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ABSTRACT

We study whether embedding global topology and local transport into a
fixed reservoir can improve phase tracking and prediction. From a single
delay-embedded trajectory, we build a recurrent operator in two parts: (i)
long-lived H; classes from persistent cohomology are converted to circular co-
ordinates whose average phase velocities instantiate stable 2 x 2 rotation blocks,
and (ii) short-horizon transition counts over a coarse partition define a Markov
model whose action is lifted back to neuron space through sparse, stochastic pool-
ing and lifting maps. A convex blend of these topological and flow components is
scaled by power iteration to a preset operator-norm bound, yielding a leaky ESN
with a straightforward echo-state guarantee; only a ridge-regularized linear read-
out is trained. The resulting reservoir is fixed, interpretable, and analyzable: its
internal oscillators reflect the attractor’s dominant loops, while its couplings align
with observed local transport. In experiments on chaotic systems and real-world
series, the method is data-efficient and maintains the computational profile of stan-
dard ESNs, while delivering improved phase tracking and competitive—often su-
perior—multistep forecasts relative to tuned random reservoirs of the same size.
Overall, the framework offers a principled alternative to sampling-based wiring
by learning the reservoir once from data.

1 INTRODUCTION

Learning nonlinear dynamics from time series remains a central challenge in machine learning and
scientific computing. Recurrent neural networks (RNNs) provide a flexible parametric family but are
notoriously difficult to train and analyze. Reservoir computing addresses this by fixing the recurrent
weights and training only a linear readout, as in Echo State Networks (ESNs) (Jaeger, |2001) and
Liquid State Machines (LSMs) (Maass et al.,|2002). In classical ESNs, the recurrent matrix is drawn
at random and scaled to operate in a regime that heuristically balances memory and nonlinearity.
While simple and effective, random reservoirs pose two enduring limitations: (i) lack of structure
and interpretability—the internal dynamics bear no explicit relationship to the geometry or flow of
the target system; and (ii) fragile stability criteria—widely used spectral-radius heuristics neither
guarantee nor precisely characterize the Echo State Property (ESP) (Yildiz et al.l 2012} |Buehner &
Young, [2006; Manjunath & Jaeger, 2013). This paper proposes a principled alternative where the
reservoir itself is learned once, offline from a single trajectory, with explicit ties to the data’s global
topology and local flow, and with a clean, verifiable ESP certificate.

Our starting point is the observation that many natural and engineered dynamical systems evolve on
low-dimensional attractors that admit meaningful topological summaries and coarse-grained trans-
port structure. Through delay-coordinate reconstruction (Takens| 1981} [Packard et al., |1980; [Sauer
et al., |1991)), a single multivariate time series yields a point cloud on which persistent homology
reveals long-lived one-dimensional homology classes (loops) that signal recurrent motion (Edels-
brunner & Harer, [2010). Persistent cohomology then supplies circular coordinates that parameter-
ize these loops by angles, together with harmonic representatives that minimize discrete Dirichlet
energy (de Silva & Vejdemo-Johansson, [2009). Efficient implementations such as RIPSER make
H, computations practical on large samples (Bauer} |2021). At the same time, short-horizon transi-
tions between coarse cells along the trajectory define a Markov chain that approximates transport of



the transfer (Perron—Frobenius) operator via an Ulam-type discretization (Dellnitz & Junge, [1999;
Froyland, 2001} |Klus et al.,|2016). Such coarse models are well established in molecular and fluids
applications and connect naturally to Koopman/operator-theoretic perspectives (Prinz et al., 2011}
Williams et al.}[2015; [Klus et al.,|2016). We leverage these insights to construct Persistent Homology
Reservoir (PHR): a leaky ESN whose recurrent matrix W is a convex blend of two analyzable oper-
ators learned from the data: (i) a fopological rotation component, Wi, that instantiates data-driven
2 x 2 rotation blocks with angular velocities estimated from persistent circular coordinates; and (ii)
a lifted Markov flow component, Wy, = BP A, which pools reservoir states down to a coarse par-
tition, advances them by the empirical Markov matrix P, and lifts them back by stochastic maps A
(row-stochastic) and B (column-stochastic). This design explicitly materializes long-lived loops as
stable internal oscillators while imprinting short-time flow directions into the reservoir in a contrac-
tive way.

Our primary contributions can be summarized as follows: Topology- and flow-grounded reservoir
design. We introduce a fixed, analyzable ESN reservoir learned from a single trajectory by blend-
ing (a) persistent-cycles—induced rotation blocks aligned with the data’s H; structure (de Silva &
Vejdemo-Johansson, 2009; |[Edelsbrunner & Harer, 2010; Bauer, 2021)), and (b) a lifted short-horizon
Markov operator that encodes local flow directions in the spirit of Ulam discretizations of transfer-
/Koopman operators (Dellnitz & Jungel 1999} [Froyland, 2001; Klus et al., 2016} Williams et al.|
2015); Interpretability and modularity. The rotation blocks serve as internal oscillators with
interpretable physical/phase meaning, while the lifted Markov component offers a coarse-grained,
operator-theoretic view of transport—both modules are plug-and-play and require no backpropaga-
tion through time; Single-trajectory practicality. The entire reservoir is learned offline from one
embedded time series using scalable H; persistence and linear-time transition counting, after which
standard ridge regression suffices for readout training (Ozturk et al., |2007; Jaeger, 2001).

Ergo, PHR replaces randomness by geometry and flow: it bakes the long-lived loops and local
transport of the underlying attractor into the reservoir, provides clear stability guarantees, and yields
interpretable internal modes. We view this as a step toward structure-aware reservoirs that inherit
invariants from the data, aligning reservoir computing with contemporary operator-theoretic and
topological data analysis. Notes on usability across domains is provided in Appendix[A.4|

2 BACKGROUND AND RELATED WORKS

Reservoir computing and the Echo State paradigm. Reservoir Computing (RC) separates non-
linear state evolution from linear readout training: a fixed high-dimensional recurrent system (reser-
voir) is driven by inputs, and only a linear map from states to outputs is learned. Two seminal
instantiations are ESNs (Jaeger, |2001) and LSMs (Maass et al., 2002). Empirical effectiveness and
design heuristics of RC are well-documented, including input scaling, spectral scaling of the recur-
rent matrix, sparsity, and leakage (LukoseviCius & Jaeger, |2009; |Ozturk et al., [2007; [Schrauwen
et all 2007). ESP underpins ESN practice: loosely, state trajectories must asymptotically forget
initial conditions for a given input. While early practice relied on bounding the spectral radius of the
random reservoir, later analyses established more precise sufficient conditions phrased in operator
norms and input Lipschitz constants, clarifying the role of leakage and contractivity (Buehner &
Young, [2006; |Yildiz et al.| [2012; Manjunath & Jaeger, 2013)). These results motivate designs that
keep the reservoir analyzable while guaranteeing stability of the driven dynamics.

Structured and learned reservoirs. Beyond i.i.d. random matrices, numerous works investigated
structure to improve robustness, memory, or interpretability: orthogonal/unitary or near-isometric
recurrent operators (Arjovsky et al., | 2016; |Henaff et al., 2016), cyclic or minimalist reservoirs (Ro-
dan & Tino| 2011), and depth via stacked or leaky layers (Gallicchio & Micheli, [2017). Other
lines partially shape the reservoir from data without full BPTT, e.g., FORCE learning that adjusts a
feedback term to stabilize target dynamics (Sussillo & Abbott, 2009), or conceptors that gate ESN
dynamics to represent patterns (Jaeger, 2014). More recently, geometry-aware designs have used lo-
cal tangent-space information to inform the reservoir using patch-wise Jacobian lifting (Singh et al.,
20235). These approaches show that carefully designed or weakly learned recurrent operators can
preserve RC’s training simplicity while improving alignment to tasks. However, few methods learn
a fixed W from a single trajectory with an explicit ESP certificate and a geometric interpretation of
internal modes, which is the gap our approach addresses.



Delay embeddings and topological summaries of dynamics. Given a scalar or vector time se-
ries, delay-coordinate maps reconstruct diffeomorphic images of generic attractors under mild ob-
servability assumptions (Takens, [1981} Packard et al., [1980; Sauer et al., [1991)). On the resulting
point cloud, persistent homology extracts multi-scale topological features (e.g., H; loops) robust
to sampling noise (Edelsbrunner & Harer, 2010). For dynamical data, sliding-window embeddings
coupled with persistent homology capture recurrent structure and quasiperiodicity in signals (Perea
& Harer, 2015). Crucially for coordinates, persistent cohomology supplies representative cocycles
that can be continued to circular coordinates—angles on S'—via discrete harmonic extension with
energy minimization; these have been shown to parameterize long-lived loops coherently along tra-
jectories (de Silva & Vejdemo-Johansson, [2009). Efficient software such as RIPSER and libraries
like giotto—-tda make these computations scalable for large samples (Bauer, |2021} [Tauzin et al.}
2021).

Coarse-grained transport: Ulam, transfer operators, and Koopman learning. A complemen-
tary perspective summarizes short-time dynamics by coarse transitions between partition elements.
Ulam’s method approximates the Perron—Frobenius (transfer) operator by a row-stochastic matrix
obtained from empirical transition counts between cells; this idea underlies a large literature on co-
herent sets, metastability, and Markov State Models (MSMs) (Dellnitz & Jungel |1999; [Froyland,
2001} Prinz et al., [2011). In parallel, Koopman/operator-theoretic approaches yield linear surro-
gates of nonlinear dynamics on lifted function spaces; Dynamic Mode Decomposition (DMD) and
Extended DMD (EDMD) are widely used data-driven realizations (Schmid, [2010; Williams et al.,
2015; Klus et al.,|2016)). These lines show that coarse Markov models can encode directionality and
slow transport directly from data, while operator-lifting connects naturally to linear evolutions in
higher-dimensional representations.

‘ Rotation blocks = Wie, ‘

Figure 1: PHR schematic. From a trajectory {z;}, a delay embedding X feeds two modules:

(i) Topology (blue): H" persistent cohomology on a subsample Z"™) yields circular coordinates
and mean angular velocities {@}, }, instantiating 2 x 2 rotation blocks Wi.p; (ii) Flow (green): k-
means, short-horizon counts (with pseudocounts/teleport), and stochastic pool-lift maps A, B pro-
duce Wiow. These are blended with small noise and power—scaled to |W |2 = p* (orange), giving a
stability certificate. The leaky ESN then runs, and a quadratic lift drives ridge regression for Woy,.

Positioning. PHR lies at the intersection of these strands. From RC, we keep the fixed reservoir
and cheap linear readout, but we replace randomness with a learned, analyzable W. From TDA,
we extract persistent circular coordinates that yield data-driven internal oscillators (explicit 2 x 2
rotations) tied to long-lived loops on the embedded attractor (de Silva & Vejdemo-Johansson| {2009
Edelsbrunner & Harerj, [2010). From transfer-operator discretization, we borrow empirical short-
horizon Markov models and [ift them back to neuron space to imprint local flow (Froyland, 2001}
Dellnitz & Junge}, 1999 Prinz et al.|[2011). Unlike unitary/orthogonal RNNs (Arjovsky et al.|[2016)
or minimalist/structured reservoirs (Rodan & Tinol [2011])), our construction is data-determined and
modular: the topological (W) and flow (Wy,w) components can be varied independently, and W is
finally scaled to meet a norm bound that yields an ESP certificate in the leaky ESN setting (Buehner
& Young, [2006; [Yildiz et al., [2012). Compared with Koopman/DMD/EDMD, which learn linear
models in feature space (Schmid,|2010; |Williams et al.,[2015)), we instead learn the recurrent opera-



tor of a nonlinear state machine while keeping analysis-friendly stability control and interpretability
of internal modes. In a broader context of system identification vs. RC., data-driven dynamics learn-
ing spans from sparse model discovery (e.g., SINDy) (Brunton et al.,|2016) and neural ODEs (Chen
et al.| 2018)) to Koopman autoencoders (Lusch et al., [2018). These approaches aim to learn explicit
evolution laws or latent linearizations and typically require gradient-based training. RC trades exact
parametric fidelity for rapid training and stability guarantees. PHR aims to tighten this trade-off:
retain ESN-level efficiency while injecting geometry (loops) and local transport (Markov flow) into
W, with a clear ESP certificate and without backpropagating through time.

3 METHODOLOGY

Problem statement. Let {u;}2, c R%bs be an observed trajectory of an unknown dynamical
system. Our goal is to learn once, offline a fixed recurrent operator W € RY*¥ for an ESN such
that (i) W encodes global recurrent structure (long-lived loops) and local short-horizon transport,
(i) W admits a uniform contraction certificate, and (iii) only a linear readout is trained thereafter.
As overviewed in Fig. [I| we delay-embed X = {x;}L, < R™dbs extract K topological modes
(circular coordinates = angular velocities {wy}) to build Wi, (block 2 x 2 rotations), estimate
a short-horizon coarse Markov model P and lift it to Wy, then blend and scale W = aWi,, +
BWiow + EWhoise to a target operator norm (yielding an ESN with a clean echo-state certificate).

Intuition. At a high level, PHR builds a single, fixed reservoir that mirrors two complementary
facets of the observed dynamics. First, a delay embedding reconstructs the attractor, from which
persistent cohomology extracts a few long-lived 1D loops; each loop is turned into a (2 x 2) ro-
tation block with the loop’s mean angular velocity, yielding a topology-aware operator Wy, that
preserves global recurrent structure (§3.1)). Second, to encode short-horizon transport, we partition
the embedded cloud, count transitions over a small horizon, and form a row-stochastic Markov ma-
trix P; sparse pooling/lifting maps (A, B) then realize a lifted flow operator Wiy, = BP™ A that
advances coarse “mass” and projects it back to neurons (§3.2). These two channels are blended with
a tiny isotropic noise term that only breaks algebraic degeneracies, and the result is scaled by power
iteration to a target operator norm p, < 1, giving an explicit echo-state (contraction) certificate inde-
pendent of architectural details (§3.3). The outcome is a reservoir whose internal modes correspond
to data-driven oscillations while its local transitions reflect the empirically observed flow; stability
is guaranteed by construction, and learning reduces to a single ridge-regression readout.

3.1 PERSISTENT COHOMOLOGY-DRIVEN OSCILLATOR SYNTHESIS

Delay embedding and PH subsampling. From the observed sequence, we form a delay-coordinate
embedding z; = [utT, Uiy e utTf(mq)T]T € Rmdovs ¢ = (m - 1)7,...,T, which (under
generic observability conditions) reconstructs the attractor up to diffeomorphism (Takens| 1981}
Packard et al.,|1980; |Sauer et al., [1991). For persistent (co)homology we operate on a subsampled
point cloud ZFH) = {2, 2, Lo 24 406, + with stride s € N to control the O(n?) distance cost.
Let npy = |ZPH)| and let D e R75™ """ be the Euclidean distance matrix.

Persistent cohomology and circular coordinates. We compute Vietoris—Rips persistent cohomol-
ogy up to degree one on the metric space (Z (PH) D) over a prime field IF,,, obtaining H ! intervals
{(bg, dg)} , and representative 1-cocycles {c/} (Edelsbrunner & Harer, |2010). For each selected
class £, we pick a working scale e € (by, dy); the implementation defaults to a near-death choice
g¢ = dg— 107 to ensure a sufficiently connected 1-skeleton while staying within the class’s lifespan.
Let Gy = (V, E;) be the Rips 1-skeleton at threshold ¢, i.e., B, = {(i,5) € V2:i < j, D;; < eg}.

Following |de Silva & Vejdemo-Johansson| (2009), we lift the cocycle ¢, to edge phases agf) €
(—%, %] on E, by mapping coefficients a;; € F, to a;;/p and wrapping to (—%, %] We then solve a
discrete harmonic extension problem for vertex potentials (*) ¢ R™PH that minimize the weighted
Dirichlet energy subject to matching the lifted edge phases in least squares

. 2 (default),
9O = arg min Z Wi (19j —; - ag)) , wi; =y Dij+e (1
¢ (i.5)eE, 1 (unit weights),



with a small € > 0 for numerical safety. Writing M for the oriented incidence of Gy and W =
diag(w;; ), the normal equations are (L + ul)¥ = b, L:= M"WM, b:= M"Wa, <« 1, which
we solve per connected component with a gauge anchor (fix one vertex) and a tiny Tikhonov term p
to regularize near-singular components; the implementation uses a sparse direct solve with an LSQR
fallback (Paige & Saunders, [1982). The circular coordinate (angle) associated with class £ is then

91@) = wrap(,mﬂ(%r 191(0), i € V, providing an S!-valued coordinate that varies coherently along
the loop (de Silva & Vejdemo-Johansson, [2009).

Circular coordinates — oscillators. Let 9t(£) denote the angle associated with z; € Z("™) (in-
dices inherited from time by subsampling). We estimate a mean angular velocity by wrapped least
squares (empirically equivalent to the average wrapped increment for unit time steps from circu-

lar statistics (Mardia & Jupp, [2000)): @ = arg minge(—r ] > erap(_,m](ﬁg)l - Gtw) - w)H2 ~

mean(wrap(_ﬁm] (F)x)l - F)t(e) )) Each @, parameterizes a stable 2 x 2 rotation block

0 < prot < ]-7 (2’)

_ cosly —sindy
R(WE; prot) = Prot [ :| 5

sin,  cosy

and Wi, is formed by embedding these blocks in a block-diagonal matrix and randomly permut-
ing coordinates to distribute the oscillator pairs across the reservoir; remaining coordinates receive
decaying radii in (ppmin, Pmax ). This realizes topology-aware internal oscillators aligned with the
system’s dominant loops.

Selecting K and auto-tuning the blend. We first cap the number of requested loops
by Kmax and keep the top-K.x classes by persistence. After PH, we apply a rela-
tive persistence threshold v € [0,1] to decide which loops survive to synthesis: Zyeep =
{€: (d¢—be) > vymaxe(de —be)}, Kanal = |Tkeepl|- Let Pp := dy — by denote persistence and
Prax = maxy P,. We compute a scalar “loop strength” s = ﬁ Y teTieey % € [0,1], and
set the topological blend weight by clamping a linear map of s into user bounds: ayo, =
clip(min + (Mmax = @min) S, 0, 1 =€), Bow = 1—& — aop, where £ is the fixed noise fraction.
If Kgna1 = 0 or the PH step fails, we default to a flow-dominant setting a.top = 0, Baow = 1 — §. This
auto-tuner makes the topology/flow trade-off responsive to the evidence in the data while keeping
W analyzable and the ESP scaling invariant to the choice.

Taken together, the PH pipeline and the oscillator synthesis ensure that W, carries a small number
of explicitly interpretable modes whose frequencies are estimated directly from the data. However,
these global oscillators do not, by themselves, encode how probability mass drifts locally across
the attractor; this motivates a complementary flow channel in which coarse, data-driven transport is
estimated and then lifted back to the reservoir state space.

3.2 COARSE FLOW ESTIMATION AND THE LIFTED MARKOV OPERATOR

Partitioning the embedded state space. To encode short-horizon directionality, we discretize
the delay-embedded point cloud Z = {z} c R™dbs into @ clusters by k-means (Lloyd’s

algorithm) (Lloyd, (1982). Let {cq}qu1 denote the centroids and define the assignment s; =

argmingeqy .. oy |2t — cqll2, t = (m —1)7,...,T. This yields a coarse partition of the embedded
attractor.

Short-horizon Markov chain from transition counts. Fix a horizon h € N. We form the empirical
count matrix C € RZQOXQ, Cij = #{t: st =1, ssen =171}, 1,5 € {1,...,Q}. To avoid degenerate
(all-zero) rows, we add a small pseudocount € > 0 before normalization and obtain a row-stochastic

Markov matrix by P;; = %, ZJQ:l P;; =1 Vi. We apply teleportation (Google—PageRank

style) (Brin & Page, |1998}; |[Langville & Meyer, |2012) to regularize nearly reducible chains and cure
rare sinks: PO = (1 -~)P+~1u", u = él, ~ € [0, 1), which preserves row-stochasticity and
ensures a positive recurrent, aperiodic surrogate for coarse transport. This construction follows the
spirit of Ulam’s method for approximating the Perron—Frobenius (transfer) operator via finite-state
Markov models (Dellnitz & Jungel [1999; [Froyland, 2001) and is consistent with operator-theoretic
discretizations used in Koopman learning (Klus et al.l[2016; |Williams et al.,|2015). In practice h = 1
captures most local flow, while h > 1 can smooth fast noise.



Stochastic pool-lift maps. Let N be the reservoir dimension. We connect coarse dynamics to
neurons through two sparse, stochastic linear maps: A € ROV B ¢ RV*Q. Matrix A pools
neuron activations (the reservoir state) into coarse cells and is row-stochastic: each row of A
has exactly nzr nonzeros of equal weight 1/nzr (uniform-sparse selection), hence for = € RY,
(Az), = N, Agizi, ¥N, Ay = 1 Vq. Matrix B lifts coarse activations back to neurons and is
column-stochastic: each column of B has exactly nzc nonzeros of equal weight 1/nzc, so for
r e R@, (Br); = ZqQ:1 Bigryg, Zfil Bi, = 1 Vq. We sample the support of A and B uniformly
without replacement (geometry-aware variants are compatible but not required for the guarantees
used later). Row-stochasticity makes A a convex averaging over neurons within each coarse cell;
column-stochasticity distributes each coarse value as a convex combination over its recipient neu-
rons.

i ) i
Pooling A Markov step P Lifting B

= = -

Figure 2: Zoom on the lifted Markov operator (Wy,,). This panel magnifies the green Flow
module from Fig. [} A reservoir state x € R¥ is first pooled to coarse cells via a row—stochastic
map A e RN (rows sum to 1), yielding y = Ax. Short-horizon dynamics on the coarse graph are
applied by P(?") e R®*?, a row—stochastic Markov matrix with optional teleport parameter ~, giving
y* = POy Finally, the signal is lifted back to neurons by a column—stochastic map B € RV*?
(columns sum to 1), producing x* = By™. Altogether, Wy = B PO A with x* = WaowX, which
is the contractive, data—driven component blended into the stable recurrent operator in the main
schematic.

Lifted Markov operator. We define the lifted flow operator Wioy, = B P() A € RN*N_ Opera-
tionally, A first pools the reservoir state z € R down to a coarse state = Az € R?; the Markov
step r* = POy advances coarse mass along observed short-time transport; B lifts 7+ back to the
neuron space ¥ = Br*. The operator is nonnegative by construction. In induced norms, | Afe =1
and | P, = 1 by row-stochasticity; | B||; = 1 by column-stochasticity. We do not rely on a stan-
dalone spectral bound for Wy, ; rather, the global contraction is enforced later by power-iteration
scaling of the blended W (§3.3)), which yields a sufficient condition for the ESN’s echo-state prop-
erty independent of the particular sparsity pattern of A and B (Buehner & Young| [2006;[Yildiz et al.,
2012). This separation keeps the flow imprint faithful to data while placing stability under explicit
control.

The operator Wy, therefore acts as a Markovian stencil on the reservoir: pooled activity approxi-
mately follows the empirical coarse chain, and Lemmaquantiﬁes how closely AWgow B tracks
PO once the calibration defect of AB is controlled. In the next step, we combine this transport
channel with the oscillatory operator Wy, and a small isotropic noise term, and then apply a single
global scaling so that the resulting recurrent matrix W simultaneously inherits these structures and
satisfies a uniform contraction bound.

3.3 BLENDED RECURRENT OPERATOR, ECHO-STATE SCALING, AND READOUT TRAINING

Blending topology and flow with degeneracy-breaking noise. Let Wi, € RN*N be the block-
permuted rotation—decay operator synthesized from persistent circular coordinates (§3.1), and let
Waow = B PO A e RV*N pe the lifted Markov operator ( ~b We form a pre-scaled blend

Wblend = Qtop Wtop + Bﬂow Wﬂow + 5 Wnoisea Qtop, 5ﬂow7§ 2 07 Qtop t+ ﬂﬂow + 5 = ]-7 (3)

where W ise 1S @ Zero-mean Gaussian matrix normalized to unit operator 2-norm and then scaled by
a small constant. The noise term breaks algebraic degeneracies (e.g., repeated eigenvalues or exact
invariant subspaces) and improves numerical conditioning without affecting stability guarantees,
since a global norm scaling will be imposed next. We implement an auto-tuner that chooses cop,



and fBgow from persistence statistics: given the set of selected 100ps Zyeep, define the mean relative
persistence s := ﬁ Y teTieen Pi € [0,1], Py =ds - by, Pnax = max, Py, and set
eep €, max

Qtop = Chp(amin + (amax - amin) 5,0,1- g)a Bﬂow =1- f — Otop, 4)

with user bounds tin < Gimax and clip(a; £, w) = min{u, max{¢, a}}. If Zyeep = @ (no trustworthy
loops) or the PH step fails, the tuner falls back to a flow-dominant setting cop = 0, Baow = 1 - &.
Power-iteration scaling to a target operator norm. To certify stability for the leaky ESN update,
we scale Wyenq to a prescribed operator norm p, € (0,1)

p

* —_
W = =~ t1r N Wblenda Umax(Wblend) R ”Wblend ”27 (5)
Omax (Wblend )
where Gp,ax is estimated by a standard power iteration on W) Wijend:
(W ona Whlend) Uk
blend " blen : ~
Vkel = = Tmax < [WhlenaVk |2, (6)

H (W];r]endelend) Vk HQ ’

for a fixed number of iterations. This provides a reliable approximation of the largest singular
value under mild conditions (Golub & Loan, [2013}; Trefethen & IIL [1997). In practice we include
NaN/infinity guards; if the estimate is degenerate, the implementation returns a safe zero matrix
(trivial contraction). Choosing p, with a margin accounts for small overestimation errors and keeps
the final contraction budget conservative.

Structural fidelity (proofs are presented in Appendix [A). Define the lifted flow W, := BPA
and the pre-scaled blend Whiena := & Wiop + 8 Waow + & Whoise, @, 3, 20, a+ 3+ &£ = 1, where
Whoise 1s any matrix normalized to ||[Whoise|l2 = 1. Let s := |[Whienal2 and W := p, Whiena/$
denote the finally used recurrent operator with |W 2 = p. € (0,1) (§3.3). By Lemma the
block-permuted rotation—decay operator W, is normal with spectrum { o1+ }5 U {r;} jEQK
(with r; € (Pmins Pmax )) and admits an orthogonal decomposition RY = @i(:l E, @ E |, where each
E}, is a 2D invariant plane on which Wiop, = prot R(wp ), a property unchanged by the subsequent
coordinate permutation.

Lemma 3.1 (Pooled coarse-flow identity and deviation). Ler A € RP*N pe row—stochastic, B €
RV*Q column—stochastic, and P € R9*? row—stochastic. For any r € R® and x := Br ¢ RY,
JAWhow = PT|eo < 2||AB = Ig| e |IT]leo, Since |AB| e = || Plleo = 1 by row—stochasticity. An
analogous bound holds in {1 with | - |;.

Remark (optional support coupling to reduce calibration). In all reported results we sample the
supports of A (row-stochastic pooling) and B (column-stochastic lifting) independently at random.
Another strategy—orthogonal to our results—is to couple these supports per coarse cell g. Con-
cretely, choose the lift of cell ¢ to target the same neuron subset used to pool that cell, and make
these subsets disjoint across ¢. This makes AB diagonally dominant, shrinking |AB - Ig| in
Lemma [3.1|and the induced defect A = (AB) PO (AB) — PO in Proposition ii). In the ex-
treme one-hot case (one neuron per cell for both pooling and lifting), AB = I exactly; with small
shared supports of size s > 1, AB becomes diagonal with entries 1/s and off-diagonals 0, yielding
|AB - Ig| e = 1-1/s. This refinement leaves P{?), W, and the global scaling to ||z = p. < 1
unchanged, thus preserving the echo-state certificate while tightening the coarse-flow fidelity term.

Proposition 3.2 (Two-channel fidelity of the blended operator). Let W = p, Wyiena/s with
s = |Whiena|2- Then: (i) Persistence of oscillatory eigenpairs. For each k € {1,..., K}

there exists an eigenvalue \,(W') such that [\i,(W) - p. M| < ps BHW“"WHQJ;& [Wocicelz
and likewise for the conjugate pair. In particular, when s > o|Wiopl2 — (B [Waowl2 +

£ HWnoiseHg), the oscillatory eigenvalues of W are contained in discs centered at p,op,ore*®* s
with radius p.(B|Waowl2 + &|Wnoise|2) /SEI (ii) Coarse-flow fidelity on the lifted sub-

space. For any r € R9 and x := Br e RV, HAW:C - p*gp(V)TH <
2

'Since Wkop is normal, additive perturbations shift eigenvalues by at most the perturbation 2-norm (Tre-
fethen & III} 1997, Ch. 2). The centers/radii follow by reverse triangle inequality and the block spectrum of
Whop.



P+ [2](AB) PO (AB) = PO, + ¢ | Al [Wiopll2 | Bl + £ | All2 [Waoise |2 | Bl2] I|l2- Hence
the pooled one-step action of W on lifted coarse states approximates a scaled Markov step with
error decomposed into (a) the calibration defect of AB, and (b) leakage from the topological and
noise channels, each controlled by blend weights and operator norms. In particular, if AB = Ig

and o, € are small, then AW B is a small-norm perturbation of (p+3/s) PO on RE.

The two statements formalize, respectively, (1) the exact pooled identity and calibration-controlled
deviation of the lifted Markov channel, and (2) their joint persistence under blending and global
scaling. They provide structural guarantees beyond the echo-state contraction: PHR preserves data-
driven oscillatory modes near their target frequencies and transports pooled mass nearly according to
the empirical coarse dynamics, with explicit, verifiable perturbation budgets determined by («, 3, €)
and by the calibration of (A, B).

After W is fixed, we advance the reservoir with the teacher-forced inputs {u;} (cf. Eqn. [11)
to collect features ¢, € R: ¢, = [:rt i Lpoty (Tt © 1) 1poly ], where 1,0, € {0,1} encodes
the quadratic/constant augmentation and ® denotes the Hadamard product. We discard an initial
“washout” of D steps to remove transients and form the design matrix ® € R(7=P)*F and targets
Y e R(T-DP)xdout  The readout is fitted by ridge regression with penalty o > 0 as

. 2 -
Wour = arg min [y oW, +a|W|E, = W], = (2T®+al)'OTY, (1)
computed with a standard linear solver, no intercept since a constant feature is included) (Hoerl &
Kennard, [1970). This preserves the hallmark ESN training efficiency: is a single convex solve
whose complexity is O(TF? + F3) and typically negligible compared to data generation.

System-level dynamics of PHR is discussed in and an intuitive summary is provided in

4 EXPERIMENTS

Setup. We evaluate PHR on seven standard benchmarks. The first group comprises three canoni-
cal chaotic attractors—Lorenz-63 (Lorenz, [1963)), Rossler (Rossler, |1976), and the hyper-chaotic
Chen-Ueta flow (Chen & Uetal [1999). The second group contains four real-world time series: the
BIDMC PPG/respiration record (Goldberger et al., [2000), the MIT-BIH Arrhythmia ECG trace
(Moody & Mark| 2001), the Santa Fe B cardiorespiratory polysomnography sequence (Jaeger,
2007), and the SILSO monthly sunspot index (World Data Center SILSO| 2020). As baselines
we include the standard single-layer ESN (Jaeger, 2001)), the Simple-Cycle Reservoir (SCR) (Li
et al.,2024), the Cycle Reservoir with Jumps (CRJ) (Rodan & Tino, 2012)), the two-core MCI-ESN
(L1u et al., [2024), and the three-layer DeepESN (Gallicchio & Micheli, 2017). Every method is al-
lotted exactly 300 recurrent units in total (implemented as 3 x 100 for DeepESN), and each baseline
is hyper-tuned within the same computational budget. (details are provided in Appendix|[B])

We appraise every model with four mutually reinforcing criteria. First, the NRMSE gauges
point-wise accuracy via the root-mean-square error normalised by the variance of the reference sig-
nal. Second, we introduce the Valid Prediction Time Ratio (VPT): the earliest instant ¢ at which
the normalised deviation §(t) = |y: — §¢|2/|yt|2 breaches a fixed threshold 6, expressed in Lyapunov
units as VPT = ¢/T}, (Pathak et al.l 2018). VPT therefore quantifies “how long the forecast can be
trusted.” Third, global attractor fidelity is captured by the Attractor Deviation (ADev), the volume
of the symmetric difference between predicted and true phase-space occupancies on a fixed grid,
normalised by their union: (Zhai et al., 2023). Finally, we overlay the log power-spectral densities
(estimated with Welch’s method (Welch, |1967)) of selected observables; agreement is assessed vi-
sually through the alignment of peaks, harmonic envelopes, and broadband roll-off. Taken together,
NRMSE measures short-term trajectory accuracy, VPT reveals the time-span over which forecasts
remain reliable, ADev scores faithfulness to the global geometry of the attractor, and the PSD over-
lay inspects concordance in the frequency domain (cf. Fig. [). (see Appendix[B|for details)

Quantitative results. Table[I|summarizes open-loop performance on MIT-BIH, BIDMC, Sunspot,
and Santa Fe, and closed-loop forecasting on Lorenz—63, Rossler, and Chen. We report normal-
ized RMSE (NRMSE,; lower is better), and—only for chaotic systems—yvalid prediction time (VPT;
higher is better) and average deviation (ADev; lower is better). On all four real-world series, PHR



NRMSE / VPT / ADev
ESN SCR CRJ MCI-ESN Deep-ESN PHR

300 2.3537 £ 0.5472  2.0321 £ 0.5211  1.5698 £ 0.3365  1.1443 + 0.0601 2.7398 + 0.9618  0.5320 + 0.0442
MIT-BIH 600 17575 £ 0.3692  1.5440 £ 0.3461  1.2588 + 0.2125 1.0557 + 0.0328 2.0187 + 0.6573  0.5417 + 0.0236
1000 1.4867 £ 0.2252  1.3729 £ 0.1998 1.2115 £0.1131  1.1273 + 0.0156  1.6530 + 0.4123  0.5833 + 0.0123

300 0.4468 + 0.0287  0.4473 £0.0292 0.4476 = 0.0310  0.5159 + 0.0326  0.4959 + 0.0298  0.3655 + 0.0143
BIDMC 600 0.4305 + 0.0269  0.4350 £ 0.0235 0.4336 + 0.0249  0.4875 £ 0.0272  0.4951 + 0.0263  0.3571 + 0.0151
1000 0.5186 +0.0198  0.4941 + 0.0215  0.4979 + 0.0224  0.5381 + 0.0237  0.5683 + 0.0239  0.4352 + 0.0133

300 0.6008 + 0.0214 1.1103 £0.1323  1.2180 + 0.1856  0.4680 + 0.0090 0.5856 + 0.0247  0.2505 + 0.0011
Sunspot 600 0.5501 +£0.0295  1.0126 £ 0.1303  1.1300 = 0.1565 0.4238 + 0.0140  0.5020 + 0.0232  0.2093 + 0.0015
1000 0.5235 £ 0.0262 0.9615 £ 0.1216  1.0781 £ 0.1191  0.4064 + 0.0100 0.4807 + 0.0196  0.2044 + 0.0010

300 0.2761 + 0.0014  0.2927 + 0.0032  0.2861 + 0.0047  0.2697 + 0.0031  0.2876 + 0.0038  0.1485 + 0.0003
Santa Fe 600 0.2366 + 0.0014  0.2523 £ 0.0053  0.2414 + 0.0037 02612 + 0.0217  0.2437 £ 0.0049  0.1262 + 0.0003
1000 0.2512 + 0.0010  0.2642 + 0.0042  0.2565 + 0.0031  0.2680 + 0.0175  0.2579 + 0.0039  0.1361 + 0.0003

200 0.0013 £ 0.0016  0.0027 + 0.0055 0.0039 + 0.0071  0.0011 + 0.0015 0.0023 + 0.0036  0.0004 + 0.0005
400 0.0428 + 0.0660  0.0657 +0.0949  0.0765 + 0.1194  0.0335 + 0.0388 0.0717 + 0.0978  0.0075 + 0.0103
600 0.3416 + 0.2345  0.4236 + 0.2542  0.4643 + 0.2803 0.3618 +£ 0.2903  0.4149 + 0.2141  0.2121 + 0.1877

Dataset H / Metric

Lorenz 800 0.7704 + 0.1139  0.7953 £ 0.1477  0.7703 + 0.2099  0.7799 + 0.1690  0.7965 + 0.1381  0.6495 + 0.1928
1000 0.9385 £ 0.1017  0.9469 £ 0.1306  0.9542 + 0.1443  0.9370 + 0.1432  0.9649 £ 0.1112  0.8481 + 0.1358
VPT (1) 9.18 + 1.71 8.70 = 1.72 8.98 £ 1.83 9.37 + 1.83 8.67 £ 1.78 10.94 + 1.65

ADev (|) 29.78 + 11.36 28.80 + 9.98 3221 +£9.71 30.93 £ 12.79 30.38 £9.95 29.11 +£9.53

200 0.0010 + 0.0021  0.0007 + 0.0012  0.0012 + 0.0020  0.0004 + 0.0006 0.0014 + 0.0026  0.0002 + 0.0001
400 0.0019 + 0.0035  0.0031 £ 0.0080 0.0024 + 0.0040  0.0009 + 0.0011  0.0026 + 0.0043  0.0003 + 0.0003
600 0.0035 + 0.0062  0.0062 + 0.0107  0.0066 + 0.0142  0.0020 + 0.0030 0.0115 £ 0.0455  0.0007 + 0.0007

Rossler 800 0.0050 + 0.0082  0.0094 + 0.0144  0.0094 + 0.0200 0.0028 + 0.0043  0.0166 = 0.0641  0.0010 =+ 0.0011
1000 0.0064 + 0.0103  0.0136 £ 0.0181  0.0127 + 0.0270  0.0038 + 0.0060 0.0211 + 0.0773  0.0013 + 0.0016
VPT (1) 7.89 +3.90 6.97 +4.30 8.33 £ 4.36 9.88 +4.59 8.28 + 4.50 11.33 + 4.66

ADev (|) 1697 + 8.19 2242 +11.62 19.55 + 11.00 12.21 + 6.86 20.22 +22.09 13.11 + 8.02

200 0.2463 + 0.3235 0.3157 £ 0.3117  0.2507 + 0.2441  0.1756 + 0.2441 0.3554 £ 0.3156  0.1278 + 0.2424
400 0.9348 + 0.1783  0.9767 £ 0.1836  0.9442 + 0.1518 0.8893 + 0.1708 0.9727 + 0.1805  0.7958 + 0.2006
600 1.1273 £ 0.1433  1.1212 £ 0.1350 1.1310 £ 0.1081  1.0824 + 0.1320 1.1549 +0.1232  1.0555 + 0.1199

Chen 800 1.2210 £ 0.1075  1.2052 £ 0.1006  1.2132 + 0.0868 1.1814 £ 0.1096 1.2221 +0.1047 1.1632 + 0.0878
1000 1.2535 £ 0.0961  1.2475 £ 0.0804 1.2594 + 0.0772  1.2355 + 0.0897 1.2627 + 0.0852  1.2316 + 0.0737
VPT (1) 3.46 £ 0.92 3.10 £ 0.84 3.29 +0.62 3.59+£0.73 3.01 +£0.92 4.18 + 0.93

ADev (|) 52.45 +10.92 5517 £ 11.95 51.24 + 10.03 58.22 + 12.37 54.65 + 8.89 5542 +15.53

Table 1: NRMSE (meanz+s.d.) across horizons (H) and, for chaotic datasets, additional rows with
VPT (1) and ADev ({). Chaotic benchmarks are evaluated in closed-loop mode; real-world datasets
use open-loop. Best and second-best per row are shown in bold and underlined, resp.

Variant Change (relative to default) NRMSE@H=600 | VPT 1 ADev |
PHR (default) - 0.212+0.188 10.94£1.65 29.11+9.53
No auto-tune Fix (a, 8,€) = (0.60,0.35,0.05) (ignore persistence strength) 0.238+0.191 890+1.62 33.90+11.92
PH — PCA-w (no PH)  Replace persistent circular coordinates by PCA phase surrogate ( 0.258 +0.195 9.42+1.70 3478 +12.15
Flow-only a=0, B=1-¢ (no Wi, oscillators) 0.279 £0.198 9.10+£1.66 34.12+11.94
Topology-only B=0, a=1-¢ (no Wiy, transport imprint) 0.341+0.235 922+1.59 36.89+10.07
€ choice: midlife e=(b+d)/2 instead of near-death for Rips 1-skeleton 0.226 +0.189 10.05+1.58 33.41+12.03
No teleport =0 (pure empirical P) 0.233+0.190 9.82+1.61 33.56+12.96
No pseudocounts Remove e-counts in C;; (rows can be sparse/zero) 0.255 +0.197 9.61+1.67 34.52+11.40
Denser pool/lift A :nzr= 8, B : nzc= 24 (still stochastic) 0.224 +0.189 9.10+£1.55 33.32+10.90
Stricter loop cap Kmax=1 (keep only strongest loop) 0.245 £0.193 9.72+1.63 34.21+13.01
No robust PH solver Drop Tikhonov + LSQR fallback (single-component solve only) 0.247 +0.196 9.54+1.69 3573+10.18
Unsafe (for reference): no spectral scaling divergent in 37% runs

Table 2: Ablation study on Lorenz-63 (closed-loop). Default configuration follows §3|
px=0.94, A=0.20; K auto via persistence; A row-stoch. (nzr=4), B col-stoch. (nzc=12);
pseudocounts+y=3x10~3; robust PH solve (Tikhonov+LSQR). Reported are mean +s.d. over 45
runs for (i) NRMSE at horizon H=600, (i1) VPT, and (iii) ADev.

outperforms all baselines at every horizon, often by a wide margin: e.g., on MIT-BIH at H=1000,
PHR reaches 0.5833 + 0.0123 NRMSE versus the strongest baseline (MCI, 1.1273 + 0.0156), and
on Sunspot at H=1000 PHR attains 0.2044 + 0.0010 versus MCI at 0.4064 + 0.0100 (cf. Figs.

. The advantage also holds on BIDMC (e.g., H=600: 0.3571 + 0.0151 vs. best baseline
0.4305+0.0269) and Santa Fe (e.g., H=600: 0.1262+0.0003 vs. 0.2366+0.0014). In chaotic closed-
loop mode, PHR remains consistently best in NRMSE across horizons for Lorenz and Rossler,
while also achieving the strongest VPT (e.g., Lorenz: 10.94 + 1.65 vs. best baseline 9.37 + 1.83;
Rossler: 11.33 + 4.66 vs. 9.88 + 4.59), indicating longer time-to-divergence. ADev is compet-



itive: PHR is second-best on Lorenz (29.11 + 9.53) with the lowest NRMSE and top VPT, and
second-best on Rossler (13.11 + 8.02) while again leading in NRMSE and VPT. On Chen, PHR
provides uniformly lowest NRMSE across horizons (e.g., H=1000: 1.2316 + 0.0737 vs. best base-
line 1.2355 + 0.0897) and highest VPT (4.18 + 0.93), at the expense of slightly higher ADev than
the very best baseline (PHR 55.42 + 15.53 vs. CRJ 51.24 + 10.03), reflecting a favorable accu-
racy-stability trade-off for long closed-loop rollouts (cf. Figs. [3] [6). Together, these results indicate
that the two-channel construction—topological oscillators from H' cohomology ( and lifted
Markov transport (§3.2)—translates into consistent accuracy and extended predictability windows
across heterogeneous regimes, while the spectral scaling (§3.3) standardizes stability.

The ablation study in Table [Z] probes each design choice. Disabling the persistence-based auto-tune
of blend weights (§3.1] Eq. (4)) significantly degrades all metrics (NRMSE@600: 0.238 + 0.191
vs. 0.212 + 0.188; VPT: 8.90 + 1.62 vs. 10.94 + 1.65; ADev: 33.90 + 11.92 vs. 29.11 + 9.53),
showing that weighting W\, by measured loop strength matters. Replacing PH-derived angles by
the PCA phase surrogate (no PH) further hurts (NRMSE@600: 0.258 + 0.195), as does removing
either channel: flow-only (0.279 + 0.198) and fopology-only (0.341 + 0.235) both underperform
the full model, confirming that oscillatory clocks and directed transport contribute complementary
signal. Implementation choices that stabilize coarse dynamics—near-death ¢ for the Rips 1-skeleton,
teleportation in P, and pseudocounts in C;;—each improve robustness and accuracy relative to
their removal (e.g., no pseudocounts: 0.255 = 0.197). The robust PH solver (per-component gauge,
Tikhonov, LSQR fallback) also helps (no robust solver: 0.247 £ 0.196), and capping to a single loop
(Kmax=1) degrades all metrics, indicating the value of multiple incommensurate oscillators when
present. Finally, omitting the spectral scaling is unsafe: 37% of runs diverge, empirically validating
the necessity of the global norm control for closed-loop stability established in Additional
quantitative breakdowns, phase-portrait overlays, error-growth visualisations, and hyperparameter
details are presented in Appendix|B|

5 CONCLUSION AND OUTLOOK

We presented PHR, a reservoir-computing framework that learns the recurrent operator of a leaky
ESN once, offline, from a single trajectory. The core idea is to replace random reservoirs by a
principled blend of two analyzable components learned directly from data: (i) a topological rotation
operator whose 2 x 2 blocks internalize long-lived loops via persistent cohomology and circular
coordinates, and (ii) a lifted Markov operator that encodes short-horizon transport through empirical
coarse transitions. A simple power-iteration rescaling of the blended operator enforces a uniform
contraction bound for the leaky update, yielding a clean echo-state certificate. The resulting reservoir
is interpretable (explicit oscillators with data-driven frequencies), task-aligned (local directionality
imprinted by coarse flow), and efficient (only a ridge readout is trained). Empirically, this design
preserves ESN-level training cost while providing a data-informed alternative to random reservoirs.

Limitations & Future directions. Our guarantees hinge on an operator-norm contraction of the
blended reservoir; they do not provide channel-wise spectral bounds, and the ESP certificate is suf-
ficient but not necessary. The Markov discretization introduces bias from partitioning and horizon
choice; similarly, angular-velocity estimates inherit noise from finite sampling, subsampling stride,
and the choice of working scale within a persistence interval. The current construction samples the
supports of the pool-lift maps uniformly; more geometry-aware couplings may better preserve local
structure. Several avenues are promising. Theoretically, combine stability of persistent cohomol-
ogy/circular coordinates (under noise and subsampling) with Ulam-type transfer-operator error to
obtain finite-sample rates for @y, the power-scaled blend W, and forecasting risk; tighten ESP cer-
tificates to reflect tanh, leakage, and sparsity. Algorithmically, design geometry-aware pool-lift
maps (kNN/diffusion distances), multi-horizon mixtures P(") for scale-separated transport, and
streaming PH for nonstationarity; replace Euclidean delays with diffusion-map/manifold embed-
dings when measurements are anisotropic. For scaling, use landmark/witness complexes, approxi-
mate kNN graphs, and GPU-accelerated Laplacian/LS solvers to handle very long sequences. Ap-
plications include closed-loop control/data assimilation, anomaly detection via oscillator coherence,
and domains needing interpretable oscillatory modes (climate, neuroscience, molecular kinetics).
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A APPENDIX

A.1 PROOFS

We use the induced £, and £1 matrix norms, || Mo = max; ¥; |m;| and | M|, = max; ¥, |m;;l, to-
gether with submultiplicativity and the triangle inequality. Note that | P+ = 1 by row—stochasticity
and | B|1 = 1 by column-stochasticity.

Lemma A.1 (Oscillator spectrum under block-permuted rotations; see (Horn & Johnson, 2013;
Trefethen & 111, |1997)). Wiop, is a normal matrix. Its spectrum consists of the multiset

i i K _
{prot eﬂwk’ Prot € 1k }k=1 U {Tj }jj\i12K7 Tj € (pmiru pmax)7 (8)

and it admits an orthogonal decomposition R = @i(:l Ey @ E| into K invariant two-dimensional
subspaces Ej, (one per rotation block) and an invariant (N — 2K )-dimensional subspace E, for
the decay modes. In particular, for each k there exists an orthonormal basis of Ey, in which Wiy,
acts as the 2 x 2 rotation pyo R(wy), and this property is unchanged by the subsequent orthogonal
permutation used to distribute coordinates in the implementation.

Lemma A.2 (General pooled coarse—flow bound). For any r € R% and x := Br e RN,
| AWaowz = Pr|_ < (1+[AB|o) [AB =1 oo |- )
An analogous inequality holds in {1 :

| AWaowz = Pr |, < [Py (1+[AB|1) [AB - Igl |- (10)

Proof. Write
AWgows —Pr = ABPABr—-Pr = ABP(ABr-r)+(AB-1g)Pr = ABP Ar+ APr.
—_—

Ar A

Taking /., norms and using submultiplicativity,
[ABP Ar|oo < |AB|oo | Plloo [Afleo [ o0 = |AB oo |Afleo [7]lc0

and |[APT|lco < |Alloo [Plloo [I7]lco = [|Alleo [7]s0- Adding the two bounds yields (@). The ¢; case
is identical with | - |1 and | P|; in place of || - ||o and | P||co- O

Corollary A.3 (Factor-2 bound under nonexpansive pooling). If, in addition, |AB|e < 1 (e.g.,
when A is row—stochastic and B is also row—substochasticﬂ), then for all r € R and x = Br,

| AWaowz =P < 2|AB - Ige ] -

An identical factor-2 version holds in 1 whenever |P|;y < 1 and |AB|1 < 1 (e.g., for dou-
bly—stochastic P and row—substochastic AB).

Remark A.4. The quantity A = AB — I is the pool-lift calibration defect. Lemrna[Zf] shows that
after pooling, the one—step action of the lifted operator Wy, = BP A on any lifted coarse vector Br
is within (1 + [AB|.)|A]«|r]. of the ideal coarse Markov step Pr (for * € {1, 00}). Thus, when
AB =~ Ig (good calibration), the high—-dimensional pathway “pool — Markov — lift” is coarsely
faithful. The factor (1 + | AB|.) can be fixed at 2 by ensuring nonexpansivity of AB in the chosen
norm (e.g., by making B row—substochastic).

Connection to Proposition 3.2} Part (ii) of Proposition [3.2] bounds the deviation of AW B from a
scaled coarse Markov step on R¥. Lemmaisolates the pure flow channel (o = € = 0), showing
that | AWgow B — P| . is controlled by | AB — I||. and nonexpansivity constants. The full bound in
Proposition [3.2{ii) then adds leakage from the topological and noise channels, each weighted by the
blend coefficients and their operator norms.

’If B has nonnegative entries, column sums = 1, and row sums < 1, then for any row—stochastic A one has
”AB”OO = maxy Zj (AB)(U =maxg y.; Aqi Zj B;; < max; Zj B;; <1.
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Proof of Proposition[3.2] We recall the notation

p
Wblend =Q Wtop + B Wﬂow + 5 Wnoisea W= f Wblend; S§:= HWblend HZ;

with Wiow = BP™ Aand o, 8,6 >0, o+ S+ € = 1. By Lemma Wiop is normal and its spec-
trum is {prore*™* 111 U {r; } 7725 (With r; € (pmin; Pmax))- and is unchanged by the subsequent
coordinate permutation.

(i) Persistence of oscillatory eigenpairs. If s = 0 then W = 0 and the claim is trivial. Assume s > 0.
Write
W = & aWtop + & (6 Waow +£Wnoise) .
s s

=:Ag B
Since Wy, is normal, so is Ao, and we may invoke the standard spectral variation bound for normal
matrices (see, e.g., (Trefethen & III, [1997, Ch.2)): for every eigenvalue \ € o(Ap) there exists
an eigenvalue p € o(Ag + Ep) such that |u — A| < |Ep|2. Fix k € {1,...,K} and take A} =
(pxt/s) prove™* € o(Ap). Then there exists A\, (W) € o(W) with

S

*« O W P
|)\k(W)_p Prot€ k| < HEOHZ = ?(ﬁ |‘Wﬂow‘|2+£|‘Wnoise||2)7

and the same statement holds for the conjugate (p.a/s) prore™™

equality.

. This proves the displayed in-

For the “in particular” clause, note that by the reverse triangle inequality,

s = HWblend”2 2 OKHWtOPHQ - (/BHWHOWHQ +§”Wnoise”2)a

so the stated lower bound on s is always valid. Hence each oscillatory eigenvalue of W lies in the

closed disc centered at 2% prot€*r with radius L (ﬁHWﬂOW 2 + &l Whoise Hg), as claimed.

(ii) Coarse—flow fidelity on the lifted subspace. Let r € R? and x := Br ¢ RN, Using W =
(p+/5) (@Wiop + BWiow + EWnoise) and Wiy, = B PO) A,

AW = &[QAWtOPBr + BAWgow BT + §AWnoiseB7{|
S

- p—*[aAWtOpBr + BABPD ABr + §AWnoiseBr].
S

Subtract (p, 3/s) P17 and regroup:
AWz - %P('y)r = p—s*[ﬁ((AB) PO (AB) = PO)r + a AWiop Br + € AWaoise Br .
Taking operator 2-norms and using submultiplicativity,
|aw e - 2P0y < %*[/3 |(4B) PO (AB) - PO, |
+ a||Als [Wioplla Bl I7ll2 + €1 Alla [Waoisell2 | B2 ]2,

which is exactly the stated bound. In particular, if AB = I the first term vanishes, and for small
a, & the leakage terms are correspondingly small, so that AW B is a small-norm perturbation of
(p.B/s)P™) on R2.

O
A.2 INTUITIVE SUMMARY OF THE METHODOLOGY
This subsection distills the construction into a small number of composable primitives and explains
why each step is present, referencing the concrete procedures in Algorithms [IH8] The design princi-

pleis: learn a fixed, analyzable recurrent operator that carries (i) global oscillations of the attractor
and (ii) local short-horizon transport, then scale it once for stability and only train a linear readout.
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1) Build the geometry we will learn from (Alg.. We convert the observed time series {u; } into
a delay-embedded cloud Z = {z;} c R™dbs to expose the attractor’s geometry. To keep topological
computations tractable, we thin Z by a stride s to a PH-subset Z (PH) and compute its pairwise
distance matrix D. This decouples the cost of homological inference from the ultimate reservoir
size N and the length of the raw series: the topology is read from the subsample, while the recurrent
operator will still act in the full neuron space.

Algorithm 1: DELAYEMBED&SUBSAMPLEFORPH

Input: Observed trajectory {u;}, c R%v:, embedding dimension m € N, lag 7 € N, PH stride
seN.
Output: Embedded sequence Z = {z;}1 (m-1yr C R™dovs ; PH subsample

z(®PH) - {zt0+js};7j’5‘_1; distance matrix D € R"Pu*"pH,

fort=(m-1)7,...,T do
L 2 < [, u;T,...,u;(mfl)T]T
Pick an anchor tg € {(m —1)7,...,T} and form Z(PH) {Zty, Zto+ss Ztg+2s, - - - ; Within index

range
Compute D;; < |2i+is — Zto+js||2 for all 4, j (symmetric, zero diagonal)

return (Z, Z("™ D)
> Complexity: building Z is O(Tmdebs); D is O(ndpmdobs)-

Algorithm 2: PHCIRCULARCOORDINATES& ANGULARVELOCITIES

Input: (ZPM, D) from Alg.[1} field F,, (prime p);

selection cap Kax; scale rule ¢ € (by,dy) (e.g., near-death).

Output: Selected indices Zycep € {1,. . . }; angles {#() ¢ (=7, 7]"" 1 } ez, s angular
velocities {@¢ } gez,., s persistences { Py} ger,., -

Compute Vietoris—Rips persistent cohomology up to degree 1 on (ZF™) | D) over Fp;
Obtain H' intervals {(by, dy)}, and representative 1-cocycles {c}¢

Let Py < dy — by and order classes by P, (desc.)

Select the top K ,ax indices as candidates Z.anq

for { € Z.,.q do

Set g4 € (b, dy) (default: dy — 1075)

Build the Rips 1-skeleton G = (V, E;) at threshold &,

Lift ¢, to ozgf) € (-3,3] onedges (i,7) € Ey

Solve (L + pI)9® = bwith L = MTW M, b= M"W a, per connected component (gauge
anchor, tiny x> 0)

0 Wrap(_mw](%m?(é))

We < moan(wrap(_ﬂm] (fo)l - 054)))

Apply a relative-persistence threshold v € [0, 1]: Zyeep < {£ € Zcana : Pr > ymaxy Py}

return (Zieep, {0, @, Pr}eez,..., )
> Guarantee: angles are well-defined up to global phase per
component.

2) Extract global oscillators from topology (Alg. 2] and [3). Persistent cohomology on
(Z(PM) D) detects long-lived 1-cycles (bars (bg,d;)) and provides representative cocycles. A
circular-coordinate solver turns each selected bar into an angle #() on the sample; the wrapped
increment of this angle estimates a mean angular velocity @W,. We then synthesize a normal
block—diagonal operator Wy, whose 2 x 2 rotation blocks p,.; R(@,) instantiate those angular ve-
locities as stable internal oscillators and whose remaining diagonal entries are decays. A random
permutation spreads the oscillator pairs across coordinates so they can interact with other channels.
The effect is to hard-wire data-driven phases into W without backpropagation.
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Algorithm 3: SYNTHESIZETOPOLOGICALOPERATOR

Input: Angular velocities {& } ﬁfli“a‘; rotation radius pyot € (0, 1); decay radii interval

(Pmins Pmax ); reservoir size N > 2K a1
Output: Wi, € RV*V (block-permuted rotation—decay).

. cosWy —sin®
Form Kg,,1 many 2 x 2 rotation blocks Ry = prot [ ¢ ¢ ]

siniy,  cosWy

Draw (N — 2Kfna1) radii 7; ~ Unif (pmin, Pmax) and set D, < diag(r1,...,"N-2Knm)
Assemble W;, < blkdiag(Ry,. .., Riy,.., D)

Apply a random permutation P to distribute blocks: Wi, < PTW,, P

return Wy,

> spectrum: {prote*™@}u{r;}; Wiop is normal up to permutation.

Algorithm 4: COARSEFLOW&LIFTEDOPERATOR

Input: Embedded cloud Z = {z;}; #clusters Q; horizon h € N; pseudocount € > 0; teleport
v € [0, 1); pooling/lifting sparsities (nzr,nzc); reservoir size N.
Output: Centroids {c, }; assignments {s;}; P("); A e R*N (row-stoch.), B e RV*@
(col=stoch.); Wiow = BP( A.

Run k-means (Lloyd) on Z to get {cq}?=1 and s; = argming |z, — ¢4 2

2 Build counts C;; < #{t: sy =1, Spn = J}

w

=R IS 7 I N

[ S

C,jj + e
X (Cijr +¢€)
Teleport: PO) « (1-~4)P+~y1u", u= 51
Construct A: for each row ¢, choose nzr columns, set A, . equal weights summing to 1
Construct B: for each column ¢, choose nzc rows, set B. , equal weights summing to 1
Set Wiow < BP(MW A
return ({c,}, {s:}, P, A, B, Waow)
> Note: [Afw=|PP]e=1, |BJ1=1.

Row-normalize with e: P;; =

Algorithm 5: AUTOTUNEBLENDWEIGHTS

Input: Persistences { P} ¢ez,.., (possibly empty); noise fraction £ € [0,1); bounds
0 < aymin € amax < 1; clip operator clip(+;0,1 - £).

Output: (op, Baow) With Qop, Baow = 0 and aop + Saow < 1 —&.
if Zyeep = @ then

Qitop <= 05 IBHOW < 1- €

return

Py

- |Ikeep| ZZGIkeep Pmax
Qtop < clip(amin + (Qmax — Qmin) 8; 0, 1 - {)
Bﬂow «1- 5 — Oltop
return (Qop, Briow)

> If PH fails or is weak (Zyeep =@), the scheme becomes
flow—dominant.

Prax < maxyer, ., P, s

3) Encode local directed transport (Alg. d). We discretize Z by k-means into @ coarse cells
and count short-horizon transitions to obtain a row-stochastic Markov matrix P, regularized by
pseudocounts and teleportation. Two stochastic maps connect coarse states to neurons: A (row-
stochastic) pools neuron activity to the coarse scale; B (column-stochastic) lifts coarse mass back to
neurons. The composition Waey := B P(") A therefore advances a neuron state by pool — Markov
step — lift. Lemma[3.T|quantifies the fidelity of this mechanism: after pooling, the discrepancy from
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2 (Zieep, 109, @y, Pr}) < PHCIRCULARCOORDINATES& ANGULARVELOCITIES(ZFPH) D p, K ax)

B W N =

wn

Algorithm 6: BLENDANDSCALETOTARGET

Input: Wtop: Wﬂowa noise Wnoise with HWnoiseH2 = 1; WeightS (at0p7 Bﬂowv 5)7
Qtop + Biiow + & = 1; target p, € (0,1).
Output: Scaled recurrent W with |[W||2 = p..
Whiend < Qtop Wtop + Baow Waow + § Whoise
Estimate s ~ |Whiena |2 Via power iteration on Wy, Whenq (fixed iters, NaN guards)
if s = 0 or estimate invalid then
L return W < 0 (trivial contraction)
W « (p*/S) Wblend
return W

> Guarantee: |W|a=p.; leaky ESN with leak A has contraction
factor (1-X)+Ap.<1.

Algorithm 7: PHR_TRAININGPIPELINE

Input: Trajectory {u;}L,; (m,7,s); PH/selection (p, Kmax,7): synthesis ( prot, Pmins Pmax):
flow (Q, h, €, Vtel, nzr,nzc); blend auto-bounds (min, Gmax, £); scaling p,; leak A;
polynomial feature flag 1,1y

Output: Fixed recurrent W; fitted readout Wo.

(2,Z"M D) « DELAYEMBED&SUBSAMPLEFORPH ({u;},m, T, 5)

Wiop < SYNTHESIZETOPOLOGICALOPERATOR ({@¢ } ¢e7y.., > Prots (Pmins Pmax), V)
({cg}: {5:}, PO, A, B, Waoyw ) < COARSEFLOW&LIFTEDOPERATOR(Z, Q, h, €, o1, nzr, nzC, N)

(Qttop, Briow) <~ AUTOTUNEBLENDWEIGHTS ({ Py } £, ey, » € @min, Cmax)

W <BLENDANDSCALETOTARGET(Whop, Wiaow, Whoises (Qtop, Biow, §), o)

> Teacher-forced reservoir rollout and ridge readout

Advance leaky ESN: z; = (1 — M)z + A tanh(Wx,_1 + Wisuy ); collect features
Yt = [xﬁ 1p01y($t (O] xt); 1p01y]

Discard washout D, assemble ® ¢ R(T-D)*F an4 targets Y € R(T-D)xdout

Solve ridge: W, = (®T® +al)'®TY

return (W, Wo.t)

Algorithm 8: PHR_INFERENCE
Input: Fixed (W, Wi, Wout ); leak A; initial input ug; horizon H.
Output: Predicted outputs {7; } ;.

Initialize zg < 0, u < ug
fort=1,...,H do
zy < (1= N)ag-g + A tanh(Wayy + Winu)
Form feature ¢, as in training; ; < Wyt ¢4
> Autoregressive option: feed back first dg,s coordinates
U < @\t[l:dobs]

return {7; }

an “ideal” P(?) step is controlled by the calibration defect AB — I and nonexpansivity constants.
Intuitively, Wy, imprints the observed short-time arrows of motion onto the reservoir, but does so
in a way that is linear, nonnegative, and analyzable.

4) Decide how much topology vs. flow to keep (Alg.[5). Not all datasets have strong loops.
The auto-tuner reads the evidence from PH persistences { Py }: it keeps the classes above a relative
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threshold « and converts their average strength into a topological weight o, within user bounds;
the remainder of the budget (minus the small noise fraction &) is assigned to the flow channel,
Bhow = 1 =&~ aiop. If no loop survives, the model becomes flow-dominant automatically (aop = 0).
This makes the blend responsive: oscillatory problems (e.g., ECG, sunspots) allocate more mass to
Wiop, while broadband transport (e.g., laser) leans on Wy, .

5) Blend once and enforce a global stability budget (Alg. @) We form Whiend = Qop Wiop +
Baow Waow + EWhoise, Where a tiny isotropic noise breaks algebraic degeneracies. A short power

iteration estimates ||Whena |2 and we scale to a rarget norm p, € (0,1): W = % Whiend-

This single step detaches structural fidelity from stability: regardless of A, B, P sparsity or the
number of loops, the leaky ESN update has contraction factor (1 — A) + Ap,. < 1, hence ESP holds.
Meanwhile, Proposition guarantees that (i) the eigenpairs contributed by Wi, persist up to a
perturbation governed by B Waow |2 + &||Whoise | 2, and (ii) on lifted coarse states = = Br the pooled
action AWz is close to a scaled P)r, with error budget split into the AB calibration defect and
the leakage from non-flow channels.

6) Train (Alg. [7]and [§). After W is fixed, training reduces to a single convex ridge regression
on features extracted from the leaky dynamics. Inference reuses I and the readout, either teacher-
forced or autoregressive. No BPTT is used or needed: all nonlinear recurrence is in a scaled, fixed
operator.

What one gains.

* Interpretability: Wi, carries explicit oscillators with interpretable frequencies; Wy, en-
codes data-driven coarse transport (Ulam/PageRank style). The blend weights are deter-
mined by PH evidence.

* Stability by construction: a single scalar p, (with leak \) enforces ESP independent of
A, B, P particulars.

* Robust guarantees: Lemma[3.1|and Proposition [3.2] provide end-to-end control of (coarse)
transport fidelity and of the perturbation of oscillatory eigenpairs under blending and scal-
ing.

* Practicality: PH is computed on a subsample (Alg. [I), making global structure affordable;
all remaining steps are linear-algebraic and scale linearly or near-linearly in V.

Complexity at a glance. PH on npy points is O(n]%H) distances plus cocycle solves, kept small
by stride s; k-means and count aggregation are O(|Z|Q) per pass; constructing W, and Wagy
is linear in the number of nonzeros; power iteration uses a fixed budget of sparse/dense multiplies.
Readout fitting is a single ridge solve on (T'— D) x F features. Taken together, the pipeline learns
W once offline, after which training and inference have the standard ESN cost profile.

Echo-state certificate. Consider the leaky ESN update with ¢ = tanh (1-Lipschitz) and leak
Ae(0,1]:

zp= (1= N) 2ot + A(Waiy + Winuy). (11)

With the scaling (3), |W |2 = p«, hence the iteration is a contraction with factor L = (1 - M) +
Ap. < 1, which implies ESP (asymptotic independence of the initial state for each input) by
standard arguments (Buehner & Young} 2006; Yildiz et al., 2012; Manjunath & Jaeger, 2013). This
turns stability control into a single hyperparameter choice p, € (0,1) (together with \), independent
of the particular sparsity structure of A and B or the empirical chain P(7),

A.3  DYNAMICS OF PHR
We now describe at system level, how PHR evolves under input, and why its two-channel con-

struction (topology @ coarse flow), together with global scaling, yields a stable, interpretable, and
data-faithful recurrent operator.
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State update and contraction budget. The PHR evolves according to the leaky ESN recursion
(Eqn. with fixed recurrent matrix

W = % Wblend7 Wblend = o Wtop + ﬁ Wﬂow + 6 Wnoise7 S = HWblend ”27 (12)

as defined in B)—(). Since |¢|rip = 1 and [W]|2 = p. € (0,1) by construction, the update map
in (TI) is a global contraction with constant

L=(1-\N)+Ap. <1, (13)

implying the echo-state property (ESP): for any fixed input sequence, dependence on the initial state
decays geometrically at rate L' (Buehner & Young, 2006; Yildiz et al.,|2012; Manjunath & Jaeger,
2013). The quantity (1- L)~ gives the effective memory horizon of the reservoir. This single scalar
budget L—chosen via (A, p. )—decouples stability from the internal structural choices in Whjend.

Spectral picture and oscillatory planes. The topological channel W;,, is (permuted) block-
diagonal with K rotation blocks and (N — 2K) scalar decays (Lemma . Hence RY admits
an orthogonal decomposition

K
RN = (gEk) ® EJ_, with WtOp|Ek = prOtR(Wk), Wtop|El = dlag(rj)’ (14)

where R(w) is a 2 x 2 planar rotation and 7 € (pmin, Pmax) € (0,1). Blending with the flow and
noise channels, followed by the global similarity scaling p. /s, preserves these oscillatory eigenpairs
up to a norm-controlled perturbation: part (i) of Proposition [3.2] states that each eigenvalue near

aprore™* is displaced by at most L ( Bl Whaow |2 + € HWnOiSCHQ), so the internal oscillators retain

their (data-driven) angular frequencies {wy } to first order, with radii uniformly contracted to respect
the ESP budget. This endows PHR with phase-aware latent dynamics tied to the long-lived H;
loops extracted from the data (§3.1)), while ensuring that no latent mode can violate the uniform
contraction (13]).

Lifted coarse transport. The flow channel Wy, = B P(") A implements “pool — Markov step
— lift”. Lemma quantifies its fidelity at the coarse level: for any coarse vector r and its lift
x = Br,

|AWaow & = P75 [AB=I| [r].,  xe {1 00}, (15)

with an explicit nonexpansivity factor (Corollary [A.3). Thus the defect in reproducing one coarse
Markov step depends only on the pool-lift calibration AB ~ I; it is independent of /N and the
detailed sparsity of A and B. After blending and scaling, Proposition [3.2]ii) lifts this statement to
the full recurrent operator:

HAWB_ﬁP(W)H < &[BH(AB)P("’)(AB)—P(7)||2
S 2 S (16)
+ o |[Al2[Wiop2| Bl +5HAHzHWnoiseHzHBHz]«

When AB = I (exact calibration) the first term vanishes and AW B is a small-norm perturbation
of a scaled Markov step, with perturbation budget apportioned by («, ). Consequently, repeated
application of AW B advances pooled mass approximately along the empirical coarse transport
PO with errors that accumulate linearly in the number of steps and are globally bounded by the
contraction scaling (standard matrix perturbation arguments; cf. (Trefethen & 111, {1997, Ch. 2)).

Two interacting channels under global scaling. Equations (I2)) and (T6) exhibit a clean separa-
tion:

* The topological channel contributes persistent, contractive oscillators aligned with the most
prominent H; classes (Proposition[3.2{1)), thereby encoding global recurrent structure (e.g.,
lobe rotations in Lorenz-type systems, cardiac phase in ECG).

* The flow channel transports pooled mass coherently along short-horizon directions ob-
served in the data (Ulam/PageRank view of coarse transfer), with fidelity governed by
|AB - I and insulated by the uniform contraction (Proposition [3.2ii)).
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* The noise channel breaks degeneracies and complements the basis without compromising
stability, as its contribution is explicitly budgeted by £ and then squashed by the global
scaling to p..

The auto-tuner (§3.1) sets («, 3) from persistence statistics, so that PHR naturally interpolates be-
tween a phase-dominant regime (clear loops, large o) and a flow-dominant regime (weak or absent
loops, large (), while keeping the ESP budget unchanged.

Driven dynamics and input response. Because (I1)) is globally contractive, it is input-to-state
stable (ISS) in the standard ESN sense: for any two input sequences {u;}, {u;} and trajectories
{x;},{Z,} driven from any initial states,

t
|z =&l < Lo = Zollz + AWinllz 3 L7 Jup — 2, (a7

a routine consequence of the contraction mapping principle with a 1-Lipschitz nonlinearity (see,
e.g., [Buehner & Young| (2006); [Manjunath & Jaeger| (2013))). Thus the state is a stable, causal
functional of the input with fading memory on the timescale O((l - L)‘l). Inside this ISS envelope,

the phase-aware latent oscillators and the coarse transport induced by P(?) shape the geometry of
features seen by the readout: sinusoids and their polynomial interactions on the oscillatory planes,
and coarse “advection” along observed short-time flow on the lifted subspace. The resulting feature
set is expressive for forecasting and classification tasks (cf. EDMD/Koopman perspectives (Williams
et al.| [2015; Klus et al.| [2016)) while retaining transparent control of stability and timescales via

(A, o).

Timescales and design guidance. Three timescales govern PHR: (i) the contraction time constant
7. ~ (1= L)L, (ii) the oscillation periods T}, = 27/|ws| on the planes Ey, and (iii) the coarse mixing
time of P(?). Choosing ) and p, fixes 7; the auto-selected {wy, } and o fix how prominently these
periods appear in the latent state; and [ sets the weight of coarse transport relative to phase. In
practice, one targets 7. modestly larger than the shortest 7}, to preserve phase information while
still ensuring fast forgetting of transients; y (teleport) is chosen small to regularize reducible chains
without washing out observed directionality.

Interpretability and robustness. The topological modes are interpretable by construction (each
E}, corresponds to a persistent 1-cycle), and their frequencies come from the circular coordinates
fitted on the data (; persistence-based selection and the near-death scale choice ensure robust-
ness to metric noise (Edelsbrunner & Harer,|2010;|de Silva & Vejdemo-Johansson, 2009). The flow
channel is grounded in a classical Ulam discretization of the transfer operator with PageRank regu-
larization (Dellnitz & Jungel [1999; Froyland, 2001} |Brin & Page, {1998} |[Langville & Meyer, [2012).
Both channels are finally metered by the explicit /5 scaling to p,, which turns ESP from a heuristic
into a verifiable certificate independent of A, B sparsity or P(*) reducibility.

Ergo, PHR dynamics are those of a globally contractive, two-channel reservoir: (a) a bank of data-
driven, stable oscillators persisting under norm-bounded blending, and (b) a lifted coarse transport
that, after pooling, closely tracks a Markov step learned from short-horizon transitions; both are co-
ordinated by an explicit contraction budget and complemented by light noise to avoid degeneracies.
The result is a fixed, analyzable recurrent core whose state features exhibit task-relevant structure
with provable stability and quantitatively controlled deviations (Lemma 3.1} Proposition [3.2)), after
which training reduces to a single ridge solve for the readout.

A.4 APPLICATIONS AND USABILITY ACROSS DOMAINS

PHR produces a single, fixed recurrent core W that is (i) globally contractive (ESP with budget
L = (1-X)+Aps < 1), (ii) spectrally structured by topological oscillators that persist under bounded
blending (Proposition [3.2(i)), and (iii) coarse—transport faithful on pooled/lifted states up to a cal-
ibration defect (Lemma [3.1] Proposition [3.2]ii)). These properties make PHR broadly usable for
model—free learning tasks where one wants a stable, reusable state—space embedding from a sin-
gle exemplar trajectory. Concretely, once W is learned offline, downstream forecasting, regression,
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Figure 3: Predicted trajectories by different reservoir architectures alongside the ground truth for the
test segment of the Lorenz system under autoregressive forecasting.

and classification reduce to a single convex readout fit ({7), which is sample-efficient and fast. The
topological channel furnishes phase—aware latent coordinates that are diffeomorphism—robust by
Takens-style embeddings and persistent cohomology (§3.1)), so the same T can transfer across sen-
sors/views of the same underlying process; the flow channel captures short—horizon transport that is
consistent with Ulam/Koopman discretizations, enabling accurate next—step prediction and detection
of regime changes via deviations of AW B from (p, 3/ s)P(’Y). In practice this supports: (a) system
identification and forecasting for chaotic/quasi—periodic signals (Lorenz/Rossler, turbines, climate
indices), (b) anomaly/change detection by monitoring pooled residuals | AW B - (p, 3/s) P, and
(c) few—shot task adaptation where W is reused and only the linear head is refit for new objectives or
operating points. Because W is norm—scaled, safe real-time deployment is facilitated: closed—loop
observers or controllers can be built with a guaranteed contraction margin while the readout encodes
task—specific objectives (cf. Koopman/EDMD readouts (Williams et al., 2015}, [Klus et al.} 2016)).

In neuroscience and biomedicine, PHR’s two—channel structure aligns with common dynamical mo-
tifs. The oscillatory planes Ej, implement stable, data-derived ring oscillators that track neural or
physiological thythms (theta/beta/gamma; respiratory/cardiac cycles) with bounded spectral pertur-
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ESN SCR CRJ

MCI-ESN DeepESN PHR

Figure 4: PSD of the z—coordinate of Lorenz-63 for the proposed model PHR and five baseline
reservoirs. Each plot compares the spectrum produced by autonomous rollout (coloured) with the
true spectrum (blue). PHR best preserves the spectral envelope and high-frequency decay, whereas
baselines show elevated noise floors and spectral broadening, indicating drift from the true attractor.

bation (Proposition [3.2(i)), echoing the central role of brain/physiological rhythms in coding and
coordination (Buzsakil 2006). The coarse Markov channel models metastable transitions among
network states (e.g., sleep stages, cognitive modes) via finite-state transport, consistent with empir-
ical accounts of large-scale brain dynamics and switching (Deco et al., |2017; |Breakspear, [2017)),
and with Markov/HMM practices in sleep staging and EEG analysis (e.g., [Kemp et al.| (2000);
Stephansen et al.|(2018))). For clinical time series, PHR yields interpretable latent variables (phases,
amplitudes, coarse states) for decoding or event prediction, such as arrhythmia detection in ECG
(Moody & Markl, |2001) and apnea detection in respiration, with robustness inherited from persis-
tence thresholds (Edelsbrunner & Harer,[2010; de Silva & Vejdemo-Johansson,[2009) and ESP scal-
ing (Manjunath & Jaeger, 2013). Because W is fixed once, cross-session/subject reuse is practical:
retain I (capturing conserved rhythms/flows) and retrain only W, for individuals, or update the
coarse P(") online from fresh counts without touching Wiop, thereby adapting to nonstationarities
while preserving stability.

B SETUP AND EXTENDED RESULTS

B.1 DATASET DESCRIPTION

Sunspot Monthly. The International Sunspot Index v2.0 published by SILSO (Royal Observa-
tory of Belgium) reports the total sunspot count for every calendar month from January 1749 to the
present, giving a contiguous univariate series of 1" ~ 3,300 observations at a uniform 1-month ca-
dence (World Data Center SILSO, 2020). The record is normalised to [0, 1] over the entire span; the
first 2 000 samples (166 years) constitute the training set, and the remainder is reserved for out-of-
sample evaluation. The data combine quasi-periodic forcing (11-year Schwabe, 22-year Hale, and
multi-decadal Gleissberg cycles) with broad-band chaotic variability, providing a canonical long-
horizon forecasting benchmark.

Santa Fe B Cardiorespiratory Series. Data Set B of the 1991 Santa Fe Time-Series Prediction
and Modelling Competition is a trivariate polysomnography recording that simultaneously tracks
heart-rate (HR), chest volume (RESP) and peripheral oxygen saturation (SpOs) for a continuous
20-minute interval sampled at fs = 2Hz (Jaeger, [2007). After converting the raw ASCII file into
a matrix u; € R3, each channel is linearly detrended and scaled to unit variance using statistics
computed on the training split. We allocate the first 1200 samples (10 minutes) for training and
the remaining 600 samples for evaluation, formulating a next-step multivariate forecasting task that
couples slow respiration-driven oscillations (RESP), faster autonomic heart-rate variability (HR) and
the more slowly drifting SpOs signal. The dataset therefore probes the reservoir’s ability to integrate
interdependent physiological rhythms operating on distinct but overlapping time-scales.
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Figure 5: NRMSE for autoregressive predictions as a function of forecast horizon for the canonical
chaotic benchmarks and real-life datasets.

MIT-BIH Arrhythmia. The MIT-BIH Arrhythmia Database contains 48 half-hour two-lead
ECG records digitised at 360 Hz (11-bit, £5mV) with expert beat- and rhythm-level annotations
(Moody & Mark}, 2001} [Goldberger et al,2000). For single-channel forecasting we choose Lead II
of record 100, extract the first 25000 samples (~ 70 s), and scale them to zero mean and unit variance.
A 3-dimensional delay embedding reconstructs the local dynamical manifold, yielding a sequence
whose quasi-periodic P-QRS-T morphology is punctuated by occasional ectopic beats—an ideal test
of biomedical robustness.

BIDMC PPG & Respiration. Record bidmc01 from the BIDMC PPG & Respiration corpus
(Pimentel et al.,[2016}[Goldberger et al.|[2000) is an eight-minute ICU waveform captured at 125 Hz
and composed of photoplethysmogram (PPG), impedance-derived respiration (RESP) and Lead-
IT ECG. We retain the 60000-sample PPG and RESP channels, detrend each, and segment them
into overlapping 10-second windows (1250 samples) with a 1-second stride. The reservoir receives
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Lorenz-63 Rossler Chen—Ueta

Figure 6: Three-dimensional phase portraits generated by PHR for Lorenz-63, Rdossler, and
Chen—Ueta over a 1000-step autonomous rollout (red), overlaid on the reference attractors (blue
dots). Close overlap confirms that PHR preserves the global geometry of all three chaotic systems.

Dataset din fs ﬂot Two Teff

Lorenz—63 3 50Hzequiv. 12500 2000 10500
Rossler 3 50Hzequiv. 12500 2000 10500
Chen-Ueta 3 50Hzequiv. 12500 2000 10500
BIDMC PPG/Resp 1 125Hz 60000 5000 55000
MIT-BIH ECG 1 360Hz 25000 5000 20000
Santa Fe B 3 2Hz 2400 100 2300
Sunspot Monthly 1 1 month™? 3315 100 3215

Table 3: Overview of benchmark datasets. dj,/doy are the input/target dimensions, f the sampling
frequency after re-sampling, and Ti¢ = Tiot — Two-

the PPG (optionally ECG) as input and must regress the synchronous RESP waveform, framing a
continuous sequence-to-sequence task with rich cardiorespiratory coupling.

Lorenz-63. The Lorenz—63 system models thermal convection in an idealised fluid layer and is
governed by the quadratic ODE ¢ = o (y —z), y =z (p—-2) -y, 2 = zy — Bz, with the classi-
cal chaotic settings (o, p, 5) = (10, 28, %) Lorenz . Linearising about the three equilibrium
points—one at the origin and two symmetric saddles—reveals a pair of complex-conjugate eigen-
values with positive real part once p > 1 + o/(o + f3), triggering a sub-critical Hopf bifurcation and
the birth of the famous double-scroll (“butterfly”) attractor. Rigorous computation gives a largest
Lyapunov exponent Apax = 0.9056+0.0002 (time-unit™ '), a Kaplan—Yorke (information) dimension
Dgy = 2.062, and a correlation dimension Do » 2.05. Because only one exponent is positive, the
error growth rate is exponential but still tractable, making Lorenz—63 the de-facto baseline for eval-
uating long-horizon chaotic predictors. We integrate the system for 12 500 steps after a 2000-step
transient, ensuring that the segment alternates between both lobes so that the predictor must solve
the return-map as well as the local Jacobian dynamics.

Rossler. The Rossler equations & = —y — 2z, ¥ = ¢ +ay, 2 = b+ z(x - ¢), with (a,b,¢) =
(0.2,0.2,5.7) generate a single-scroll chaotic attractor whose first-return map on the Poincaré sec-
tion z = zyin 18 topologically conjugate to the logistic map, yielding a one-dimensional kneading se-
quence of symbolic dynamics [1976). The maximal Lyapunov exponent is Apax ~ 0.0712,
an order of magnitude smaller than that of Lorenz—63, which postpones divergence of nearby tra-
jectories and produces a spectrum of finite-time Lyapunov exponents heavily skewed towards zero.
Consequently, prediction errors grow more slowly but linger, exposing whether a model’s inductive
bias captures the weakly non-hyperbolic stretching and folding. A 12 500-step slice is harvested
after discarding 2 000 transients, providing a benchmark on which memory capacity rather than raw
separation dominates.

Chen-Ueta. The Chen—Ueta flow modifies Lorenz by interchanging two nonlinear terms, & =
a(ly-xz), y=(c-a)x—xzz+cy, 2=xy->bz and for (a,b,c) = (35,3,28) possesses two
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Figure 7: Distribution of sample-level NRMSE after a 1000-step open-loop rollout on seven bench-
marks. Each box-and-whisker shows ten seeds: box = inter-quartile range, line = median, whiskers
= non-outliers, grey bar = mean. Lower is better; PHR displays the tightest IQR and lowest median
on every dataset.

positive Lyapunov exponents, A\; ~ 2.00 and Ao ~ 0.45, while A3 < 0 (Chen & Uetal [1999). The
Kaplan—Yorke dimension therefore satisfies 3 < Dgy < 4, rendering the attractor hyper-chaotic.
Its higher local expansion rate and the coexistence of two unstable manifolds lead to rapid loss of
predictability and extremely intricate fractal folding, which stress-tests the reservoir’s non-linear
separation ability and its capability to encode multi-directional volume expansion. We integrate for
12500 steps following a 2 000 step transient; this window spans multiple high-curvature excursions,
forcing the model to reconcile both fast and intermediate dynamical scales.
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Collectively the three canonical chaotic flows form a graded staircase of chaotic difficulty—single
vs. double scroll, single vs. double positive Lyapunov exponents—enabling a systematic assessment
of how the proposed PHR scales with increasing dynamical complexity. A summary for all datasets
is provided in Table 3]

NRMSE | (mean + s.d.)

Dataset H
LSTM NVAR TCN Transformer SW PHR
200  1.2026 +0.2382  1.6031 + 0.2452  1.6917 + 0.4007  1.6097 + 0.3884  0.0090 + 0.0130  0.0004 + 0.0005
400  1.0383 £ 0.0800 1.4235 +0.0928 1.4759 +0.2526 1.3922 +0.2427 0.1082 + 0.1097  0.0075 + 0.0103
Lorenz 600  1.1483 £0.1080 1.5861 +0.1527 1.6875 +0.2900 1.5852 + 0.2653  0.7048 + 0.2202  0.2121 = 0.1877
800 0.9628 +0.0368 1.3475 +0.0471 1.4060 + 0.2046 1.3913 + 0.4721 0.8234 + 0.1326  0.6495 + 0.1928
1000 1.0703 + 0.0321  1.5022 + 0.0476  1.5638 £ 0.2285 1.9159 + 0.4818 1.0512 +0.1225 0.8481 + 0.1358
200 1.0736 +0.0245 0.3280 + 0.3245 1.7004 + 0.1079  1.5320 + 0.1578  0.2934 + 0.2266  0.1278 + 0.2424
400  0.9467 £ 0.0129 0.9074 £ 0.1709  1.4779 £ 0.0999 1.3523 +0.1301 0.8877 + 0.1488  0.7958 + 0.2006
Chen-Ueta 600  1.0834 +0.0109 1.1985 +0.1446 1.7133 £0.1067 1.5562 +0.1295 1.1966 + 0.1233  1.0555 + 0.1199
800 0.9196 +0.0074 1.0956 + 0.0916 1.4571 +0.0875 1.3171 +0.0983  1.0985 + 0.0967 1.1632 + 0.0878
1000 1.0602 + 0.0080 1.3086 + 0.0845 1.6636 + 0.0949 1.5113 £0.1076 1.4196 + 0.0914  1.2316 + 0.0737
200  1.0812 +0.0233 0.0007 + 0.0013  1.1246 + 0.1425 2.3080 + 1.9116  0.0939 + 0.2581  0.0002 + 0.0001
400 0.9533 £0.0114 0.0029 + 0.0076  1.2723 + 0.2087 1.8106 + 1.1900 0.2851 + 0.6510  0.0003 + 0.0003
Rossler 600  1.0713 £ 0.0088 0.0066 +0.0113 1.5163 +0.2680 2.0018 + 1.3390  0.6319 + 1.1674  0.0007 = 0.0007
800 0.9282 +0.0063 0.0086 +0.0132  1.3175 £ 0.1390 1.7612 + 1.2643  0.7486 + 1.2440  0.0010 + 0.0011
1000 1.0377 £ 0.0052  0.0140 + 0.0187 1.4574 £ 0.1625 2.2183 £2.0249 1.0771 + 1.5656  0.0013 + 0.0016
300 0.8638 +0.0269 1.3428 + 0.0000  0.9276 + 0.0080 5.1384 +3.3092 2.9550 + 0.8557  0.5320 + 0.0442
MIT-BIH 600 0.7484 £ 0.0242 1.1656 + 0.2367 0.8218 £ 0.0043  4.4601 + 2.8918 1.8478 + 0.5179  0.5417 + 0.0236
1000  0.8497 +0.0255 1.2918 £ 0.1372 0.9146 + 0.0070  4.6228 +2.9510 1.5467 + 0.3971  0.5833 + 0.0123
300 0.9470 £ 0.0062 0.9045 + 0.2933  0.9049 + 0.0125 1.4003 + 0.2142  0.6960 + 0.0570  0.3655 + 0.0143
BIDMC 600 1.0667 £ 0.0031 0.9841 +0.1432 1.0138 £ 0.0131  1.6448 + 0.2256 0.7895 + 0.0575  0.3571 + 0.0151
1000 0.9219 + 0.0057 0.8983 + 0.0741  0.8674 + 0.0139  1.4456 +0.1990 0.6871 +0.0443  0.4352 + 0.0133
300 0.5727 £ 0.0068 0.4182 +0.0013  0.4299 + 0.0026 0.2768 + 0.0041  0.6269 + 0.0439  0.2505 + 0.0011
Sunspot 600  0.6055 £ 0.0060 0.2907 +0.0098 0.2932 + 0.0017 0.1907 + 0.0043  0.5586 + 0.0410  0.2093 = 0.0015
1000 0.6800 + 0.0074 0.3312 + 0.0190 0.3338 + 0.0021 0.2178 + 0.0053  0.6266 + 0.0460 0.2044 + 0.0010
300 0.6680 +0.1017 1.3171 £0.0013  0.3213 £ 0.0097 3.3260 + 1.6923  0.1974 + 0.0023  0.1485 + 0.0003
Santa Fe 600  0.5746 £ 0.1409 1.3918 £ 0.0113  0.2650 + 0.0059 2.4134 + 1.2261 0.1647 + 0.0014  0.1262 = 0.0003
1000 0.5412 +0.1174 1.2626 + 0.0168  0.2569 + 0.0060 2.4788 + 1.2549 0.1634 + 0.0016  0.1361 + 0.0003

Table 4: NRMSE (mean + s.d.) across all benchmarks and horizons for comparison
based baselines.

with gradient-

NRMSE (x1075) |

Dataset H
ESN SCR CRJ MCI-ESN DeepESN PHR
200 5.3084 + 1.8201 4.5661 + 1.1055 4.0665 +2.2136 5.1315 + 2.1534 8.0426 + 4.9766 1.9459 + 0.4228
400 6.1453 + 3.4127 6.8544 + 8.2930 5.8480 + 5.9654 5.5835 + 3.0159 14.3798 + 25.1950 1.9610 = 0.3980
Lorenz 600 6.2136 + 2.9307 6.7382 + 7.2498 6.2639 + 5.5241 5.6319 +2.4513 14.8085 + 22.4161 1.9327 + 0.3609
800 5.8794 + 1.9437 6.0779 + 4.8747 5.8424 + 3.8676 5.2979 + 1.6073 13.1852 + 15.6860 2.1054 + 0.4672
1000 5.7315 + 1.4810 5.8048 + 3.9922 5.4164 + 3.1885 5.1994 + 1.1876 12.0887 + 13.1349 2.0554 + 0.3898
200 17.4775 + 87.5577 76.3789 + 65.2906 27.7972 + 14.9489 13.0443 + 5.4424 55.3606 + 26.8909 5.1368 + 2.8103
400 36.9059 + 53.6185 152.4160 + 210.0693  53.8950 + 69.5504 22.0085 + 24.4040 78.7224 + 77.9541 8.3424 + 9.3712
Chen-Ueta 600 38.7540 + 54.4478  164.3067 + 208.3044  57.3656 + 73.4667 23.3657 + 25.5862 83.4452 + 74.6511 8.4135 + 7.8776
800 36.5894 +45.6740  155.8315 + 175.5068  54.6267 + 61.5250 22.4755 +21.2737 81.9084 + 62.4709 8.3066 + 6.4822
1000 36.3487 + 39.3055 161.2043 + 150.8282  56.0409 + 52.6167 21.9270 + 18.5333 80.6558 + 57.4452 8.1426 + 5.7768
200 18.2036 + 22.4166 186.2890 + 387.9631  18.7657 + 17.9382 15.9787 + 14.2553 21.5473 + 17.8969 5.3958 + 2.4637
400 33.4001 +48.8892  157.7964 + 244.4589  23.2474 + 25.8931 25.8438 + 34.6041 31.4314 + 45.1686 7.1545 + 8.7532
Rossler 600  99.7132 +206.7794  237.6528 +393.0541 62.2698 + 125.8244 101.1291 + 224.4540  98.6072 + 213.4015  22.0354 + 44.6574
800  104.9667 + 197.2623  233.9971 + 372.8086  62.7120 + 120.4620  103.5512 £ 214.1152  103.3252 + 203.8183  23.1159 + 42.5334
1000  98.2334 + 184.3336  225.4536 + 356.0678  58.9122 + 112.6381  97.1532 +200.1728  96.8307 + 190.4315  21.8021 + 39.6918

Table 5: NRMSE (mean = s.d.) on the canonical chaotic benchmarks over multiple horizons (H).
Forecasts are produced in open-loop mode. For each horizon the best score is bold and the runner-
up is underlined. Results are averaged over 5 x 3 x 3 = 45 runs (5 seeds, 3 different initializations of
trajectory, 3 train—test splits).

B.2 BASELINES

To quantify the incremental value of the proposed method, we compare it against a suite of
widely cited baselines—both reservoir architectures (ESN, SCR, CRJ, MCI-ESN, DeepESN, Small-
World ESN) and non-reservoir sequence models (NVAR, LSTM, TCN, single-layer causal Trans-
former)—under a harmonized capacity and training protocol (cf. Tabs. [IJ4] [5). Unless the original
design intrinsically requires a multi-core layout (as in MCI-ESN), single-layer reservoirs use ex-
actly NV = 300 recurrent units, while hierarchical reservoirs use three layers of 100 units. MCI-ESN
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Factor (canonical ESN)  Values (one varied at a time) N (neurons) NRMSE@H=600 | VPT ¢ ADev |
Baseline (PHR, Lorenz—63, 600-step AR): N=300, leak A\=0.20, target p.=0.94, input scale = 0.5, Q=200, stride s=5, K max=3, auto-tuned (a.op, ;’3ﬂ0w), nzr= 4, nzc= 12.

Baseline result (mean:std over seeds) 300 0.2121 + 0.1877 10.94 + 1.65 29.11 + 9.53
0.15 300 0.2385+0.1954  10.62+ 1.72 30.02 + 9.8

Leak A 0.20 (baseline) 300 02121 +0.1877  10.94 + 1.65 29.11+9.53
0.25 300 0.2259 +0.1901  10.78 + 1.69 29.67 +9.71

0.35 300 0.2684 + 02053  9.92 + 1.86 31.45 + 1021

0.92 300 0.2432+0.1989 1042+ 1.79 30.18 + 9.96

Taraet spectral norm 0.94 (baseline) 300 02121 +0.1877  10.94 + 1.65 29.11+9.53
aetsp P 096 300 0.2240 +0.1915  10.81 + 1.70 29.58 + 9.68
0.98 300 02613 +0.2076  10.08 + 1.83 31.01 + 10.07

0.2 300 02524+ 02022 1023 + 1.82 31.14 £ 10.12

Input scale | Wi 0.5 (baseline) 300 02121 +0.1877  10.94 + 1.65 29.11+9.53
1.0 300 0.2410+0.1995 1034+ 1.78 30.72 + 9.98

Table 6: Ablation over canonical parameters for PHR on Lorenz—63: 600-step autoregressive
forecasting. Each block varies a single factor; all other settings are fixed to the baseline shown (top).
Report mean + std over 45 trials. NRMSE is the primary metric at horizon H = 600; VPT (valid
prediction time, 1) and ADev (attractor deviation, |) are computed with the same protocol as Tab.

follows its published two-core configuration (two sparsely coupled 300-unit cycles). All methods
receive the same pre-processed inputs, apply the same wash-out 7,,, and (where applicable) train
the linear read-out by ridge regression with a shared grid aqiqge € {107%,107°,107*}, ensuring
comparability of optimization and regularization across models.

» ESN (Jaeger, 2001). ErdGs—Rényi connectivity with p € {0.10,0.20,0.25,0.30}. Spec-
tral radius p, and input scaling |Wj,|2 are chosen from the logarithmic grid p, €
{0.3,0.6,0.9} x [Wi,]|2 € {0.1,0.3,1.0}.

* SCR (Li et al.| 2024). A single directed cycle of length 300 with uniform edge weight we.
Tuning grid: w, € {0.3,0.6,0.8,0.9,1.0}.

* CRJ (Rodan & Tino,2012). SCR with additional “jump” edges of fixed span J. We sweep
J e {5,10,12,15,20,30} x w, € {0.3,0.6,0.7,0.8,0.9}, keeping unit in-degree.

* MCI-ESN (Liu et al.l 2024). Two sparsely coupled 300-unit cycle ESNs (total N =
600). Hyper-parameters follow (u,7n) € {0.6,0.7,0.8,1.0}? (intra-core radii) and 6 ¢
{0.4,0.5,0.6,0.8} (cross-core mixing).

* DeepESN (Gallicchio & Michelil 2017). Three stacked leaky reservoirs (100 + 100 + 100
units). A common input scale | Wi, |2 is selected as for ESN. Layer-¢ spectral radii decay
geometrically p, = pf with p, € {0.4,0.6,0.8}; the shared leak o € {0.3,0.5,0.7} is co-
optimised.

* Non-linear Vector Auto-Regression (NVAR) (Farmer & Sidorowichl [1987) NVAR mod-
els the system with a fixed delay line (k¥ = 100) followed by a quadratic polynomial ex-
pansion. The 3-D input is flattened over the last 100 steps into z € R3*° and mapped to
¢ = [1; x; 2®2] € R*54% where the (30[2”1) = 45,150 second-order monomials cover all
pairs with replacement. A ridge-regularised least-squares fit then produces a read-out ma-
trix Wyt (136,353 parameters); no other weights are learnt. Prediction is strictly causal:
each output is fed back into the delay buffer before the next evaluation, yielding an autore-
gressive closed loop with a 100-step effective memory.

e LSTM (Hochreiter & Schmidhuber, |[1997) The recurrent reference model is a single-layer
LSTM with 500 hidden units followed by a linear projection to R®. This configuration in-
troduces roughly 1.01x10° tunable parameters, about 160x the parameter budget of PHR.
Training uses full-sequence teacher forcing, Adam (10~%) and 80 epochs to minimise mean-
squared error. During free-run evaluation the network closes the loop on itself: the latest
prediction becomes the next input, forcing the LSTM to retain long-term context inter-
nally and revealing how much horizon length a conventional gated RNN can sustain when
operating under the same parameter budget as our biologically grounded reservoir.

¢ Temporal-Convolutional Network (TCN) (Bai et al., 2018) Our convolutional benchmark
is a two-stage, strictly causal TCN whose kernels have size 3 and dilations 1 and 2, giving
a receptive field of five time-steps. Each convolution is followed by a ReLU and the right-
hand padding is cropped so that no future leakage occurs. Fixing the channel width at
500 results in 757,003 adjustable parameters, about 120 times the parameter budget of our
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reservoir. Training is carried out in teacher-forcing mode on a single long sequence (batch =
1), optimising one-step MSE with Adam (learning rate 103, 80 epochs). For forecasting,
the newest five observations seed an autoregressive loop in which the window is shifted
forward after each prediction to maintain causality.

* Single-Layer Causal Transformer (Vaswani et al., 2017) The transformer baseline con-
sists of one encoder block with dpeger = 100, a single attention head, and a feed-forward
sub-layer of width 4d,04e;. Three-dimensional inputs are linearly projected, summed with a
fixed sinusoidal positional code of length L, and passed through the encoder; only the final
token is used to predict the next state, so causality is preserved without an explicit mask.
Parameter count (1.22 x 10°) about 20 times PHR. Training employs sliding windows of
length L = 20 (stride 1) and mini-batches of 64, with Adam at 2 x 1072 for 100 epochs. At
test time the window is rolled forward autoregressively: each new prediction is appended,
re-encoded, and used to drive the next step, so the effective context exactly matches what
was seen during learning.

* Small-World Topology ESN (Kawai et al.,|2019). We include a Small-World Echo-State
Network (SW) whose recurrent matrix is obtained by (i) generating a Watts—Strogatz graph
with IV nodes, mean degree k and rewiring probability p = 0.1, (ii) assigning i.i.d. weights
drawn from N (0, 1) to the existing edges, and (iii) rescaling the resulting matrix to a target
spectral radius p,. The input vector projects only to a compact cluster of “input” neurons,
while the read-out taps a disjoint cluster of “output” neurons placed at a maximal geodesic
distance, replicating the spatial segregation used in the original study. Kawai et al. showed
that this small-world topology widens the range of p, values for which the echo-state prop-
erty is preserved and significantly improves both memory-capacity and nonlinear prediction
tasks compared with dense or lattice reservoirs; we therefore evaluate SW-ESN under the
same capacity budget (N = 300, k = 6) and hyper-parameter sweep as the other baselines.

Training & model selection. For every Cartesian hyper-parameter tuple we fit the read-out on the
training split, compute NRMSE on the validation split, and retain the best model to score the test set
with all four metrics. By fixing the global random seed we ensure that differences arise solely from
reservoir topology and intrinsic time-scale, not from stochastic weight realisations.

Evaluation Protocols Chaotic-system benchmarks are single-channel state reconstructions in
which the model’s input and output live in the same 3-D phase space; we therefore test in closed-
loop (autonomous) mode—after a 1 000-step wash-out we seed the reservoir with the last true state,
run it for H steps while feeding each prediction back as the next input, and quantify compounding
error through metrics. In contrast, the real-world collections pair heterogeneous sensor values with
domain-specific targets—i.e. the driver and the prediction lie in different feature spaces or semantic
channels—so recycling the model’s output as a surrogate input would violate the data-generation
mechanism and induce uncontrolled distribution shift. Accordingly, we adopt a teacher-forced
open-loop protocol for these tasks: at every intermediate step ¢t + 7 (0 < 7 < H) the reservoir
receives the ground-truth measurement, produces y.,+1, and only the terminal prediction ¥,z is
scored; this treats the model as a real-time forecaster or filter that augments, but never contaminates,
the sensor stream.

For the Lorenz dataset, ESN used reservoir size 300 and connectivity ratio 0.2; SCR used reservoir
size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.7 and jump size
20; MCI-ESN used sub-reservoir size 300 with edge weight p = 0.6, inter-reservoir connection
n = 0.6, and coefficient § = 0.4; DeepESN had 3 layers with reservoir sizes 100, 100,100; PHR
used 300 anchor points with blend weights (aop, Baow, &) = (0.2375, 0.7125, 0.0500). For the
Rossler dataset, ESN used reservoir size 300 and connectivity ratio 0.3; SCR used reservoir size 300
and edge weight 1.0; CRJ used reservoir size 300 with edge weight 0.6 and jump size 10; MCI-
ESN used sub-reservoir size 300 with = 0.8, n = 1.0, 6 = 0.8; DeepESN again had 3 layers of
sizes 100,100, 100; PHR used 300 anchors with (cop, Baow,&) = (0.0679, 0.8821, 0.0500). For
the Chen—Ueta dataset, ESN used reservoir size 300 and connectivity ratio 0.3; SCR used reservoir
size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.8 and jump size 10;
MCI-ESN used sub-reservoir size 300 with p = 0.8, = 1.0, 6 = 0.6; DeepESN had 3 layers of
sizes 100,100, 100; and PHR used 300 anchors with (ctop, Baow,&) = (0.0826, 0.8674, 0.0500).
For the BIDMC PPG/Resp dataset, ESN used reservoir size 300 and connectivity 0.25; SCR used
reservoir size 300 and edge weight 0.9; CRJ used reservoir size 300 with edge weight 0.7 and jump

30



size 10; MCI-ESN used sub-reservoir size 300 with 1 = 0.7, = 0.9, 6 = 0.6; DeepESN had 3 layers
of 100,100,100; PHR used 300 anchors with (cvop, Baow,&) = (0.2036, 0.7464, 0.0500). For
MIT-BIH ECG, ESN used reservoir size 300 and connectivity 0.25; SCR used reservoir size 300
and edge weight 0.9; CRJ used reservoir size 300 with edge weight 0.7 and jump size 10; MCI-ESN
used sub-reservoir size 300 with = 0.75, n = 0.9, 8 = 0.6; DeepESN had 3 layers of 100, 100, 100;
PHR used 300 anchors with (cop, Baow, &) = (0.1357, 0.8143, 0.0500). For the Santa Fe B laser
series, ESN used reservoir size 300 and connectivity 0.3; SCR used reservoir size 300 and edge
weight 0.8; CRJ used reservoir size 300 with edge weight 0.7 and jump size 10; MCI-ESN used
sub-reservoir size 300 with = 0.7, 7 = 0.8, = 0.5; DeepESN had 3 layers of 100, 100, 100; PHR
used 300 anchors with (aop, Baow, &) = (0.0328, 0.9172, 0.0500). For Sunspot Monthly, ESN
used reservoir size 300 and connectivity 0.2; SCR used reservoir size 300 and edge weight 0.8; CRJ
used reservoir size 300 with edge weight 0.7 and jump size 12; MCI-ESN used sub-reservoir size
300 with ¢ = 0.7, n = 0.9, 6 = 0.6; DeepESN had 3 layers of 100,100, 100; and PHR used 300
anchors with (@op, Briow,§) = (0.3563, 0.5938, 0.0500).

Computational and complexity notes. We use RIPSER for fast H! with cocycles (Bauer, 2021).
The Laplacian systems are sparse and solved per connected component with a small Tikhonov p
and an LSQR fallback (Paige & Saunders| [1982). The PH stride s trades accuracy for cost; since

@y uses only temporal increments of 9,@, subsampling at modest s typically preserves the dominant
angular velocity while reducing O(n?) storage and compute. Forming C' costs O(T') operations
for fixed h; normalization and teleportation are O(Q?). The default sparse constructions of A and
B cost O(Qnzr + Qnzc) and yield Wy, applicable in O((nzr + nzc)Q) time when used
as a product. Small e-pseudocounts ensure no dead rows; v ~ 1072 suffices to regularize nearly
reducible chains without washing out directed transport. A naive matrix—vector step with dense W/
costs O(N?); however, Wiop is a permutation of block-diagonal 2 x 2 rotations plus diagonal decay,
and Whow = BP() A is a product of sparse—stochastic maps with a Q x @ core. Implementations
that apply W as (atpopWiop) T + ( BaowB) (PO (Az)) + € Wheisex can therefore reduce per-step
cost to O(K + Q(nzr + nzc) + nnz(Wheise) ), where K is the number of rotation blocks. Our
reference code stores W explicitly for simplicity and enforces stability via (3); NaN guards ensure
failures in upstream PH or degeneracies in scaling are surfaced early with safe fallbacks.

Robust graph construction and degenerate cases. If £, = @ at the chosen ¢;,, we fall back
to a symmetric k-nearest-neighbor graph (code default £ = 8). Edge weights follow the same w;;
logic. After solving, angles that become non-finite (rare in practice; e.g., due to isolated components
coupled with numerical roundoff) are repaired by replacing the offending class’s angle time series
with a synthetic wrapped-linear phase at the dominant PCA angular velocity on Z®™) | ensuring a
well-defined downstream mean velocity for every selected class.

Table 7: Notation summary. Dimensions are given for column vectors unless stated otherwise.

Symbol Meaning Type / Dimensions Default / Range
Observed data, embedding, and subsampling

Ut observed input/sample at time ¢ uy € Robs —

T number of observations integer —

m embedding dimension (per channel) integer 6-20

T embedding lag (in samples) integer 1-5

2t delay-embedded vector 2 € R obs —

Z embedded point cloud Z ={z} sizen=T-(m-1)7
s PH subsampling stride integer 5-10

Z(PH) subsample for PH subset of Z |Z(PH)| = NpH

D pairwise distances on Z D e RIFH>"PH Euclidean
Persistent cohomology, circular coordinates, and oscillators

(be,dy) birth/death of H! class ¢ reals with 0 < b, <d,  from VR filtration
Py persistence of class ¢ Py=do—-be —

ce representative 1-cocycle (mod p) cochain on 1-skeleton field

P prime coefficient for PH integer prime 47 (default)

1Y, working scale in (be, dy) real near-death dy — 107°

(table continues)
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Symbol Meaning Type / Dimensions Default / Range

Gy =(V,E;) Rips l-skeleton at &, graph —

M oriented incidence of G |Ee| x |V —

wij edge weight on (¢,7) € E; positive real (Dij+e)"

w diagonal matrix of edge weights |Ee| x | Eq| W = diag(wi;)

m Tikhonov regularizer real, >0 tiny (107-107)

L weighted graph Laplacian [V]x|V] M"WM

b right-hand side for LS \4 M Wa

9 vertex potentials RV solves (L + ul)d =10
0¥ circular coordinate (angle) (-m, 7]V 0 = wrap(2m9)

) mean angular velocity real wrapped LS / mean increment
Prot rotation radius for top blocks real in (0,1) 0.92-0.98

R(De; prot ) 2x2 rotation block 2x2 see text

K requested # of loops integer < Kmax

Kimax cap on # loops for synthesis integer 2-6

vy relative persistence threshold real in [0, 1] 0.2-0.4

Tieep indices kept by threshold subset of {1,...} Py 2 vPrax

Kanal kept # of loops integer |Zxeep|

Ex kth oscillatory plane 2-D subspace of RN invariant for Weop

E, non-oscillatory subspace (N -2K)-D invariant for Wiop,
Coarse partition, Markov model, and lift

Q number of clusters (cells) integer 50-400

Cq gth centroid R™obs from k-means

St cluster index of z; {1,...,Q} argming |z, — ¢4

h short horizon for counts integer -

c transition counts Ce R;?OXQ Cij =#{t:st=1,814n =7}
€ pseudocount for rows real > 0 1079-107°

P row-stochastic Markov matrix R@*C P = %

Ytel teleport weight real in [0, 1) 10’3—1('_]1’1

u teleport base distribution R¢ u = é 1

pP™ teleported Markov matrix RO*Q (1-~)P+~1u"

A pooling map (row—stochastic) ROV each row sums to 1

B lifting map (col-stochastic) RNV*@ each column sums to 1
nzr nonzeros per row of A integer 2-6

nzc nonzeros per column of B integer 5-20

Whaow lifted flow operator RYVN BPM A

A pool-lift defect R@*@ A=AB-1Ip
Blending, scaling, and ESN dynamics

N reservoir size (neurons) integer 300

Wiop topological rotation—decay operator RNV*N blkdiag—permute
Whoise normalized noise matrix RN [Whoise |2 = 1

a, B,& blend weights nonneg. reals a+f+&=1

Whiend pre-scaled blend RNV*N AWiop + BWiow + EWhoise
s operator norm of Whend real > 0 $ = |Whiend||2

P target spectral (operator) norm real in (0,1) 0.94-0.99

w final recurrent operator RN W= %*Wblend

A leak (update mixing) real in (0,1] 0.15-0.35

10} nonlinearity RY - RV tanh (1-Lipschitz)

Tt reservoir state zy e RN update (TT)

Wi input weight matrix RN *dobs random, scaled

L contraction constant real in (0,1) (1=X)+ Aps

By, B, invariant subspaces of Wiop, subspaces of RY 2-D planes and complement
Readout and features

Lpoly polynomial feature flag {0,1} include x: ® x4 if 1

o feature vector at ¢ RY [2¢; Lpoly (Tt ©@ x¢); 1poly]
D (washout)  discarded transient steps integer 50-500

o design matrix RT-D)xF TOWS @y

(table continues)
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Symbol Meaning Type / Dimensions Default / Range

Y targets R(T-D)xdout task-dependent
Otridge ridge regularization real > 0 1078-1072

Wout linear readout R Pout ¥ solves

Norms and operators

|2 operator (spectral) norm matrix norm largest singular value
Iy 0 oo induced ¢1, £ norms matrix norms max column/row sum
wrap(-) wrapping to principal branch angle / unit interval (=m,m]or [0,1)

© Hadamard product elementwise —

Auto-tuning parameters

Qmin, Omax bounds for topology weight 0 < Omin € @max <1 user-chosen

Sloop mean relative loop strength real in [0, 1] m LteThep p:ix
Prax strongest persistence real > 0 maxy Py

B.3 HIGH-DIMENSIONAL PDE BENCHMARK: 2D KOLMOGOROV FLOW

Task and data generation. To assess scalability beyond low—dimensional ODE attractors, we
test PHR as a model-free surrogate for a two—dimensional Kolmogorov flow, a canonical forced
Navier—Stokes benchmark on a periodic domain. We consider the incompressible Navier—Stokes
equations on = [0,27]%, Qu+ (u-V)u = -Vp +vAu+f, V-u = 0, with viscosity v =
1073 and sinusoidal forcing f(x,y) = (Fsin(ksy), 0) with F = 0.1 and k; = 4. The reference
solution is generated by a pseudo—spectral solver on a 64 x 64 Fourier grid with 2/3 dealiasing and a
fixed time step Atppg = 1072, using a fourth—order Runge—Kutta integrator and periodic boundary
conditions in both directions. We discard an initial transient of 2 x 10? time steps and then record
Tppg = 1.2 x 10° additional steps. For learning, we subsample every m = 10 solver steps, yielding
T = 12,000 snapshots at interval At = m Atppg = 1072. We project each velocity field u(t,)
onto the leading d,s = 16 Proper Orthogonal Decomposition (POD) modes of the training segment,
obtaining coefficient vectors u; € Rdobs ¢ = 1,...,T. These coefficients form the observable time
series for all models. We split the coefficient trajectory contiguously into Tt = 6,000 steps for
training, Tya = 2,000 for validation, and Tt = 4,000 for testing. During evaluation, we initialize
each model with the true coefficients at the start of the test segment and roll it out autoregressively
for H = 2,000 steps. We report (i) NRMSE of the POD coefficients over this horizon, (ii) VPT, the
first time ¢ at which ||us — t¢||2/[|ut] 2 > 0.3 (reported in physical time tAt), and (iii) relative errors
in long—time kinetic energy and enstrophy computed from the reconstructed velocity fields on the
test segment.

Model configurations and hyperparameters. For PHR, we use a reservoir of size N = 600
with leaky ESN update (leak A = 0.20), target operator norm p, = 0.94, and input weights
Win € R¥V*dovs drawn i.i.d. from U[-1,1] and scaled by input_scale = 0.5. Delay embed-
ding uses dimension m = 8 and lag 7 = 1, so that z; € R®%ps; the embedding is standard-
ized to zero mean and unit variance per coordinate. For PH, we subsample the embedded trajec-
tory with stride ph_subsample_stride = 5, use prime coefficient p = 47, inverse—distance
edge weights, and a “near—death” scale strategy as specified in Sec. [3.1] The PH back—end is
asked for at most K.max_cap-default = 3 loops; the auto—tuner thresholds relative persis-
tence at v = pers_rel_thresh_to_max = 0.25 and maps the resulting loop strength into blend
weights with apin = 0.20, amax = 0.65 and fixed noise fraction £ = 0.05, yielding data—dependent
(Qttop, Briow, &) that still satisfy aop + Baow + & = 1. The coarse flow is built with @) = 200 clusters
(Lloyd k—means, 30 iterations, random initialization), horizon h = 1, and teleportation parameter
Vieleport = 3 X 1073 in the PageRank—style Markov smoothing. Pool and lift maps A € R&*V,
B e RV*? use pool_nonzeros_per_row =4 and 1ift_nonzeros_per_col = 12, with sup-
ports sampled uniformly without replacement. The topological operator Wy, uses rotation radius
Prot = 0.96 and decay radii for residual units drawn i.i.d. from 2/[0.90,0.98]; Wyeise is a Gaus-
sian matrix normalized to |Wyise|2 = 1 and scaled by 0.1. The blended operator Wyeng is scaled
to |[Wll2 = p« via 60 steps of power iteration as in Sec. The readout uses ridge regression
with penalty o igge = 1075 and quadratic feature augmentation (use_poly = True), including a
constant feature.
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The Random ESN baseline uses the same leaky update (leak A = 0.20), state size N = 600, and
input scaling 0.5, but its recurrent matrix is drawn once as a sparse Gaussian matrix with connection
density 0.1 (each nonzero from N'(0,1/N)) and then rescaled to spectral radius 0.94. The readout
is a ridge regression with ayiqge tuned in {107%,1077,...,1072} on the validation segment. The
GRU baseline is a single—layer gated recurrent unit network with hidden size H = 64, tanh activa-
tions, dropout rate 0.1 before the linear output layer (mapping R to Rbs), yielding ~ 1.7 x 10*
trainable parameters for d,ps = 16, i.e., the same order as the PHR readout. It is trained to minimize
mean—squared error on teacher—forced sequences of length L = 128 using Adam with learning rate
1073, batch size 64, weight decay 1075, and gradient clipping at norm 1.0, with early stopping based
on validation NRMSE (patience 20 epochs, maximum 200 epochs). The linear AR baseline is a
vector autoregressive model of order p = 72 in POD space, i.e., u; = Zﬁl Apuy_y, + £, with co-
efficient matrices Ay, estimated by ridge-regularized least squares (regularization parameter chosen
from 1078,107%,10~* using validation NRMSE). For d,ps = 16 this yields 72 x 16 x 16 = 18,432
linear coefficients (plus 16 biases), again placing the VAR baseline in the same parameter range as
PHR and the GRU.

Results. Table[§|reports the quantitative comparison on the Kolmogorov flow benchmark in terms
of coefficient—space NRMSE, VPT, and relative errors in long—time kinetic energy and enstrophy.
All models are trained and evaluated under the same data split and autoregressive protocol described
above.

Table 8: Two—dimensional Kolmogorov flow surrogate modeling in POD space. All models are
trained on the same POD coefficient trajectories and evaluated by autoregressive rollouts on an
unseen test segment. NRMSE is computed over a fixed forecast horizon H = 2,000; VPT is the
physical time until the relative error first exceeds 0.3; energy/enstrophy errors compare long—time
statistics of reconstructed velocity fields to the DNS reference.

Method NRMSE | VPT (time units) 1  Rel. energy error (%) |  Rel. enstrophy error (%) |
PHR (ours) 0.17 11.8 3.1 6.8
Random ESN 0.29 7.2 6.5 14.2
GRU 0.25 8.5 8.9 17.3
VAR 0.41 43 12.7 23.5

B.4 SOFTWARE, DEPENDENCIES AND COMPUTE BUDGET

All experiments were implemented in Python 3.10 using numpy (vectorized dense linear algebra),
scipy (sparse matrices, LSQR, Laplacian solves), and scikit-1learn (ridge regression). Per-
sistent cohomology (H* cocycles) was computed with ripser; circular coordinates were obtained
by solving the weighted normal equations on the Rips 1-skeleton via scipy.sparse.linalg
with a tiny Tikhonov regularizer and per-component gauge fixing. k-means clustering is a custom
Lloyd implementation. Visualization used matplotlib/seaborn. We fix a global PRNG seed
for PH subsampling/anchor, block permutations in Wi, supports of A, B, and the power-iteration
start vector. The code relies only on CPU BLAS/LAPACK (OpenBLAS/MKL); no GPU is required.
For stability we recommend ripser>0.6, numpy>1.26, scipy>1.11, scikit-learn>1.4; re-
sults were validated on Linux (x86_64, AVX?2) and macOS (arm64). Parallelism from BLAS and
ripser can be capped via OMP_NUM_THREADS. We used large language models only for re-
trieval/discovery (e.g., surfacing related work and canonical citations); all derivations, algorithms,
proofs, and experiments were authored and independently verified by us. All code and pretrained
weights will be released under the MIT License, permitting unrestricted academic and commercial
use provided the original copyright notice and license text are retained.

Compute requirements are dominated by two components: (a) PH on the subsampled embedding
of size npy and (b) the VR graph least—squares per selected loop. Pairwise distances scale as
O(ndymdobs) time and O(n3y;) memory (float64), i.e., roughly 8, n3 ; bytes; with stride s applied
to an embedded sequence of length n, one has npy ~ |n/s|, so memory drops quadratically in
s. The circular—coordinate solve uses the Rips 1-skeleton with |E| edges (typically near-linear in
npy at “near—death” scales), yielding a sparse SPD system whose conjugate gradients/LSQR cost is
O(|E|)-O(|E|log(1/¢)) per loop. The remaining stages are light: k—means over n points in R"dobs
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with moderate @Q; construction of (A, B) with O(Q,nzr + N,nzc) nonzeros; one matrix—vector
power iteration with < 60 steps for & * max; and an O(TF? + F*®) ridge solve with feature count F
(state with optional quadratic lift). Practically, for chaotic benchmarks where n is 103~10%, choosing
s €[5,20], Kmax <3, and Q € [200,400] keeps peak RAM within a few gigabytes and wall-clock
dominated by the O(n3y) distance stage. We report the exact (n, npmu, Kfnal, Q, |E|) alongside
results, enabling precise replication and ex—ante sizing of memory via 8, ny; bytes + overhead for
sparse structures.
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