
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING A STABLE RESERVOIR FROM AN OBSERVED TRAJECTORY VIA PERSISTENT LOOPS AND MARKOV FLOW

Anonymous authors

Paper under double-blind review

ABSTRACT

We study whether embedding global topology and local transport into a fixed reservoir can improve phase tracking and prediction. From a single delay-embedded trajectory, we build a recurrent operator in two parts: (i) long-lived H_1 classes from persistent cohomology are converted to circular coordinates whose average phase velocities instantiate stable 2×2 rotation blocks, and (ii) short-horizon transition counts over a coarse partition define a Markov model whose action is lifted back to neuron space through sparse, stochastic pooling and lifting maps. A convex blend of these topological and flow components is scaled by power iteration to a preset operator-norm bound, yielding a leaky ESN with a straightforward echo-state guarantee; only a ridge-regularized linear readout is trained. The resulting reservoir is fixed, interpretable, and analyzable: its internal oscillators reflect the attractor’s dominant loops, while its couplings align with observed local transport. In experiments on chaotic systems and real-world series, the method is data-efficient and maintains the computational profile of standard ESNs, while delivering improved phase tracking and competitive—often superior—multistep forecasts relative to tuned random reservoirs of the same size. Overall, the framework offers a principled alternative to sampling-based wiring by learning the reservoir once from data.

1 INTRODUCTION

Learning nonlinear dynamics from time series remains a central challenge in machine learning and scientific computing. Recurrent neural networks (RNNs) provide a flexible parametric family but are notoriously difficult to train and analyze. Reservoir computing addresses this by fixing the recurrent weights and training only a linear readout, as in Echo State Networks (ESNs) (Jaeger, 2001) and Liquid State Machines (LSMs) (Maass et al., 2002). In classical ESNs, the recurrent matrix is drawn at random and scaled to operate in a regime that heuristically balances memory and nonlinearity. While simple and effective, random reservoirs pose two enduring limitations: (i) *lack of structure and interpretability*—the internal dynamics bear no explicit relationship to the geometry or flow of the target system; and (ii) *fragile stability criteria*—widely used spectral-radius heuristics neither guarantee nor precisely characterize the Echo State Property (ESP) (Yildiz et al., 2012; Buehner & Young, 2006; Manjunath & Jaeger, 2013). This paper proposes a principled alternative where the reservoir itself is *learned once, offline* from a single trajectory, with explicit ties to the data’s global topology and local flow, and with a clean, verifiable ESP certificate.

Our starting point is the observation that many natural and engineered dynamical systems evolve on low-dimensional attractors that admit meaningful topological summaries and coarse-grained transport structure. Through delay-coordinate reconstruction (Takens, 1981; Packard et al., 1980; Sauer et al., 1991), a single multivariate time series yields a point cloud on which persistent homology reveals long-lived one-dimensional homology classes (loops) that signal recurrent motion (Edelsbrunner & Harer, 2010). Persistent cohomology then supplies *circular coordinates* that parameterize these loops by angles, together with harmonic representatives that minimize discrete Dirichlet energy (de Silva & Vejdemo-Johansson, 2009). Efficient implementations such as RIPSER make H_1 computations practical on large samples (Bauer, 2021). At the same time, short-horizon transitions between coarse cells along the trajectory define a Markov chain that approximates transport of

054 the transfer (Perron–Frobenius) operator via an Ulam-type discretization (Dellnitz & Junge, 1999;
055 Froyland, 2001; Klus et al., 2016). Such coarse models are well established in molecular and fluids
056 applications and connect naturally to Koopman/operator-theoretic perspectives (Prinz et al., 2011;
057 Williams et al., 2015; Klus et al., 2016). We leverage these insights to construct *Persistent Homology*
058 *Reservoir (PHR)*: a leaky ESN whose recurrent matrix W is a convex blend of two analyzable
059 operators learned from the data: (i) a *topological rotation* component, W_{top} , that instantiates data-driven
060 2×2 rotation blocks with angular velocities estimated from persistent circular coordinates; and (ii)
061 a *lifted Markov flow* component, $W_{\text{flow}} = BPA$, which pools reservoir states down to a coarse
062 partition, advances them by the empirical Markov matrix P , and lifts them back by stochastic maps A
063 (row-stochastic) and B (column-stochastic). This design explicitly *materializes* long-lived loops as
064 stable internal oscillators while imprinting short-time flow directions into the reservoir in a contrac-
065 tive way.
066

066 *Our primary contributions can be summarized as follows: Topology- and flow-grounded reservoir*
067 **design.** We introduce a fixed, analyzable ESN reservoir learned from a single trajectory by blend-
068 ing (a) persistent-cycles–induced rotation blocks aligned with the data’s H_1 structure (de Silva &
069 Vejdemo-Johansson, 2009; Edelsbrunner & Harer, 2010; Bauer, 2021), and (b) a lifted short-horizon
070 Markov operator that encodes local flow directions in the spirit of Ulam discretizations of transfer-
071 /Koopman operators (Dellnitz & Junge, 1999; Froyland, 2001; Klus et al., 2016; Williams et al.,
072 2015); **Interpretability and modularity.** The rotation blocks serve as *internal oscillators* with
073 interpretable physical/phase meaning, while the lifted Markov component offers a coarse-grained,
074 operator-theoretic view of transport—both modules are plug-and-play and require no backpropaga-
075 tion through time; **Single-trajectory practicality.** The entire reservoir is learned offline from one
076 embedded time series using scalable H_1 persistence and linear-time transition counting, after which
077 standard ridge regression suffices for readout training (Ozturk et al., 2007; Jaeger, 2001).
078 Ergo, PHR replaces randomness by geometry and flow: it bakes the long-lived loops and local
079 transport of the underlying attractor into the reservoir, provides clear stability guarantees, and yields
080 interpretable internal modes. We view this as a step toward *structure-aware reservoirs* that inherit
081 invariants from the data, aligning reservoir computing with contemporary operator-theoretic and
082 topological data analysis. *Notes on usability across domains is provided in Appendix A.4.*
083

083 2 BACKGROUND AND RELATED WORKS

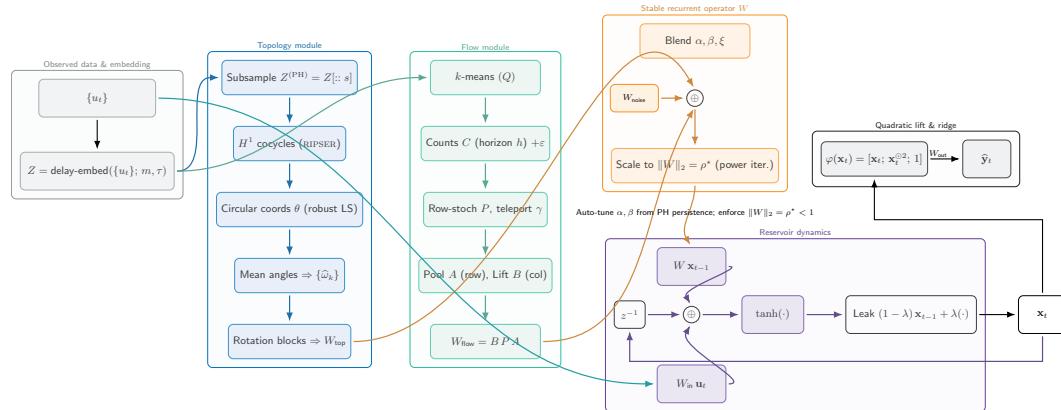
084

086 **Reservoir computing and the Echo State paradigm.** Reservoir Computing (RC) separates non-
087 linear state evolution from linear readout training: a fixed high-dimensional recurrent system (*reser-*
088 *voir*) is driven by inputs, and only a linear map from states to outputs is learned. Two seminal
089 instantiations are ESNs (Jaeger, 2001) and LSMs (Maass et al., 2002). Empirical effectiveness and
090 design heuristics of RC are well-documented, including input scaling, spectral scaling of the recur-
091 rent matrix, sparsity, and leakage (Lukoševičius & Jaeger, 2009; Ozturk et al., 2007; Schrauwen
092 et al., 2007). ESP underpins ESN practice: loosely, state trajectories must asymptotically forget
093 initial conditions for a given input. While early practice relied on bounding the spectral radius of the
094 random reservoir, later analyses established more precise sufficient conditions phrased in operator
095 norms and input Lipschitz constants, clarifying the role of leakage and contractivity (Buehner &
096 Young, 2006; Yıldız et al., 2012; Manjunath & Jaeger, 2013). These results motivate designs that
097 keep the reservoir analyzable while guaranteeing stability of the driven dynamics.
098

098 **Structured and learned reservoirs.** Beyond i.i.d. random matrices, numerous works investigated
099 structure to improve robustness, memory, or interpretability: orthogonal/unitary or near-isometric
100 recurrent operators (Arjovsky et al., 2016; Henaff et al., 2016), cyclic or minimalist reservoirs (Ro-
101 dan & Tiňo, 2011), and depth via stacked or leaky layers (Gallicchio & Micheli, 2017). Other
102 lines partially *shape* the reservoir from data without full BPTT, e.g., FORCE learning that adjusts a
103 feedback term to stabilize target dynamics (Sussillo & Abbott, 2009), or conceptors that gate ESN
104 dynamics to represent patterns (Jaeger, 2014). More recently, *geometry-aware* designs have used lo-
105 cal tangent-space information to inform the reservoir using patch-wise Jacobian lifting (Singh et al.,
106 2025). These approaches show that carefully designed or weakly learned recurrent operators can
107 preserve RC’s training simplicity while improving alignment to tasks. However, few methods *learn a fixed W from a single trajectory* with an explicit ESP certificate and a geometric interpretation of
internal modes, which is the gap our approach addresses.
108

108 **Delay embeddings and topological summaries of dynamics.** Given a scalar or vector time series,
109 delay-coordinate maps reconstruct diffeomorphic images of generic attractors under mild ob-
110 servability assumptions (Takens, 1981; Packard et al., 1980; Sauer et al., 1991). On the resulting
111 point cloud, persistent homology extracts multi-scale topological features (e.g., H_1 loops) robust
112 to sampling noise (Edelsbrunner & Harer, 2010). For dynamical data, sliding-window embeddings
113 coupled with persistent homology capture recurrent structure and quasiperiodicity in signals (Perea
114 & Harer, 2015). Crucially for *coordinates*, persistent *cohomology* supplies representative cocycles
115 that can be continued to *circular coordinates*—angles on \mathbb{S}^1 —via discrete harmonic extension with
116 energy minimization; these have been shown to parameterize long-lived loops coherently along tra-
117 jectories (de Silva & Vejdemo-Johansson, 2009). Efficient software such as RIPSER and libraries
118 like *giotto-tda* make these computations scalable for large samples (Bauer, 2021; Tausz et al.,
119 2021).

120 **Coarse-grained transport: Ulam, transfer operators, and Koopman learning.** A complemen-
121 tary perspective summarizes short-time dynamics by coarse transitions between partition elements.
122 Ulam’s method approximates the Perron–Frobenius (transfer) operator by a row-stochastic matrix
123 obtained from empirical transition counts between cells; this idea underlies a large literature on co-
124 herent sets, metastability, and Markov State Models (MSMs) (Dellnitz & Junge, 1999; Froyland,
125 2001; Prinz et al., 2011). In parallel, Koopman/operator-theoretic approaches yield linear surro-
126 gates of nonlinear dynamics on lifted function spaces; Dynamic Mode Decomposition (DMD) and
127 Extended DMD (EDMD) are widely used data-driven realizations (Schmid, 2010; Williams et al.,
128 2015; Klus et al., 2016). These lines show that coarse Markov models can encode *directionality* and
129 slow transport directly from data, while operator-lifting connects naturally to linear evolutions in
130 higher-dimensional representations.



145 **Figure 1: PHR schematic.** From a trajectory $\{z_t\}$, a delay embedding X feeds two modules:
146 (i) *Topology* (blue): H^1 persistent cohomology on a subsample $Z^{(PH)}$ yields circular coordinates
147 and mean angular velocities $\{\bar{\omega}_k\}$, instantiating 2×2 rotation blocks W_{top} ;
148 (ii) *Flow* (green): k -means, short-horizon counts (with pseudocounts/teleport), and stochastic pool-lift maps A, B pro-
149 duce W_{flow} . These are blended with small noise and *power-scaled* to $\|W\|_2 = \rho^*$ (orange), giving a
150 stability certificate. The leaky ESN then runs, and a *quadratic lift* drives ridge regression for W_{out} .

151 **Positioning.** PHR lies at the intersection of these strands. From RC, we keep the fixed reservoir
152 and cheap linear readout, but we replace randomness with a *learned, analyzable* W . From TDA,
153 we extract persistent circular coordinates that yield data-driven *internal oscillators* (explicit 2×2
154 rotations) tied to long-lived loops on the embedded attractor (de Silva & Vejdemo-Johansson, 2009;
155 Edelsbrunner & Harer, 2010). From transfer-operator discretization, we borrow empirical short-
156 horizon Markov models and *lift* them back to neuron space to imprint local flow (Froyland, 2001;
157 Dellnitz & Junge, 1999; Prinz et al., 2011). Unlike unitary/orthogonal RNNs (Arjovsky et al., 2016)
158 or minimalist/structured reservoirs (Rodan & Tiño, 2011), our construction is *data-determined* and
159 modular: the topological (W_{top}) and flow (W_{flow}) components can be varied independently, and W is
160 finally scaled to meet a norm bound that yields an ESP certificate in the leaky ESN setting (Buehner
161 & Young, 2006; Yıldız et al., 2012). Compared with Koopman/DMD/EDMD, which learn linear
162 models in feature space (Schmid, 2010; Williams et al., 2015), we instead *learn the recurrent opera-*

162 *tor* of a nonlinear state machine while keeping analysis-friendly stability control and interpretability
 163 of internal modes. In a broader context of system identification vs. RC., data-driven dynamics learning
 164 spans from sparse model discovery (e.g., SINDy) (Brunton et al., 2016) and neural ODEs (Chen
 165 et al., 2018) to Koopman autoencoders (Lusch et al., 2018). These approaches aim to learn explicit
 166 evolution laws or latent linearizations and typically require gradient-based training. RC trades exact
 167 parametric fidelity for rapid training and stability guarantees. PHR aims to tighten this trade-off:
 168 retain ESN-level efficiency while injecting *geometry* (loops) and *local transport* (Markov flow) into
 169 W , with a clear ESP certificate and without backpropagating through time.

171 3 METHODOLOGY

173 **Problem statement.** Let $\{u_t\}_{t=1}^T \subset \mathbb{R}^{d_{\text{obs}}}$ be an observed trajectory of an unknown dynamical
 174 system. Our goal is to *learn once, offline* a fixed recurrent operator $W \in \mathbb{R}^{N \times N}$ for an ESN such
 175 that (i) W encodes *global* recurrent structure (long-lived loops) and *local* short-horizon transport,
 176 (ii) W admits a *uniform contraction* certificate, and (iii) only a linear readout is trained thereafter.
 177 As overviewed in Fig. 1, we delay-embed $X = \{x_t\}_{t=m\tau}^T \subset \mathbb{R}^{md_{\text{obs}}}$, extract K topological modes
 178 (circular coordinates \Rightarrow angular velocities $\{\omega_k\}$) to build W_{top} (block 2×2 rotations), estimate
 179 a short-horizon coarse Markov model P and lift it to W_{flow} , then blend and scale $W = \alpha W_{\text{top}} +$
 180 $\beta W_{\text{flow}} + \xi W_{\text{noise}}$ to a target operator norm (yielding an ESN with a clean echo-state certificate).

181 *Intuition.* At a high level, PHR builds a single, fixed reservoir that mirrors two complementary
 182 facets of the observed dynamics. First, a delay embedding reconstructs the attractor, from which
 183 persistent cohomology extracts a few long-lived 1D loops; each loop is turned into a (2×2) rotation
 184 block with the loop’s mean angular velocity, yielding a topology-aware operator W_{top} that
 185 preserves global recurrent structure (§3.1). Second, to encode short-horizon transport, we partition
 186 the embedded cloud, count transitions over a small horizon, and form a row-stochastic Markov
 187 matrix P ; sparse pooling/lifting maps (A, B) then realize a lifted flow operator $W_{\text{flow}} = BP^{(\gamma)}A$ that
 188 advances coarse “mass” and projects it back to neurons (§3.2). These two channels are blended with
 189 a tiny isotropic noise term that only breaks algebraic degeneracies, and the result is scaled by power
 190 iteration to a target operator norm $\rho_* < 1$, giving an explicit echo-state (contraction) certificate inde-
 191 pendent of architectural details (§3.3). The outcome is a reservoir whose internal modes correspond
 192 to data-driven oscillations while its local transitions reflect the empirically observed flow; stability
 193 is guaranteed by construction, and learning reduces to a single ridge-regression readout.

194 3.1 PERSISTENT COHOMOLOGY-DRIVEN OSCILLATOR SYNTHESIS

196 **Delay embedding and PH subsampling.** From the observed sequence, we form a delay-coordinate
 197 embedding $z_t = [u_t^\top, u_{t-\tau}^\top, \dots, u_{t-(m-1)\tau}^\top]^\top \in \mathbb{R}^{md_{\text{obs}}}$, $t = (m-1)\tau, \dots, T$, which (under
 198 generic observability conditions) reconstructs the attractor up to diffeomorphism (Takens, 1981;
 199 Packard et al., 1980; Sauer et al., 1991). For persistent (co)homology we operate on a *subsampled*
 200 point cloud $Z^{(\text{PH})} = \{z_{t_0}, z_{t_0+s}, z_{t_0+2s}, \dots\}$ with stride $s \in \mathbb{N}$ to control the $O(n^2)$ distance cost.
 201 Let $n_{\text{PH}} = |Z^{(\text{PH})}|$ and let $D \in \mathbb{R}_{\geq 0}^{n_{\text{PH}} \times n_{\text{PH}}}$ be the Euclidean distance matrix.

203 **Persistent cohomology and circular coordinates.** We compute Vietoris–Rips persistent *cohomol-*
 204 *ogy* up to degree one on the metric space $(Z^{(\text{PH})}, D)$ over a prime field \mathbb{F}_p , obtaining H^1 intervals
 205 $\{(b_\ell, d_\ell)\}_\ell$ and representative 1-cocycles $\{c_\ell\}$ (Edelsbrunner & Harer, 2010). For each selected
 206 class ℓ , we pick a working scale $\varepsilon_\ell \in (b_\ell, d_\ell)$; the implementation defaults to a *near-death* choice
 207 $\varepsilon_\ell = d_\ell - 10^{-6}$ to ensure a sufficiently connected 1-skeleton while staying within the class’s lifespan.
 208 Let $G_\ell = (V, E_\ell)$ be the Rips 1-skeleton at threshold ε_ℓ , i.e., $E_\ell = \{(i, j) \in V^2 : i < j, D_{ij} \leq \varepsilon_\ell\}$.
 209 Following de Silva & Vejdemo-Johansson (2009), we lift the cocycle c_ℓ to edge phases $\alpha_{ij}^{(\ell)} \in$
 210 $(-\frac{1}{2}, \frac{1}{2}]$ on E_ℓ by mapping coefficients $a_{ij} \in \mathbb{F}_p$ to a_{ij}/p and wrapping to $(-\frac{1}{2}, \frac{1}{2}]$. We then solve a
 211 *discrete harmonic extension* problem for vertex potentials $\vartheta^{(\ell)} \in \mathbb{R}^{n_{\text{PH}}}$ that minimize the weighted
 212 Dirichlet energy subject to matching the lifted edge phases in least squares

$$214 \vartheta^{(\ell)} = \arg \min_{\vartheta \in \mathbb{R}^{n_{\text{PH}}}} \sum_{(i,j) \in E_\ell} w_{ij} (\vartheta_j - \vartheta_i - \alpha_{ij}^{(\ell)})^2, \quad w_{ij} = \begin{cases} \frac{1}{D_{ij} + \varepsilon} & (\text{default}), \\ 1 & (\text{unit weights}), \end{cases} \quad (1)$$

216 with a small $\varepsilon > 0$ for numerical safety. Writing M for the oriented incidence of G_ℓ and $W =$
217 $\text{diag}(w_{ij})$, the normal equations are $(L + \mu I)\vartheta = b$, $L := M^\top W M$, $b := M^\top W \alpha$, $\mu \ll 1$, which
218 we solve *per connected component* with a gauge anchor (fix one vertex) and a tiny Tikhonov term μ
219 to regularize near-singular components; the implementation uses a sparse direct solve with an LSQR
220 fallback (Paige & Saunders, 1982). The circular coordinate (angle) associated with class ℓ is then
221 $\theta_i^{(\ell)} = \text{wrap}_{(-\pi, \pi]}(2\pi \vartheta_i^{(\ell)})$, $i \in V$, providing an \mathbb{S}^1 -valued coordinate that varies coherently along
222 the loop (de Silva & Vejdemo-Johansson, 2009).

223 **Circular coordinates \rightarrow oscillators.** Let $\theta_t^{(\ell)}$ denote the angle associated with $z_t \in Z^{(\text{PH})}$ (in-
224 dices inherited from time by subsampling). We estimate a *mean angular velocity* by wrapped least
225 squares (empirically equivalent to the average wrapped increment for unit time steps from circu-
226 lar statistics (Mardia & Jupp, 2000)): $\widehat{\omega}_\ell = \arg \min_{\omega \in (-\pi, \pi]} \sum_t \|\text{wrap}_{(-\pi, \pi]}(\theta_{t+1}^{(\ell)} - \theta_t^{(\ell)}) - \omega\|^2 \approx$
227 $\text{mean}(\text{wrap}_{(-\pi, \pi]}(\theta_{t+1}^{(\ell)} - \theta_t^{(\ell)}))$. Each $\widehat{\omega}_\ell$ parameterizes a stable 2×2 rotation block

$$228 \quad R(\widehat{\omega}_\ell; \rho_{\text{rot}}) = \rho_{\text{rot}} \begin{bmatrix} \cos \widehat{\omega}_\ell & -\sin \widehat{\omega}_\ell \\ \sin \widehat{\omega}_\ell & \cos \widehat{\omega}_\ell \end{bmatrix}, \quad 0 < \rho_{\text{rot}} < 1, \quad (2)$$

229 and W_{top} is formed by embedding these blocks in a block-diagonal matrix and randomly permuting
230 coordinates to distribute the oscillator pairs across the reservoir; remaining coordinates receive
231 decaying radii in $(\rho_{\min}, \rho_{\max})$. This realizes *topology-aware internal oscillators* aligned with the
232 system's dominant loops.

233 **Selecting K and auto-tuning the blend.** We first cap the number of requested loops
234 by K_{\max} and keep the top- K_{\max} classes by persistence. After PH, we apply a *relative persistence*
235 threshold $\gamma \in [0, 1]$ to decide which loops survive to synthesis: $\mathcal{I}_{\text{keep}} = \{\ell : (d_\ell - b_\ell) \geq \gamma \max_{\ell'} (d_{\ell'} - b_{\ell'})\}$, $K_{\text{final}} = |\mathcal{I}_{\text{keep}}|$. Let $P_\ell := d_\ell - b_\ell$ denote persistence and
236 $P_{\max} := \max_\ell P_\ell$. We compute a scalar “loop strength” $s = \frac{1}{K_{\text{final}}} \sum_{\ell \in \mathcal{I}_{\text{keep}}} \frac{P_\ell}{P_{\max}} \in [0, 1]$, and
237 set the topological blend weight by clamping a linear map of s into user bounds: $\alpha_{\text{top}} =$
238 $\text{clip}(\alpha_{\min} + (\alpha_{\max} - \alpha_{\min}) s, 0, 1 - \xi)$, $\beta_{\text{flow}} = 1 - \xi - \alpha_{\text{top}}$, where ξ is the fixed noise fraction.
239 If $K_{\text{final}} = 0$ or the PH step fails, we default to a flow-dominant setting $\alpha_{\text{top}} = 0$, $\beta_{\text{flow}} = 1 - \xi$. This
240 *auto-tuner* makes the topology/flow trade-off responsive to the evidence in the data while keeping
241 W analyzable and the ESP scaling invariant to the choice.

242 Taken together, the PH pipeline and the oscillator synthesis ensure that W_{top} carries a small number
243 of explicitly interpretable modes whose frequencies are estimated directly from the data. However,
244 these *global oscillators do not*, by themselves, encode how probability mass drifts locally across
245 the attractor; this motivates a complementary flow channel in which coarse, data-driven transport is
246 estimated and then lifted back to the reservoir state space.

247 3.2 COARSE FLOW ESTIMATION AND THE LIFTED MARKOV OPERATOR

248 **Partitioning the embedded state space.** To encode short-horizon directionality, we discretize
249 the delay-embedded point cloud $Z = \{z_t\} \subset \mathbb{R}^{md_{\text{obs}}}$ into Q clusters by k -means (Lloyd's
250 algorithm) (Lloyd, 1982). Let $\{c_q\}_{q=1}^Q$ denote the centroids and define the assignment $s_t =$
251 $\arg \min_{q \in \{1, \dots, Q\}} \|z_t - c_q\|_2$, $t = (m-1)\tau, \dots, T$. This yields a coarse partition of the embedded
252 attractor.

253 **Short-horizon Markov chain from transition counts.** Fix a horizon $h \in \mathbb{N}$. We form the empirical
254 count matrix $C \in \mathbb{R}_{\geq 0}^{Q \times Q}$, $C_{ij} = \#\{t : s_t = i, s_{t+h} = j\}$, $i, j \in \{1, \dots, Q\}$. To avoid degenerate
255 (all-zero) rows, we add a small pseudocount $\varepsilon > 0$ before normalization and obtain a row-stochastic
256 Markov matrix by $P_{ij} = \frac{C_{ij} + \varepsilon}{\sum_{j'} (C_{ij'} + \varepsilon)}$, $\sum_{j=1}^Q P_{ij} = 1 \forall i$. We apply *teleportation* (Google–PageRank
257 style) (Brin & Page, 1998; Langville & Meyer, 2012) to regularize nearly reducible chains and cure
258 rare sinks: $P^{(\gamma)} = (1 - \gamma)P + \gamma \mathbf{1} u^\top$, $u = \frac{1}{Q} \mathbf{1}$, $\gamma \in [0, 1]$, which preserves row-stochasticity and
259 ensures a positive recurrent, aperiodic surrogate for coarse transport. This construction follows the
260 spirit of Ulam's method for approximating the Perron–Frobenius (transfer) operator via finite-state
261 Markov models (Dellnitz & Junge, 1999; Froyland, 2001) and is consistent with operator-theoretic
262 discretizations used in Koopman learning (Klus et al., 2016; Williams et al., 2015). In practice $h = 1$
263 captures most local flow, while $h > 1$ can smooth fast noise.

270 **Stochastic pool-lift maps.** Let N be the reservoir dimension. We connect coarse dynamics to
 271 neurons through two sparse, stochastic linear maps: $A \in \mathbb{R}^{Q \times N}$, $B \in \mathbb{R}^{N \times Q}$. Matrix A *pools*
 272 neuron activations (the reservoir state) into coarse cells and is *row-stochastic*: each row of A
 273 has exactly n_{zr} nonzeros of equal weight $1/n_{\text{zr}}$ (uniform-sparse selection), hence for $x \in \mathbb{R}^N$,
 274 $(Ax)_q = \sum_{i=1}^N A_{qi} x_i$, $\sum_{i=1}^N A_{qi} = 1 \forall q$. Matrix B *lifts* coarse activations back to neurons and is
 275 *column-stochastic*: each column of B has exactly n_{zc} nonzeros of equal weight $1/n_{\text{zc}}$, so for
 276 $r \in \mathbb{R}^Q$, $(Br)_i = \sum_{q=1}^Q B_{iq} r_q$, $\sum_{q=1}^Q B_{iq} = 1 \forall i$. We sample the support of A and B uniformly
 277 without replacement (geometry-aware variants are compatible but not required for the guarantees
 278 used later). Row-stochasticity makes A a *convex averaging* over neurons within each coarse cell;
 279 column-stochasticity distributes each coarse value as a convex combination over its recipient neu-
 280 rons.

281

282

283

284

285 **Figure 2: Zoom on the lifted Markov operator (W_{flow}).** This panel magnifies the green *Flow*
 286 module from Fig. 1. A reservoir state $x \in \mathbb{R}^N$ is first *pooled* to coarse cells via a row–stochastic
 287 map $A \in \mathbb{R}^{Q \times N}$ (rows sum to 1), yielding $y = Ax$. Short-horizon dynamics on the coarse graph are
 288 applied by $P^{(\gamma)} \in \mathbb{R}^{Q \times Q}$, a row–stochastic Markov matrix with optional teleport parameter γ , giving
 289 $y^+ = P^{(\gamma)}y$. Finally, the signal is *lifted* back to neurons by a column–stochastic map $B \in \mathbb{R}^{N \times Q}$
 290 (columns sum to 1), producing $x^+ = By^+$. Altogether, $W_{\text{flow}} = B P^{(\gamma)} A$ with $x^+ = W_{\text{flow}}x$, which
 291 is the contractive, data-driven component blended into the stable recurrent operator in the main
 292 schematic.

293

298

299 **Lifted Markov operator.** We define the *lifted flow operator* $W_{\text{flow}} = B P^{(\gamma)} A \in \mathbb{R}^{N \times N}$. Operationally,
 300 A first pools the reservoir state $x \in \mathbb{R}^N$ down to a coarse state $r = Ax \in \mathbb{R}^Q$; the Markov
 301 step $r^+ = P^{(\gamma)}r$ advances coarse mass along observed short-time transport; B lifts r^+ back to the
 302 neuron space $x^+ = Br^+$. The operator is nonnegative by construction. In induced norms, $\|A\|_\infty = 1$
 303 and $\|P^{(\gamma)}\|_\infty = 1$ by row-stochasticity; $\|B\|_1 = 1$ by column-stochasticity. We do not rely on a stan-
 304 dalone spectral bound for W_{flow} ; rather, the *global* contraction is enforced later by power-iteration
 305 scaling of the blended W (§3.3), which yields a sufficient condition for the ESN’s echo-state prop-
 306 erty independent of the particular sparsity pattern of A and B (Buehner & Young, 2006; Yıldız et al.,
 307 2012). This separation keeps the flow imprint faithful to data while placing stability under explicit
 308 control.

309

310 The operator W_{flow} therefore acts as a Markovian stencil on the reservoir: pooled activity approxi-
 311 mately follows the empirical coarse chain, and Lemma 3.1 quantifies how closely $AW_{\text{flow}}B$ tracks
 312 $P^{(\gamma)}$ once the calibration defect of AB is controlled. In the next step, we combine this transport
 313 channel with the oscillatory operator W_{top} and a small isotropic noise term, and then apply a single
 314 global scaling so that the resulting recurrent matrix W simultaneously inherits these structures and
 315 satisfies a uniform contraction bound.

316

3.3 BLENDED RECURRENT OPERATOR, ECHO-STATE SCALING, AND READOUT TRAINING

317

318 **Blending topology and flow with degeneracy-breaking noise.** Let $W_{\text{top}} \in \mathbb{R}^{N \times N}$ be the block-
 319 permuted rotation–decay operator synthesized from persistent circular coordinates (§3.1), and let
 320 $W_{\text{flow}} = B P^{(\gamma)} A \in \mathbb{R}^{N \times N}$ be the lifted Markov operator (§3.2). We form a pre-scaled blend

321

$$W_{\text{blend}} = \alpha_{\text{top}} W_{\text{top}} + \beta_{\text{flow}} W_{\text{flow}} + \xi W_{\text{noise}}, \quad \alpha_{\text{top}}, \beta_{\text{flow}}, \xi \geq 0, \quad \alpha_{\text{top}} + \beta_{\text{flow}} + \xi = 1, \quad (3)$$

322

323 where W_{noise} is a zero-mean Gaussian matrix normalized to unit operator 2-norm and then scaled by
 324 a small constant. The noise term breaks algebraic degeneracies (e.g., repeated eigenvalues or exact
 325 invariant subspaces) and improves numerical conditioning without affecting stability guarantees,
 326 since a global norm scaling will be imposed next. We implement an *auto-tuner* that chooses α_{top}

324 and β_{flow} from persistence statistics: given the set of selected loops $\mathcal{I}_{\text{keep}}$, define the mean relative
 325 persistence $s := \frac{1}{|\mathcal{I}_{\text{keep}}|} \sum_{\ell \in \mathcal{I}_{\text{keep}}} \frac{P_\ell}{P_{\max}} \in [0, 1]$, $P_\ell = d_\ell - b_\ell$, $P_{\max} = \max_\ell P_\ell$, and set
 326

$$\alpha_{\text{top}} = \text{clip}(\alpha_{\min} + (\alpha_{\max} - \alpha_{\min}) s, 0, 1 - \xi), \quad \beta_{\text{flow}} = 1 - \xi - \alpha_{\text{top}}, \quad (4)$$

327 with user bounds $\alpha_{\min} \leq \alpha_{\max}$ and $\text{clip}(a; \ell, u) := \min\{u, \max\{\ell, a\}\}$. If $\mathcal{I}_{\text{keep}} = \emptyset$ (no trustworthy
 328 loops) or the PH step fails, the tuner falls back to a flow-dominant setting $\alpha_{\text{top}} = 0$, $\beta_{\text{flow}} = 1 - \xi$.
 329

330 **Power-iteration scaling to a target operator norm.** To certify stability for the leaky ESN update,
 331 we scale W_{blend} to a prescribed operator norm $\rho_* \in (0, 1)$
 332

$$W = \frac{\rho_*}{\widehat{\sigma}_{\max}(W_{\text{blend}})} W_{\text{blend}}, \quad \widehat{\sigma}_{\max}(W_{\text{blend}}) \approx \|W_{\text{blend}}\|_2, \quad (5)$$

333 where $\widehat{\sigma}_{\max}$ is estimated by a standard power iteration on $W_{\text{blend}}^\top W_{\text{blend}}$:
 334

$$v_{k+1} = \frac{(W_{\text{blend}}^\top W_{\text{blend}}) v_k}{\|(W_{\text{blend}}^\top W_{\text{blend}}) v_k\|_2}, \quad \widehat{\sigma}_{\max} \leftarrow \|W_{\text{blend}} v_k\|_2, \quad (6)$$

335 for a fixed number of iterations. This provides a reliable approximation of the largest singular
 336 value under mild conditions (Golub & Loan, 2013; Trefethen & III, 1997). In practice we include
 337 NaN/infinity guards; if the estimate is degenerate, the implementation returns a safe zero matrix
 338 (trivial contraction). Choosing ρ_* with a margin accounts for small overestimation errors and keeps
 339 the final contraction budget conservative.
 340

341 **Structural fidelity (proofs are presented in Appendix A).** Define the lifted flow $W_{\text{flow}} := BPA$
 342 and the pre-scaled blend $W_{\text{blend}} := \alpha W_{\text{top}} + \beta W_{\text{flow}} + \xi W_{\text{noise}}$, $\alpha, \beta, \xi \geq 0$, $\alpha + \beta + \xi = 1$, where
 343 W_{noise} is any matrix normalized to $\|W_{\text{noise}}\|_2 = 1$. Let $s := \|W_{\text{blend}}\|_2$ and $W := \rho_* W_{\text{blend}}/s$
 344 denote the finally used recurrent operator with $\|W\|_2 = \rho_* \in (0, 1)$ (§3.3). By Lemma A.1, the
 345 block-permuted rotation–decay operator W_{top} is normal with spectrum $\{\rho_{\text{rot}} e^{\pm i\omega_k}\}_{k=1}^K \cup \{r_j\}_{j=1}^{N-2K}$
 346 (with $r_j \in (\rho_{\min}, \rho_{\max})$) and admits an orthogonal decomposition $\mathbb{R}^N = \bigoplus_{k=1}^K E_k \oplus E_\perp$, where each
 347 E_k is a 2D invariant plane on which $W_{\text{top}} = \rho_{\text{rot}} R(\omega_k)$, a property unchanged by the subsequent
 348 coordinate permutation.
 349

350 **Lemma 3.1** (Pooled coarse-flow identity and deviation). *Let $A \in \mathbb{R}^{Q \times N}$ be row-stochastic, $B \in \mathbb{R}^{N \times Q}$ column-stochastic, and $P \in \mathbb{R}^{Q \times Q}$ row-stochastic. For any $r \in \mathbb{R}^Q$ and $x := Br \in \mathbb{R}^N$, $\|AW_{\text{flow}}x - Pr\|_\infty \leq 2\|AB - I_Q\|_\infty \|r\|_\infty$, since $\|AB\|_\infty = \|P\|_\infty = 1$ by row-stochasticity. An analogous bound holds in ℓ_1 with $\|\cdot\|_1$.*
 351

352 *Remark (optional support coupling to reduce calibration).* In all reported results we sample the
 353 supports of A (row-stochastic pooling) and B (column-stochastic lifting) independently at random.
 354 Another strategy—orthogonal to our results—is to *couple* these supports per coarse cell q . Concretely, choose the lift of cell q to target the same neuron subset used to pool that cell, and make
 355 these subsets disjoint across q . This makes AB diagonally dominant, shrinking $\|AB - I_Q\|$ in
 356 Lemma 3.1 and the induced defect $\Delta := (AB)P^{(\gamma)}(AB) - P^{(\gamma)}$ in Proposition 3.2(ii). In the ex-
 357 treme one-hot case (one neuron per cell for both pooling and lifting), $AB = I_Q$ exactly; with small
 358 shared supports of size $s > 1$, AB becomes diagonal with entries $1/s$ and off-diagonals 0, yielding
 359 $\|AB - I_Q\|_\infty = 1 - 1/s$. This refinement leaves $P^{(\gamma)}$, W_{top} , and the global scaling to $\|W\|_2 = \rho_* < 1$
 360 unchanged, thus preserving the echo-state certificate while tightening the coarse-flow fidelity term.
 361

362 **Proposition 3.2** (Two-channel fidelity of the blended operator). *Let $W = \rho_* W_{\text{blend}}/s$ with
 363 $s = \|W_{\text{blend}}\|_2$. Then:* (i) *Persistence of oscillatory eigenpairs. For each $k \in \{1, \dots, K\}$
 364 there exists an eigenvalue $\lambda_k(W)$ such that $|\lambda_k(W) - \rho_* \frac{\alpha \rho_{\text{rot}} e^{i\omega_k}}{s}| \leq \rho_* \frac{\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2}{s}$,
 365 and likewise for the conjugate pair. In particular, when $s \geq \alpha \|W_{\text{top}}\|_2 - (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2)$, the oscillatory eigenvalues of W are contained in discs centered at $\rho_* \alpha \rho_{\text{rot}} e^{\pm i\omega_k}/s$ with radius $\rho_* (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2)/s$.¹* (ii) *Coarse-flow fidelity on the lifted sub-
 366 space. For any $r \in \mathbb{R}^Q$ and $x := Br \in \mathbb{R}^N$, $\|AWx - \rho_* \frac{\beta}{s} P^{(\gamma)} r\|_2 \leq$
 367*

368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506<br

378 ρ_* $\left[\frac{\beta}{s} \| (AB) P^{(\gamma)} (AB) - P^{(\gamma)} \|_2 + \frac{\alpha}{s} \| A \|_2 \| W_{\text{top}} \|_2 \| B \|_2 + \frac{\xi}{s} \| A \|_2 \| W_{\text{noise}} \|_2 \| B \|_2 \right] \| r \|_2$. Hence
 379 the pooled one-step action of W on lifted coarse states approximates a scaled Markov step with
 380 error decomposed into (a) the calibration defect of AB , and (b) leakage from the topological and
 381 noise channels, each controlled by blend weights and operator norms. In particular, if $AB = I_Q$
 382 and α, ξ are small, then AWB is a small-norm perturbation of $(\rho_* \beta / s) P^{(\gamma)}$ on \mathbb{R}^Q .
 383

384 The two statements formalize, respectively, (1) the *exact pooled identity* and *calibration-controlled*
 385 deviation of the lifted Markov channel, and (2) their *joint persistence* under blending and global
 386 scaling. They provide structural guarantees beyond the echo-state contraction: PHR preserves data-
 387 driven oscillatory modes near their target frequencies and transports pooled mass nearly according to
 388 the empirical coarse dynamics, with explicit, verifiable perturbation budgets determined by (α, β, ξ)
 389 and by the calibration of (A, B) .

390 After W is fixed, we advance the reservoir with the teacher-forced inputs $\{u_t\}$ (cf. Eqn. 11)
 391 to collect features $\varphi_t \in \mathbb{R}^F$: $\varphi_t = [x_t; \mathbf{1}_{\text{poly}}(x_t \odot x_t); \mathbf{1}_{\text{poly}}]$, where $\mathbf{1}_{\text{poly}} \in \{0, 1\}$ encodes
 392 the quadratic/constant augmentation and \odot denotes the Hadamard product. We discard an initial
 393 “washout” of D steps to remove transients and form the design matrix $\Phi \in \mathbb{R}^{(T-D) \times F}$ and targets
 394 $Y \in \mathbb{R}^{(T-D) \times d_{\text{out}}}$. The readout is fitted by *ridge regression* with penalty $\alpha > 0$ as

395
$$W_{\text{out}} = \arg \min_{W \in \mathbb{R}^{d_{\text{out}} \times F}} \|Y - \Phi W^\top\|_F^2 + \alpha \|W\|_F^2, \quad \Rightarrow \quad W_{\text{out}}^\top = (\Phi^\top \Phi + \alpha I)^{-1} \Phi^\top Y, \quad (7)$$

396 computed with a standard linear solver, no intercept since a constant feature is included) (Hoerl &
 397 Kennard, 1970). This preserves the hallmark ESN training efficiency: (7) is a single convex solve
 398 whose complexity is $O(TF^2 + F^3)$ and typically negligible compared to data generation.
 399

400 *System-level dynamics of PHR is discussed in §A.3, and an intuitive summary is provided in §A.2.*

4 EXPERIMENTS

401 **Setup.** We evaluate PHR on seven standard benchmarks. The first group comprises three canonical
 402 chaotic attractors—**Lorenz-63** (Lorenz, 1963), **Rössler** (Rossler, 1976), and the hyper-chaotic
 403 **Chen-Ueta** flow (Chen & Ueta, 1999). The second group contains four real-world time series: the
 404 **BIDMC** PPG/respiration record (Goldberger et al., 2000), the **MIT-BIH** Arrhythmia ECG trace
 405 (Moody & Mark, 2001), the **Santa Fe B** cardiorespiratory polysomnography sequence (Jaeger,
 406 2007), and the **SILSO** monthly **sunspot index** (World Data Center SILSO, 2020). As baselines
 407 we include the standard single-layer **ESN** (Jaeger, 2001), the Simple-Cycle Reservoir (**SCR**) (Li
 408 et al., 2024), the Cycle Reservoir with Jumps (**CRJ**) (Rodan & Tino, 2012), the two-core **MCI-ESN**
 409 (Liu et al., 2024), and the three-layer **DeepESN** (Gallicchio & Micheli, 2017). Every method is al-
 410 lootted exactly 300 recurrent units in total (implemented as 3×100 for DeepESN), and each baseline
 411 is hyper-tuned within the same computational budget. (*details are provided in Appendix B.*)

412 We appraise every model with four mutually reinforcing criteria. *First*, the **NRMSE** gauges
 413 point-wise accuracy via the root-mean-square error normalised by the variance of the reference signal.
 414 *Second*, we introduce the **Valid Prediction Time Ratio (VPT)**: the earliest instant t at which
 415 the normalised deviation $\delta(t) = |y_t - \hat{y}_t|_2 / \|y_t\|_2$ breaches a fixed threshold θ , expressed in Lyapunov
 416 units as $\text{VPT} = t/T_L$ (Pathak et al., 2018). VPT therefore quantifies “how long the forecast can be
 417 trusted.” *Third*, global attractor fidelity is captured by the **Attractor Deviation (ADev)**, the volume
 418 of the symmetric difference between predicted and true phase-space occupancies on a fixed grid,
 419 normalised by their union: (Zhai et al., 2023). *Finally*, we overlay the log power-spectral densities
 420 (estimated with Welch’s method (Welch, 1967)) of selected observables; agreement is assessed vi-
 421 sually through the alignment of peaks, harmonic envelopes, and broadband roll-off. Taken together,
 422 NRMSE measures short-term trajectory accuracy, VPT reveals the time-span over which forecasts
 423 remain reliable, ADev scores faithfulness to the global geometry of the attractor, and the PSD over-
 424 lay inspects concordance in the frequency domain (cf. Fig. 4). (*see Appendix B for details*)

425 **Quantitative results.** Table 1 summarizes open-loop performance on **MIT-BIH**, **BIDMC**, **Sunspot**,
 426 and **Santa Fe**, and closed-loop forecasting on **Lorenz-63**, **Rössler**, and **Chen**. We report normal-
 427 ized RMSE (NRMSE; lower is better), and—only for chaotic systems—valid prediction time (VPT;
 428 higher is better) and average deviation (ADev; lower is better). On all four real-world series, PHR

432	433	Dataset	H / Metric	NRMSE / VPT / ADev					
				434	435	436	437	438	439
MIT-BIH	300	2.3537 \pm 0.5472	2.0321 \pm 0.5211	1.5698 \pm 0.3365	1.1443 \pm 0.0601	2.7398 \pm 0.9618	0.5320 \pm 0.0442		
	600	1.7575 \pm 0.3692	1.5440 \pm 0.3461	1.2588 \pm 0.2125	<u>1.0557 \pm 0.0328</u>	2.0187 \pm 0.6573	0.5417 \pm 0.0236		
	1000	1.4867 \pm 0.2252	1.3729 \pm 0.1998	1.2115 \pm 0.1131	1.1273 \pm 0.0156	1.6530 \pm 0.4123	0.5833 \pm 0.0123		
BIDMC	300	<u>0.4468 \pm 0.0287</u>	0.4473 \pm 0.0292	0.4476 \pm 0.0310	0.5159 \pm 0.0326	0.4959 \pm 0.0298	0.3655 \pm 0.0143		
	600	<u>0.4305 \pm 0.0269</u>	0.4350 \pm 0.0235	0.4336 \pm 0.0249	0.4875 \pm 0.0272	0.4951 \pm 0.0263	0.3571 \pm 0.0151		
	1000	0.5186 \pm 0.0198	<u>0.4941 \pm 0.0215</u>	0.4979 \pm 0.0224	0.5381 \pm 0.0237	0.5683 \pm 0.0239	0.4352 \pm 0.0133		
Sunspot	300	0.6008 \pm 0.0214	1.1103 \pm 0.1323	1.2180 \pm 0.1856	0.4680 \pm 0.0090	0.5856 \pm 0.0247	0.2505 \pm 0.0011		
	600	0.5501 \pm 0.0295	1.0126 \pm 0.1303	1.1300 \pm 0.1565	<u>0.4238 \pm 0.0140</u>	0.5020 \pm 0.0232	0.2093 \pm 0.0015		
	1000	0.5235 \pm 0.0262	0.9615 \pm 0.1216	1.0781 \pm 0.1191	0.4064 \pm 0.0100	0.4807 \pm 0.0196	0.2044 \pm 0.0010		
Santa Fe	300	0.2761 \pm 0.0014	0.2927 \pm 0.0032	0.2861 \pm 0.0047	<u>0.2697 \pm 0.0031</u>	0.2876 \pm 0.0038	0.1485 \pm 0.0003		
	600	<u>0.2366 \pm 0.0014</u>	0.2523 \pm 0.0053	0.2414 \pm 0.0037	0.2612 \pm 0.0217	0.2437 \pm 0.0049	0.1262 \pm 0.0003		
	1000	<u>0.2512 \pm 0.0010</u>	0.2642 \pm 0.0042	0.2565 \pm 0.0031	0.2680 \pm 0.0175	0.2579 \pm 0.0039	0.1361 \pm 0.0003		
Lorenz	200	0.0013 \pm 0.0016	0.0027 \pm 0.0055	0.0039 \pm 0.0071	<u>0.0011 \pm 0.0015</u>	0.0023 \pm 0.0036	0.0004 \pm 0.0005		
	400	0.0428 \pm 0.0660	0.0657 \pm 0.0949	0.0765 \pm 0.1194	<u>0.0335 \pm 0.0388</u>	0.0717 \pm 0.0978	0.0075 \pm 0.0103		
	600	<u>0.3416 \pm 0.2345</u>	0.4236 \pm 0.2542	0.4643 \pm 0.2803	0.3618 \pm 0.2903	0.4149 \pm 0.2141	0.2121 \pm 0.1877		
Rössler	800	0.7704 \pm 0.1139	0.7953 \pm 0.1477	<u>0.7703 \pm 0.2099</u>	0.7799 \pm 0.1690	0.7965 \pm 0.1381	0.6495 \pm 0.1928		
	1000	0.9385 \pm 0.1017	0.9469 \pm 0.1306	0.9542 \pm 0.1443	0.9370 \pm 0.1432	0.9649 \pm 0.1112	0.8481 \pm 0.1358		
	VPT (\uparrow)	9.18 \pm 1.71	8.70 \pm 1.72	8.98 \pm 1.83	9.37 \pm 1.83	8.67 \pm 1.78	10.94 \pm 1.65		
Chen	ADev (\downarrow)	29.78 \pm 11.36	28.80 \pm 9.98	32.21 \pm 9.71	30.93 \pm 12.79	30.38 \pm 9.95	<u>29.11 \pm 9.53</u>		
	200	0.0010 \pm 0.0021	0.0007 \pm 0.0012	0.0012 \pm 0.0020	<u>0.0004 \pm 0.0006</u>	0.0014 \pm 0.0026	0.0002 \pm 0.0001		
	400	0.0019 \pm 0.0035	0.0031 \pm 0.0080	0.0024 \pm 0.0040	<u>0.0009 \pm 0.0011</u>	0.0026 \pm 0.0043	0.0003 \pm 0.0003		
Chen	600	0.0035 \pm 0.0062	0.0062 \pm 0.0107	0.0066 \pm 0.0142	0.0020 \pm 0.0030	0.0115 \pm 0.0455	0.0007 \pm 0.0007		
	800	0.0050 \pm 0.0082	0.0094 \pm 0.0144	0.0094 \pm 0.0200	<u>0.0028 \pm 0.0043</u>	0.0166 \pm 0.0641	0.0010 \pm 0.0011		
	1000	0.0064 \pm 0.0103	0.0136 \pm 0.0181	0.0127 \pm 0.0270	<u>0.0038 \pm 0.0060</u>	0.0211 \pm 0.0773	0.0013 \pm 0.0016		
Chen	VPT (\uparrow)	7.89 \pm 3.90	6.97 \pm 4.30	8.33 \pm 4.36	<u>9.88 \pm 4.59</u>	8.28 \pm 4.50	11.33 \pm 4.66		
	ADev (\downarrow)	16.97 \pm 8.19	22.42 \pm 11.62	19.55 \pm 11.00	12.21 \pm 6.86	20.22 \pm 22.09	<u>13.11 \pm 8.02</u>		
	200	0.2463 \pm 0.3235	0.3157 \pm 0.3117	0.2507 \pm 0.2441	<u>0.1756 \pm 0.2441</u>	0.3554 \pm 0.3156	0.1278 \pm 0.2424		
Chen	400	0.9348 \pm 0.1783	0.9767 \pm 0.1836	0.9442 \pm 0.1518	<u>0.8893 \pm 0.1708</u>	0.9727 \pm 0.1805	0.7958 \pm 0.2006		
	600	1.1273 \pm 0.1433	1.1212 \pm 0.1350	1.1310 \pm 0.1081	<u>1.0824 \pm 0.1320</u>	1.1549 \pm 0.1232	1.0555 \pm 0.1199		
	800	1.2210 \pm 0.1075	1.2052 \pm 0.1006	1.2132 \pm 0.0868	<u>1.1814 \pm 0.1096</u>	1.2221 \pm 0.1047	1.1632 \pm 0.0878		
Chen	1000	1.2535 \pm 0.0961	1.2475 \pm 0.0804	1.2594 \pm 0.0772	<u>1.2355 \pm 0.0897</u>	1.2627 \pm 0.0852	1.2316 \pm 0.0737		
	VPT (\uparrow)	3.46 \pm 0.92	3.10 \pm 0.84	3.29 \pm 0.62	<u>3.59 \pm 0.73</u>	3.01 \pm 0.92	4.18 \pm 0.93		
	ADev (\downarrow)	52.45 \pm 10.92	55.17 \pm 11.95	51.24 \pm 10.03	58.22 \pm 12.37	54.65 \pm 8.89	55.42 \pm 15.53		

Table 1: NRMSE (mean \pm s.d.) across horizons (H) and, for chaotic datasets, additional rows with VPT (\uparrow) and ADev (\downarrow). Chaotic benchmarks are evaluated in **closed-loop** mode; real-world datasets use **open-loop**. Best and second-best per row are shown in **bold** and underlined, resp.

464	465	Variant	466	Change (relative to default)	467	468	469	470	471
PHR (default)	-								
No auto-tune	Fix $(\alpha, \beta, \xi) = (0.60, 0.35, 0.05)$ (ignore persistence strength)								
PH \rightarrow PCA- ω (no PH)	Replace persistent circular coordinates by PCA phase surrogate (§3.1)								
Flow-only	$\alpha=0, \beta=1-\xi$ (no W_{top} oscillators)								
Topology-only	$\beta=0, \alpha=1-\xi$ (no W_{flow} transport imprint)								
ε choice: midlife	$\varepsilon=(b+d)/2$ instead of near-death for Rips 1-skeleton								
No teleport	$\gamma=0$ (pure empirical P)								
No pseudocounts	Remove ε -counts in C_{ij} (rows can be sparse/zero)								
Denser pool/lift	$A : \text{nzs}=8, B : \text{nzc}=24$ (still stochastic)								
Stricter loop cap	$K_{\max}=1$ (keep only strongest loop)								
No robust PH solver	Drop Tikhonov + LSQR fallback (single-component solve only)								
<i>Unsafe</i> (for reference): no spectral scaling									
									divergent in 37% runs

Table 2: **Ablation study on Lorenz-63 (closed-loop)**. Default configuration follows §3: $\rho_* = 0.94$, $\lambda = 0.20$; K auto via persistence; A row-stoch. ($\text{nzs}=4$), B col-stoch. ($\text{nzc}=12$); pseudocounts+ $\gamma=3 \times 10^{-3}$; robust PH solve (Tikhonov+LSQR). Reported are mean \pm s.d. over 45 runs for (i) NRMSE at horizon $H=600$, (ii) VPT, and (iii) ADev.

outperforms all baselines at every horizon, often by a wide margin: e.g., on *MIT-BIH* at $H=1000$, PHR reaches 0.5833 ± 0.0123 NRMSE versus the strongest baseline (MCI, 1.1273 ± 0.0156), and on *Sunspot* at $H=1000$ PHR attains 0.2044 ± 0.0010 versus MCI at 0.4064 ± 0.0100 (cf. Figs. 5, 7). The advantage also holds on *BIDMC* (e.g., $H=600$: 0.3571 ± 0.0151 vs. best baseline 0.4305 ± 0.0269) and *Santa Fe* (e.g., $H=600$: 0.1262 ± 0.0003 vs. 0.2366 ± 0.0014). In chaotic closed-loop mode, PHR remains consistently best in NRMSE across horizons for *Lorenz* and *Rössler*, while also achieving the strongest VPT (e.g., *Lorenz*: 10.94 ± 1.65 vs. best baseline 9.37 ± 1.83 ; *Rössler*: 11.33 ± 4.66 vs. 9.88 ± 4.59), indicating longer time-to-divergence. ADev is compet-

486 itive: PHR is second-best on *Lorenz* (29.11 ± 9.53) with the lowest NRMSE and top VPT, and
487 second-best on *Rössler* (13.11 ± 8.02) while again leading in NRMSE and VPT. On *Chen*, PHR
488 provides uniformly lowest NRMSE across horizons (e.g., $H=1000$: 1.2316 ± 0.0737 vs. best base-
489 line 1.2355 ± 0.0897) and highest VPT (4.18 ± 0.93), at the expense of slightly higher ADev than
490 the very best baseline (PHR 55.42 ± 15.53 vs. CRJ 51.24 ± 10.03), reflecting a favorable accu-
491 racy–stability trade-off for long closed-loop rollouts (cf. Figs. 3, 6). Together, these results indicate
492 that the two-channel construction—topological oscillators from H^1 cohomology (§3.1) and lifted
493 Markov transport (§3.2)—translates into consistent accuracy and extended predictability windows
494 across heterogeneous regimes, while the spectral scaling (§3.3) standardizes stability.

495 The ablation study in Table 2 probes each design choice. Disabling the persistence-based *auto-tune*
496 of blend weights (§3.1, Eq. (4)) significantly degrades all metrics (NRMSE@600: 0.238 ± 0.191
497 vs. 0.212 ± 0.188 ; VPT: 8.90 ± 1.62 vs. 10.94 ± 1.65 ; ADev: 33.90 ± 11.92 vs. 29.11 ± 9.53),
498 showing that weighting W_{top} by *measured* loop strength matters. Replacing PH-derived angles by
499 the PCA phase surrogate (no PH) further hurts (NRMSE@600: 0.258 ± 0.195), as does removing
500 either channel: *flow-only* (0.279 ± 0.198) and *topology-only* (0.341 ± 0.235) both underperform
501 the full model, confirming that oscillatory clocks and directed transport contribute complementary
502 signal. Implementation choices that stabilize coarse dynamics—near-death ε for the Rips 1-skeleton,
503 teleportation in P , and pseudocounts in C_{ij} —each improve robustness and accuracy relative to
504 their removal (e.g., *no pseudocounts*: 0.255 ± 0.197). The robust PH solver (per-component gauge,
505 Tikhonov, LSQR fallback) also helps (*no robust solver*: 0.247 ± 0.196), and capping to a single loop
506 ($K_{\max}=1$) degrades all metrics, indicating the value of multiple incommensurate oscillators when
507 present. Finally, omitting the spectral scaling is *unsafe*: 37% of runs diverge, empirically validating
508 the necessity of the global norm control for closed-loop stability established in §3.3. *Additional*
509 *quantitative breakdowns, phase-portrait overlays, error-growth visualisations, and hyperparameter*
510 *details are presented in Appendix B.*

5 CONCLUSION AND OUTLOOK

511
512
513 We presented PHR, a reservoir-computing framework that *learns* the recurrent operator of a leaky
514 ESN once, offline, from a single trajectory. The core idea is to replace random reservoirs by a
515 principled blend of two analyzable components learned directly from data: (i) a topological rotation
516 operator whose 2×2 blocks internalize long-lived loops via persistent cohomology and circular
517 coordinates, and (ii) a lifted Markov operator that encodes short-horizon transport through empirical
518 coarse transitions. A simple power-iteration rescaling of the blended operator enforces a uniform
519 contraction bound for the leaky update, yielding a clean echo-state certificate. The resulting reservoir
520 is interpretable (explicit oscillators with data-driven frequencies), task-aligned (local directionality
521 imprinted by coarse flow), and efficient (only a ridge readout is trained). Empirically, this design
522 preserves ESN-level training cost while providing a data-informed alternative to random reservoirs.
523

524 **Limitations & Future directions.** Our guarantees hinge on an operator-norm contraction of the
525 *blended* reservoir; they do not provide channel-wise spectral bounds, and the ESP certificate is suf-
526 ficient but not necessary. The Markov discretization introduces bias from partitioning and horizon
527 choice; similarly, angular-velocity estimates inherit noise from finite sampling, subsampling stride,
528 and the choice of working scale within a persistence interval. The current construction samples the
529 supports of the pool–lift maps uniformly; more geometry-aware couplings may better preserve local
530 structure. Several avenues are promising. Theoretically, combine stability of persistent cohomol-
531 ogy/circular coordinates (under noise and subsampling) with Ulam-type transfer-operator error to
532 obtain finite-sample rates for $\widehat{\omega}_k$, the power-scaled blend W , and forecasting risk; tighten ESP cer-
533 tificates to reflect tanh, leakage, and sparsity. Algorithmically, design geometry-aware pool–lift
534 maps (kNN/diffusion distances), multi-horizon mixtures $P^{(h)}$ for scale-separated transport, and
535 streaming PH for nonstationarity; replace Euclidean delays with diffusion-map/manifold embed-
536 dings when measurements are anisotropic. For scaling, use landmark/witness complexes, approxi-
537 mate kNN graphs, and GPU-accelerated Laplacian/LS solvers to handle very long sequences. Ap-
538 plications include closed-loop control/data assimilation, anomaly detection via oscillator coherence,
539 and domains needing interpretable oscillatory modes (climate, neuroscience, molecular kinetics).

540 REFERENCES

541

542 Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
543 In *Proceedings of the 33rd International Conference on International Conference on Machine*
544 *Learning - Volume 48*, ICML'16, pp. 1120–1128. JMLR.org, 2016.

545

546 Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
547 and recurrent networks for sequence modeling. *arXiv:1803.01271*, 2018.

548

549 U. Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes. *Journal of Applied*
550 *and Computational Topology*, 5:391–423, 2021. doi: 10.1007/s41468-021-00071-5.

551

552 Michael Breakspear. Dynamic models of large-scale brain activity. *Nature Neuroscience*, 20(3):
553 340–352, 2017. doi: 10.1038/nn.4497.

554

555 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
556 In *Proceedings of the Seventh International Conference on World Wide Web 7*, WWW7, pp.
557 107–117, NLD, 1998. Elsevier Science Publishers B. V.

558

559 S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
560 identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*,
113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113.

561

562 M. Buehner and P. Young. A tighter bound for the echo state property. *IEEE Transactions on Neural*
563 *Networks*, 17(3):820–824, 2006. doi: 10.1109/TNN.2006.872357.

564

565 György Buzsáki. *Rhythms of the Brain*. Oxford University Press, Oxford, UK, 2006. ISBN
9780195301069. doi: 10.1093/acprof:oso/9780195301069.001.0001.

566

567 Guanrong Chen and Tetsushi Ueta. Yet another chaotic attractor. *International Journal of Bifurcation*
568 *and Chaos - IJBC*, 9:1465–1466, 07 1999. doi: 10.1142/S0218127499001024.

569

570 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
571 ferential equations. In *Proceedings of the 32nd International Conference on Neural Information*
572 *Processing Systems*, NIPS'18, pp. 6572–6583, Red Hook, NY, USA, 2018. Curran Associates
573 Inc.

574

575 Vin de Silva and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates.
In *Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry*, SCG '09,
576 pp. 227–236, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585017. doi: 10.1145/1542362.1542406.

577

578 Gustavo Deco, Morten L. Kringelbach, Viktor K. Jirsa, and Petra Ritter. The dynamics of resting
579 fluctuations in the brain: metastability and its dynamical cortical core. *Scientific Reports*, 7(1):
580 3095, 2017. doi: 10.1038/s41598-017-03073-5.

581

582 Michael Dellnitz and Oliver Junge. On the approximation of complicated dynamical behavior. *SIAM*
583 *Journal on Numerical Analysis*, 36(2):491–515, 1999. doi: 10.1137/S0036142996313002.

584

585 Herbert Edelsbrunner and John L. Harer. *Computational Topology: An Introduction*. American
586 Mathematical Society, Providence, RI, 2010. ISBN 978-0-8218-4925-5.

587

588 J. Doyne Farmer and John J. Sidorowich. Predicting chaotic time series. *Phys. Rev. Lett.*, 59:
845–848, Aug 1987. doi: 10.1103/PhysRevLett.59.845.

589

590 G. Froyland. Extracting dynamical behavior via markov models. In A. I. Mees (ed.), *Nonlinear*
591 *Dynamics and Statistics*, pp. 281–321. Birkhäuser, Boston, MA, 2001.

592

593 Claudio Gallicchio and Alessio Micheli. Deep Echo State Network (DeepESN): A Brief Survey.
arXiv, 12 2017. doi: 10.48550/arXiv.1712.04323.

594 Ary L. Goldberger, Luís A. Nunes Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
595 Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley.
596 Physiobank, physiotookit, and physionet: Components of a new research resource for complex
597 physiologic signals. *Circulation*, 101(23):e215–e220, June 2000. doi: 10.1161/01.CIR.101.23.
598 e215.

599 Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Johns Hopkins University Press,
600 Baltimore, MD, 4 edition, 2013. ISBN 978-1421407944.

602 Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-memory
603 tasks. In *Proceedings of the 33rd International Conference on International Conference on Ma-*
604 *chine Learning - Volume 48*, ICML’16, pp. 2034–2042. JMLR.org, 2016.

606 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
607 1735–1780, 1997.

608 Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
609 problems. *Technometrics*, 12(1):55–67, 1970.

611 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge,
612 UK, 2nd edition, 2013. ISBN 978-1107033391.

613 Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks. *GMD*
614 *Technical Report*, 148:1–47, 2001.

616 Herbert Jaeger. Discovering multiscale dynamical features with hierarchical echo state networks.
617 Technical Report TR-31, Jacobs University, Bremen, Germany, 2007.

619 Herbert Jaeger. Controlling recurrent neural networks by conceptors. *ArXiv*, abs/1403.3369, 2014.

621 Yusuke Kawai, Jun Park, and Minoru Asada. A small-world topology enhances the echo state
622 property and signal propagation in reservoir computing. *Neural Networks*, 112:15–23, Apr 2019.
623 doi: 10.1016/j.neunet.2019.01.002.

624 B. Kemp, A.H. Zwinderman, B. Tuk, H.A.C. Kamphuisen, and J.J.L. Oberye. Analysis of a sleep-
625 dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. *IEEE Transactions*
626 *on Biomedical Engineering*, 47(9):1185–1194, 2000. doi: 10.1109/10.867928.

628 Stefan Klus, Péter Koltai, and Christof Schütte. On the numerical approximation of the perron-
629 frobenius and koopman operator. *Journal of Computational Dynamics*, 3(1):51–79, 2016. ISSN
630 2158-2491. doi: 10.3934/jcd.2016003.

631 Amy N. Langville and Carl D. Meyer. *Google’s PageRank and Beyond: The Science of Search*
632 *Engine Rankings*. Princeton University Press, USA, 2012. ISBN 0691152667.

634 Boyu Li, Robert Simon Fong, and Peter Tiňo. Simple cycle reservoirs are universal. *Journal of*
635 *Machine Learning Research (JMLR)*, 25(1), January 2024. ISSN 1532-4435.

636 J. Liu, X. Xu, and E. Li. A minimum complexity interaction echo state network. *Neural Computing*
637 *and Applications*, 36:4013–4026, 2024. doi: 10.1007/s00521-023-09271-9.

639 S. Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 28(2):
640 129–137, 1982. doi: 10.1109/TIT.1982.1056489.

641 Edward N Lorenz. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences*, 20(2):
642 130–141, 1963.

644 Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural net-
645 work training. *Computer Science Review*, 3(3):127–149, 2009.

647 B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear embeddings of nonlinear
648 dynamics. *Nature Communications*, 9(1):4950, 2018. doi: 10.1038/s41467-018-07210-0.

648 Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
649 states: A new framework for neural computation based on perturbations. *Neural Computation*,
650 14(11):2531–2560, 2002.

651 Gopalakrishnan Manjunath and Herbert Jaeger. Echo state property linked to an input: Exploring
652 a fundamental characteristic of recurrent neural networks. *Neural Computation*, 25(3):671–696,
653 2013. doi: 10.1162/NECO_a_00411.

654 Kanti V. Mardia and Peter E. Jupp. *Directional Statistics*. Wiley, Chichester, 2000. ISBN 978-
655 0471953338.

656 G. B. Moody and R. G. Mark. The impact of the mit-bih arrhythmia database. *IEEE Engineering in
657 Medicine and Biology Magazine*, 20(3):45–50, May–June 2001.

658 Mustafa C. Ozturk, Dongming Xu, and José C. Príncipe. Analysis and design of echo state networks.
659 *Neural Comput.*, 19(1):111–138, January 2007. ISSN 0899-7667. doi: 10.1162/neco.2007.19.1.
660 111.

661 N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a time series. *Phys.
662 Rev. Lett.*, 45:712–716, Sep 1980. doi: 10.1103/PhysRevLett.45.712.

663 Christopher C. Paige and Michael A. Saunders. Lsqr: An algorithm for sparse linear equations and
664 sparse least squares. *ACM Trans. Math. Softw.*, 8(1):43–71, March 1982. ISSN 0098-3500. doi:
665 10.1145/355984.355989.

666 Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction of
667 large spatiotemporally chaotic systems from data: A reservoir computing approach. *Phys. Rev.
668 Lett.*, 120(2):024102, 2018. doi: 10.1103/PhysRevLett.120.024102.

669 Jose A. Perea and John Harer. Sliding windows and persistence: An application of topological
670 methods to signal analysis. *Found. Comput. Math.*, 15(3):799–838, June 2015. ISSN 1615-3375.
671 doi: 10.1007/s10208-014-9206-z.

672 M. A. F. Pimentel, D. A. Clifton, L. Tarassenko, and et al. Towards a robust estimation of respiratory
673 rate from pulse oximeters. *IEEE Transactions on Biomedical Engineering*, 64(8):1914–1923,
674 2016. doi: 10.1109/TBME.2016.2613124.

675 J. H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and
676 F. Noé. Markov models of molecular kinetics: generation and validation. *The Journal of Chemical
677 Physics*, 134(17):174105, 2011. doi: 10.1063/1.3565032.

678 Ali Rodan and Peter Tino. Simple deterministically constructed cycle reservoirs with regular jumps.
679 *Neural computation*, 24(7):1822–1852, 2012.

680 Ali Rodan and Peter Tiňo. Minimum complexity echo state network. *IEEE Transactions on Neural
681 Networks*, 22:131–144, 2011.

682 Otto Rossler. An equation for continuous chaos. *Physics Letters A*, 57:397–398, 07 1976. doi:
683 10.1016/0375-9601(76)90101-8.

684 T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. *Journal of Statistical Physics*, 65(3–4):579–
685 616, 1991. doi: 10.1007/BF01053745.

686 Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. In *Journal of
687 Fluid Mechanics*, volume 656, pp. 5–28, 2010. doi: 10.1017/S0022112010001217.

688 Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview of reservoir
689 computing: Theory, applications and implementations. In *Proceedings of the 15th European Symposium
690 on Artificial Neural Networks (ESANN 2007)*, pp. 471–482, Bruges, Belgium, 2007. d-side
691 publications. ISBN 2-930307-07-2.

692 Pradeep Singh, Hrishit B.P., and Balasubramanian Raman. Geometry-aware reservoirs: Patch-
693 wise jacobian lifting with cross-patch couplings for piecewise-linear modelling of chaotic flows.
694 *Chaos, Solitons & Fractals*, 200:117160, 2025. ISSN 0960-0779. doi: <https://doi.org/10.1016/j.chaos.2025.117160>.

702 Jens B. Stephansen, Alexander N. Olesen, Mads Olsen, Aditya Ambati, Eileen B. Leary, Hyatt E.
703 Moore, Oscar Carrillo, Ling Lin, Fang Han, Han Yan, Yun L. Sun, Yves Dauvilliers, Sabine
704 Scholz, Lucie Barateau, Birgit Högl, Ambra Stefani, Seung Chul Hong, Tae Won Kim, Fabio
705 Pizza, Giuseppe Plazzi, Stefano Vandi, Elena Antelmi, Dimitri Perrin, Samuel T. Kuna, Paula K.
706 Schweitzer, Clete Kushida, Paul E. Peppard, Helge B. D. Sørensen, Poul Jenum, and Emmanuel
707 Mignot. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. *Nature
708 Communications*, 9(1):5229, 2018. doi: 10.1038/s41467-018-07229-3.

709 David Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic neural net-
710 works. *Neuron*, 63(4):544–557, 2009. doi: 10.1016/j.neuron.2009.07.018.
711

712 Floris Takens. Detecting strange attractors in turbulence. In *Dynamical Systems and Turbulence,
713 Warwick 1980*, pp. 366–381. Springer, 1981.

714 Guillaume Taudin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M.
715 Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: a topological data analysis
716 toolkit for machine learning and data exploration. *J. Mach. Learn. Res.*, 22(1), January 2021.
717 ISSN 1532-4435.

718 Lloyd N. Trefethen and David Bau III. *Numerical Linear Algebra*. SIAM, Philadelphia, PA, 1997.
719 ISBN 978-0898713619.
720

721 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
722 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st Inter-
723 national Conference on Neural Information Processing Systems*, NIPS’17, pp. 6000–6010, Red
724 Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

725 P. Welch. The use of fast fourier transform for the estimation of power spectra: A method based on
726 time averaging over short, modified periodograms. *IEEE Transactions on Audio and Electroacous-
727 tics*, 15(2):70–73, 1967. doi: 10.1109/TAU.1967.1161901.
728

729 M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data–driven approximation of the koopman
730 operator: Extending dynamic mode decomposition. *Journal of Nonlinear Science*, 25:1307–1346,
731 2015. doi: 10.1007/s00332-015-9258-5.

732 Brussels World Data Center SILSO, Royal Observatory of Belgium. World data center silso, Royal
733 Observatory of Belgium, Brussels, 2020. Version 2.0, monthly mean total sunspot number, ac-
734 cessed 2025-04-01.
735

736 Izzet Yildiz, Herbert Jaeger, and Stefan J. Kiebel. Re-visiting the echo state property. *Neural
737 Networks*, 35:1–9, 2012.

738 Zheng-Meng Zhai, Ling-Wei Kong, and Ying-Cheng Lai. Emergence of a resonance in machine
739 learning. *Physical Review Research*, 5(3):033127, 2023. doi: 10.1103/PhysRevResearch.5.
740 033127.
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A APPENDIX

758 A.1 PROOFS

760 We use the induced ℓ_∞ and ℓ_1 matrix norms, $\|M\|_\infty = \max_i \sum_j |m_{ij}|$ and $\|M\|_1 = \max_j \sum_i |m_{ij}|$, together with submultiplicativity and the triangle inequality. Note that $\|P\|_\infty = 1$ by row-stochasticity and $\|B\|_1 = 1$ by column-stochasticity.

763 **Lemma A.1** (Oscillator spectrum under block-permuted rotations; see (Horn & Johnson, 2013; Trefethen & III, 1997)). W_{top} is a normal matrix. Its spectrum consists of the multiset

$$766 \quad \{\rho_{\text{rot}} e^{+i\omega_k}, \rho_{\text{rot}} e^{-i\omega_k}\}_{k=1}^K \cup \{r_j\}_{j=1}^{N-2K}, \quad r_j \in (\rho_{\min}, \rho_{\max}), \quad (8)$$

768 and it admits an orthogonal decomposition $\mathbb{R}^N = \bigoplus_{k=1}^K E_k \oplus E_\perp$ into K invariant two-dimensional subspaces E_k (one per rotation block) and an invariant $(N - 2K)$ -dimensional subspace E_\perp for the decay modes. In particular, for each k there exists an orthonormal basis of E_k in which W_{top} acts as the 2×2 rotation $\rho_{\text{rot}} R(\omega_k)$, and this property is unchanged by the subsequent orthogonal permutation used to distribute coordinates in the implementation.

773 **Lemma A.2** (General pooled coarse-flow bound). For any $r \in \mathbb{R}^Q$ and $x := Br \in \mathbb{R}^N$,

$$775 \quad \|AW_{\text{flow}}x - Pr\|_\infty \leq (1 + \|AB\|_\infty) \|AB - I_Q\|_\infty \|r\|_\infty. \quad (9)$$

776 An analogous inequality holds in ℓ_1 :

$$778 \quad \|AW_{\text{flow}}x - Pr\|_1 \leq \|P\|_1 (1 + \|AB\|_1) \|AB - I_Q\|_1 \|r\|_1. \quad (10)$$

780 *Proof.* Write

$$782 \quad AW_{\text{flow}}x - Pr = ABPABr - Pr = ABP(\underbrace{ABr - r}_{\Delta r}) + \underbrace{(AB - I_Q)Pr}_{\Delta} = ABP\Delta r + \Delta Pr.$$

784 Taking ℓ_∞ norms and using submultiplicativity,

$$786 \quad \|ABP\Delta r\|_\infty \leq \|AB\|_\infty \|P\|_\infty \|\Delta\|_\infty \|r\|_\infty = \|AB\|_\infty \|\Delta\|_\infty \|r\|_\infty,$$

788 and $\|\Delta Pr\|_\infty \leq \|\Delta\|_\infty \|P\|_\infty \|r\|_\infty = \|\Delta\|_\infty \|r\|_\infty$. Adding the two bounds yields (9). The ℓ_1 case (10) is identical with $\|\cdot\|_1$ and $\|P\|_1$ in place of $\|\cdot\|_\infty$ and $\|P\|_\infty$. \square

790 **Corollary A.3** (Factor-2 bound under nonexpansive pooling). If, in addition, $\|AB\|_\infty \leq 1$ (e.g., when A is row-stochastic and B is also row-substochastic²), then for all $r \in \mathbb{R}^Q$ and $x = Br$,

$$793 \quad \|AW_{\text{flow}}x - Pr\|_\infty \leq 2 \|AB - I_Q\|_\infty \|r\|_\infty.$$

794 An identical factor-2 version holds in ℓ_1 whenever $\|P\|_1 \leq 1$ and $\|AB\|_1 \leq 1$ (e.g., for doubly-stochastic P and row-substochastic AB).

797 **Remark A.4.** The quantity $\Delta = AB - I_Q$ is the *pool-lift calibration defect*. Lemma 3.1 shows that after pooling, the one-step action of the lifted operator $W_{\text{flow}} = BPA$ on any lifted coarse vector Br is within $(1 + \|AB\|_*)\|\Delta\|_*\|r\|_*$ of the ideal coarse Markov step Pr (for $*$ $\in \{1, \infty\}$). Thus, when $AB \approx I_Q$ (good calibration), the high-dimensional pathway “pool \rightarrow Markov \rightarrow lift” is *coarsely faithful*. The factor $(1 + \|AB\|_*)$ can be fixed at 2 by ensuring nonexpansivity of AB in the chosen norm (e.g., by making B row-substochastic).

803 **Connection to Proposition 3.2.** Part (ii) of Proposition 3.2 bounds the deviation of AWB from a 804 scaled coarse Markov step on \mathbb{R}^Q . Lemma 3.1 isolates the *pure flow channel* ($\alpha = \xi = 0$), showing 805 that $\|AW_{\text{flow}}B - P\|_*$ is controlled by $\|AB - I_Q\|_*$ and nonexpansivity constants. The full bound in 806 Proposition 3.2(ii) then adds leakage from the topological and noise channels, each weighted by the 807 blend coefficients and their operator norms.

809 ²If B has nonnegative entries, column sums = 1, and row sums ≤ 1 , then for any row-stochastic A one has $\|AB\|_\infty = \max_q \sum_j (AB)_{qj} = \max_q \sum_i A_{qi} \sum_j B_{ij} \leq \max_i \sum_j B_{ij} \leq 1$.

810 *Proof of Proposition 3.2.* We recall the notation
811

$$812 \quad W_{\text{blend}} = \alpha W_{\text{top}} + \beta W_{\text{flow}} + \xi W_{\text{noise}}, \quad W = \frac{\rho_*}{s} W_{\text{blend}}, \quad s := \|W_{\text{blend}}\|_2,$$

814 with $W_{\text{flow}} = B P^{(\gamma)} A$ and $\alpha, \beta, \xi \geq 0$, $\alpha + \beta + \xi = 1$. By Lemma A.1, W_{top} is normal and its spec-
815 trum is $\{\rho_{\text{rot}} e^{\pm i\omega_k}\}_{k=1}^K \cup \{r_j\}_{j=1}^{N-2K}$ (with $r_j \in (\rho_{\min}, \rho_{\max})$), and is unchanged by the subsequent
816 coordinate permutation.

817 (i) *Persistence of oscillatory eigenpairs.* If $s = 0$ then $W = 0$ and the claim is trivial. Assume $s > 0$.
818 Write

$$819 \quad W = \underbrace{\frac{\rho_*}{s} \alpha W_{\text{top}}}_{=:A_0} + \underbrace{\frac{\rho_*}{s} (\beta W_{\text{flow}} + \xi W_{\text{noise}})}_{=:E_0}.$$

822 Since W_{top} is normal, so is A_0 , and we may invoke the standard spectral variation bound for normal
823 matrices (see, e.g., (Trefethen & III, 1997, Ch. 2)): for every eigenvalue $\lambda \in \sigma(A_0)$ there exists
824 an eigenvalue $\mu \in \sigma(A_0 + E_0)$ such that $|\mu - \lambda| \leq \|E_0\|_2$. Fix $k \in \{1, \dots, K\}$ and take $\lambda_k^0 =$
825 $(\rho_* \alpha / s) \rho_{\text{rot}} e^{i\omega_k} \in \sigma(A_0)$. Then there exists $\lambda_k(W) \in \sigma(W)$ with

$$827 \quad |\lambda_k(W) - \frac{\rho_* \alpha}{s} \rho_{\text{rot}} e^{i\omega_k}| \leq \|E_0\|_2 = \frac{\rho_*}{s} (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2),$$

829 and the same statement holds for the conjugate $(\rho_* \alpha / s) \rho_{\text{rot}} e^{-i\omega_k}$. This proves the displayed in-
830 equality.

831 For the “in particular” clause, note that by the reverse triangle inequality,

$$833 \quad s = \|W_{\text{blend}}\|_2 \geq \alpha \|W_{\text{top}}\|_2 - (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2),$$

834 so the stated lower bound on s is always valid. Hence each oscillatory eigenvalue of W lies in the
835 closed disc centered at $\frac{\rho_* \alpha}{s} \rho_{\text{rot}} e^{\pm i\omega_k}$ with radius $\frac{\rho_*}{s} (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2)$, as claimed.

837 (ii) *Coarse-flow fidelity on the lifted subspace.* Let $r \in \mathbb{R}^Q$ and $x := Br \in \mathbb{R}^N$. Using $W =$
838 $(\rho_* / s) (\alpha W_{\text{top}} + \beta W_{\text{flow}} + \xi W_{\text{noise}})$ and $W_{\text{flow}} = B P^{(\gamma)} A$,

$$840 \quad AWx = \frac{\rho_*}{s} [\alpha AW_{\text{top}} Br + \beta AW_{\text{flow}} Br + \xi AW_{\text{noise}} Br] \\ 841 = \frac{\rho_*}{s} [\alpha AW_{\text{top}} Br + \beta A B P^{(\gamma)} A Br + \xi AW_{\text{noise}} Br].$$

844 Subtract $(\rho_* \beta / s) P^{(\gamma)} r$ and regroup:

$$846 \quad AWx - \frac{\rho_* \beta}{s} P^{(\gamma)} r = \frac{\rho_*}{s} [\beta ((AB) P^{(\gamma)} (AB) - P^{(\gamma)}) r + \alpha AW_{\text{top}} Br + \xi AW_{\text{noise}} Br].$$

848 Taking operator 2-norms and using submultiplicativity,

$$850 \quad \left\| AWx - \frac{\rho_* \beta}{s} P^{(\gamma)} r \right\|_2 \leq \frac{\rho_*}{s} [\beta \| (AB) P^{(\gamma)} (AB) - P^{(\gamma)} \|_2 \|r\|_2 \\ 851 \quad + \alpha \|A\|_2 \|W_{\text{top}}\|_2 \|B\|_2 \|r\|_2 + \xi \|A\|_2 \|W_{\text{noise}}\|_2 \|B\|_2 \|r\|_2],$$

854 which is exactly the stated bound. In particular, if $AB = I_Q$ the first term vanishes, and for small
855 α, ξ the leakage terms are correspondingly small, so that AWB is a small-norm perturbation of
856 $(\rho_* \beta / s) P^{(\gamma)}$ on \mathbb{R}^Q . □

859 A.2 INTUITIVE SUMMARY OF THE METHODOLOGY

861 This subsection distills the construction into a small number of composable primitives and explains
862 why each step is present, referencing the concrete procedures in Algorithms 1–8. The design principle
863 is: *learn a fixed, analyzable recurrent operator that carries (i) global oscillations of the attractor
and (ii) local short-horizon transport, then scale it once for stability and only train a linear readout.*

864 **1) Build the geometry we will learn from (Alg. 1).** We convert the observed time series $\{u_t\}$ into
 865 a delay-embedded cloud $Z = \{z_t\} \subset \mathbb{R}^{md_{\text{obs}}}$ to expose the attractor's geometry. To keep topological
 866 computations tractable, we thin Z by a stride s to a PH-subset $Z^{(\text{PH})}$ and compute its pairwise
 867 distance matrix D . This decouples the cost of homological inference from the ultimate reservoir
 868 size N and the length of the raw series: the topology is read from the *subsample*, while the recurrent
 869 operator will still act in the full neuron space.
 870

871 **Algorithm 1: DELAYEMBED&SUBSAMPLEFORPH**

872 **Input:** Observed trajectory $\{u_t\}_{t=1}^T \subset \mathbb{R}^{d_{\text{obs}}}$, embedding dimension $m \in \mathbb{N}$, lag $\tau \in \mathbb{N}$, PH stride
 873 $s \in \mathbb{N}$.
 874 **Output:** Embedded sequence $Z = \{z_t\}_{t=(m-1)\tau}^T \subset \mathbb{R}^{md_{\text{obs}}}$; PH subsample
 875 $Z^{(\text{PH})} = \{z_{t_0+js}\}_{j=0}^{n_{\text{PH}}-1}$; distance matrix $D \in \mathbb{R}^{n_{\text{PH}} \times n_{\text{PH}}}$.
 876

877 **1 for** $t = (m-1)\tau, \dots, T$ **do**
 878 **2** $z_t \leftarrow [u_t^\top, u_{t-\tau}^\top, \dots, u_{t-(m-1)\tau}^\top]^\top$
 879 **3** Pick an anchor $t_0 \in \{(m-1)\tau, \dots, T\}$ and form $Z^{(\text{PH})} \leftarrow \{z_{t_0}, z_{t_0+s}, z_{t_0+2s}, \dots\}$ within index
 880 range
 881 **4** Compute $D_{ij} \leftarrow \|z_{t_0+is} - z_{t_0+js}\|_2$ for all i, j (symmetric, zero diagonal)
 882 **5 return** $(Z, Z^{(\text{PH})}, D)$
 883 ▷ Complexity: building Z is $O(Tmd_{\text{obs}})$; D is $O(n_{\text{PH}}^2 md_{\text{obs}})$.
 884

885

886 **Algorithm 2: PHCIRCULARCOORDINATES&ANGULARVELOCITIES**

887 **Input:** $(Z^{(\text{PH})}, D)$ from Alg. 1; field \mathbb{F}_p (prime p);
 888 selection cap K_{max} ; scale rule $\varepsilon_\ell \in (b_\ell, d_\ell)$ (e.g., near-death).
 889 **Output:** Selected indices $\mathcal{I}_{\text{keep}} \subseteq \{1, \dots\}$; angles $\{\theta^{(\ell)} \in (-\pi, \pi]^{n_{\text{PH}}}\}_{\ell \in \mathcal{I}_{\text{keep}}}$; angular
 890 velocities $\{\widehat{\omega}_\ell\}_{\ell \in \mathcal{I}_{\text{keep}}}$; persistences $\{P_\ell\}_{\ell \in \mathcal{I}_{\text{keep}}}$.
 891

892 **1** Compute Vietoris–Rips persistent *cohomology* up to degree 1 on $(Z^{(\text{PH})}, D)$ over \mathbb{F}_p ;
 893 **2** Obtain H^1 intervals $\{(b_\ell, d_\ell)\}_\ell$ and representative 1-cocycles $\{c_\ell\}_\ell$
 894 **3** Let $P_\ell \leftarrow d_\ell - b_\ell$ and order classes by P_ℓ (desc.)
 895 **4** Select the top K_{max} indices as candidates $\mathcal{I}_{\text{cand}}$
 896 **5 for** $\ell \in \mathcal{I}_{\text{cand}}$ **do**
 897 **6** Set $\varepsilon_\ell \in (b_\ell, d_\ell)$ (default: $d_\ell - 10^{-6}$)
 898 **7** Build the Rips 1-skeleton $G_\ell = (V, E_\ell)$ at threshold ε_ℓ
 899 **8** Lift c_ℓ to $\alpha_{ij}^{(\ell)} \in (-\frac{1}{2}, \frac{1}{2}]$ on edges $(i, j) \in E_\ell$
 900 **9** Solve $(L + \mu I)\vartheta^{(\ell)} = b$ with $L = M^\top W M$, $b = M^\top W \alpha$, per connected component (gauge
 901 anchor, tiny $\mu > 0$)
 902 **10** $\theta^{(\ell)} \leftarrow \text{wrap}_{(-\pi, \pi]}(2\pi\vartheta^{(\ell)})$
 903 **11** $\widehat{\omega}_\ell \leftarrow \text{mean}(\text{wrap}_{(-\pi, \pi]}(\theta_{t+1}^{(\ell)} - \theta_t^{(\ell)}))$
 904 **12** Apply a relative-persistence threshold $\gamma \in [0, 1]$: $\mathcal{I}_{\text{keep}} \leftarrow \{\ell \in \mathcal{I}_{\text{cand}} : P_\ell \geq \gamma \max_{\ell'} P_{\ell'}\}$
 905 **13 return** $(\mathcal{I}_{\text{keep}}, \{\theta^{(\ell)}, \widehat{\omega}_\ell, P_\ell\}_{\ell \in \mathcal{I}_{\text{keep}}})$
 906 ▷ Guarantee: angles are well-defined up to global phase per
 907 component.
 908

909

910 **2) Extract global oscillators from topology (Alg. 2 and 3).** Persistent cohomology on
 911 $(Z^{(\text{PH})}, D)$ detects long-lived 1-cycles (bars (b_ℓ, d_ℓ)) and provides representative cocycles. A
 912 circular-coordinate solver turns each selected bar into an angle $\theta^{(\ell)}$ on the sample; the wrapped
 913 increment of this angle estimates a mean angular velocity $\widehat{\omega}_\ell$. We then synthesize a *normal*
 914 block-diagonal operator W_{top} whose 2×2 rotation blocks $\rho_{\text{rot}} R(\widehat{\omega}_\ell)$ instantiate those angular
 915 velocities as stable internal oscillators and whose remaining diagonal entries are decays. A random
 916 permutation spreads the oscillator pairs across coordinates so they can interact with other channels.
 917 The effect is to *hard-wire* data-driven phases into W without backpropagation.

918
919

Algorithm 3: SYNTHESIZETOPOLOGICALOPERATOR

920 **Input:** Angular velocities $\{\widehat{\omega}_\ell\}_{\ell=1}^{K_{\text{final}}}$; rotation radius $\rho_{\text{rot}} \in (0, 1)$; decay radii interval
921 $(\rho_{\min}, \rho_{\max})$; reservoir size $N \geq 2K_{\text{final}}$.922 **Output:** $W_{\text{top}} \in \mathbb{R}^{N \times N}$ (block-permuted rotation-decay).

- 923 1 Form K_{final} many 2×2 rotation blocks $R_\ell = \rho_{\text{rot}} \begin{bmatrix} \cos \widehat{\omega}_\ell & -\sin \widehat{\omega}_\ell \\ \sin \widehat{\omega}_\ell & \cos \widehat{\omega}_\ell \end{bmatrix}$
- 924 2 Draw $(N - 2K_{\text{final}})$ radii $r_j \sim \text{Unif}(\rho_{\min}, \rho_{\max})$ and set $D_\perp \leftarrow \text{diag}(r_1, \dots, r_{N-2K_{\text{final}}})$
- 925 3 Assemble $W_b \leftarrow \text{blkdiag}(R_1, \dots, R_{K_{\text{final}}}, D_\perp)$
- 926 4 Apply a random permutation P to distribute blocks: $W_{\text{top}} \leftarrow P^\top W_b P$
- 927 5 **return** W_{top}
- 928 ▷ Spectrum: $\{\rho_{\text{rot}} e^{\pm i \widehat{\omega}_\ell}\} \cup \{r_j\}$; W_{top} is normal up to permutation.

929
930
931

Algorithm 4: COARSEFLOW&LIFTEDOPERATOR

932 **Input:** Embedded cloud $Z = \{z_t\}$; #clusters Q ; horizon $h \in \mathbb{N}$; pseudocount $\varepsilon > 0$; teleport
933 $\gamma \in [0, 1)$; pooling/lifting sparsities (n_{nzr}, n_{zr}); reservoir size N .934 **Output:** Centroids $\{c_q\}$; assignments $\{s_t\}$; $P^{(\gamma)}$; $A \in \mathbb{R}^{Q \times N}$ (row-stoch.), $B \in \mathbb{R}^{N \times Q}$
935 (col-stoch.); $W_{\text{flow}} = B P^{(\gamma)} A$.

- 936 1 Run k -means (Lloyd) on Z to get $\{c_q\}_{q=1}^Q$ and $s_t = \arg \min_q \|z_t - c_q\|_2$
- 937 2 Build counts $C_{ij} \leftarrow \#\{t : s_t = i, s_{t+h} = j\}$
- 938 3 Row-normalize with ε : $P_{ij} = \frac{C_{ij} + \varepsilon}{\sum_{j'} (C_{ij'} + \varepsilon)}$
- 939 4 Teleport: $P^{(\gamma)} \leftarrow (1 - \gamma)P + \gamma \mathbf{1} u^\top$, $u = \frac{1}{Q} \mathbf{1}$
- 940 5 Construct A : for each row q , choose n_{nzr} columns, set $A_{q,:}$ equal weights summing to 1
- 941 6 Construct B : for each column q , choose n_{zr} rows, set $B_{:,q}$ equal weights summing to 1
- 942 7 Set $W_{\text{flow}} \leftarrow B P^{(\gamma)} A$
- 943 8 **return** $(\{c_q\}, \{s_t\}, P^{(\gamma)}, A, B, W_{\text{flow}})$
- 944 ▷ Note: $\|A\|_\infty = \|P^{(\gamma)}\|_\infty = 1$, $\|B\|_1 = 1$.

945
946
947
948

Algorithm 5: AUTOTUNE_BLENDWEIGHTS

949 **Input:** Persistences $\{P_\ell\}_{\ell \in \mathcal{I}_{\text{keep}}}$ (possibly empty); noise fraction $\xi \in [0, 1)$; bounds
950 $0 \leq \alpha_{\min} \leq \alpha_{\max} \leq 1$; clip operator $\text{clip}(\cdot; 0, 1 - \xi)$.951 **Output:** $(\alpha_{\text{top}}, \beta_{\text{flow}})$ with $\alpha_{\text{top}}, \beta_{\text{flow}} \geq 0$ and $\alpha_{\text{top}} + \beta_{\text{flow}} \leq 1 - \xi$.

- 952 1 **if** $\mathcal{I}_{\text{keep}} = \emptyset$ **then**
- 953 2 $\alpha_{\text{top}} \leftarrow 0$, $\beta_{\text{flow}} \leftarrow 1 - \xi$
- 954 3 **return**
- 955 4 $P_{\max} \leftarrow \max_{\ell \in \mathcal{I}_{\text{keep}}} P_\ell$, $s \leftarrow \frac{1}{|\mathcal{I}_{\text{keep}}|} \sum_{\ell \in \mathcal{I}_{\text{keep}}} \frac{P_\ell}{P_{\max}}$
- 956 5 $\alpha_{\text{top}} \leftarrow \text{clip}(\alpha_{\min} + (\alpha_{\max} - \alpha_{\min}) s; 0, 1 - \xi)$
- 957 6 $\beta_{\text{flow}} \leftarrow 1 - \xi - \alpha_{\text{top}}$
- 958 7 **return** $(\alpha_{\text{top}}, \beta_{\text{flow}})$
- 959 ▷ If PH fails or is weak ($\mathcal{I}_{\text{keep}} = \emptyset$), the scheme becomes
960 flow-dominant.

961
962
963
964

965 **3) Encode local directed transport (Alg. 4).** We discretize Z by k -means into Q coarse cells
966 and count short-horizon transitions to obtain a row-stochastic Markov matrix P , regularized by
967 pseudocounts and teleportation. Two stochastic maps connect coarse states to neurons: A (row-
968 stochastic) pools neuron activity to the coarse scale; B (column-stochastic) lifts coarse mass back to
969 neurons. The composition $W_{\text{flow}} := B P^{(\gamma)} A$ therefore advances a neuron state by *pool* \rightarrow *Markov*
970 \rightarrow *lift*. Lemma 3.1 quantifies the fidelity of this mechanism: after pooling, the discrepancy from
971

972

Algorithm 6: BLENDANDSCALETOTARGET

973
Input: W_{top} , W_{flow} , noise W_{noise} with $\|W_{\text{noise}}\|_2 = 1$; weights $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi)$,
 $\alpha_{\text{top}} + \beta_{\text{flow}} + \xi = 1$; target $\rho_{\star} \in (0, 1)$.
Output: Scaled recurrent W with $\|W\|_2 = \rho_{\star}$.

977 1 $W_{\text{blend}} \leftarrow \alpha_{\text{top}} W_{\text{top}} + \beta_{\text{flow}} W_{\text{flow}} + \xi W_{\text{noise}}$
978 2 Estimate $s \approx \|W_{\text{blend}}\|_2$ via power iteration on $W_{\text{blend}}^{\top} W_{\text{blend}}$ (fixed iters, NaN guards)
979 3 **if** $s = 0$ **or** estimate invalid **then**
980 4 **return** $W \leftarrow 0$ (trivial contraction)
981 5 $W \leftarrow (\rho_{\star}/s) W_{\text{blend}}$
982 6 **return** W
983 \triangleright Guarantee: $\|W\|_2 = \rho_{\star}$; leaky ESN with leak λ has contraction
984 factor $(1 - \lambda) + \lambda \rho_{\star} < 1$.

985

986

Algorithm 7: PHR_TRAININGPIPELINE

987
Input: Trajectory $\{u_t\}_{t=1}^T$; (m, τ, s) ; PH/selection $(p, K_{\text{max}}, \gamma)$; synthesis $(\rho_{\text{rot}}, \rho_{\text{min}}, \rho_{\text{max}})$;
988 flow $(Q, h, \varepsilon, \gamma_{\text{tel}}, \text{nzc}, \text{nzc})$; blend auto-bounds $(\alpha_{\text{min}}, \alpha_{\text{max}}, \xi)$; scaling ρ_{\star} ; leak λ ;
989 polynomial feature flag $\mathbf{1}_{\text{poly}}$.
Output: Fixed recurrent W ; fitted readout W_{out} .

990 1 $(Z, Z^{(\text{PH})}, D) \leftarrow \text{DELAYEMBED\&SUBSAMPLEFORPH}(\{u_t\}, m, \tau, s)$
991 2 $(\mathcal{I}_{\text{keep}}, \{\theta^{(\ell)}, \widehat{\omega}_{\ell}, P_{\ell}\}) \leftarrow \text{PHCIRCULARCOORDINATES\&ANGULARVELOCITIES}(Z^{(\text{PH})}, D, p, K_{\text{max}})$
992 3 $W_{\text{top}} \leftarrow \text{SYNTHESIZETOPOLOGICALOPERATOR}(\{\widehat{\omega}_{\ell}\}_{\ell \in \mathcal{I}_{\text{keep}}}, \rho_{\text{rot}}, (\rho_{\text{min}}, \rho_{\text{max}}), N)$
993 4 $(\{c_q\}, \{s_t\}, P^{(\gamma)}, A, B, W_{\text{flow}}) \leftarrow \text{COARSEFLOW\&LIFTEDOPERATOR}(Z, Q, h, \varepsilon, \gamma_{\text{tel}}, \text{nzc}, \text{nzc}, N)$
994 5 $(\alpha_{\text{top}}, \beta_{\text{flow}}) \leftarrow \text{AUTOTUNE_BLENDWEIGHTS}(\{P_{\ell}\}_{\ell \in \mathcal{I}_{\text{keep}}}, \xi, \alpha_{\text{min}}, \alpha_{\text{max}})$
995 6 $W \leftarrow \text{BLENDANDSCALETOTARGET}(W_{\text{top}}, W_{\text{flow}}, W_{\text{noise}}, (\alpha_{\text{top}}, \beta_{\text{flow}}, \xi), \rho_{\star})$
996 \triangleright Teacher-forced reservoir rollout and ridge readout
997 7 Advance leaky ESN: $x_t = (1 - \lambda)x_{t-1} + \lambda \tanh(Wx_{t-1} + W_{\text{in}}u_t)$; collect features
998 $\varphi_t = [x_t; \mathbf{1}_{\text{poly}}(x_t \odot x_t); \mathbf{1}_{\text{poly}}]$
999 8 Discard washout D , assemble $\Phi \in \mathbb{R}^{(T-D) \times F}$ and targets $Y \in \mathbb{R}^{(T-D) \times d_{\text{out}}}$
1000 9 Solve ridge: $W_{\text{out}}^{\top} = (\Phi^{\top} \Phi + \alpha I)^{-1} \Phi^{\top} Y$
1001 10 **return** (W, W_{out})

1002

1003

Algorithm 8: PHR_INFERENCE

1004
Input: Fixed $(W, W_{\text{in}}, W_{\text{out}})$; leak λ ; initial input u_0 ; horizon H .
Output: Predicted outputs $\{\widehat{y}_t\}_{t=1}^H$.

1005 1 Initialize $x_0 \leftarrow 0, u \leftarrow u_0$
1006 2 **for** $t = 1, \dots, H$ **do**
1007 3 $x_t \leftarrow (1 - \lambda)x_{t-1} + \lambda \tanh(Wx_{t-1} + W_{\text{in}}u)$
1008 4 Form feature φ_t as in training; $\widehat{y}_t \leftarrow W_{\text{out}} \varphi_t$
1009 5 \triangleright Autoregressive option: feed back first d_{obs} coordinates
1010 6 $u \leftarrow \widehat{y}_t[1:d_{\text{obs}}]$
1011 7 **return** $\{\widehat{y}_t\}$

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

an “ideal” $P^{(\gamma)}$ step is controlled by the calibration defect $AB - I$ and nonexpansivity constants.

Intuitively, W_{flow} imprints the observed short-time arrows of motion onto the reservoir, but does so in a way that is linear, nonnegative, and analyzable.

1025

4) Decide how much topology vs. flow to keep (Alg. 5). Not all datasets have strong loops. The auto-tuner reads the evidence from PH persistences $\{P_{\ell}\}$: it keeps the classes above a relative

threshold γ and converts their average strength into a topological weight α_{top} within user bounds; the remainder of the budget (minus the small noise fraction ξ) is assigned to the flow channel, $\beta_{\text{flow}} = 1 - \xi - \alpha_{\text{top}}$. If no loop survives, the model becomes flow-dominant automatically ($\alpha_{\text{top}} = 0$). This makes the blend responsive: oscillatory problems (e.g., ECG, sunspots) allocate more mass to W_{top} , while broadband transport (e.g., laser) leans on W_{flow} .

5) Blend once and enforce a global stability budget (Alg. 6). We form $W_{\text{blend}} = \alpha_{\text{top}} W_{\text{top}} + \beta_{\text{flow}} W_{\text{flow}} + \xi W_{\text{noise}}$, where a tiny isotropic noise breaks algebraic degeneracies. A short power iteration estimates $\|W_{\text{blend}}\|_2$ and we scale to a *target* norm $\rho_* \in (0, 1)$: $W = \frac{\rho_*}{\tilde{\sigma}_{\max}(W_{\text{blend}})} W_{\text{blend}}$. This single step detaches *structural fidelity* from *stability*: regardless of A, B, P sparsity or the number of loops, the leaky ESN update has contraction factor $(1 - \lambda) + \lambda \rho_* < 1$, hence ESP holds. Meanwhile, Proposition 3.2 guarantees that (i) the eigenpairs contributed by W_{top} persist up to a perturbation governed by $\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2$, and (ii) on lifted coarse states $x = Br$ the pooled action AWx is close to a scaled $P^{(\gamma)}r$, with error budget split into the AB calibration defect and the leakage from non-flow channels.

6) Train (Alg. 7 and 8). After W is fixed, training reduces to a single convex ridge regression on features extracted from the leaky dynamics. Inference reuses W and the readout, either teacher-forced or autoregressive. No BPTT is used or needed: all nonlinear recurrence is in a *scaled, fixed* operator.

What one gains.

- *Interpretability*: W_{top} carries explicit oscillators with interpretable frequencies; W_{flow} encodes data-driven coarse transport (Ulam/PageRank style). The blend weights are determined by PH evidence.
- *Stability by construction*: a single scalar ρ_* (with leak λ) enforces ESP independent of A, B, P particulars.
- *Robust guarantees*: Lemma 3.1 and Proposition 3.2 provide end-to-end control of (coarse) transport fidelity and of the perturbation of oscillatory eigenpairs under blending and scaling.
- *Practicality*: PH is computed on a subsample (Alg. 1), making global structure affordable; all remaining steps are linear-algebraic and scale linearly or near-linearly in N .

Complexity at a glance. PH on n_{PH} points is $O(n_{\text{PH}}^2)$ distances plus cocycle solves, kept small by stride s ; k -means and count aggregation are $O(|Z|Q)$ per pass; constructing W_{top} and W_{flow} is linear in the number of nonzeros; power iteration uses a fixed budget of sparse/dense multiplies. Readout fitting is a single ridge solve on $(T - D) \times F$ features. Taken together, the pipeline learns W *once* offline, after which training and inference have the standard ESN cost profile.

Echo-state certificate. Consider the leaky ESN update with $\phi = \tanh$ (1-Lipschitz) and leak $\lambda \in (0, 1]$:

$$x_t = (1 - \lambda) x_{t-1} + \lambda \phi(W x_{t-1} + W_{\text{in}} u_t). \quad (11)$$

With the scaling (5), $\|W\|_2 = \rho_*$, hence the iteration is a contraction with factor $L = (1 - \lambda) + \lambda \rho_* < 1$, which implies ESP (asymptotic independence of the initial state for each input) by standard arguments (Buehner & Young, 2006; Yıldız et al., 2012; Manjunath & Jaeger, 2013). This turns stability control into a single hyperparameter choice $\rho_* \in (0, 1)$ (together with λ), independent of the particular sparsity structure of A and B or the empirical chain $P^{(\gamma)}$.

A.3 DYNAMICS OF PHR

We now describe at system level, how PHR evolves under input, and why its two-channel construction (topology \oplus coarse flow), together with global scaling, yields a stable, interpretable, and data-faithful recurrent operator.

1080 **State update and contraction budget.** The PHR evolves according to the leaky ESN recursion
 1081 (Eqn. 11) with fixed recurrent matrix
 1082

$$1083 \quad W = \frac{\rho_*}{s} W_{\text{blend}}, \quad W_{\text{blend}} = \alpha W_{\text{top}} + \beta W_{\text{flow}} + \xi W_{\text{noise}}, \quad s := \|W_{\text{blend}}\|_2, \quad (12)$$

1085 as defined in (3)–(5). Since $\|\phi\|_{\text{Lip}} = 1$ and $\|W\|_2 = \rho_* \in (0, 1)$ by construction, the update map
 1086 in (11) is a global contraction with constant

$$1087 \quad L = (1 - \lambda) + \lambda \rho_* < 1, \quad (13)$$

1088 implying the echo-state property (ESP): for any fixed input sequence, dependence on the initial state
 1089 decays geometrically at rate L^t (Buehner & Young, 2006; Yildiz et al., 2012; Manjunath & Jaeger,
 1090 2013). The quantity $(1 - L)^{-1}$ gives the effective memory horizon of the reservoir. This single scalar
 1091 budget L —chosen via (λ, ρ_*) —decouples *stability* from the internal structural choices in W_{blend} .
 1092

1093 **Spectral picture and oscillatory planes.** The topological channel W_{top} is (permuted) block-
 1094 diagonal with K rotation blocks and $(N - 2K)$ scalar decays (Lemma A.1). Hence \mathbb{R}^N admits
 1095 an orthogonal decomposition

$$1097 \quad \mathbb{R}^N = \left(\bigoplus_{k=1}^K E_k \right) \oplus E_{\perp}, \quad \text{with} \quad W_{\text{top}}|_{E_k} = \rho_{\text{rot}} R(\omega_k), \quad W_{\text{top}}|_{E_{\perp}} = \text{diag}(r_j), \quad (14)$$

1099 where $R(\omega)$ is a 2×2 planar rotation and $r_j \in (\rho_{\min}, \rho_{\max}) \subset (0, 1)$. Blending with the flow and
 1100 noise channels, followed by the global similarity scaling ρ_*/s , preserves these oscillatory eigenpairs
 1101 up to a norm-controlled perturbation: part (i) of Proposition 3.2 states that each eigenvalue near
 1102 $\alpha \rho_{\text{rot}} e^{\pm i \omega_k}$ is displaced by at most $\frac{\rho_*}{s} (\beta \|W_{\text{flow}}\|_2 + \xi \|W_{\text{noise}}\|_2)$, so the internal oscillators retain
 1103 their (data-driven) angular frequencies $\{\omega_k\}$ to first order, with radii uniformly contracted to respect
 1104 the ESP budget. This endows PHR with *phase-aware* latent dynamics tied to the long-lived H_1
 1105 loops extracted from the data (§3.1), while ensuring that no latent mode can violate the uniform
 1106 contraction (13).
 1107

1108 **Lifted coarse transport.** The flow channel $W_{\text{flow}} = B P^{(\gamma)} A$ implements “pool \rightarrow Markov step
 1109 \rightarrow lift”. Lemma 3.1 quantifies its fidelity at the coarse level: for any coarse vector r and its lift
 1110 $x = Br$,

$$1111 \quad \|A W_{\text{flow}} x - P^{(\gamma)} r\|_* \lesssim \|AB - I\|_* \|r\|_*, \quad * \in \{1, \infty\}, \quad (15)$$

1112 with an explicit nonexpansivity factor (Corollary A.3). Thus the defect in reproducing one coarse
 1113 Markov step depends *only* on the pool–lift calibration $AB \approx I_Q$; it is independent of N and the
 1114 detailed sparsity of A and B . After blending and scaling, Proposition 3.2(ii) lifts this statement to
 1115 the full recurrent operator:

$$1116 \quad \left\| A W B - \frac{\rho_* \beta}{s} P^{(\gamma)} \right\|_2 \leq \frac{\rho_*}{s} \left[\beta \| (AB) P^{(\gamma)} (AB) - P^{(\gamma)} \|_2 \right. \\ 1117 \quad \left. + \alpha \|A\|_2 \|W_{\text{top}}\|_2 \|B\|_2 + \xi \|A\|_2 \|W_{\text{noise}}\|_2 \|B\|_2 \right]. \quad (16)$$

1120 When $AB = I_Q$ (exact calibration) the first term vanishes and AWB is a small-norm perturbation
 1121 of a scaled Markov step, with perturbation budget apportioned by (α, ξ) . Consequently, repeated
 1122 application of AWB advances pooled mass approximately along the empirical coarse transport
 1123 $P^{(\gamma)}$, with errors that accumulate linearly in the number of steps and are globally bounded by the
 1124 contraction scaling (standard matrix perturbation arguments; cf. (Trefethen & III, 1997, Ch. 2)).
 1125

1126 **Two interacting channels under global scaling.** Equations (12) and (16) exhibit a clean separation:
 1127

- 1129 • The *topological channel* contributes persistent, contractive oscillators aligned with the most
 1130 prominent H_1 classes (Proposition 3.2(i)), thereby encoding global recurrent structure (e.g.,
 1131 lobe rotations in Lorenz-type systems, cardiac phase in ECG).
- 1132 • The *flow channel* transports pooled mass coherently along short-horizon directions ob-
 1133 served in the data (Ulam/PageRank view of coarse transfer), with fidelity governed by
 $\|AB - I\|$ and insulated by the uniform contraction (Proposition 3.2(ii)).

- The *noise channel* breaks degeneracies and complements the basis without compromising stability, as its contribution is explicitly budgeted by ξ and then squashed by the global scaling to ρ_* .

The auto-tuner (§3.1) sets (α, β) from persistence statistics, so that PHR naturally interpolates between a *phase-dominant* regime (clear loops, large α) and a *flow-dominant* regime (weak or absent loops, large β), while keeping the ESP budget unchanged.

Driven dynamics and input response. Because (11) is globally contractive, it is input-to-state stable (ISS) in the standard ESN sense: for any two input sequences $\{u_t\}, \{\tilde{u}_t\}$ and trajectories $\{x_t\}, \{\tilde{x}_t\}$ driven from any initial states,

$$\|x_t - \tilde{x}_t\|_2 \leq L^t \|x_0 - \tilde{x}_0\|_2 + \lambda \|W_{\text{in}}\|_2 \sum_{k=1}^t L^{t-k} \|u_k - \tilde{u}_k\|_2, \quad (17)$$

a routine consequence of the contraction mapping principle with a 1-Lipschitz nonlinearity (see, e.g., Buehner & Young (2006); Manjunath & Jaeger (2013)). Thus the state is a stable, causal functional of the input with fading memory on the timescale $O((1-L)^{-1})$. Inside this ISS envelope, the *phase-aware* latent oscillators and the *coarse transport* induced by $P^{(\gamma)}$ shape the geometry of features seen by the readout: sinusoids and their polynomial interactions on the oscillatory planes, and coarse “advection” along observed short-time flow on the lifted subspace. The resulting feature set is expressive for forecasting and classification tasks (cf. EDMD/Koopman perspectives (Williams et al., 2015; Klus et al., 2016)) while retaining transparent control of stability and timescales via (λ, ρ_*) .

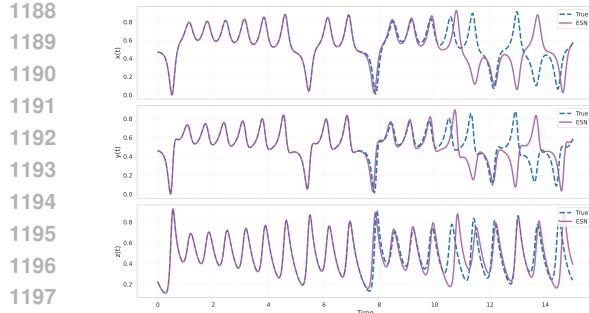
Timescales and design guidance. Three timescales govern PHR: (i) the *contraction* time constant $\tau_c \approx (1-L)^{-1}$, (ii) the *oscillation* periods $T_k = 2\pi/|\omega_k|$ on the planes E_k , and (iii) the *coarse mixing* time of $P^{(\gamma)}$. Choosing λ and ρ_* fixes τ_c ; the auto-selected $\{\omega_k\}$ and α fix how prominently these periods appear in the latent state; and β sets the weight of coarse transport relative to phase. In practice, one targets τ_c modestly larger than the shortest T_k to preserve phase information while still ensuring fast forgetting of transients; γ (teleport) is chosen small to regularize reducible chains without washing out observed directionality.

Interpretability and robustness. The topological modes are *interpretable* by construction (each E_k corresponds to a persistent 1-cycle), and their frequencies come from the circular coordinates fitted on the data (§3.1); persistence-based selection and the near-death scale choice ensure robustness to metric noise (Edelsbrunner & Harer, 2010; de Silva & Vejdemo-Johansson, 2009). The flow channel is grounded in a classical Ulam discretization of the transfer operator with PageRank regularization (Dellnitz & Junge, 1999; Froyland, 2001; Brin & Page, 1998; Langville & Meyer, 2012). Both channels are finally *metered* by the explicit ℓ_2 scaling to ρ_* , which turns ESP from a heuristic into a verifiable certificate independent of A, B sparsity or $P^{(\gamma)}$ reducibility.

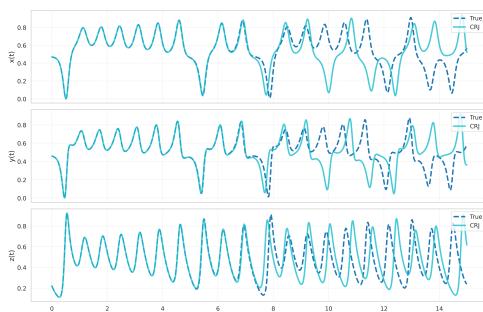
Ergo, PHR dynamics are those of a *globally contractive, two-channel* reservoir: (a) a bank of data-driven, stable oscillators persisting under norm-bounded blending, and (b) a lifted coarse transport that, after pooling, closely tracks a Markov step learned from short-horizon transitions; both are co-ordinated by an explicit contraction budget and complemented by light noise to avoid degeneracies. The result is a fixed, analyzable recurrent core whose state features exhibit task-relevant structure with provable stability and quantitatively controlled deviations (Lemma 3.1, Proposition 3.2), after which training reduces to a single ridge solve for the readout.

A.4 APPLICATIONS AND USABILITY ACROSS DOMAINS

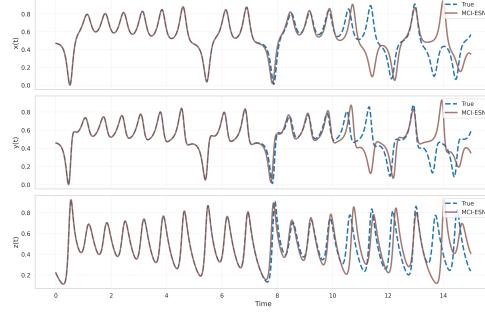
PHR produces a *single, fixed* recurrent core W that is (i) globally contractive (ESP with budget $L = (1 - \lambda) + \lambda\rho_* < 1$), (ii) spectrally structured by topological oscillators that persist under bounded blending (Proposition 3.2(i)), and (iii) coarse–transport faithful on pooled/lifted states up to a calibration defect (Lemma 3.1, Proposition 3.2(ii)). These properties make PHR broadly usable for *model-free learning* tasks where one wants a stable, reusable state–space embedding from a single exemplar trajectory. Concretely, once W is learned offline, downstream forecasting, regression,



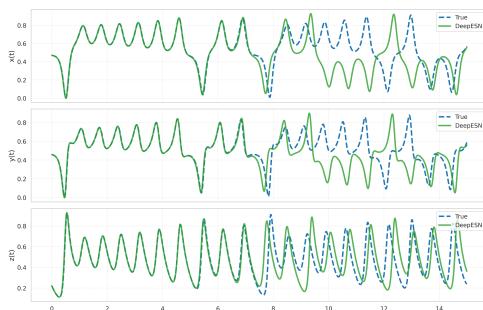
(a) ESN



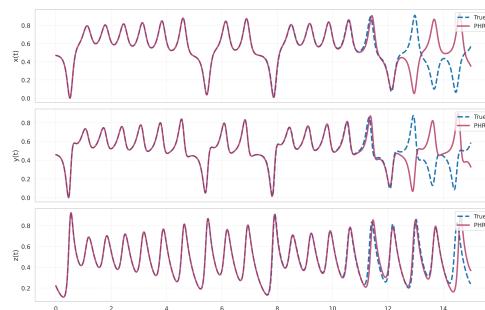
(b) SCR



(e) MCI-ESN



(f) DeepESN



(g) PHR

Figure 3: Predicted trajectories by different reservoir architectures alongside the ground truth for the test segment of the Lorenz system under autoregressive forecasting.

and classification reduce to a *single convex readout fit* (7), which is sample-efficient and fast. The topological channel furnishes phase-aware latent coordinates that are *diffeomorphism-robust* by Takens-style embeddings and persistent cohomology (§3.1), so the same W can transfer across sensors/views of the same underlying process; the flow channel captures short-horizon transport that is consistent with Ulam/Koopman discretizations, enabling accurate next-step prediction and detection of regime changes via deviations of AWB from $(\rho_*\beta/s)P^{(\gamma)}$. In practice this supports: (a) *system identification* and forecasting for chaotic/quasi-periodic signals (Lorenz/Rössler, turbines, climate indices), (b) *anomaly/change detection* by monitoring pooled residuals $\|AWB - (\rho_*\beta/s)P^{(\gamma)}\|$, and (c) *few-shot task adaptation* where W is reused and only the linear head is refit for new objectives or operating points. Because W is norm-scaled, safe real-time deployment is facilitated: closed-loop observers or controllers can be built with a guaranteed contraction margin while the readout encodes task-specific objectives (cf. Koopman/EDMD readouts (Williams et al., 2015; Klus et al., 2016)).

In *neuroscience and biomedicine*, PHR’s two-channel structure aligns with common dynamical motifs. The oscillatory planes E_k implement stable, data-derived ring oscillators that track neural or physiological rhythms (theta/beta/gamma; respiratory/cardiac cycles) with bounded spectral pertur-

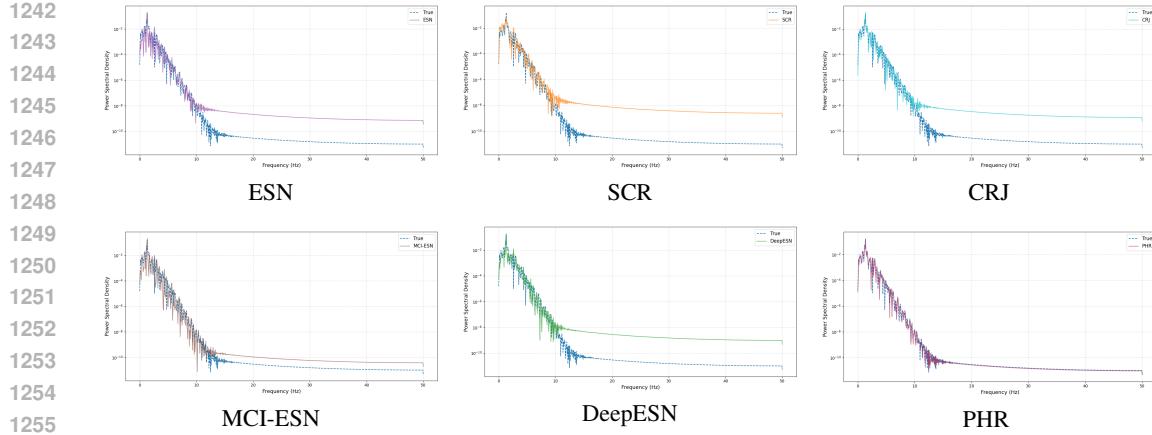


Figure 4: PSD of the z -coordinate of Lorenz-63 for the proposed model PHR and five baseline reservoirs. Each plot compares the spectrum produced by autonomous rollout (coloured) with the true spectrum (blue). PHR best preserves the spectral envelope and high-frequency decay, whereas baselines show elevated noise floors and spectral broadening, indicating drift from the true attractor.

bation (Proposition 3.2(i)), echoing the central role of brain/physiological rhythms in coding and coordination (Buzsáki, 2006). The coarse Markov channel models *metastable transitions* among network states (e.g., sleep stages, cognitive modes) *via* finite-state transport, consistent with empirical accounts of large-scale brain dynamics and switching (Deco et al., 2017; Breakspear, 2017), and with Markov/HMM practices in sleep staging and EEG analysis (e.g., Kemp et al. (2000); Stephansen et al. (2018)). For clinical time series, PHR yields interpretable latent variables (phases, amplitudes, coarse states) for decoding or event prediction, such as arrhythmia detection in ECG (Moody & Mark, 2001) and apnea detection in respiration, with robustness inherited from persistence thresholds (Edelsbrunner & Harer, 2010; de Silva & Vejdemo-Johansson, 2009) and ESP scaling (Manjunath & Jaeger, 2013). Because W is fixed once, cross-session/subject reuse is practical: retain W (capturing conserved rhythms/flows) and retrain only W_{out} for individuals, or update the coarse $P^{(\gamma)}$ online from fresh counts without touching W_{top} , thereby adapting to nonstationarities while preserving stability.

B SETUP AND EXTENDED RESULTS

B.1 DATASET DESCRIPTION

Sunspot Monthly. The *International Sunspot Index v2.0* published by SILSO (Royal Observatory of Belgium) reports the total sunspot count for every calendar month from January 1749 to the present, giving a contiguous univariate series of $T \approx 3,300$ observations at a uniform 1-month cadence (World Data Center SILSO, 2020). The record is normalised to $[0, 1]$ over the *entire* span; the first 2 000 samples (≈ 166 years) constitute the training set, and the remainder is reserved for out-of-sample evaluation. The data combine quasi-periodic forcing (11-year Schwabe, 22-year Hale, and multi-decadal Gleissberg cycles) with broad-band chaotic variability, providing a canonical long-horizon forecasting benchmark.

Santa Fe B Cardiorespiratory Series. Data Set B of the 1991 Santa Fe Time-Series Prediction and Modelling Competition is a *trivariate* polysomnography recording that simultaneously tracks heart-rate (HR), chest volume (RESP) and peripheral oxygen saturation (SpO_2) for a continuous 20-minute interval sampled at $f_s = 2$ Hz (Jaeger, 2007). After converting the raw ASCII file into a matrix $\mathbf{u}_t \in \mathbb{R}^3$, each channel is linearly detrended and scaled to unit variance using statistics computed on the training split. We allocate the first 1200 samples (10 minutes) for training and the remaining 600 samples for evaluation, formulating a next-step multivariate forecasting task that couples slow respiration-driven oscillations (RESP), faster autonomic heart-rate variability (HR) and the more slowly drifting SpO_2 signal. The dataset therefore probes the reservoir’s ability to integrate interdependent physiological rhythms operating on distinct but overlapping time-scales.

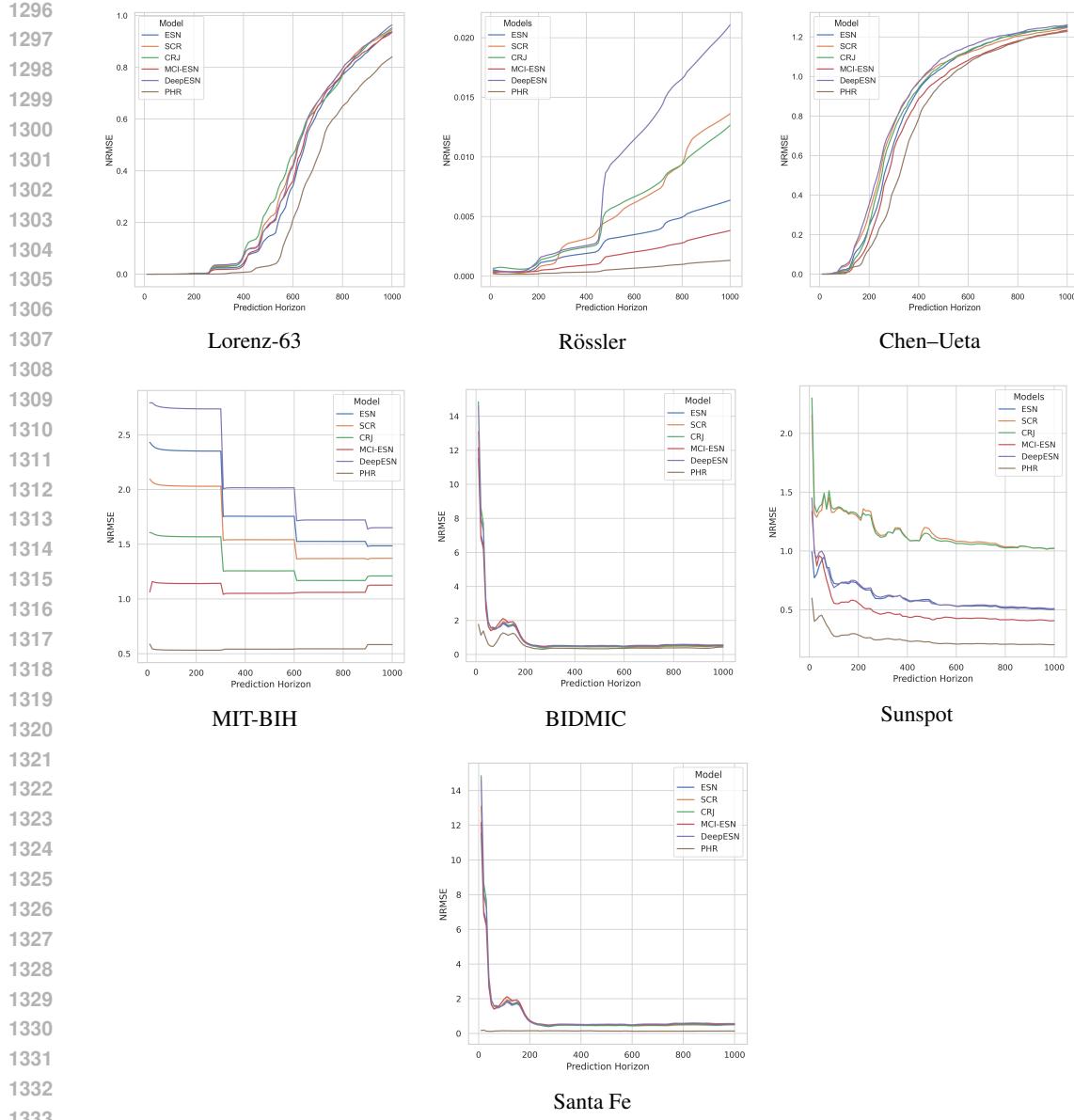


Figure 5: NRMSE for autoregressive predictions as a function of forecast horizon for the canonical chaotic benchmarks and real-life datasets.

MIT-BIH Arrhythmia. The MIT-BIH Arrhythmia Database contains 48 half-hour two-lead ECG records digitised at 360 Hz (11-bit, ± 5 mV) with expert beat- and rhythm-level annotations (Moody & Mark, 2001; Goldberger et al., 2000). For single-channel forecasting we choose Lead II of record 100, extract the first 25000 samples (≈ 70 s), and scale them to zero mean and unit variance. A 3-dimensional delay embedding reconstructs the local dynamical manifold, yielding a sequence whose quasi-periodic P-QRS-T morphology is punctuated by occasional ectopic beats—an ideal test of biomedical robustness.

BIDMC PPG & Respiration. Record `bidmc01` from the BIDMC PPG & Respiration corpus (Pimentel et al., 2016; Goldberger et al., 2000) is an eight-minute ICU waveform captured at 125 Hz and composed of photoplethysmogram (PPG), impedance-derived respiration (RESP) and Lead-II ECG. We retain the 60000-sample PPG and RESP channels, detrend each, and segment them into overlapping 10-second windows (1250 samples) with a 1-second stride. The reservoir receives

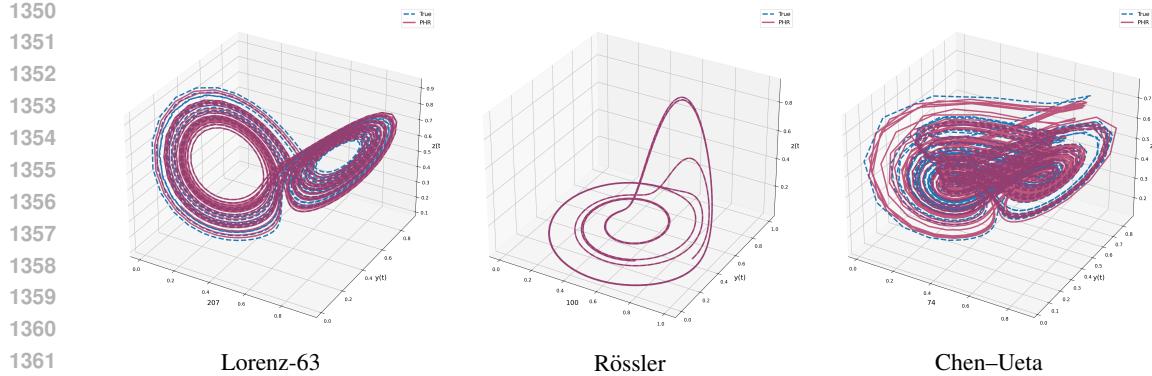


Figure 6: Three-dimensional phase portraits generated by PHR for Lorenz-63, Rössler, and Chen–Ueta over a 1000-step autonomous rollout (red), overlaid on the reference attractors (blue dots). Close overlap confirms that PHR preserves the global geometry of all three chaotic systems.

Dataset	d_{in}	f_s	T_{tot}	T_{wo}	T_{eff}
Lorenz-63	3	50 Hz equiv.	12 500	2 000	10 500
Rössler	3	50 Hz equiv.	12 500	2 000	10 500
Chen–Ueta	3	50 Hz equiv.	12 500	2 000	10 500
BIDMC PPG/Resp	1	125 Hz	60 000	5 000	55 000
MIT–BIH ECG	1	360 Hz	25 000	5 000	20 000
Santa Fe B	3	2 Hz	2 400	100	2 300
Sunspot Monthly	1	1 month ⁻¹	3 315	100	3 215

Table 3: Overview of benchmark datasets. $d_{\text{in}}/d_{\text{out}}$ are the input/target dimensions, f_s the sampling frequency after re-sampling, and $T_{\text{eff}} = T_{\text{tot}} - T_{\text{wo}}$.

the PPG (optionally ECG) as input and must regress the synchronous RESP waveform, framing a continuous sequence-to-sequence task with rich cardiorespiratory coupling.

Lorenz–63. The Lorenz–63 system models thermal convection in an idealised fluid layer and is governed by the quadratic ODE $\dot{x} = \sigma(y - x)$, $\dot{y} = x(\rho - z) - y$, $\dot{z} = xy - \beta z$, with the classical chaotic settings $(\sigma, \rho, \beta) = (10, 28, \frac{8}{3})$ (Lorenz, 1963). Linearising about the three equilibrium points—one at the origin and two symmetric saddles—reveals a pair of complex-conjugate eigenvalues with positive real part once $\rho > 1 + \sigma/(\sigma + \beta)$, triggering a sub-critical Hopf bifurcation and the birth of the famous double-scroll (“butterfly”) attractor. Rigorous computation gives a largest Lyapunov exponent $\lambda_{\text{max}} = 0.9056 \pm 0.0002$ (time-unit⁻¹), a Kaplan–Yorke (information) dimension $D_{KY} = 2.062$, and a correlation dimension $D_2 \approx 2.05$. Because only one exponent is positive, the error growth rate is exponential but still tractable, making Lorenz–63 the de-facto baseline for evaluating long-horizon chaotic predictors. We integrate the system for 12 500 steps after a 2000-step transient, ensuring that the segment alternates between both lobes so that the predictor must solve the *return-map* as well as the local Jacobian dynamics.

Rössler. The Rössler equations $\dot{x} = -y - z$, $\dot{y} = x + ay$, $\dot{z} = b + z(x - c)$, with $(a, b, c) = (0.2, 0.2, 5.7)$ generate a *single-scroll* chaotic attractor whose first-return map on the Poincaré section $z = z_{\text{min}}$ is topologically conjugate to the logistic map, yielding a one-dimensional kneading sequence of symbolic dynamics (Rössler, 1976). The maximal Lyapunov exponent is $\lambda_{\text{max}} \approx 0.0712$, an order of magnitude smaller than that of Lorenz–63, which postpones divergence of nearby trajectories and produces a spectrum of finite-time Lyapunov exponents heavily skewed towards zero. Consequently, prediction errors grow more slowly but linger, exposing whether a model’s inductive bias captures the weakly non-hyperbolic stretching and folding. A 12 500-step slice is harvested after discarding 2 000 transients, providing a benchmark on which memory capacity rather than raw separation dominates.

Chen–Ueta. The Chen–Ueta flow modifies Lorenz by interchanging two nonlinear terms, $\dot{x} = a(y - x)$, $\dot{y} = (c - a)x - xz + cy$, $\dot{z} = xy - bz$, and for $(a, b, c) = (35, 3, 28)$ possesses two

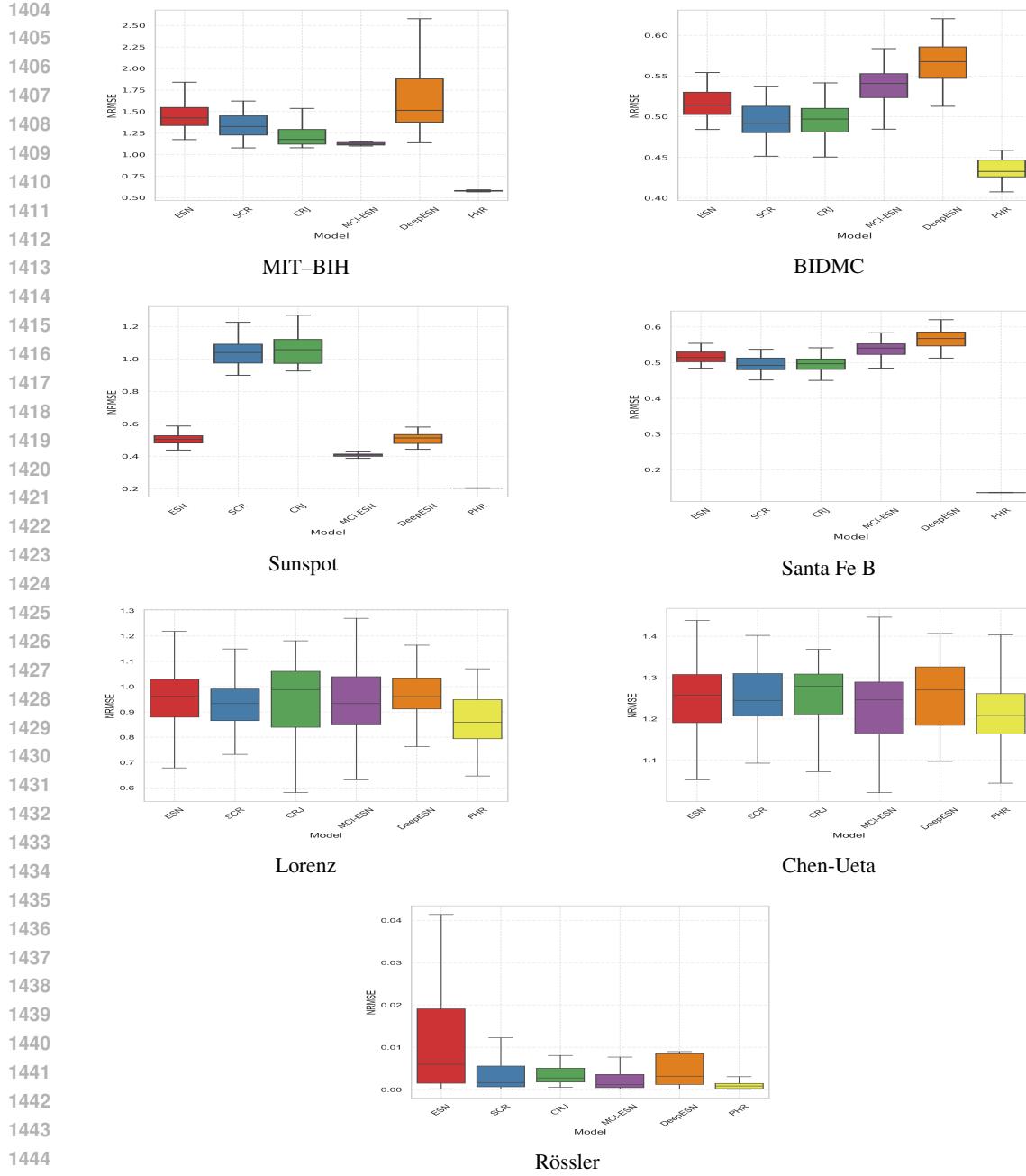


Figure 7: Distribution of sample-level NRMSE after a 1000-step open-loop rollout on seven benchmarks. Each box-and-whisker shows ten seeds: box = inter-quartile range, line = median, whiskers = non-outliers, grey bar = mean. Lower is better; PHR displays the tightest IQR and lowest median on every dataset.

positive Lyapunov exponents, $\lambda_1 \approx 2.00$ and $\lambda_2 \approx 0.45$, while $\lambda_3 < 0$ (Chen & Ueta, 1999). The Kaplan–Yorke dimension therefore satisfies $3 < D_{KY} < 4$, rendering the attractor *hyper-chaotic*. Its higher local expansion rate and the coexistence of two unstable manifolds lead to rapid loss of predictability and extremely intricate fractal folding, which stress-tests the reservoir’s non-linear separation ability and its capability to encode multi-directional volume expansion. We integrate for 12 500 steps following a 2 000 step transient; this window spans multiple high-curvature excursions, forcing the model to reconcile both fast and intermediate dynamical scales.

Collectively the three canonical chaotic flows form a graded staircase of chaotic difficulty—single vs. double scroll, single vs. double positive Lyapunov exponents—enabling a systematic assessment of how the proposed PHR scales with increasing dynamical complexity. A summary for all datasets is provided in Table 3.

Dataset	H	NRMSE ↓ (mean \pm s.d.)					
		LSTM	NVAR	TCN	Transformer	SW	PHR
Lorenz	200	1.2026 \pm 0.2382	1.6031 \pm 0.2452	1.6917 \pm 0.4007	1.6097 \pm 0.3884	0.0090 \pm 0.0130	0.0004 \pm 0.0005
	400	1.0383 \pm 0.0800	1.4235 \pm 0.0928	1.4759 \pm 0.2526	1.3922 \pm 0.2427	0.1082 \pm 0.1097	0.0075 \pm 0.0103
	600	1.1483 \pm 0.1080	1.5861 \pm 0.1527	1.6875 \pm 0.2900	1.5852 \pm 0.2653	0.7048 \pm 0.2202	0.2121 \pm 0.1877
	800	0.9628 \pm 0.0368	1.3475 \pm 0.0471	1.4060 \pm 0.2046	1.3913 \pm 0.4721	0.8234 \pm 0.1326	0.6495 \pm 0.1928
	1000	1.0703 \pm 0.0321	1.5022 \pm 0.0476	1.5638 \pm 0.2285	1.9159 \pm 0.4818	1.0512 \pm 0.1225	0.8481 \pm 0.1358
Chen-Ueta	200	1.0736 \pm 0.0245	0.3280 \pm 0.3245	1.7004 \pm 0.1079	1.5320 \pm 0.1578	0.2934 \pm 0.2266	0.1278 \pm 0.2424
	400	0.9467 \pm 0.0129	0.9074 \pm 0.1709	1.4779 \pm 0.0999	1.3523 \pm 0.1301	0.8877 \pm 0.1488	0.7958 \pm 0.2006
	600	1.0834 \pm 0.0109	1.1985 \pm 0.1446	1.7133 \pm 0.1067	1.5562 \pm 0.1295	1.1966 \pm 0.1233	1.0555 \pm 0.1199
	800	0.9196 \pm 0.0074	1.0956 \pm 0.0916	1.4571 \pm 0.0875	1.3171 \pm 0.0983	1.0985 \pm 0.0967	1.1632 \pm 0.0878
	1000	1.0602 \pm 0.0080	1.3086 \pm 0.0845	1.6636 \pm 0.0949	1.5113 \pm 0.1076	1.4196 \pm 0.0914	1.2316 \pm 0.0737
Rössler	200	1.0812 \pm 0.0233	0.0007 \pm 0.0013	1.1246 \pm 0.1425	2.3080 \pm 1.9116	0.0939 \pm 0.2581	0.0002 \pm 0.0001
	400	0.9533 \pm 0.0114	0.0029 \pm 0.0076	1.2723 \pm 0.2087	1.8106 \pm 1.1900	0.2851 \pm 0.6510	0.0003 \pm 0.0003
	600	1.0713 \pm 0.0088	0.0066 \pm 0.0113	1.5163 \pm 0.2680	2.0018 \pm 1.3390	0.6319 \pm 1.1674	0.0007 \pm 0.0007
	800	0.9282 \pm 0.0063	0.0086 \pm 0.0132	1.3175 \pm 0.1390	1.7612 \pm 1.2643	0.7486 \pm 1.2440	0.0010 \pm 0.0011
	1000	1.0377 \pm 0.0052	0.0140 \pm 0.0187	1.4574 \pm 0.1625	2.2183 \pm 0.2049	1.0771 \pm 1.5656	0.0013 \pm 0.0016
MIT-BIH	300	0.8638 \pm 0.0269	1.3428 \pm 0.0000	0.9276 \pm 0.0080	5.1384 \pm 3.3092	2.9550 \pm 0.8557	0.5320 \pm 0.0442
	600	0.7484 \pm 0.0242	1.1656 \pm 0.2367	0.8218 \pm 0.0043	4.4601 \pm 2.8918	1.8478 \pm 0.5179	0.5417 \pm 0.0236
	1000	0.8497 \pm 0.0255	1.2918 \pm 0.1372	0.9146 \pm 0.0070	4.6228 \pm 2.9510	1.5467 \pm 0.3971	0.5833 \pm 0.0123
BIDMC	300	0.9470 \pm 0.0062	0.9045 \pm 0.2933	0.9049 \pm 0.0125	1.4003 \pm 0.2142	0.6960 \pm 0.0570	0.3655 \pm 0.0143
	600	1.0667 \pm 0.0031	0.9841 \pm 0.1432	1.0138 \pm 0.0131	1.6448 \pm 0.2256	0.7895 \pm 0.0575	0.3571 \pm 0.0151
	1000	0.9219 \pm 0.0057	0.8983 \pm 0.0741	0.8674 \pm 0.0139	1.4456 \pm 0.1990	0.6871 \pm 0.0443	0.4352 \pm 0.0133
Sunspot	300	0.5727 \pm 0.0068	0.4182 \pm 0.0013	0.4299 \pm 0.0026	0.2768 \pm 0.0041	0.6269 \pm 0.0439	0.2505 \pm 0.0011
	600	0.6055 \pm 0.0060	0.2907 \pm 0.0098	0.2932 \pm 0.0017	0.1907 \pm 0.0043	0.5586 \pm 0.0410	0.2093 \pm 0.0015
	1000	0.6800 \pm 0.0074	0.3312 \pm 0.0190	0.3338 \pm 0.0021	0.2178 \pm 0.0053	0.6266 \pm 0.0460	0.2044 \pm 0.0010
Santa Fe	300	0.6680 \pm 0.1017	1.3171 \pm 0.0013	0.3213 \pm 0.0097	3.3260 \pm 1.6923	0.1974 \pm 0.0023	0.1485 \pm 0.0003
	600	0.5746 \pm 0.1409	1.3918 \pm 0.0113	0.2650 \pm 0.0059	2.4134 \pm 1.2261	0.1647 \pm 0.0014	0.1262 \pm 0.0003
	1000	0.5412 \pm 0.1174	1.2626 \pm 0.0168	0.2569 \pm 0.0060	2.4788 \pm 1.2549	0.1634 \pm 0.0016	0.1361 \pm 0.0003

Table 4: NRMSE (mean \pm s.d.) across all benchmarks and horizons for comparison with gradient-based baselines.

Dataset	H	NRMSE ($\times 10^{-6}$) ↓					
		ESN	SCR	CRJ	MCI-ESN	DeepESN	PHR
Lorenz	200	5.3084 \pm 1.8201	4.5661 \pm 1.1055	<u>4.0665 \pm 2.2136</u>	5.1315 \pm 2.1534	8.0426 \pm 4.9766	1.9459 \pm 0.4228
	400	6.1453 \pm 3.4127	6.8544 \pm 8.2930	5.8480 \pm 5.9654	<u>5.5835 \pm 3.0159</u>	14.3798 \pm 25.1950	1.9610 \pm 0.3980
	600	6.2136 \pm 2.9307	6.7382 \pm 7.2498	6.2639 \pm 5.5241	<u>5.6319 \pm 2.4513</u>	14.8083 \pm 22.4161	1.9327 \pm 0.3609
	800	5.8794 \pm 1.9437	6.0779 \pm 4.8747	5.8424 \pm 3.8676	<u>5.2979 \pm 1.6073</u>	13.1852 \pm 15.6860	2.1054 \pm 0.4672
	1000	5.7315 \pm 1.4810	5.8048 \pm 3.9922	5.4164 \pm 3.1885	<u>5.1994 \pm 1.1876</u>	12.0887 \pm 13.1349	2.0554 \pm 0.3898
Chen-Ueta	200	17.4775 \pm 87.5577	76.3789 \pm 65.2906	27.7972 \pm 14.9489	13.0443 \pm 5.4424	55.3606 \pm 26.8909	5.1368 \pm 2.8103
	400	36.9059 \pm 53.6185	152.4160 \pm 210.0693	53.8950 \pm 69.5504	<u>22.0085 \pm 24.4040</u>	78.7224 \pm 77.9541	8.3424 \pm 9.3712
	600	38.7540 \pm 54.4478	164.3067 \pm 208.3044	57.3656 \pm 73.4667	<u>23.3657 \pm 25.5862</u>	83.4452 \pm 74.6511	8.4135 \pm 7.8776
	800	36.5894 \pm 45.6740	155.8315 \pm 175.5068	54.6267 \pm 61.5250	<u>22.4755 \pm 21.2737</u>	81.9084 \pm 62.4709	8.3066 \pm 6.4822
	1000	36.3487 \pm 39.3055	161.2043 \pm 150.8282	56.0409 \pm 52.6167	<u>21.9270 \pm 18.5333</u>	80.6558 \pm 57.4452	8.1426 \pm 5.7768
Rössler	200	18.2036 \pm 22.4166	186.2890 \pm 387.9631	18.7657 \pm 17.9382	<u>15.9787 \pm 14.2553</u>	21.5473 \pm 17.8969	5.3958 \pm 2.4637
	400	33.4001 \pm 48.8892	157.7964 \pm 244.4589	<u>23.2474 \pm 25.8931</u>	25.8438 \pm 34.6041	31.4314 \pm 45.1686	7.1545 \pm 8.7532
	600	99.7132 \pm 206.7794	237.6528 \pm 393.0541	<u>62.2698 \pm 125.8244</u>	101.1291 \pm 224.4540	98.6072 \pm 213.4015	22.0354 \pm 44.6574
	800	104.9667 \pm 197.2623	233.9971 \pm 372.8086	<u>62.7120 \pm 120.4620</u>	103.5512 \pm 214.1152	103.3252 \pm 203.8183	23.1159 \pm 42.5334
	1000	98.2334 \pm 184.3336	225.4536 \pm 356.0678	<u>58.9122 \pm 112.6381</u>	97.1532 \pm 200.1728	96.8307 \pm 190.4315	21.8021 \pm 39.6918

Table 5: NRMSE (mean \pm s.d.) on the *canonical chaotic benchmarks* over multiple horizons (H). Forecasts are produced in **open-loop** mode. For each horizon the best score is **bold** and the runner-up is underlined. Results are averaged over $5 \times 3 \times 3 = 45$ runs (5 seeds, 3 different initializations of trajectory, 3 train-test splits).

B.2 BASELINES

To quantify the incremental value of the proposed method, we compare it against a suite of widely cited baselines—both reservoir architectures (ESN, SCR, CRJ, MCI-ESN, DeepESN, Small-World ESN) and non-reservoir sequence models (NVAR, LSTM, TCN, single-layer causal Transformer)—under a *harmonized capacity and training protocol* (cf. Tabs. 1, 4, 5). Unless the original design intrinsically requires a multi-core layout (as in MCI-ESN), single-layer reservoirs use exactly $N = 300$ recurrent units, while hierarchical reservoirs use three layers of 100 units. MCI-ESN

1512	Factor (canonical ESN)	Values (one varied at a time)	N (neurons)	NRMSE@H=600 ↓	VPT ↑	ADev ↓
1513	<i>Baseline (PHR, Lorenz-63, 600-step AR): N=300, leak $\lambda=0.20$, target $\rho_*=0.94$, input scale = 0.5, $Q=200$, stride $s=5$, $K_{\max}=3$, auto-tuned $(\alpha_{\text{top}}, \beta_{\text{flow}})$, nzs= 4, nzc= 12.</i>					
1514	Baseline result (mean±std over seeds)		300	0.2121 ± 0.1877	10.94 ± 1.65	29.11 ± 9.53
1515	Leak λ		300	0.2385 ± 0.1954	10.62 ± 1.72	30.02 ± 9.88
1516	0.20 (baseline)		300	0.2121 ± 0.1877	10.94 ± 1.65	29.11 ± 9.53
1517	0.25		300	0.2259 ± 0.1901	10.78 ± 1.69	29.67 ± 9.71
1518	0.35		300	0.2684 ± 0.2053	9.92 ± 1.86	31.45 ± 10.21
1519	Target spectral norm ρ_*		300	0.2432 ± 0.1989	10.42 ± 1.79	30.18 ± 9.96
1520	0.94 (baseline)		300	0.2121 ± 0.1877	10.94 ± 1.65	29.11 ± 9.53
1521	0.96		300	0.2240 ± 0.1915	10.81 ± 1.70	29.58 ± 9.68
1522	0.98		300	0.2613 ± 0.2076	10.08 ± 1.83	31.01 ± 10.07
1523	Input scale $\ W_{\text{in}}\ $		300	0.2524 ± 0.2022	10.23 ± 1.82	31.14 ± 10.12
1524	0.5 (baseline)		300	0.2121 ± 0.1877	10.94 ± 1.65	29.11 ± 9.53
1525	1.0		300	0.2410 ± 0.1995	10.34 ± 1.78	30.72 ± 9.98

Table 6: **Ablation over canonical parameters for PHR** on Lorenz-63: 600-step autoregressive forecasting. Each block varies a single factor; all other settings are fixed to the baseline shown (top). Report $mean \pm std$ over 45 trials. NRMSE is the primary metric at horizon $H = 600$; VPT (valid prediction time, \uparrow) and ADev (attractor deviation, \downarrow) are computed with the same protocol as Tab. 1.

follows its published two-core configuration (two sparsely coupled 300-unit cycles). All methods receive the same pre-processed inputs, apply the same wash-out T_{wo} , and (where applicable) train the linear read-out by ridge regression with a shared grid $\alpha_{\text{ridge}} \in \{10^{-6}, 10^{-5}, 10^{-4}\}$, ensuring comparability of optimization and regularization across models.

- **ESN** (Jaeger, 2001). Erdős–Rényi connectivity with $p \in \{0.10, 0.20, 0.25, 0.30\}$. Spectral radius ρ_* and input scaling $\|W_{\text{in}}\|_2$ are chosen from the logarithmic grid $\rho_* \in \{0.3, 0.6, 0.9\} \times \|W_{\text{in}}\|_2 \in \{0.1, 0.3, 1.0\}$.
- **SCR** (Li et al., 2024). A single directed cycle of length 300 with uniform edge weight w_c . Tuning grid: $w_c \in \{0.3, 0.6, 0.8, 0.9, 1.0\}$.
- **CRJ** (Rodan & Tino, 2012). SCR with additional “jump” edges of fixed span J . We sweep $J \in \{5, 10, 12, 15, 20, 30\} \times w_c \in \{0.3, 0.6, 0.7, 0.8, 0.9\}$, keeping unit in-degree.
- **MCI-ESN** (Liu et al., 2024). Two sparsely coupled 300-unit cycle ESNs (total $N = 600$). Hyper-parameters follow $(\mu, \eta) \in \{0.6, 0.7, 0.8, 1.0\}^2$ (intra-core radii) and $\theta \in \{0.4, 0.5, 0.6, 0.8\}$ (cross-core mixing).
- **DeepESN** (Gallicchio & Micheli, 2017). Three stacked leaky reservoirs (100 + 100 + 100 units). A common input scale $\|W_{\text{in}}\|_2$ is selected as for ESN. Layer- ℓ spectral radii decay geometrically $\rho_\ell = \rho_*^\ell$ with $\rho_* \in \{0.4, 0.6, 0.8\}$; the shared leak $\alpha \in \{0.3, 0.5, 0.7\}$ is co-optimised.
- **Non-linear Vector Auto-Regression (NVAR)** (Farmer & Sidorowich, 1987) NVAR models the system with a fixed delay line ($k = 100$) followed by a quadratic polynomial expansion. The 3-D input is flattened over the last 100 steps into $x \in \mathbb{R}^{300}$ and mapped to $\phi = [1; x; x^{\otimes 2}] \in \mathbb{R}^{45451}$, where the $\binom{300+1}{2} = 45,150$ second-order monomials cover all pairs with replacement. A ridge-regularised least-squares fit then produces a read-out matrix W_{out} (136,353 parameters); no other weights are learnt. Prediction is strictly causal: each output is fed back into the delay buffer before the next evaluation, yielding an autoregressive closed loop with a 100-step effective memory.
- **LSTM** (Hochreiter & Schmidhuber, 1997) The recurrent reference model is a single-layer LSTM with 500 hidden units followed by a linear projection to \mathbb{R}^3 . This configuration introduces roughly 1.01×10^6 tunable parameters, about 160x the parameter budget of PHR. Training uses full-sequence teacher forcing, Adam (10^{-3}) and 80 epochs to minimise mean-squared error. During free-run evaluation the network closes the loop on itself: the latest prediction becomes the next input, forcing the LSTM to retain long-term context internally and revealing how much horizon length a conventional gated RNN can sustain when operating under the same parameter budget as our biologically grounded reservoir.
- **Temporal-Convolutional Network (TCN)** (Bai et al., 2018) Our convolutional benchmark is a two-stage, strictly causal TCN whose kernels have size 3 and dilations 1 and 2, giving a receptive field of five time-steps. Each convolution is followed by a ReLU and the right-hand padding is cropped so that no future leakage occurs. Fixing the channel width at 500 results in 757,003 adjustable parameters, about 120 times the parameter budget of our

1566 reservoir. Training is carried out in teacher-forcing mode on a single long sequence (batch = 1),
1567 optimising one-step MSE with Adam (learning rate 10^{-3} , 80 epochs). For forecasting,
1568 the newest five observations seed an autoregressive loop in which the window is shifted
1569 forward after each prediction to maintain causality.

1570 **• Single-Layer Causal Transformer** (Vaswani et al., 2017) The transformer baseline consists of one encoder block with $d_{\text{model}} = 100$, a single attention head, and a feed-forward
1571 sub-layer of width $4d_{\text{model}}$. Three-dimensional inputs are linearly projected, summed with a
1572 fixed sinusoidal positional code of length L , and passed through the encoder; only the final
1573 token is used to predict the next state, so causality is preserved without an explicit mask.
1574 Parameter count (1.22×10^5) about 20 times PHR. Training employs sliding windows of
1575 length $L = 20$ (stride 1) and mini-batches of 64, with Adam at 2×10^{-3} for 100 epochs. At
1576 test time the window is rolled forward autoregressively: each new prediction is appended,
1577 re-encoded, and used to drive the next step, so the effective context exactly matches what
1578 was seen during learning.
1579

1580 **• Small-World Topology ESN** (Kawai et al., 2019). We include a Small-World Echo-State
1581 Network (SW) whose recurrent matrix is obtained by (i) generating a Watts–Strogatz graph
1582 with N nodes, mean degree k and rewiring probability $p = 0.1$, (ii) assigning i.i.d. weights
1583 drawn from $\mathcal{N}(0, 1)$ to the existing edges, and (iii) rescaling the resulting matrix to a target
1584 spectral radius ρ_* . The input vector projects only to a compact cluster of “input” neurons,
1585 while the read-out taps a disjoint cluster of “output” neurons placed at a maximal geodesic
1586 distance, replicating the spatial segregation used in the original study. Kawai et al. showed
1587 that this small-world topology widens the range of ρ_* values for which the echo-state prop-
1588 erty is preserved and significantly improves both memory-capacity and nonlinear prediction
1589 tasks compared with dense or lattice reservoirs; we therefore evaluate SW-ESN under the
1590 same capacity budget ($N = 300$, $k = 6$) and hyper-parameter sweep as the other baselines.

1591 **Training & model selection.** For every Cartesian hyper-parameter tuple we fit the read-out on the
1592 training split, compute NRMSE on the validation split, and retain the best model to score the test set
1593 with all four metrics. By fixing the global random seed we ensure that differences arise solely from
1594 reservoir topology and intrinsic time-scale, not from stochastic weight realisations.

1595 **Evaluation Protocols** Chaotic-system benchmarks are single-channel state reconstructions in
1596 which the model’s input and output live in the *same* 3-D phase space; we therefore test in **closed-loop**
1597 (autonomous) mode—after a 1 000-step wash-out we seed the reservoir with the last true state,
1598 run it for H steps while feeding each prediction back as the next input, and quantify compounding
1599 error through metrics. In contrast, the real-world collections pair heterogeneous sensor values with
1600 domain-specific targets—i.e. the driver and the prediction lie in *different* feature spaces or semantic
1601 channels—so recycling the model’s output as a surrogate input would violate the data-generation
1602 mechanism and induce uncontrolled distribution shift. Accordingly, we adopt a **teacher-forced**
1603 **open-loop** protocol for these tasks: at every intermediate step $t + \tau$ ($0 \leq \tau < H$) the reservoir
1604 receives the ground-truth measurement, produces $\hat{y}_{t+\tau+1}$, and only the terminal prediction \hat{y}_{t+H} is
1605 scored; this treats the model as a real-time forecaster or filter that augments, but never contaminates,
1606 the sensor stream.

1607 For the Lorenz dataset, ESN used reservoir size 300 and connectivity ratio 0.2; SCR used reservoir
1608 size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.7 and jump size
1609 20; MCI-ESN used sub-reservoir size 300 with edge weight $\mu = 0.6$, inter-reservoir connection
1610 $\eta = 0.6$, and coefficient $\theta = 0.4$; DeepESN had 3 layers with reservoir sizes 100, 100, 100; PHR
1611 used 300 anchor points with blend weights $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.2375, 0.7125, 0.0500)$. For the
1612 Rössler dataset, ESN used reservoir size 300 and connectivity ratio 0.3; SCR used reservoir size 300
1613 and edge weight 1.0; CRJ used reservoir size 300 with edge weight 0.6 and jump size 10; MCI-
1614 ESN used sub-reservoir size 300 with $\mu = 0.8$, $\eta = 1.0$, $\theta = 0.8$; DeepESN again had 3 layers of
1615 sizes 100, 100, 100; PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.0679, 0.8821, 0.0500)$. For
1616 the Chen–Ueta dataset, ESN used reservoir size 300 and connectivity ratio 0.3; SCR used reservoir
1617 size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.8 and jump size 10;
1618 MCI-ESN used sub-reservoir size 300 with $\mu = 0.8$, $\eta = 1.0$, $\theta = 0.6$; DeepESN had 3 layers of
1619 sizes 100, 100, 100; and PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.0826, 0.8674, 0.0500)$.
For the BIDMC PPG/Resp dataset, ESN used reservoir size 300 and connectivity 0.25; SCR used
reservoir size 300 and edge weight 0.9; CRJ used reservoir size 300 with edge weight 0.7 and jump

size 10; MCI-ESN used sub-reservoir size 300 with $\mu = 0.7$, $\eta = 0.9$, $\theta = 0.6$; DeepESN had 3 layers of 100, 100, 100; PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.2036, 0.7464, 0.0500)$. For MIT-BIH ECG, ESN used reservoir size 300 and connectivity 0.25; SCR used reservoir size 300 and edge weight 0.9; CRJ used reservoir size 300 with edge weight 0.7 and jump size 10; MCI-ESN used sub-reservoir size 300 with $\mu = 0.75$, $\eta = 0.9$, $\theta = 0.6$; DeepESN had 3 layers of 100, 100, 100; PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.1357, 0.8143, 0.0500)$. For the Santa Fe B laser series, ESN used reservoir size 300 and connectivity 0.3; SCR used reservoir size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.7 and jump size 10; MCI-ESN used sub-reservoir size 300 with $\mu = 0.7$, $\eta = 0.8$, $\theta = 0.5$; DeepESN had 3 layers of 100, 100, 100; PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.0328, 0.9172, 0.0500)$. For Sunspot Monthly, ESN used reservoir size 300 and connectivity 0.2; SCR used reservoir size 300 and edge weight 0.8; CRJ used reservoir size 300 with edge weight 0.7 and jump size 12; MCI-ESN used sub-reservoir size 300 with $\mu = 0.7$, $\eta = 0.9$, $\theta = 0.6$; DeepESN had 3 layers of 100, 100, 100; and PHR used 300 anchors with $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi) = (0.3563, 0.5938, 0.0500)$.

Computational and complexity notes. We use RIPSER for fast H^1 with cocycles (Bauer, 2021). The Laplacian systems are sparse and solved per connected component with a small Tikhonov μ and an LSQR fallback (Paige & Saunders, 1982). The PH stride s trades accuracy for cost; since $\widehat{\omega}_\ell$ uses only *temporal* increments of $\theta_{t_\ell}^{(\ell)}$, subsampling at modest s typically preserves the dominant angular velocity while reducing $O(n^2)$ storage and compute. Forming C costs $O(T)$ operations for fixed h ; normalization and teleportation are $O(Q^2)$. The default sparse constructions of A and B cost $O(Q \text{ nzr} + Q \text{ nzc})$ and yield W_{flow} applicable in $O((\text{nzr} + \text{nzc})Q)$ time when used as a product. Small ε -pseudocounts ensure no dead rows; $\gamma \approx 10^{-3}$ suffices to regularize nearly reducible chains without washing out directed transport. A naive matrix–vector step with dense \tilde{W} costs $O(N^2)$; however, W_{top} is a permutation of block-diagonal 2×2 rotations plus diagonal decay, and $W_{\text{flow}} = BP^{(\gamma)}A$ is a product of sparse–stochastic maps with a $Q \times Q$ core. Implementations that *apply* W as $(\alpha_{\text{top}}W_{\text{top}})x + (\beta_{\text{flow}}B)(P^{(\gamma)}(Ax)) + \xi W_{\text{noise}}x$ can therefore reduce per-step cost to $O(K + Q(\text{nzr} + \text{nzc}) + \text{nnz}(W_{\text{noise}}))$, where K is the number of rotation blocks. Our reference code stores W explicitly for simplicity and enforces stability via (5); NaN guards ensure failures in upstream PH or degeneracies in scaling are surfaced early with safe fallbacks.

Robust graph construction and degenerate cases. If $E_\ell = \emptyset$ at the chosen ε_ℓ , we fall back to a symmetric k -nearest-neighbor graph (code default $k = 8$). Edge weights follow the same w_{ij} logic. After solving, angles that become non-finite (rare in practice; e.g., due to isolated components coupled with numerical roundoff) are repaired by replacing the offending class’s *angle time series* with a synthetic wrapped-linear phase at the dominant PCA angular velocity on $Z^{(\text{PH})}$, ensuring a well-defined downstream mean velocity for every selected class.

Table 7: Notation summary. Dimensions are given for column vectors unless stated otherwise.

Symbol	Meaning	Type / Dimensions	Default / Range
Observed data, embedding, and subsampling			
u_t	observed input/sample at time t	$u_t \in \mathbb{R}^{d_{\text{obs}}}$	—
T	number of observations	integer	—
m	embedding dimension (per channel)	integer	6–20
τ	embedding lag (in samples)	integer	1–5
z_t	delay-embedded vector	$z_t \in \mathbb{R}^{md_{\text{obs}}}$	—
Z	embedded point cloud	$Z = \{z_t\}$	size $n = T - (m - 1)\tau$
s	PH subsampling stride	integer	5–10
$Z^{(\text{PH})}$	subsample for PH	subset of Z	$ Z^{(\text{PH})} = n_{\text{PH}}$
D	pairwise distances on $Z^{(\text{PH})}$	$D \in \mathbb{R}_{\geq 0}^{n_{\text{PH}} \times n_{\text{PH}}}$	Euclidean
Persistent cohomology, circular coordinates, and oscillators			
(b_ℓ, d_ℓ)	birth/death of H^1 class ℓ	reals with $0 \leq b_\ell < d_\ell$	from VR filtration
P_ℓ	persistence of class ℓ	$P_\ell = d_\ell - b_\ell$	—
c_ℓ	representative 1–cocycle (mod p)	cochain on 1-skeleton	field \mathbb{F}_p
p	prime coefficient for PH	integer prime	47 (default)
ε_ℓ	working scale in (b_ℓ, d_ℓ)	real	near-death $d_\ell - 10^{-6}$

(table continues)

1674	Symbol	Meaning	Type / Dimensions	Default / Range
1675	$G_\ell = (V, E_\ell)$	Rips 1-skeleton at ε_ℓ	graph	—
1676	M	oriented incidence of G_ℓ	$ E_\ell \times V $	—
1677	w_{ij}	edge weight on $(i, j) \in E_\ell$	positive real	$(D_{ij} + \epsilon)^{-1}$
1678	W	diagonal matrix of edge weights	$ E_\ell \times E_\ell $	$W = \text{diag}(w_{ij})$
1679	μ	Tikhonov regularizer	real, $\mu > 0$	tiny (10^{-6} – 10^{-4})
1680	L	weighted graph Laplacian	$ V \times V $	$M^\top W M$
1681	b	right-hand side for LS	$ V $	$M^\top W \alpha$
1682	$\vartheta^{(\ell)}$	vertex potentials	$\mathbb{R}^{ V }$	solves $(L + \mu I)\vartheta = b$
1683	$\theta^{(\ell)}$	circular coordinate (angle)	$(-\pi, \pi]^{ V }$	$\theta = \text{wrap}(2\pi\vartheta)$
1684	$\bar{\omega}_\ell$	mean angular velocity	real	wrapped LS / mean increment
1685	ρ_{rot}	rotation radius for top blocks	real in $(0, 1)$	0.92–0.98
1686	$R(\bar{\omega}_\ell; \rho_{\text{rot}})$	2×2 rotation block	2×2	see text
1687	K	requested # of loops	integer	$\leq K_{\text{max}}$
1688	K_{max}	cap on # loops for synthesis	integer	2–6
1689	γ	relative persistence threshold	real in $[0, 1]$	0.2–0.4
1690	$\mathcal{I}_{\text{keep}}$	indices kept by threshold	subset of $\{1, \dots\}$	$P_\ell \geq \gamma P_{\text{max}}$
1691	K_{final}	kept # of loops	integer	$ \mathcal{I}_{\text{keep}} $
1692	E_k	k th oscillatory plane	2-D subspace of \mathbb{R}^N	invariant for W_{top}
1693	E_\perp	non-oscillatory subspace	$(N - 2K)$ -D	invariant for W_{top}
Coarse partition, Markov model, and lift				
1694	Q	number of clusters (cells)	integer	50–400
1695	c_q	q th centroid	$\mathbb{R}^{md_{\text{obs}}}$	from k -means
1696	s_t	cluster index of z_t	$\{1, \dots, Q\}$	$\arg \min_q \ z_t - c_q\ $
1697	h	short horizon for counts	integer	1–3
1698	C	transition counts	$C \in \mathbb{R}_{\geq 0}^{Q \times Q}$	$C_{ij} = \#\{t : s_t = i, s_{t+h} = j\}$
1699	ϵ	pseudocount for rows	real > 0	10^{-9} – 10^{-6}
1700	P	row-stochastic Markov matrix	$\mathbb{R}^{Q \times Q}$	$P_{ij} = \frac{C_{ij} + \epsilon}{\sum_j C_{ij}}$
1701	γ_{tel}	teleport weight	real in $[0, 1)$	10^{-3} – 10^{-1}
1702	u	teleport base distribution	\mathbb{R}^Q	$u = \frac{1}{Q} \mathbf{1}$
1703	$P^{(\gamma)}$	teleported Markov matrix	$\mathbb{R}^{Q \times Q}$	$(1 - \gamma)P + \gamma \mathbf{1} \mathbf{1}^\top$
1704	A	pooling map (row-stochastic)	$\mathbb{R}^{Q \times N}$	each row sums to 1
1705	B	lifting map (col-stochastic)	$\mathbb{R}^{N \times Q}$	each column sums to 1
1706	nzs_r	nonzeros per row of A	integer	2–6
1707	nzs_c	nonzeros per column of B	integer	5–20
1708	W_{flow}	lifted flow operator	$\mathbb{R}^{N \times N}$	$BP^{(\gamma)} A$
1709	Δ	pool-lift defect	$\mathbb{R}^{Q \times Q}$	$\Delta = AB - I_Q$
Blending, scaling, and ESN dynamics				
1710	N	reservoir size (neurons)	integer	300
1711	W_{top}	topological rotation–decay operator	$\mathbb{R}^{N \times N}$	blkdiag→permute
1712	W_{noise}	normalized noise matrix	$\mathbb{R}^{N \times N}$	$\ W_{\text{noise}}\ _2 = 1$
1713	α, β, ξ	blend weights	nonneg. reals	$\alpha + \beta + \xi = 1$
1714	W_{blend}	pre-scaled blend	$\mathbb{R}^{N \times N}$	$\alpha W_{\text{top}} + \beta W_{\text{flow}} + \xi W_{\text{noise}}$
1715	s	operator norm of W_{blend}	real ≥ 0	$s = \ W_{\text{blend}}\ _2$
1716	ρ_\star	target spectral (operator) norm	real in $(0, 1)$	0.94–0.99
1717	W	final recurrent operator	$\mathbb{R}^{N \times N}$	$W = \frac{\rho_\star}{s} W_{\text{blend}}$
1718	λ	leak (update mixing)	real in $(0, 1]$	0.15–0.35
1719	ϕ	nonlinearity	$\mathbb{R}^N \rightarrow \mathbb{R}^N$	$\tanh(1\text{-Lipschitz})$
1720	x_t	reservoir state	$x_t \in \mathbb{R}^N$	update (11)
1721	W_{in}	input weight matrix	$\mathbb{R}^{N \times d_{\text{obs}}}$	random, scaled
1722	L	contraction constant	real in $(0, 1)$	$(1 - \lambda) + \lambda \rho_\star$
1723	E_k, E_\perp	invariant subspaces of W_{top}	subspaces of \mathbb{R}^N	2-D planes and complement
Readout and features				
1724	$\mathbf{1}_{\text{poly}}$	polynomial feature flag	$\{0, 1\}$	include $x_t \odot x_t$ if 1
1725	φ_t	feature vector at t	\mathbb{R}^F	$[x_t; \mathbf{1}_{\text{poly}}(x_t \odot x_t); \mathbf{1}_{\text{poly}}]$
1726	D (washout)	discarded transient steps	integer	50–500
1727	Φ	design matrix	$\mathbb{R}^{(T-D) \times F}$	rows φ_t^\top

(table continues)

1728	Symbol	Meaning	Type / Dimensions	Default / Range
1729	Y	targets	$\mathbb{R}^{(T-D) \times d_{\text{out}}}$	task-dependent
1730	α_{ridge}	ridge regularization	real > 0	10^{-8} – 10^{-2}
1731	W_{out}	linear readout	$\mathbb{R}^{d_{\text{out}} \times F}$	solves (7)
1733 Norms and operators				
1734	$\ \cdot\ _2$	operator (spectral) norm	matrix norm	largest singular value
1735	$\ \cdot\ _1, \ \cdot\ _\infty$	induced ℓ_1, ℓ_∞ norms	matrix norms	max column/row sum
1736	$\text{wrap}(\cdot)$	wrapping to principal branch	angle / unit interval	$(-\pi, \pi]$ or $[0, 1)$
1737	\odot	Hadamard product	elementwise	—
1738 Auto-tuning parameters				
1739	$\alpha_{\text{min}}, \alpha_{\text{max}}$	bounds for topology weight	$0 \leq \alpha_{\text{min}} \leq \alpha_{\text{max}} \leq 1$	user-chosen
1740	s_{loop}	mean relative loop strength	real in $[0, 1]$	$\frac{1}{K_{\text{final}}} \sum_{\ell \in \mathcal{I}_{\text{keep}}} \frac{P_\ell}{P_{\text{max}}}$
1741	P_{max}	strongest persistence	real ≥ 0	$\max_\ell P_\ell$

1742 B.3 HIGH–DIMENSIONAL PDE BENCHMARK: 2D KOLMOGOROV FLOW

1743 **Task and data generation.** To assess scalability beyond low–dimensional ODE attractors, we
 1744 test PHR as a model–free surrogate for a two–dimensional Kolmogorov flow, a canonical forced
 1745 Navier–Stokes benchmark on a periodic domain. We consider the incompressible Navier–Stokes
 1746 equations on $\Omega = [0, 2\pi]^2$, $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}$, $\nabla \cdot \mathbf{u} = 0$, with viscosity $\nu =$
 1747 10^{-3} and sinusoidal forcing $\mathbf{f}(x, y) = (F \sin(k_f y), 0)$ with $F = 0.1$ and $k_f = 4$. The reference
 1748 solution is generated by a pseudo–spectral solver on a 64×64 Fourier grid with $2/3$ dealiasing and a
 1749 fixed time step $\Delta t_{\text{PDE}} = 10^{-3}$, using a fourth–order Runge–Kutta integrator and periodic boundary
 1750 conditions in both directions. We discard an initial transient of 2×10^4 time steps and then record
 1751 $T_{\text{PDE}} = 1.2 \times 10^5$ additional steps. For learning, we subsample every $m = 10$ solver steps, yielding
 1752 $T = 12,000$ snapshots at interval $\Delta t = m \Delta t_{\text{PDE}} = 10^{-2}$. We project each velocity field $\mathbf{u}(t_n)$
 1753 onto the leading $d_{\text{obs}} = 16$ Proper Orthogonal Decomposition (POD) modes of the training segment,
 1754 obtaining coefficient vectors $u_t \in \mathbb{R}^{d_{\text{obs}}}$, $t = 1, \dots, T$. These coefficients form the observable time
 1755 series for all models. We split the coefficient trajectory contiguously into $T_{\text{train}} = 6,000$ steps for
 1756 training, $T_{\text{val}} = 2,000$ for validation, and $T_{\text{test}} = 4,000$ for testing. During evaluation, we initialize
 1757 each model with the true coefficients at the start of the test segment and roll it out autoregressively
 1758 for $H = 2,000$ steps. We report (i) NRMSE of the POD coefficients over this horizon, (ii) VPT, the
 1759 first time t at which $\|u_t - \hat{u}_t\|_2 / \|u_t\|_2 > 0.3$ (reported in physical time $t \Delta t$), and (iii) relative errors
 1760 in long–time kinetic energy and enstrophy computed from the reconstructed velocity fields on the
 1761 test segment.

1762 **Model configurations and hyperparameters.** For PHR, we use a reservoir of size $N = 600$
 1763 with leaky ESN update (leak $\lambda = 0.20$), target operator norm $\rho_* = 0.94$, and input weights
 1764 $W_{\text{in}} \in \mathbb{R}^{N \times d_{\text{obs}}}$ drawn i.i.d. from $\mathcal{U}[-1, 1]$ and scaled by $\text{input_scale} = 0.5$. Delay embedding
 1765 uses dimension $m = 8$ and lag $\tau = 1$, so that $z_t \in \mathbb{R}^{8d_{\text{obs}}}$; the embedding is standard-
 1766 ized to zero mean and unit variance per coordinate. For PH, we subsample the embedded trajec-
 1767 tory with stride $\text{ph_subsample_stride} = 5$, use prime coefficient $p = 47$, inverse–distance
 1768 edge weights, and a “near–death” scale strategy as specified in Sec. 3.1. The PH back–end is
 1769 asked for at most $\text{K_max_cap_default} = 3$ loops; the auto–tuner thresholds relative persis-
 1770 tence at $\gamma = \text{pers_rel_thresh_to_max} = 0.25$ and maps the resulting loop strength into blend
 1771 weights with $\alpha_{\text{min}} = 0.20$, $\alpha_{\text{max}} = 0.65$ and fixed noise fraction $\xi = 0.05$, yielding data–dependent
 1772 $(\alpha_{\text{top}}, \beta_{\text{flow}}, \xi)$ that still satisfy $\alpha_{\text{top}} + \beta_{\text{flow}} + \xi = 1$. The coarse flow is built with $Q = 200$ clusters
 1773 (Lloyd k –means, 30 iterations, random initialization), horizon $h = 1$, and teleportation parameter
 1774 $\gamma_{\text{teleport}} = 3 \times 10^{-3}$ in the PageRank–style Markov smoothing. Pool and lift maps $A \in \mathbb{R}^{Q \times N}$,
 1775 $B \in \mathbb{R}^{N \times Q}$ use $\text{pool_nonzeros_per_row} = 4$ and $\text{lift_nonzeros_per_col} = 12$, with sup-
 1776 ports sampled uniformly without replacement. The topological operator \bar{W}_{top} uses rotation radius
 1777 $\rho_{\text{rot}} = 0.96$ and decay radii for residual units drawn i.i.d. from $\mathcal{U}[0.90, 0.98]$; W_{noise} is a Gaus-
 1778 sian matrix normalized to $\|W_{\text{noise}}\|_2 = 1$ and scaled by 0.1. The blended operator W_{blend} is scaled
 1779 to $\|W\|_2 = \rho_*$ via 60 steps of power iteration as in Sec. 3.3. The readout uses ridge regression
 1780 with penalty $\alpha_{\text{ridge}} = 10^{-6}$ and quadratic feature augmentation ($\text{use_poly} = \text{True}$), including a
 1781 constant feature.

The *Random ESN* baseline uses the same leaky update (leak $\lambda = 0.20$), state size $N = 600$, and input scaling 0.5, but its recurrent matrix is drawn once as a sparse Gaussian matrix with connection density 0.1 (each nonzero from $\mathcal{N}(0, 1/N)$) and then rescaled to spectral radius 0.94. The readout is a ridge regression with α_{ridge} tuned in $\{10^{-8}, 10^{-7}, \dots, 10^{-2}\}$ on the validation segment. The *GRU* baseline is a single-layer gated recurrent unit network with hidden size $H = 64$, tanh activations, dropout rate 0.1 before the linear output layer (mapping \mathbb{R}^H to $\mathbb{R}^{d_{\text{obs}}}$), yielding $\approx 1.7 \times 10^4$ trainable parameters for $d_{\text{obs}} = 16$, i.e., the same order as the PHR readout. It is trained to minimize mean-squared error on teacher-forced sequences of length $L = 128$ using Adam with learning rate 10^{-3} , batch size 64, weight decay 10^{-6} , and gradient clipping at norm 1.0, with early stopping based on validation NRMSE (patience 20 epochs, maximum 200 epochs). The *linear AR* baseline is a vector autoregressive model of order $p = 72$ in POD space, i.e., $u_t = \sum_{k=1}^{72} A_k u_{t-k} + \varepsilon_t$, with coefficient matrices A_k estimated by ridge-regularized least squares (regularization parameter chosen from $10^{-8}, 10^{-6}, 10^{-4}$ using validation NRMSE). For $d_{\text{obs}} = 16$ this yields $72 \times 16 \times 16 = 18,432$ linear coefficients (plus 16 biases), again placing the VAR baseline in the same parameter range as PHR and the GRU.

Results. Table 8 reports the quantitative comparison on the Kolmogorov flow benchmark in terms of coefficient-space NRMSE, VPT, and relative errors in long-time kinetic energy and enstrophy. All models are trained and evaluated under the same data split and autoregressive protocol described above.

Table 8: Two-dimensional Kolmogorov flow surrogate modeling in POD space. All models are trained on the same POD coefficient trajectories and evaluated by autoregressive rollouts on an unseen test segment. NRMSE is computed over a fixed forecast horizon $H = 2,000$; VPT is the physical time until the relative error first exceeds 0.3; energy/enstrophy errors compare long-time statistics of reconstructed velocity fields to the DNS reference.

Method	NRMSE ↓	VPT (time units) ↑	Rel. energy error (%) ↓	Rel. enstrophy error (%) ↓
PHR (ours)	0.17	11.8	3.1	6.8
Random ESN	0.29	7.2	6.5	14.2
GRU	0.25	8.5	8.9	17.3
VAR	0.41	4.3	12.7	23.5

B.4 SOFTWARE, DEPENDENCIES AND COMPUTE BUDGET

All experiments were implemented in Python 3.10 using `numpy` (vectorized dense linear algebra), `scipy` (sparse matrices, LSQR, Laplacian solves), and `scikit-learn` (ridge regression). Persistent cohomology (H^1 cocycles) was computed with `ripser`; circular coordinates were obtained by solving the weighted normal equations on the Rips 1-skeleton via `scipy.sparse.linalg` with a tiny Tikhonov regularizer and per-component gauge fixing. k -means clustering is a custom Lloyd implementation. Visualization used `matplotlib/seaborn`. We fix a global PRNG seed for PH subsampling/anchor, block permutations in W_{top} , supports of A, B , and the power-iteration start vector. The code relies only on CPU BLAS/LAPACK (OpenBLAS/MKL); no GPU is required. For stability we recommend `ripser`≥0.6, `numpy`≥1.26, `scipy`≥1.11, `scikit-learn`≥1.4; results were validated on Linux (x86_64, AVX2) and macOS (arm64). Parallelism from BLAS and `ripser` can be capped via `OMP_NUM_THREADS`. We used large language models only for retrieval/discovery (e.g., surfacing related work and canonical citations); all derivations, algorithms, proofs, and experiments were authored and independently verified by us. All code and pretrained weights will be released under the MIT License, permitting unrestricted academic and commercial use provided the original copyright notice and license text are retained.

Compute requirements are dominated by two components: (a) PH on the subsampled embedding of size n_{PH} and (b) the VR graph least-squares per selected loop. Pairwise distances scale as $O(n_{\text{PH}}^2 m d_{\text{obs}})$ time and $O(n_{\text{PH}}^2)$ memory (float64), i.e., roughly $8, n_{\text{PH}}^2$ bytes; with stride s applied to an embedded sequence of length n , one has $n_{\text{PH}} \approx \lfloor n/s \rfloor$, so memory drops quadratically in s . The circular-coordinate solve uses the Rips 1-skeleton with $|E|$ edges (typically near-linear in n_{PH} at “near-death” scales), yielding a sparse SPD system whose conjugate gradients/LSQR cost is $O(|E|) - O(|E| \log(1/\varepsilon))$ per loop. The remaining stages are light: k -means over n points in $\mathbb{R}^{md_{\text{obs}}}$

1836 with moderate Q ; construction of (A, B) with $O(Q, \text{nzr} + N, \text{nzc})$ nonzeros; one matrix–vector
1837 power iteration with ≤ 60 steps for $\tilde{\sigma} * \text{max}$; and an $O(TF^2 + F^3)$ ridge solve with feature count F
1838 (state with optional quadratic lift). Practically, for chaotic benchmarks where n is 10^3 – 10^4 , choosing
1839 $s \in [5, 20]$, $K_{\text{max}} \leq 3$, and $Q \in [200, 400]$ keeps peak RAM within a few gigabytes and wall–clock
1840 dominated by the $O(n_{\text{PH}}^2)$ distance stage. We report the exact $(n, n_{\text{PH}}, K_{\text{final}}, Q, |E|)$ alongside
1841 results, enabling precise replication and ex–ante sizing of memory via $8, n_{\text{PH}}^2$ bytes + overhead for
1842 sparse structures.

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889