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ABSTRACT

Transformer networks have become the preferred architecture for many tasks due
to their state-of-the-art performance. However, the optimal way to implement
residual connections in Transformer, which are essential for effective training, is
still debated. Two widely used variants are the Post-Layer-Normalization (Post-
LN) and Pre-Layer-Normalization (Pre-LN) Transformers, which apply layer nor-
malization after each residual block’s output or before each residual block’s input,
respectively. While both variants enjoy their advantages, they also suffer from
severe limitations: Post-LN causes gradient vanishing issue that hinders training
deep Transformers, and Pre-LN causes representation collapse issue that limits
model capacity. In this paper, we propose ResiDual, a novel Transformer archi-
tecture with Pre-Post-LN (PPLN), which fuses the connections in Post-LN and
Pre-LN together, and inherits their advantages while avoids their limitations. We
conduct both theoretical analyses and empirical experiments to verify the effec-
tiveness of ResiDual. Theoretically, we prove that ResiDual has a lower bound
on the gradient to avoid the vanishing issue due to the residual connection from
Pre-LN. Moreover, ResiDual also has diverse model representations to avoid the
collapse issue due to the residual connection from Post-LN. Empirically, ResiDual
outperforms both Post-LN and Pre-LN on several machine translation benchmarks
across different network depths and data sizes.
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Figure 1: Overview of Post-LN, Pre-LN, and ResiDual. Circles with different colors represent
different variables and rectangles represent different operations. See Section 2 for more details.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has emerged as a powerful neural network architecture that
has been successfully applied in various AI tasks, including machine translation (Vaswani et al.,
2017), language modeling and generation (Radford et al., 2018; 2019; Brown et al., 2020), image
recognition (Dosovitskiy et al., 2020), and speech synthesis (Ren et al., 2019). Despite its success,
researchers are still exploring ways to further enhance its performance and deepen the understanding
of its inner workings (Wang et al., 2019; Katharopoulos et al., 2020; Fedus et al., 2021). Among
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them, one area of ongoing research is the study of residual connections in the Transformer archi-
tecture (Liu et al., 2020; Xiong et al., 2020; Bachlechner et al., 2021). Two variants of residual
connections have been proposed since the introduction of the Transformer, known as Post-LN and
Pre-LN. The Post-LN variant applies layer normalization (LN) operations after the output of each
residual block. This variant is used in several prominent models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and ALBERT (Lan et al., 2019). The Pre-LN variant, on the other hand,
applies LN operations before the input to each residual block. This variant is used in models such
as the GPT series, ViT (Dosovitskiy et al., 2020), and PaLM (Chowdhery et al., 2022).

Method Gradient
Vanishing

Representation
Collapse

Post-LN

Pre-LN

ResiDual

Table 1: Comparison of Post-LN, Pre-LN, and
our method. means the model does not suffers
from the issue and means the model has such
issue.

Although both variants have been widely used,
each one has its own drawbacks, which are sum-
marized in Table 1. As shown in Figure 1, the
key difference between the two residual variants
is how the layer normalization (LN) normalized
the outputs of each block. With Post-LN, the
output of lower blocks (i.e., the blocks close
to input) are normalized multiple times. As a
result, the gradient norm decays exponentially
with depth and eventually vanishes in the lower
layers (Xiong et al., 2020). This problem does
not exist in Pre-LN because the gradient can
flow directly to each block. However, the Pre-
LN architecture has the representation collapse
issue (Liu et al., 2020), which will negatively
impact the model’s capacity. The representation
collapse issue refers to the fact that the hidden representation of higher blocks (i.e., the blocks close
to output) will be similar to each other in Pre-LN models. Therefore, the higher blocks will have
little contribution to the model capacity.

Several approaches have been proposed to address these problems, which can generally be cat-
egorized into three categories. Firstly, some methods aim to modify the architecture, such as
DLCL (Wang et al., 2019), NormFormer (Shleifer et al., 2021), RealFormer He et al. (2021), and
B2T (Takase et al., 2022), which adds extra components such as aggregations or LNs to stable
training. Secondly, some methods add different weights to the residual, such as Admin (Liu et al.,
2020), DeepNet (Wang et al., 2022a), τ -ResNet (Zhang et al., 2022), and ReZero (Bachlechner
et al., 2021). Lastly, some methods use better initialization, such as T-Fixup (Huang et al., 2020),
DeepNet (Wang et al., 2022a), and Foundation Transfomer (Wang et al., 2022b), to reduce variance
and stabilize training.

In this study, we focus on the first category and propose a new architecture for Transformer mod-
els to address the drawbacks of both variants while retaining their benefits. Figure 1(c) provides
an overview of our method. Our design goal is to maintain the advantages of both variants and
avoid their disadvantages by employing two residual connections. In particular, our ResiDual model
utilizes a Pre-Post-LN (PPLN) that consists two residuals: one is similar to the Pre-LN to prevent
the gradient vanishing issue, while the other one akin to the Post-LN, which sustains representation
diversity to avoid the representation collapse issue.

To validate the effectiveness of our proposed method, we conduct both theoretical analysis (Sec-
tion 3) and empirical study (Section 4) to show that our method can achieve the best of both worlds.
From the theoretical perspective, we first show that the gradient vanishing is still a critical problem
even using Adam (Kingma & Ba, 2014) optimizer. We also show that ResiDual has a bounded
gradient-norm thus do not have such an issue. Furthermore, we study the representation collapse
issue and show that ResiDual has the same hidden representation diversity as Post-LN. Therefore,
ResiDual do not have the representation collapse issue in Pre-LN.

Empirically, we conduct comprehensive experiments on machine translation tasks, which are among
the most representative tasks in natural language processing. Our dataset comprises small-scale
(IWLST), mid-scale (WMT), and large-scale (OPUS) datasets. Our experimental results demon-
strate that our method outperforms baselines across all three datasets.

In summary, this work makes the following contributions:
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• We present ResiDual, a simple yet potent variation of the Transformer architecture, which
tackles both the gradient vanishing problem in Post-LN and the representation collapse
issue in Pre-LN Transformer models.

• Our theoretical analysis demonstrates that this new design can leverage the strengths of
both variants while avoiding their weaknesses.

• Our experimental results provide further evidence of the effectiveness of our approach, as
it achieves superior performance compared to both the Post-LN and Pre-LN Transformer
models across multiple datasets.

2 METHOD

2.1 DISADVANTAGES OF POST-LN AND PRE-LN

In this section, we briefly review the architecture of Post-LN and Pre-LN, whose illustrations are
available in Figure 1 (a) and (b). We will also discuss the shortcomings of each architecture.

Gradient Vanishes with Post-LN. The Post-LN architecture is shown in Figure 1 (a). To be more
specific, given a Post-LN Transformer network with N residual blocks, we assume the input shape
is n× d where the n, d denotes the sequence length and embedding size1. The variables with vector
arrow (e.g., −→x ∈ Rn×d) denote the whole sequence and the variables without it (e.g., x ∈ Rd)
denote an element of the sequence. We use −→x a ∈ Rn×d denote the tensor after add operation and
use subscript k (i.e. −→x a

k) denote the tensor in the k-th block. We also use −→x ln
k ∈ Rn×d denotes the

normalized tensor and −→x f
k ∈ Rn×d denotes the output of the function fk(·;wk) in the k-th block.

The fk can be a self-attention, cross-attention, or feed-forward with parameter wk. Using these
notations, the Post-LN computation of each element in the k-th block is

xa
k = xln

k + xf
k = xln

k + fk(
−→x ln

k ;wk); xln
k+1 = LN(xa

k).

Finally, the output y is computed by y = xln
N+1 = LN(xa

N ). Intuitively, the xf
k is normalized

N − k times, so does the gradients of wk. Therefore, the gradients of lower blocks will be small.
From Xiong et al. (2020), we know that for Post-LN Transformer, the gradient norm decreases
exponentially from deep layers to shallow layers. Intuitively, such an imbalanced gradients will
impede the model training. Therefore, in practise, training tricks such as learning-rate warm-up are
necessary to train a Post-LN model.

Representation Collapses with Pre-LN. With the same notations, the Pre-LN computation is

xln
k = LN(xa

k); xa
k+1 = xa

k + xf
k = xa

k + fk(
−→x ln

k ;wk).

Similarly, the model output is y = LN(xa
N+1) = LN(

∑N
k=1 x

f
k). Intuitively, as the xf

k is only
normalized once when computing the y , neither the forward nor the backward pass are blocked
by LN. Thus, Pre-LN do not have the gradient vanish issue. However, it has another issue called

representation collapse. More specifically, Liu et al. (2020) show that the

√
Var[xf

k ]√
Var[xa

k+xf
k ]

is likely to

be smaller for higher blocks (i.e, blocks with larger k). This means the output of the later blocks
(xf

k) has little contribution to the total variance of xa
k. In Section 3.2, we show that the difference

between xln
k+1 and xln

k (i.e., |xln
k+1 − xln

k |) decays along with k, which indicates the input of the
higher blocks will collapse to similar values. We also show that this issue may limit the capacity of
the model.

2.2 RESIDUAL

The goal of our model is to take the advantages of both variants and avoid the both disadvantages.
To achieve this goal, we use residuals from both variants and the overview of our method is in

1We omit the batch dimension that will not affect our analysis.
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Figure 1 (c). More specifically, the two residual connections are illustrated in the left and right
vertical lines in the Figure. The left one, which is similar to the conventional Post-LN, is

xa
k = xln

k + xf
k = xln

k + fk(
−→x ln

k ;wk); xln
k+1 = LN(xa

k).

Meanwhile, the right residual, which is similar to the conventional Pre-LN, is formulated by

xd
k+1 = xd

k + xf
k ,

where xd ∈ Rn×d is the tensor to denote dual residual that similar to xa in the Pre-LN that allows
the gradients directly flow to each block.

Finally, the output y is computed by adding the representation of both residuals, which is

y = xln
N+1 + LN

(
xd
N+1

)
.

2.3 DISCUSSION

In this section, we will only introduce the intuitive understanding of ResiDual and the mathematical
analysis is provided in Section 3.

Avoiding the Gradient Vanishing In ResiDual, gradient of each block flows from both residual
connections. Thus, even if the gradient comes from the Post-LN-like residual vanishes, there will
still be gradients from the Pre-LN-like residual. This prevents the gradient vanishing issue. We
provide the details of the lower-bound of the gradient norm in Section 3.1.

Avoiding the Representation Collapse Our Pre-LN-like residual only affects the model output
and does not affect the input to each block. Therefore, the representation capacity is the same as
a Post-LN model. Furthermore, because the final output of our model is the sum of two residual
connections, the representation of the output will not collapse either. We provide the details of the
lower-bound of the representation capacity in Section 3.2.

3 THEORETICAL ANALYSIS OF RESIDUAL

In this section, we formally study the gradient vanishing and representation collapse issue. We also
prove that our method does not have such issues.

3.1 THE GRADIENT VANISHING ISSUE

In order to present the analysis in a concise way, we study a simple setting and make several as-
sumptions. In Transformer, the f function can be either a feed-forward block or a multi-head at-
tention block. For a feed-forward block, f(x) := Wx where we ignore the layer index. For a
multi-head attention block, we have weight matrices WQ,WK ,WV . For simplicity, we focus on
single-head attention. Similar to Xiong et al. (2020), we initialize WQ to be zero matrices and con-
sequently, the attention is a uniform distribution at initialization and f(x(i)) := 1

n

∑n
j=1 x

(j)WV

where we drop the layer index and x(j), j ∈ [n] are the input sequence with length n. We usually
drop the superscript index (j) for notation simplicity when the context is clear itself. We introduce−→x := {x(j), j ∈ [n]} and use w to denote the collection of parameter matrices in f .

Based on above assumption, without loss of generality, we further assume that the f function keeps
the norm, i.e., ∥f(x)∥ = ∥x∥. This assumption is asymptotically true when the network width goes
to infinity and the initialization variance is properly scaled. We assume that the signal is standardized
after layer normalization, i.e., ∥xln

k ∥ =
√
d for all k ∈ [N ], and that for x ∈ Rd, the Jacobian matrix

through LN satisfies ∂LN(x)
∂x ≈

√
d

∥x∥2
I . This approximation can be achieved if the mean of x is 0 and

the variance is 1
d∥x∥2 while ignoring the gradient back-propagated through mean and variance. The

rationale in this assumption is that the error signal (gradients) back-propagating through LN becomes
smaller as the norm of the input to the LN gets larger. In the Post-LN Transformer, the scale of the
inputs to the layer normalization is independent of N , and thus the gradients of parameters in the
last layer are independent of N .
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Gradient Norm Estimation for Post and Pre-LN Transformer. From Xiong et al. (2020), we
know that for Post-LN Transformer, the gradient norm of the block k decreases exponentially as
block index k gets smaller. This indicates that the gradient of the block close to input would be
exponentially small for deep transformers. In contrast, for Pre-LN Transformer, the gradient norm
of each block is roughly independent with the block index k.

For completeness, we rephrase the result from Xiong et al. (2020) with our notations and assump-
tions. We also present the proof in a more accurate way in Appendix.
Theorem 3.1 (Gradients of the k-th block in the Post-LN and Pre-LN Transformers). Given the
above assumptions on f and LN, for the Post-LN Transformer with N blocks, the gradient of the
parameters of the k-th block satisfies∥∥∥∥ ∂L

∂wk

∥∥∥∥
F

≈ O
(
(1/2)

(N−k)/2
e
√
N−k

)
, (1)

for the Pre-LN Transformer with N blocks, the gradient of the parameters of the k-th block satisfies∥∥∥∥ ∂L
∂wk

∥∥∥∥
F

≈ O
(√

log(N − k)

N

)
, (2)

where we ignore the terms irrelevant with k,N .

Analysis of Adam In practice, adaptive optimizers such as Adam are widely used to train Trans-
former networks. However, the vanished gradients issue cannot be solved by adaptive optimiz-
ers and thus we aim to fix the issue in the network architecture. More specifically, we show that
the Adam updates is ill-conditioned in vanished gradients. More specifically, let the α, t, ϵ, β1, β2

denote the learning rate, step, smoothing factor, first decay rate and second decay rate, respec-
tively, and the w(t),g, m̂(t), v̂(t) denote the parameters, gradients, bias-corrected first and second

moment estimation at time t. Meanwhile, we use u(g(t)) = α · m̂(t)/(
√

ˆv(t) + ϵ) denote the
Adam update (i.e., w(t) ← w(t−1) − u(g(t))) and the full formula is in Appendix B. Because the
Adam update is element-wise, we also use u(g) to denote the scalar function of u(g), which means
u(g) = [u(g1), u(g2), · · · , u(gd)]. Then, we will show that, when the gradients vanish, the u(g) is
sensitive to small perturbation (i.e., ill-conditioned) because of its large condition number.
Theorem 3.2. The Adam update function u(g) is ill-conditioned for vanished gradients (g = 0) in
early stage (t is small).

Proof. Considering that the u(g) is differentiable, the absolute condition number κ̂ for u(gt) is

κ̂ = lim
δ→0

sup
||δg||≤δ

||u(g + δg)− u(g)||
||δg|| = ||J(g)|| =

√√√√ d∑
i=1

(
∂u

∂gi

)2

.

The full expression of ∂u
∂g can be found in Appendix B. In the early stage (i.e., t is small), for the

vanished gradient (gi = 0), the absolute condition number κ̂ is

κ̂ = α
1− β1

1− βt
1

√√√√√√
d∑

i=1

1

ϵ+

√
β2v

(t−1)
i

1−βt
2

≈ α
√
d

ϵ
. (3)

For example, in a classic setting where d = 1024, ϵ = 10−6, α = 10−4, we have κ̂ = 3200, which
is a very large number. This tells us that in early stage, the u(gt) is ill-conditioned.

Intuitively, when there is a small noise ||δg|| ≤ δ added to the gradient g, the change of the up-
date ||u(g + δg) − u(g)|| could be thousand times larger than ||δg||. This will make the training
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unstable and vulnerable to a small perturbation. This study is also consistent with the empirically
findings by Wang et al. (2022a) that the exploding gradients in higher layers is not the root cause of
Post-LN training difficultly. Further more, to verify our approximation, we also have simulation in
Appendix B.

Moreover, from Equation (3), given a fixed model with width d, seems there are two possible way
to reduce the κ̂: increasing the ϵ or decreasing the α. However, the first one is not viable because
a large ϵ will make an adaptive optimizer less adaptive. Therefore, in practise, researchers have to
reduce the learning-rate α (e.g., using learning-rate warm-up) to ease this problem.

To conclude, as the gradient vanishing is a critical issue even when the model is trained with adaptive
optimizes. As a result, we purpose to solve this problem from the architecture aspect.

3.2 THE REPRESENTATION COLLAPSE ISSUE

The Representation Collapse in Pre-LN The issue with the representation capability of Pre-
LN was initially observed by Liu et al. (2020). In summary, the Pre-LN Transformer’s hidden
representation cannot be refined by deeper layers due to the normalization of layer outputs. In this
work, we propose a novel analysis approach that directly examines the distribution of hidden state
changes, represented by |xln

k+1 − xln
k |, and output changes, denoted by |yN − yN−1|. Our new

method offers a straightforward way to obtain quantitative results regarding the convergence rate.

Theorem 3.3. For Pre-LN, assume xf
k ∼ N (0, σ2I) independently for all k ∈ [N ], we have

xln
k+1 − xln

k ∼ N (0, ω2
k)I where ω2

k = 2√
k(

√
k−1+

√
k)

.

Proof. As xf
k ∼ N (0, σ2I), we have xa

k =
∑k−1

j=1 x
f
j thus xa

k ∼ N (0, (k − 1)σ2I). For the

normalization layer, we approximate its effect as follows, xln
k =

xa
k√

k−1σ
. Then we have

xln
k+1 − xln

k =
xa
k+1√
kσ
− xa

k√
k − 1σ

=

√
k − 1−

√
k√

k(k − 1)σ
· xa

k +
1√
kσ
· xf

k .

We know that
√
k−1−

√
k√

k(k−1)σ
· xa

k ∼ N (0, (
√
k−1−

√
k)2

k I) and 1√
kσ
· xf

k ∼ N (0, 1
kI). Because xa

k and

xf
k are independent, we have ak+1−ak ∼ N (0, ω2

kI) and ω2
k = (

√
k−1−

√
k)2

k + 1
k = 2√

k(
√
k−1+

√
k)

.

Corollary 3.4. For each coordinate i of xln
k+1 − xln

k , we have E[|(xln
k+1 − xln

k )i|] ∼ O( 1√
k
)

From Corollary 3.4, we can see that the expectation of |(ak+1 − ak)i| decreases to 0 as k increases
to infinity with rate 1/

√
k. This means, when the number of layers increases, the inputs to later

layers will be similar to each other. Thus, the capability of the later layers are not fully used because
they cannot further refine the representations.

Corollary 3.5. When adding an extra layer to a N − 1 layer Pre-LN Transformer, the output differ-
ence E[|(yN − yN−1)i|] ∼ O( 1√

N
) for each coordinate i.

The proof of Corollary 3.5 is in Appendix C, it means that adding extra layer in the deep Pre-LN
Transformer has little impact on the output. Intuitively, this means the extra layer also cannot refine
the model outputs and the model’s capacity is not fully used.

3.3 ANALYSIS OF RESIDUAL

ResiDual Does Not Suffer From Gradient Vanishing Issue For the ResiDual architecture (Fig-
ure 1c), we can view it as a mixture of Post-LN Transformer and Pre-LN Transformer. Specifically,
in the forward process, ResiDual Transformer behaves exactly the same as Post-LN except adding
a dual branch of normalized sum of all block outputs in the end. In the backward process, the error
signal back-propagates through both branches. We can explicitly write down the gradients at block
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k as follows
∂L
∂wk

=

(
∂L
∂wk

)
post

+

(
∂L
∂wk

)
dual

, (4)

where
(

∂L
∂wk

)
post

denotes the gradient component from the Post-LN branch and
(

∂L
∂wk

)
dual

denotes

the gradient component from the dual branch. Specifically,(
∂L
∂wk

)
post

=
∂L

∂−→xN+1

(
N∏
l=k

∂−→x l+1

∂−→x ln
l

∂−→x ln
l

∂−→x l

)
∂−→x f

k

∂wk
=

∂L
∂−→xN+1

(
N∏
l=k

(
I +

∂−→x f
l

∂−→x ln
l

)
∂−→x ln

l

∂−→x l

)
∂−→x k

∂wk
,

and(
∂L
∂wk

)
dual

=
∂L

∂−→xN+1

(
N∏

l=k+1

∂−→x l+1

∂−→x l

)
∂−→x f

k+1

∂wk
=

∂L
∂−→xN+1

(
N∏

l=k+1

(
I +

∂−→x f
l

∂−→x ln
l

∂−→x ln
l

∂−→x l

))
∂−→x f

k

∂wk
.

We see that when k is small, the Pre-LN gradient component dominates and when k is close to N ,
the Post-LN gradient component dominates. It is safe to estimate the gradient norm of the k-th block
in ResiDual Transformer as follows,∥∥∥∥ ∂L

∂wk

∥∥∥∥
F

≈ max

{
O
(
(1/2)

(N−k)/2
e
√
N−k

)
,O
(√

log(N − k)·
N

)}
, (5)

where again we ignore the terms irrelevant with N, k. Therefore, the ResiDual architecture does
not suffer gradient vanishing problem. It is worthy to note gradient vanishing problem does not
directly relate to inefficient training because in Adam the actual update is rescaled to be normal even
if extreme small gradient is obtained. However, the gradient vanishing problem would affect the
stability of the Adam optimizer as we argue as follows.

In Figure 2(a), we show the gradient distribution for different methods. We can find that the Post-LN
has almost zero gradient for early layers, while the ResiDual (orange line) do not have such an issue.
The clearly shows that our method can ensure a lower-bound of the gradient norm. Meanwhile, note
that non of these models have the exploding-gradient issue. According to Theorem 3.1, the gradient
of last layer (i.e., k = N ) is not related to N .

ResiDual Does Not Suffer From Representation Collapse Issue. The Post-LN and ResiDual do
not have the representation collapse issue. Formally,

Theorem 3.6. In Post-LN and ResiDual, assume xf
k ∼ N (0, σ2I) independently for all k ∈ [N ],

the xln
k+1 − xln

k ∼ N (0, ω2) where ω is not related to k.
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Proof. As xln
k+1 = LN(xa

k) = LN(xln
k + xf

k), and xln
k ∼ N (0, I),xf

k ∼ N (0, σ2I), we have

xln
k+1 − xln

k =
xln
k + xf

k√
1 + σ2

− xln
k =

(1−
√
1 + σ2)xln

k + xf
k√

1 + σ2
.

Thus, xln
k+1 − xln

k ∼ N (0, ω2) where ω2 = 2− 2
√
1+σ2

1+σ2 and ω is not related to k.

Corollary 3.7. When adding an extra layer to a N − 1 layer Pre-LN Transformer, the output differ-

ence E[|(yN − yN−1)i|] ≥
√

2
πω for each coordinate i.

The proof of 3.7 is in the supplementary material. From these analyse, we can see that the variance
of xln

k+1 − xln
k will not decrease when the depth increases, so that later layers can continue refining

the hidden representation. Meanwhile, according to Corollary 3.7, the model output can also be
refined with a lower bound that not related to depth. In another words, ResiDual can avoid the
representation bottleneck of Pre-LN model. To demonstrate this, we also show the |xln

k+1−xln
k | for

different architectures in Figure 2(b). As the lines show, our method (orange line) has a consistent
value of |xln

k+1 − xln
k |, while the Pre-LN’s value will decrease when the depth is high.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Data We conducted experiments on three datasets: the IWSLT-14 English to German (EN→DE)
dataset (Cettolo et al., 2014), the WMT German to English (DE→EN) dataset (Bojar et al., 2014),
and the OPUS-100 multilingual dataset (Zhang et al., 2020). More details are in Appendix H.

Model Our model is implemented using the FairSeq (Ott et al., 2019) framework with conven-
tional settings as previous works. Notably, our method introduce only negligible parameters to the
vanilla Transformer network. Meanwhile, given that the residual connection operations have a rela-
tively small computational cost compared to Attention and FFN layers, the efficiency of our method
should not hinder its practical use. We empirically observed about 3% increase in computation cost.
Please refer to the Appendix H for hyper-parameters.

4.2 EXPERIMENTAL RESULTS ON IWSLT

Table 2: Experimental Results on IWSLT.

Method E6D6 E12D12
Post-LN 35.37 Fail
Pre-LN 35.12 35.18
DeepNet 35.34 35.39
Admin 35.50 35.67
T-Fixup 34.88 35.45
NormFormer 35.14 31.00

ResiDual(Ours) 35.63 36.09

The experimental results of the IWSLT’14 dataset are
presented in Table 2. Two types of models were used:
shallow models with 6-layer encoders and 6-layer de-
coders (E6D6), and deep models with 12-layer en-
coders and 12-layer decoders (E12D12). We made
the following observations:

Firstly, the Post-LN method was successful in con-
verging for E6D6 but not for E12D12. Secondly, the
Pre-LN method converged in both depths, but its per-
formance (35.12, 35.18) was inferior to that of the
Post-LN E6D6 (35.37) or our E6D6 (35.63). Thirdly,
the methods such as DeepNet (Wang et al., 2022a)
and Admin (Liu et al., 2020) only showed a slight im-
provement over the vanilla models, and our method
achieved best performance. Especially, in E12D12, we have 0.9-point BLEU gain over the standard
Pre-LN model. Our preliminary experiments revealed that increasing the model depth further led to
over-fitting issues for all models due to limited data. Therefore, we do not report 18 layer model
results on this dataset.

4.3 EXPERIMENTAL RESULTS ON WMT

8
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Table 3: Experimental Results on WMT.

Method E6D6 E18D18
Pre-LN 26.10 26.57
Post-LN 26.59 Fail
DLCL 26.52 26.90

T-Fixup 26.43 26.94
DeepNet 26.38 27.13
Admin 26.49 26.86
B2T 26.53 27.30

ResiDual 26.85 27.65

The experimental results on shallow (E6D6) and deep
(E18D18) models are presented in Table 3. We only
report the average score here and more details can be
found in Table 6 and Table 7 in Appendix F. Firstly,
we find that the Post-LN model can only converge in
the E6D6 setting but not in E18D18 setting. Secondly,
the Pre-LN model shows convergence in both E6D6
and E18D18. However, the performance of the Pre-LN
model in E18D18 (26.57) is similar to Post-LN model
in E6D6 (26.59). Finally, our method achieved the best
performance for both shallow and deep models. Partic-
ularly, we observed an improvement over the Pre-LN
performance by 1.1-point for the E18D18 model.

4.4 EXPERIMENTAL RESULTS ON OPUS-100

Table 4: Experimental Results on OPUS-100.
∗Denotes The Results From Zhang et al. (2020).

Method #Layers EX XE ALL

Pre-LN∗
6 21.4 27.5 24.5

12 22.9 29.5 26.2
24 24.0 31.4 27.7

Pre-LN 18 27.9 32.8 30.3
DeepNet 100 29.0 33.2 31.1

ResiDual 18 28.7 33.4 31.0

We evaluate our method on the OPUS-100
dataset, which consists of 100 language pairs and
55M parallel sentence pairs. Because we trained
single model for both from English (EX) and
to English (XE) direction, the total data size is
about 110M sentence pairs and approximately 4
billion tokens. Table 4 shows the experimental
results. In addition to the original baselines pro-
vided by Zhang et al. (2020), we also reproduced
the 18-layer encoder and 18-layer decoder model
(E18D18). We found that the Post-LN model
failed to converge thus only show the Pre-LN re-
sults in Table 4. As we can see from the table,
our method achieves about 0.7 BLEU points over the standard Pre-LN model. The BLEU score is
almost identical to a 100-layer DeepNet (Wang et al., 2022a) model, which is about 5 times deeper
of our model. This demonstrates that our model can more effectively use deeper layers.

4.5 STUDY OF LEARNING-RATE WARM-UP

One of the objectives of our approach is to facilitate easy and stable training for Transformer models.
Therefore, we conducted experiments using different learning rate schedules on the IWSLT dataset.
Table 5 presents the results for various models with or without learning-rate warm-up. Further details
can be found in the Appendix G. We observe that Post-LN necessitates warm-up for convergence,
while Pre-LN and our method are not. This is consistent with our study in Section 3.

Table 5: Study on the Use of Learning-Rate Warm-Up.

Method Post-LN Pre-LN ResiDual
LR Warm-Up Yes No Yes No Yes No

E6D6 35.37 Fail 35.12 32.28 35.63 35.76
E12D12 Fail Fail 35.18 31.82 36.09 35.57

5 CONCLUSION

This research is to advance the Transformer architecture and offers an effective strategy for optimiz-
ing it with enhanced performance. This paper first examines the limitations of two widely employed
variants, and introduces a novel approach, referred to as ResiDual, to mitigate both issues. ResiD-
ual consists two residual connections to circumvent the gradient vanishing and the representation
collapse problem. Theoretical analysis and empirical results validates that the suggested model can
surmount both challenges while preserving the advantages of each residual connection.

9
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REPRODUCIBILITY STATEMENT

The complete proof can be found in Appendix A, B, C, and D. The detailed process to build Fig-
ure 2 is in Appendix E. Our code is anonymously available at https://anonymous.4open.
science/r/residual_review-6F08. Meanwhile, you can refer Appendix H for implemen-
tation details like data processing scripts and hyper parameters.
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A PROOF OF THEOREM 3.1

Proof. For the Post-LN Transformer, the gradient of the parameters in the k-th layer (take Wk as an
example) can be written as
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We care about the spectral norm of the term ∂−→x ln
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for different blocks.

For the feedforward layer and attention layer, we respectively have l ∈ [N ],
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based on the setup of the feedforward layer and attention layer at the initialization. For the layer
normalization layer, we have
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as we assume on the Jacobian of layer normalization.

We note that I +
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are block-circulant matrices for all l and the product of block-circulant
matrices is also block-circulant. We know a block-circulant matrix has the following property∥∥∥∥∥∥∥∥
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where wl represents either WV,l or Wl. We know that with high probability, ∥xa(i)
l ∥2 ∈ (1±ϵ)

√
2d

where ϵ is a small positive constant, based on the assumption ∥xln(i)
l ∥2 =

√
d and the random

initialization of wl for all i ∈ [n]. Thus we have a term
(∏N

l=k

√
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l ∥2

)
≈ O

(
(1/2)(N−k)/2

)
.

Moreover, based on the random matrix argument Zhang et al. (2022), we have with high probability,∥∥∥∥∥
N∏
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(I +wT
l )
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2

≈ O(e
√
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Therefore, we have ∥ ∂L
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N−k), which diminishes exponentially as N−k

is large.

On the other hand, we have the bound for Pre-LN transformer as follows.
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where the last inequality is based on the argument for the product of random matrices (Zhang et al.,
2022). Therefore, by further being aware of ∥ ∂y
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B STUDY OF ADAM

The Adam update formula is

w(t) ← w(t−1) − α · m̂(t)/(
√
v̂(t) + ϵ)
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2)

m(t) ← β1 ·m(t−1) + (1− β1) · g
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The full expression of u′(gt,i) is
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When the gradient g = 0, we have
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Figure 3: The absolute condition number κ̂ w.r.t t (left) and σg (right).

To simulate the Adam update and compute the κ̂, we use the parameter as d = 1024, ϵ = 10−6, β1 =
0.9, β2 = 0.98, α = 10−4. Then for each step, we random first sample g ∼ N (0, σ2

gI), can
compute the κ̂ based on full Equation (6). Finally, we update the Adam momentum with its update
rules. In Figure 3, we show the simulated results by sampling g ∼ N (0, σ2

gI) where σg ranges
from 0 to 10−7. In the left plot, we show how κ̂ change w.r.t t for different σg . We can find that our
estimation of κ̂ is accurate as most of lines are overlaped. Besides, it also show that even after 20
steps update, the κ̂ is still greater than 300. As many lines overlapped in the left plot, on the right
side, we show a zoomed-in view by selecting five timestamp ans show the κ̂ w.r.t to σg . It is clear
that κ̂ is large when σg is small.

C PROOF OF COROLLARY 3.5

Given two Pre-LN Transformer with N − 1 and N layers, we denote their output as yN−1 and yN ,
respectively. Then we have

yN−1 = LN(xa
N−1 + xf

N−1) = xln
N

yN = LN(xa
N + xf

N ) = xln
N+1

|yN − yN−1| = |xln
N+1 − xln

N |

From Corollary 3.4, we can approve that E[|(yN − yN−1)i|] ∼ O( 1√
N
).

D PROOF OF COROLLARY 3.7

Proof.
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is also a zero-mean Gaussian distribution, which can be denoted as

N (0, ω̂2
N ). Then we have yN − yN−1 ∼ N (0, ω2 + ω̂2

N ). Therefore,
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E HOW TO GET THE FIGURE 2

We created Transformer networks with 36 layers using different architectures: Pre-LN, Post-LN, and
ResiDual. The embedding dimension, FFN dimension, and the number of attention heads were set to
256, 1024, and 4, respectively. We used the fairseq framework without modifying any initialization
settings. We then created a dummy mini-batch with 16 sentences and 20 tokens per sentence. Next,
we conducted a forward and backward process to collect the gradient norm and xln

k of each layer. We
hope this clarifies how we generated Figure 2, and we are happy to provide more details if needed.

F FULL RESULTS ON WMT DATASET

The full results on WMT dataset is in Table 6 and Table 7. The baseline results are cited from Takase
et al. (2022).

Method 2010 2011 2012 2013 2014 2015 2016 Average
Pre-LN 24.03 21.77 22.08 25.63 26.27 29.07 33.84 26.10
Post-LN 24.27 22.06 22.43 26.11 27.13 29.70 34.40 26.59
DLCL 23.94 22.00 22.24 26.11 27.37 29.71 34.26 26.52
T-Fixup 24.09 21.98 22.04 25.96 26.92 29.45 34.56 26.43
DeepNet 24.08 21.76 22.09 25.90 26.85 29.62 34.39 26.38
Admin 24.32 21.79 22.17 26.26 27.14 29.61 34.12 26.49
B2T 24.12 21.93 22.29 26.31 26.84 29.48 34.73 26.53

ResiDual(Ours) 24.42 22.20 22.66 26.64 27.23 30.22 34.55 26.85

Table 6: Experimental Results on WMT with E6D6 models.

Method 2010 2011 2012 2013 2014 2015 2016 Average
Pre-LN 24.07 21.98 22.4 26.28 27.36 29.74 34.16 26.57
Post-LN Fail
DLCL 24.20 22.51 22.83 26.59 27.97 30.24 33.98 26.90
T-Fixup 24.45 22.29 22.76 26.57 27.71 30.13 34.69 26.94
DeepNet 24.70 22.40 22.92 26.85 28.21 30.60 34.25 27.13
Admin 24.56 22.17 22.62 26.48 27.99 30.35 33.88 26.86
B2T 24.62 22.51 22.86 26.74 28.48 30.99 34.93 27.30

ResiDual(Ours) 24.85 22.76 23.18 27.60 28.79 31.12 35.24 27.65

Table 7: Experimental Results on WMT E18D18 models.

G FULL RESULTS ON LEARNING-RATE WARM-UP

The full results on learning-rate warm-up is in Table 8.

H IMPLEMENTATION DETAILS

H.1 DATA PROCESSING

The IWSLT-14 EN→DE dataset is relatively small, with only 140k sentence pairs. We followed the
scripts in FairSeq (Ott et al., 2019) to preprocess the data. The WMT DE→EN dataset is larger, with
4M sentence pairs. We followed the preprocessing steps outlined in Takase & Kiyono (2021) by to-
kenizing the data with Moses tokenizer and then processing it with BPE (Sennrich et al., 2016). The
model was trained on the WMT-14 training set and evaluated on the test set from years 2010 to 2016,
following Takase & Kiyono (2021). The OPUS-100 dataset is a large-scale multilingual dataset con-
taining 100 languages and approximately 55M sentence pairs. We used the script from Zhang et al.
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Method Learing-Rate Scheduler E6D6 E12D12
Warm-up Decay Formula

Post-LN Yes Inverse Square Root 35.37 Fail
Post-LN No Inverse Square Root Fail Fail
Post-LN No Linear Fail Fail

Pre-LN Yes Inverse Square Root 35.12 35.18
Pre-LN No Inverse Square Root 32.28 31.82
Pre-LN No Linear 32.26 31.85

ResiDual(Ours) Yes Inverse Square Root 35.63 36.09
ResiDual(Ours) No Inverse Square Root 35.76 35.57
ResiDual(Ours) No Linear 35.96 35.72

Table 8: Experimental Results on IWSLT with different learning-rate scheduler.

(2020) to tokenize the data and used SentencePiece (Kudo & Richardson, 2018) to segment the to-
kens. All data processing scripts are available in the Appendix. Because we train our model for both
to and from English directions, the total training data is about 110M .

The data processing scripts are

• IWSLT: https://github.com/facebookresearch/fairseq/blob/main/
examples/translation/prepare-iwslt14.sh

• WMT: https://github.com/facebookresearch/fairseq/blob/main/
examples/translation/prepare-wmt14en2de.sh

• OPUS-100: https://github.com/bzhangGo/zero

H.2 HYPER-PARAMETERS

The training hyper-parameters are in Table 9, 10, and 11.

Parameter Value

Dropout 0.3
Embedding dim 256

FFN dim 1024
Attention heads 4
Encoder layers 6/12
Decoder layers 6/12
Learning rate 5 ∗ 10−4

Learning rate scheduler inverse sqrt
Warm-up steps 4000

Label smoothing 0.1
Weight decay 0.0001

Gradient clipping 0
Adam β 0.9, 0.98

Max update steps 300k

Table 9: Hyper-parameters of IWSLT training

H.3 IMPLEMENTATION TRICK ON FP16 TRAINING

In ResiDual, sometimes the xd
k will exceed the value range that can be expressed by FP16 and may

cause training error. When this happens, a simple numeric trick is to downscale xd
k to make is within

the FP16 scope. This will not affect the results because LN(xd
N+1) = LN(η · xd

N+1) for any η > 0.
We did not observe such an issue in FP32 training.
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Parameter Value

Dropout 0.3
Embedding dim 512

FFN dim 2048
Attention heads 8
Encoder layers 6/18
Decoder layers 6/18
Learning rate 1 ∗ 10−3

Learning rate scheduler inverse sqrt
Warm-up steps 4000

Label smoothing 0.1
Weight decay 0.0001

Gradient clipping 0
Adam β 0.9, 0.98

Max update steps 500k

Table 10: Hyper-parameters of WMT training

Parameter Value

Dropout 0.1
Embedding dim 512

FFN dim 2048
Attention heads 8
Encoder layers 18
Decoder layers 18
Learning rate 1 ∗ 10−3

Learning rate scheduler inverse sqrt
Warm-up steps 4000

Label smoothing 0.1
Weight decay 0.0001

Gradient clipping 0
Adam β 0.9, 0.98

Max update steps 100k

Table 11: Hyper-parameters of OPUS-100 training
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