiment is repeated five times to obtain the mean
and standard deviation.
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Learning Rate 0.1 0.05 001 0.005 0.001 0.0001
Accuracy (%) 48.18 47.11 47.09 46.88 46.75 47.08

(a) Learning Rate vs. Accuracy

Iterations 40000 50000 30000 45000 15000 20000
Accuracy (%) 48.18 47.02 4699 47.18 46.15 47.11

(b) Iterations vs. Accuracy

Table 11: Ablation study on hyper-parameters when using “Ours-JELF” under Autoattack and prun-
ing ratio 50% on CIFAR-10.

H VISUALLIZATION OF OUR CORESET SELECTION

As illustrated in Figure 8] two key observations emerge: 1) The visual fidelity remains remarkably
preserved even after 50% frequency component pruning, and their differences are hard to check
in visualization, demonstrating the effectiveness of our frequency pruning strategy in maintaining
essential image characteristics. 2) Images selected for the coreset exhibit notably distinct structural
features compared to their non-selected counterparts.

Figure[D]illustrates that while the exact loss landscapes vary across 5 independent runs, the bold lines
are averages, light-colored lines are for other cases, the relative smoothness characteristics between
different methods remain consistent, validating the reliability of our comparative analysis.

(a) Original images selected into coreset when (b) Original images not be selected into coreset
pruning ratio = 90%. when pruning ratio = 90%.

(c) Images with 50% frequency pruning ratio se- (d) Images with 50% frequency pruning ratio not
lected into coreset when pruning ratio = 90%. be selected into coreset when pruning ratio = 90%.

Figure 8: Visuallization of CIFAR-10 trainset.

Entropy Loss Landscape Forgetting Loss Landscape

3.0 3.0
2.5 —— hard 2.5 —— hard
— easy / — easy
2.0} random / 208 \ - random
() n
1.5 81.5
1.0 1.0
0.5 0.5 ~
0.0-75 —0.5 0.0 05 1.0 0075 —0.5 0.0 05 1.0
X Coordinates X Coordinates
(a) Entropy Loss Landscape. (b) Forgetting Loss Landscape.

Figure 9: Plot the line with 5 runs, the lighter color indicates the result in five parts, and the darker
line indicates the average value.
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I ADDITIONAL EXPERIMENT RESULTS ON ADVERSARIAL ROBUSTNESS

Table [T24] Table[T2b|and Table[T2c]shows more results when the model was attacked by adversarial
samples, we can find that our algorithms have a better performance on improve the adversarial
robustness of the model compare with traditional dataset pruning algorithms.

Pruning Algorithms (Attack) | Pruning Ratio

| 95% | 90% | 80% | 70% | 60% | 50% | 30%

Random (AA) 11.59(12.27|16.55|16.88 | 17.03 | 17.57 | 16.66
Entropy (AA) 10.50|11.56 | 14.33|17.98|15.33 | 17.71|17.81
CCSFEM (AA) 11.01|15.11|16.85|18.05|18.19|17.92|16.17
ours-JE (AA) 12.92(16.15(17.12|21.37|20.09 | 18.65| 17.99
ours-LF (AA) 13.37 | 20.99 | 24.94 | 25.07 | 25.31 | 23.41 | 23.89
ours-JELF (AA) 14.10 | 20.39 | 20.53 | 22.47 | 22.94 | 22.85 | 22.15
(a) CIFAR-100 results.
Pruning Algorithms (Attack) | Pruning Ratio

| 95% | 90% | 80% | 70% | 60% | 50% | 30%

Random (AA) 18.59 | 15.27 | 21.55 | 20.85 | 22.33 | 21.53 | 19.66
Entropy (AA) 18.50 | 21.65 | 21.27 | 30.92 | 23.28 | 20.74 | 21.83
CCSFEM (AA) 20.82 | 37.86 | 40.98 | 41.02 | 40.18 | 41.28 | 41.12
ours-JE (AA) 22.92 | 40.16 | 44.32 | 4297 | 41.38 | 40.65 | 41.70
ours-LF (AA) 40.70 | 55.70 | 58.19 | 53.46 | 51.14 | 51.04 | 51.37
ours-JELF (AA) 37.10 | 46.54 | 47.35 | 48.89 | 49.72 | 48.18 | 47.46

(b) CIFAR-10 results.
Pruning Algorithms (Attack) | Pruning Ratio

| 95% | 90% | 80% | 70% | 60% | 50% | 30%

Random (AA) 10.59 | 15.87 | 20.51 | 20.15 | 18.39 | 18.58 | 19.46
Entropy (AA) 11.82 | 16.87 | 18.06 | 21.02 | 18.11 | 17.28 | 20.72
CCSFEM (AA) 12.82 | 15.86 | 16.96 | 18.02 | 17.11 | 19.28 | 19.72
ours-JE (AA) 1492 | 19.16 | 21.51 | 22.17 | 21.18 | 20.96 | 21.78
ours-LF (AA) 23.50 | 25.60 | 27.19 | 26.46 | 27.44 | 27.14 | 26.31
ours-JELF (AA) 20.10 | 23.54 | 26.15 | 25.03 | 25.22 | 24.95 | 24.89

(c) ImageNet-1K results.

Table 12: Comparison of pruning algorithms under different adversarial attacks for (a) CIFAR-
100, (b) CIFAR-10, and (c) ImageNet-1K datasets. “Ours-JE” refers to coreset selection using the
joint-entropy score with CCS sample strategy, “Ours-LF” applies Learnable Frequency Pruning, and
“Ours-JELF” combines Learnable Frequency Pruning (preserving 50% of frequency components)
with coreset selection using the joint-entropy score and CCS sample strategy. Each subfigure illus-
trates the robustness of the methods across different pruning ratios.

J  ADDITIONAL EXPERIMENT RESULTS ON CLEAN DATASET

Table[T3a) and Table[T3b] show that our algorithms are better than SOTA dataset pruning algorithms
which show that our algorithms also have a better performance on a clean dataset which shows
that our dataset pruning also have potential to improve the performance of dataset pruning without
adversarial attack.
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Pruning Rate  30% 50% 70% 80%  90%

Random 9433 934 9094 87.98 79.04
Entropy 9444 92.11 85.67 79.08 66.52
Forgetting 9536 9529 90.56 62.74 34.03
EL2N 9544 9461 87.48 7032 2233
AUM 95.07 9526 9136 57.84 28.06
CCSFEM 95.17 94.67 92774 90.55 86.15
Ours-LF 95.35 94.67 9433 93.21 89.82
Ours-JE 95.15 94.07 92.03 90.98 85.86

Ours-JELF 95.11 94.02 9193 90.18 84.86
Ours-FEMLF 9519 95.07 93.23 9198 87.06

(a) Comparison on CIFAR-10 without adversarial attack. The accuracy on the whole dataset is
95.41%.

Pruning Rate 30% 50% 70% 80%  90%

Random 74.59 7107 653 57.36 44.76
Entropy 7226 6326 5049 41.83 28.96
Forgetting 7691 68.6 38.06 24.23 1593
EL2N 76.25 6590 3442 1551 8.36
AUM 76.93 6742 30.64 1638 8.77
CCSFEM 76.33 7344 68.30 63.01 54.39
Ours-LF 78.38 77.24 7497 7185 61.94
Ours-JE 75.15  72.07 68.03 6098 53.86

Ours-JELF 7511 74.02 68.13 59.19 54.16
Ours-FEMLF 7733 7545 67.30 63.81 55.39

(b) Comparison on CIFAR-100 without adversarial attack. The accuracy on the whole dataset is
78.21%.

Table 13: Comparison of different pruning methods across various pruning rates on CIFAR-10
and CIFAR-100 without adversarial attack. “Ours-LF” applies Learnable Frequency Pruning, and
“Ours-FEMLF” combines Learnable Frequency Pruning with CCSFEM coreset selection algorithm.
Accuracy on the full dataset is shown for reference in each subtable.

K ANOTHER EXPERIMENT RESULTS ON USING ADVERSARIAL TRAINING ON
PRUNED DATASET

In this section, we present additional results evaluating adversarial training on pruned datasets. Ta-
ble [T4a] and Table [T4b] compare different adversarial training methods under various attack scenar-
io0s. In Table@ we include comparisons with AWP (Wu et al.| 2020) and TRADES (Zhang et al.|
2019), showing that our algorithm outperforms these state-of-the-art methods in dataset pruning
scenarios. Table further demonstrates that our method achieves superior results on CIFAR-100,
outperforming other adversarial training algorithms even on more complex datasets.
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| Original Adversarial Training | Sample Adversarial Training | Pre-trained Adversarial Training

| 50% coreset | Original Dataset | 50% coreset | Original Dataset | 50% coreset | Original Dataset

TDFAT Acc:46.41 Acc:56.05 Acc:26.05 Acc:39.72 Acc:36.32 Acc:41.66
Time:59.58s | Time:119.69s | Time:18.53s Time:39.69s Time:10.35s Time:17.66s
CURC Acc:45.92 Acc:54.02 Acc:30.21 Acc:35.15 Acc:39.88 Acc:42.18
Time:74.12s | Time:149.52s | Time:17.87s Time:38.52s Time:9.41s Time:18.71s
RATTE ‘ Acc:43.91 Acc:53.98 ‘ Acc:32.05 Acc:34.92 ‘ Acc:35.15 Acc:39.73
Time:64.33s | Time:131.35s | Time:17.23s Time:38.35s Time:10.01s Time:17.67s
AWP Acc:42.11 Acc:55.89 Acc:28.21 Acc:25.15 Acc:36.88 Acc:33.18
Time:78.12s | Time:155.59s | Time:18.89s Time:37.31s Time:9.61s Time:18.55s
Acc:42.01 Acc:52.95 Acc:31.05 Acc:32.62 Acc:33.11 Acc:35.73
TRADES (1/ = 6) ‘ Time:62.13s | Time:130.05s ‘ Time:17.18s | Time:38.27s ‘ Time:10.05s | Time:16.67s
FATSC Acc:14.99 Acc:34.21 Acc:22.82 Acc:25.61 Acc:15.21 Acc:19.79
Time:59.82s | Time:122.71s | Time:17.12s Time:39.71s Time:9.82s Time:18.98s
LF Acc:50.01 Acc:55.32 Acc:50.01 Acc:50.07 Acc:50.01 Acc:50.07
ours- Time:9.51s | Time:17.64s | Time:9.51s | Time:17.64s | Time:9.69s Time:17.66s
(a) Comparison under PGD-20 (On CIFAR-10).
| Original Adversarial Training | Sample Adversarial Training | Pre-trained Adversarial Training
| 50% coreset | Original Dataset | 50% coreset | Original Dataset | 50% coreset | Original Dataset
TDFAT Acc:44.41 Acc:48.33 Acc:27.05 Acc:40.52 Acc:35.82 Acc:42.96
Time:58.68s | Time:118.59s | Time:18.53s Time:38.69s Time:10.35s Time:17.59s
CURC Acc:45.92 Acc:52.48 Acc:32.32 Acc:36.28 Acc:37.98 Acc:43.23
Time:75.02s | Time:148.62s | Time:17.87s Time:38.52s Time:9.71s Time:18.85s
RATTE Acc:45.09 Acc:52.12 Acc:34.65 Acc:36.91 Acc:38.19 Acc:40.83
Time:65.13s | Time:130.75s | Time:17.23s Time:38.35s Time:10.01s Time:17.87s
FATSC Acc:19.79 Acc:28.19 Acc:26.87 Acc:27.68 Acc:20.51 Acc:22.77
Time:58.12s | Time:121.88s | Time:17.12s Time:39.71s Time:9.92s Time:17.96s
LF Acc:48.66 Acc:50.07 Acc:48.66 Acc:50.07 Acc:48.66 Acc:50.07
ours-L¥ | Time:10.51s | Time:17.14s | Time:9.51s | Time:17.64s | Time:9.49s Time:17.87s
(b) Comparison under C&W (On CIFAR-10).
| Original Adversarial Training | Sample Adversarial Training | Pre-trained Adversarial Training
| 50% coreset | Original Dataset | 50% coreset | Original Dataset | 50% coreset | Original Dataset
TDFAT Acc:21.41 Acc:25.69 Acc:12.09 Acc:15.72 Acc:12.01 Acc:12.36
Time:59.58s | Time:120.79s | Time:18.53s Time:39.69s Time:10.15s Time:17.66s
CURC Acc:22.92 Acc:24.48 Acc:12.33 Acc:14.15 Acc:12.91 Acc:13.08
Time:74.32s | Time:151.52s | Time:17.87s Time:38.52s Time:9.31s Time:17.96s
RATTE Acc:21.97 Acc:22.59 Acc:13.05 Acc:15.15 Acc:14.33 Acc:15.03
Time:64.33s | Time:131.35s | Time:17.27s Time:38.39s Time:10.29s Time:17.88s
FATSC Acc:14.24 Acc:17.39 Acc:16.82 Acc:17.78 Acc:11.02 Acc:13.93
Time:59.89s | Time:122.72s | Time:17.18s Time:39.77s Time:9.35s Time:18.77s
ours-LF Acc:22.85 Acc:23.14 Acc:22.85 Acc:23.14 Acc:22.85 Acc:23.14
Time:9.53s Time:16.94s Time:9.88s Time:17.14s Time:9.19s Time:18.64s

(c) Comparison under AutoAttack (On CIFAR-100).

Table 14: We compare recent adversarial training algorithms with our Learnable Frequency Pruning
method under different adversarial attacks: PGD-20, C&W, and AutoAttack. “Original Adversarial
Training” applies standard AT on the entire dataset, while “Sample Adversarial Training” applies
adversarial perturbations to a random subset of images each epoch, leaving the rest unchanged to
match our method’s training cost. Finally, “ pre-trained Adversarial Training” uses a pre-trained
ResNet-18 model with high adversarial robustness to generate adversarial perturbations without
further optimization during training, ensuring no additional Time. We train datasets of the same size
for an equal number of epochs under identical conditions.
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