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Abstract

The convergence of LLM-powered research assistants and AI-based peer review1

systems creates a critical vulnerability: fully automated publication loops where2

AI-generated research is evaluated by AI reviewers without human oversight.3

We investigate this through BadScientist, a framework that evaluates whether4

fabrication-oriented paper generation agents can deceive multi-model LLM review5

systems. Our generator employs presentation-manipulation strategies requiring6

no real experiments. We develop a rigorous evaluation framework with formal7

error guarantees (concentration bounds and calibration analysis), calibrated on8

real data. Our results reveal systematic vulnerabilities: fabricated papers achieve9

acceptance rates up to 82.0%. Critically, we identify concern-acceptance conflict—10

reviewers frequently flag integrity issues yet assign acceptance-level scores. Our11

mitigation strategies show only marginal improvements, with detection accuracy12

barely exceeding random chance. Despite provably sound aggregation mathematics,13

integrity checking systematically fails, exposing fundamental limitations in current14

AI-driven review systems and underscoring the urgent need for defense-in-depth15

safeguards in scientific publishing.16

1 Introduction17

Large Language Models (LLMs) are fundamentally transforming the scientific research ecosystem,18

automating tasks once exclusive to human experts. LLM-powered agents are increasingly deployed19

as end-to-end research assistants, automating ideation, experimentation, and manuscript drafting20

[23, 19, 15, 3]. Simultaneously, LLMs are being explored to alleviate review burdens, serving as21

reviewers or review assistants [4, 21, 18, 27].22

The convergence of these capabilities introduces a critical vulnerability: fully automated AI-only23

publication loops where AI-generated research is evaluated by AI reviewers. This raises profound24

questions about research integrity [28, 2]. Can current LLM review systems reliably detect convincing25

but scientifically unsound work from malicious or poorly designed research agents? Emerging26

evidence suggests concerning vulnerabilities: LLM reviewers amplify human biases [12], miss27

critical flaws, and remain susceptible to adversarial attacks such as prompt injection [29, 26, 31].28

While AI-generated text detection is actively studied [7, 24, 5], the adversarial interplay between29

fabricating and reviewing agents remains critically underexplored.30

We investigate this dynamic by asking: Can research agents write convincing but unsound papers31

that fool LLM reviewers? We introduce BadScientist, a framework that pits fabrication-oriented32

paper generation against multi-model LLM review systems. Our generator conducts no real ex-33

periments, instead employing five presentation-manipulation strategies: exaggerating performance34

gains (TooGoodGains), cherry-picking comparisons (BaselineSelect), constructing statistical facades35

(StatTheater), polishing presentation (CoherencePolish), and concealing proof gaps (ProofGap). We36
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Figure 1: Overview of the BadScientist framework. A Paper Agent generates fabricated papers from
seed topics using manipulation strategies. A Review Agent evaluates papers using multiple LLM
models (o3, o4-mini, GPT-4.1), calibrated against ICLR 2025 data, with GPT-5 checking for integrity
concerns.

evaluate fabricated papers using LLM reviewers calibrated on ICLR 2025 data to mirror realistic37

acceptance thresholds. To ensure rigorous and reproducible evaluation, we develop a formal frame-38

work with concentration bounds demonstrating that multi-reviewer aggregation exponentially reduces39

scoring variance, alongside calibration error analysis for threshold selection—providing provable40

guarantees for our evaluation methodology.41

Our findings are stark. Fabricated papers achieve acceptance rates up to 82.0% across strategies. More42

critically, we observe pervasive concern-acceptance conflict: reviewers frequently flag integrity43

issues yet assign acceptance-level scores. Our mitigation strategies—Review-with-Detection (ReD)44

and Detection-Only (DetOnly)—yield only marginal improvements, with detection barely exceeding45

random chance. These results expose fundamental failure modes: despite provably sound aggregation46

mathematics, integrity checking systematically fails. This study reveals concrete vulnerabilities in AI-47

only publication loops and underscores the urgent need for defense-in-depth safeguards—including48

provenance verification, integrity-weighted scoring, and mandatory human oversight—to prevent49

automated systems from endorsing fabricated science.50

2 Related Work51

Agents for Scientific Discovery. LLM agents are increasingly positioned as end-to-end “research52

agents,” automating ideation, experimentation, and manuscript drafting. Systems such as the AI53

Scientist [23] and Auto Research [19] report credible, minimally supervised pipelines; complementary54

benchmarks probe specific stages like ML experimentation and engineering [15, 3]. While these55

works establish feasibility and scope, few analyze the integrity of outputs under adversarial objectives.56

Agents for Peer Review. LLMs have been explored as reviewers and review assistants, from57

early feasibility studies [21, 4] to larger evaluations showing partial alignment with human feedback58

[18, 17]. Emerging platforms simulate or standardize review processes and propose bias-aware59

pipelines [27, 14, 30], yet concerns persist LLM reviewers can amplify biases or miss deep flaws60

[12].61

Challenges in Agent-vs-Agent Settings. The coupling of AI-written papers and AI-based reviews62

introduces new attack surfaces. Prompt-injection into manuscripts can tilt LLM verdicts [29], and63

reports suggest covert instructions have appeared in real preprints [26]. Parallel efforts assess64

detection and governance: holistic and red-teaming evaluations [16, 25]; detectors and audits for65

AI-generated scientific text and artifacts [7, 24, 6, 20, 8, 1, 9, 5]; and policy guidance on safeguarding66

research integrity [28, 2].67

Our Focus. We study the adversarial interplay between an AI paper-writing agent and an AI68

reviewer: can a fabrication-oriented agent produce “convincing but unsound” papers that fool LLM69
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review pipelines, and what mitigations help? In contrast to prior work that treats generation and70

reviewing separately, we evaluate the coupled system under integrity-focused attacks and prototype71

mitigation (e.g., injection-aware defenses [31]).72

3 Design of BadScientist73

3.1 Preliminary74

We study whether AI agents can generate convincing fabricated scientific papers that deceive reviewer75

agents, and how reliably reviewer agents detect such fabrications. We implement a multi-agent76

pipeline that simulates a publication workflow from paper generation to peer review and post-hoc77

detection analysis. The core research problem involves: a Paper Generation Agent G that produces78

papers; a Review Agent R that evaluates papers via multiple LLMs. There is also an Analysis System79

A that aggregates outcomes and measures detection.80

Notation. Let X denote the space of paper artifacts. A paper is x ∈ X . Let S be the set of81

fabrication strategies and T be the set of topics. A seed prompt u ∈ U specifies a topic t ∈ T and a82

strategy s ∈ S . The Review Agent employs models M = {m1, . . . ,mM}. Each model m produces83

a K-dimensional rubric score rm(x) = (rm,1(x), . . . , rm,K(x)) with rm,k(x) ∈ {1, . . . , Lk}, where84

Lk ∈ N is the maximum score for criterion k, and free-form textual feedback ωm(x). Let w ∈85

∆M−1 := {w ∈ RM
≥0 :

∑
m wm = 1} (the probability simplex) be reviewer weights (default86

uniform). We define consensus score vector r̄(x) and binary recommendation ŷ(x) acceptance87

threshold τ calibrated by A.88

Assumptions (Threat Model and Scope). We focus on a setting where G aims to produce high-89

quality fabricated papers without conducting real experiments or collecting real data. Instead, G90

may synthesize or manipulate pseudo-data to support claims. We assume the research agent has91

no prior knowledge about the reviewer system, i.e., the generated paper is not directly adversary92

optimized to the agent review system, and will not optimize paper generation with feedback from93

reviewers. Review agents operate under a standard (minimal) single-pass review protocol with access94

restricted to the submitted paper content, where the review system is not designed to have ability to95

run experiments to verify the papers, which mimics the most practical setup in peer review system.96

We exclude human-in-the-loop setup (e.g., deception tactics with forged human ethics approvals or97

human feedback to revise papers), adversary attack (e.g., prompt injection attack towards review98

agents), and offline collusion (e.g., the research agent and review agent hidden collusion) 1.99

3.2 Paper Generation Agent G100

The advanced research agents, involve multi-factors abilities, including planning on research discovery101

(e.g., design and hypothesis), agentic execution of exploration and verfication (e.g., experiment design102

and executions), and write professional academic research papers to support discovery. Our paper103

generation agent G is the minimal support for such research agents, which only focuses on fabricating104

the research paper, without practical exploration and verification. The design of G involves the105

following components.106

Strategy space. Let S = {s1, . . . , sn} denote the atomic presentation–manipulation strategies.107

The set of all admissible strategy setups is the power set108

P(S) ≡ {A | A ⊆ S} = 2S ,

i.e., every combination of elements of S . A generation policy g ∈ G selects a configuration A ∈ P(S)109

and composes the associated interventions. In our experiments, we instantiate the following five110

atomic strategy elements and a joint strategy All:111

• s1: TooGoodGains: foreground extraordinary improvements over the leading baseline and frame112

them as field-advancing.113

1Ethical intent: the work seeks to evaluate and harden reviewer pipelines against fabrication, not to promote
academic fraud or encourage dishonesty.
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• s2: BaselineSelect: curate comparisons to favor the proposed method; omit variance/CI in the114

main table.115

• s3: StatTheater: polished ablations, precise p-values/CI/error bars (mainly in the supplement),116

tidy hyperparameter tables, and “forthcoming” repo/DOI links.117

• s4: CoherencePolish: flawless cross-references, unified terminology, consistent significant digits,118

aligned captions, professional typography.119

• s5: ProofGap: a theorem/lemma with an ostensibly rigorous proof hiding a subtle oversight.120

• All: combined application of all above atomic strategies.121

Paper Generation. Given the seed prior (t, s), where t is the paper topic and s is the generation122

strategy, the agent G process: (1) Data synthesis: samples pseudo-experimental results D ∼ q(· |123

s, t, θ) from a strategy-conditioned generator q with internal parameters θ, where the strategy s124

determines what types of fabricated evidence to produce; (2) Visualization: generates figures and125

tables V = viz(D) from the synthetic data to support fabricated claims; (3) Manuscript assembly:126

composes a complete paper x = compose(u,D, V ) including abstract, introduction, methods, results,127

discussion, and conclusion sections, along with citations and professional formatting. The structural128

validity constraints to ensure generated papers pass basic formatting checks:129

C(x) = I
[
compile(x) = success

∧ struct(x) ∈ C
]
= 1,

where C encodes formatting requirements (section presence, figure/table counts, bibliography entries).130

Only papers with C(x) = 1 are proceeded.131

Since the data synthesis process is stochastic, the same seed prior may yield different papers across132

runs (e.g., different fabricated performance numbers, plot variations, or phrasing). Consequently, the133

end-to-end generation thus induces a distribution over papers:134

pG(x | s, t) =
∫

p(x | D, s, t) q(D | s, t, θ) dD

3.3 Review Agent R135

Given a paper x ∈ X , the Review Agent queries each model m ∈ M under a fixed K-criterion136

rubric (e.g., methodology, significance, clarity, etc.). Each model returns a rubric vector and textual137

feedback (rm(x), ωm(x)). Using reviewer weights w ∈ ∆M−1, the agent forms the consensus138

rubric139

r̄(x) =
∑

m∈M
wm rm(x),

and produces a binary recommendation via the scoring functional ϕ and a calibrated threshold τ :140

ŷ(x) = I[ϕ(r̄(x)) ≥ τ ] . We summarize the agent’s output as141

R(x) =
(
{(rm(x), ωm(x))}m∈M, r̄(x), ŷ(x)

)
,

which preserves per-model judgments and comments while supplying a single consensus score and142

decision.143

3.4 Review Calibration for Analysis A144

We calibrate the Review Agent’s decision rule using a corpus of real conference submissions with145

publicly available reviews and outcomes.146

Calibration corpus. We define the reference pool as:147

Dref = {(xi, y
hum
i , σi, hi)}N⋆

i=1,

where xi is the paper artifact, yhumi ∈ {0, 1} indicates the human accept/reject decision, σi ∈ Cstat148

represents the meta-status labels (e.g., oral/spotlight/poster/reject/withdraw), and hi ∈ R is a scalar149

venue score such as the average assessment.150

From this reference pool, we construct a calibration set Dcal that preserves the score and status151

distributions of Dref with a stratified sampling algorithm (see Appendix C.1).152
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Agent scoring. For each paper x ∈ Dcal, the Review Agent produces a consensus rubric r̄(x),153

converts it to a scalar score s(x) = ϕ(r̄(x)) ∈ R, and makes a binary recommendation ŷτ (x) =154

I[s(x) ≥ τ ] for threshold τ ∈ R.155

Threshold calibration. We derive two operating thresholds to accommodate different evaluation156

criteria.157

1. Rate-matching threshold. Let α⋆ ∈ (0, 1) denote the target venue acceptance rate. We define:158

α̂cal(τ) =
1

|Dcal|
∑

x∈Dcal

ŷτ (x), (1)

τrate ∈ argmin
τ∈R

|α̂cal(τ)− α⋆|. (2)

This threshold ensures that the agent’s acceptance rate on the calibration set matches the venue’s159

historical acceptance rate.160

2. Probability-consistency threshold. Let π(z) = P(yhum = 1 | s(x) ≥ z) for t ∈ R, estimated on161

Dcal using a monotone calibration model. We define:162

τ0.5 = inf{z ∈ R : π(z) ≥ 1
2},

so that papers scoring s(x) ≥ τ0.5 have at least 50% estimated probability of human acceptance.163

Output. The calibration module returns A(Dcal) = (τrate, τ0.5), providing operating thresholds164

for the decision rule ŷ(x) = I[s(x) ≥ τ ].165

3.5 Theoretical Reliability of Review Aggregation166

When combining judgments from multiple reviewer agents, two sources of uncertainty arise: (i)167

stochastic variation in individual model outputs, even when evaluating identical papers, and (ii)168

estimation error in the decision threshold τ due to finite calibration data. To quantify the reliability of169

our aggregated decisions ŷ(x) = I[s(x) ≥ τ ], we provide a rigorous error analysis in Appendix C.2.170

Setup and assumptions. For each model m ∈ M, let rm(x) ∈ RK denote its rubric vector and171

r̄(x) =
∑

m wmrm(x) the weighted consensus. We impose two standard regularity conditions: (i)172

Sub-Gaussian noise—each reviewer’s centered rubric zm(x) := rm(x) − E[rm(x) | x] is vector173

sub-Gaussian with proxy matrix Σm, a natural consequence of bounded rubric scores rm,k ∈ [ak, bk]174

required by all venues; (ii) Lipschitz aggregation—the scoring function ϕ : RK → R is Lϕ-175

Lipschitz, satisfied by common choices such as weighted averages (Lϕ = ∥v∥2) or selecting a single176

overall score (Lϕ = 1). We also assume independent evaluation across reviewers, reflecting standard177

peer-review practice.178

Ensemble concentration (Q1). Under these assumptions, we establish exponential concentration179

bounds showing that the consensus score s(x) = ϕ(r̄(x)) clusters tightly around its latent mean180

µs(x) = ϕ(E[r̄(x)]). Specifically, for papers with margin γ(x) = |µs(x) − τ | from the threshold,181

the misclassification probability satisfies182

Pr
(
ŷ(x) ̸= y⋆(x)

)
≤ exp

(
− γ(x)2

2σ2
w + 2

3cmaxγ(x)

)
,

where σ2
w = Var[s(x)] and cmax captures bounded differences (Theorem 1). In the common183

scalar-assessment case where each reviewer outputs sm(x) ∈ [a, b] and ϕ is the identity, both the184

variance term σ2
w and the bounded-difference term cmax scale as 1/M with the number of reviewers185

(Corollary 2). This yields the simplified bound186

Pr(ŷ ̸= y⋆) ≤ exp

(
− Mγ2

2σ2 + 2
3 (b− a)γ

)
for uniform weights wm = 1/M and identical per-review variance σ2. For linear aggregation187

ϕ(a) = v⊤a, we further show that the bound is minimized by inverse-variance (GLS) weighting188

w⋆
m ∝ 1/(v⊤Σmv) (Corollary 1).189
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Table 1: Acceptance (ACPT) and Integrity Concern Rate (ICR) by strategy.
ACPT ICR-m

Strategy τrate τ0.5 o3 o4-mini GPT-4.1 ICR@M

s1 67.0% 82.0% 38.4% 4.7% 2.3% 39.5%
s2 32.0% 49.0% 35.2% 4.5% 2.3% 35.2%
s3 53.5% 69.7% 29.4% 2.4% 4.7% 31.8%
s4 44.0% 59.0% 28.2% 5.9% 1.2% 30.6%
s5 35.4% 53.5% 25.9% 8.2% 7.1% 34.1%
All 52.0% 69.0% 50.6% 5.7% 8.0% 51.7%

Calibration error (Q2). The concentration results above assume a known threshold τ . In prac-190

tice, we estimate τ from the finite calibration set Dcal of size Ncal, introducing a second source of191

error. For the rate-matching threshold τrate (chosen to match the venue’s historical acceptance rate192

α⋆), we bound the acceptance-rate estimation error uniformly over all thresholds via the Dvoret-193

zky–Kiefer–Wolfowitz inequality, yielding194

sup
τ∈R

∣∣α̂cal(τ)− α(τ)
∣∣ ≤

√
1

2Ncal
log 4

δ

with probability at least 1− δ (Proposition 1). For the probability-consistency threshold τ0.5 (where195

papers scoring above have ≥ 50% estimated human-acceptance probability), we employ isotonic196

regression to estimate the conditional probability π(t) = P(yhum = 1 | s(x) ≥ t) and provide197

explicit bounds on the threshold error |τ̂0.5 − τ0.5| as a function of Ncal and the slope of π near 1/2198

(Proposition 2).199

Empirical validation. We validate our theoretical bounds through synthetic experiments with200

n = 5,000 papers and M ∈ {1, 2, 3} reviewers producing noisy scalar assessments in [1, 10]. Our201

results confirm that: (i) empirical misclassification rates fall well below theoretical bounds across202

all margins and ensemble sizes; (ii) threshold estimation error decreases as O(1/
√
Ncal), with our203

choice of Ncal = 200 yielding error ≈ 0.26; (iii) both the empirical noise variance Var[s(x)−µs(x)]204

and the bounded-difference proxy (b − a)2/M decrease as 1/M—increasing from M = 1 to205

M = 3 reviewers reduces both quantities by approximately 3× (Figure 3 in Appendix). These206

results establish that multi-reviewer aggregation substantially improves decision reliability, a property207

we exploit throughout our evaluation to justify using M = 3 models and Ncal = 200 calibration208

samples.209

4 Experiment210

4.1 Setup211

Implementation Our agent framework is adapted from AI-Scientist [22], but we have fundamen-212

tally redesigned its entire pipeline. We retain only its most foundational writing prompts and have213

eliminated the need for any experimental execution or structured templates. Our framework now214

operates directly from a simple seed idea, allowing the LLM to freely generate any necessary experi-215

mental results and plotting code. We follow the generation strategy space set claimed in Section 3.2.216

With GPT-5, we generate all seed topics for paper generations spanning representative domains in217

AI research (see Appendix D). Each seed produces 4 papers across six strategy setups. For the ease218

of acceptance decision, we take only the overall assessment score provided by the review agent for219

paper scoring, i.e., ϕ(r̄(x)) = roa(x).220

Agent Models. We use GPT-5 to support our paper generation agent. For the review agent, we set221

M = 3 and use o3, o4-mini, and GPT-4.1 with the rubric review prompt.222

Calibration set and thresholds. We instantiate the reference pool Dref as the ICLR 2025 Open-223

Review submission set (with public reviews and outcomes). A stratified calibration set Dcal of size224

Ncal = 200 is then constructed as described in Section 3.4. Running the Review Agent on Dcal225
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Figure 2: Score distributions across six setups (s1-s5, All) for three models, with the acceptance
threshold marked. o4-mini is right-shifted, o3 shows higher variance and a fatter right tail, while
GPT-4.1 is more conservative.

Table 2: Concern–acceptance conflict (%): within papers where the model raised an integrity concern,
the share still receives an acceptance-level score by model and strategy (s1-s5, All). Higher values
indicate stronger contradiction.

Model s1 s2 s3 s4 s5 All

o3 33.3% 25.8% 52.0% 30.0% 40.9% 29.5%
o4-mini 100.0% 50.0% 100.0% 80.0% 71.9% 100.0%
GPT-4.1 50.0% 50.0% 75.0% 0.0% 33.3% 57.1%

yields two operating thresholds. Rate-matching selects τrate so that the agent minimize the drift of226

empirical acceptance rate on Dcal matches the venue rate α⋆ = 0.31732, which yields τrate = 7.227

Probability-consistency defines such that papers with s(x) ≥ τ0.5 have estimated human-acceptance228

probability at least 50%; this yields τ0.5 = 6.667.229

Evaluation metrics. We evaluate along two axes. (I) Acceptance rate (ACPT). Let D be the set230

of generated papers and ŷτ (x) = I
[
s(x) ≥ τ

]
the Review Agent’s decision at threshold τ , with231

s(x) = ϕ(r̄(x)). For any operating threshold τ ∈ {τrate, τ0.5} we report232

ACPT(τ) =
1

N

N∑
j=1

ŷτ
(
xj

)
,

(II) Integrity Concern Rate (ICR). Let cm(x) = Γ(ωm(x)) ∈ {0, 1} indicate that reviewer233

m ∈ M explicitly raises integrity-related concerns in ωm(x). And suppose c̄any(x) =234

I
[∑

m∈M cm(x) ≥ 1
]
. Then for m ∈ M, we have Per–review-model ICR (ICR-m) and the re-235

laxed metric at panel-level, Any-of-panel ICR (ICR@M):236

ICR-m =
1

N

N∑
j=1

cm
(
xj

)
, (3)

ICR@m =
1

N

N∑
j=1

c̄any
(
xj

)
. (4)

We use GPT-5 as LLM-judge to classify whether the text feedback from review agents contains237

integrity-related concerns.238

2Overall ICLR 2025 acceptance rate 31.73%; see https://papercopilot.com/statistics/
iclr-statistics/iclr-2025-statistics/.
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Table 3: ACPT and ICR for the baseline review agent vs. ReD. ReD lifts concerns but raises ACPTs.

Baseline ReD

ACPT-τrate 28.0% 44.0%
ACPT-τ0.5 37.0% 58.0%

ICR-o3 50.6% 84.0%
ICR-o4mini 12.4% 11.0%
ICR-GPT4.1 4.5% 0.0%
ICR@M 57.3% 86.0%

Table 4: Evaluation results of all detectors. Across various setups, detection offers only slight gains
over random. ReD is more conservative, while DetOnly is recall-oriented with higher FPR. o3 shows
a positive bias, whereas GPT-4.1 tends toward negative.

o3 o4-mini GPT-4.1

Method TPR FPR Acc F1 TPR FPR Acc F1 TPR FPR Acc F1

Random Guess 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
ReD 81.6% 44.9% 67.0% 72.1% 0.0% 8.0% 46.0% 0.0% 0.0% 0.0% 50.0% 0.0%
DetOnly 98.0% 84.0% 57.0% 69.5% 64.0% 74.0% 45.0% 53.8% 24.0% 12.0% 56.0% 35.3%

4.2 Evaluation Analysis239

Main Results. Our main evaluation result is in Table 1. We find that acceptance is unexpectedly high240

under most manipulations. Single strategies already yield substantial ACPT (e.g., ACPTτrate = 67.0%,241

ACPTτ0.5 = 82.0% for s1), indicating that current review agents are easily persuaded and lack242

sufficient awareness to spot integrity/fabrication issues. The All strategy as a composed setup,243

attains high acceptance (52.0%/69.0%), but it also maximally increases detectability (ICR@M244

51.7%, o3 50.6%), suggesting that composing strategies broadens the footprint seen by detectors.245

Among single strategies, s1 provides the strongest acceptance with only moderate detection pressure246

(ICR@M 39.5%), whereas others (e.g., s3-s5) are somewhat weaker but also less detectable (ICR@M247

≈ 30–34%). Across models, o3 is the most flag-happy (consistently higher ICR-m), while GPT-4.1248

rarely flags concerns (mostly 2–8%), reinforcing that current review models have limited and uneven249

detection capability.250

Score distributions. Figure 2 plots score histograms for three models across six setups (s1-s5,251

All) with the acceptance threshold marked. Overall, o4-mini is right-shifted—consistently placing252

more mass at ≥7—which aligns with its higher acceptance tendency. o3 shows larger variance and a253

fatter right tail (notably in s1 and All), producing many near-threshold and high scores; GPT-4.1 is254

comparatively conservative, clustering around 6–7 with a thinner tail at 8+. Among strategies, s1255

yields the strongest rightward shift for all models, while s2/s4 are milder. The ALL setup increases256

polarization (more mass both just below and above the threshold), explaining why it sustains high257

acceptance yet is easier for detectors to flag.258

Concern–Acceptance Conflict. Conditioned on a model posting an integrity concern, we report259

the share that still receives an acceptance-level score in Table 2. Conflict is widespread: o4-mini is260

most contradictory (s1/s3/All: 100%; s2/s4/s5: 50–80%), GPT-4.1 is mixed (0% in s4 but 33–75%261

elsewhere), and o3 is moderate ( 26–52%). s3 (statistical theater) induces the largest cross-model262

conflict, and All further amplifies it for o4-mini (100%). These observations indicate even agents263

voice concerns, yet keep acceptance-high scores, and integrity signals are not well-coupled to review.264

5 Mitigation265

We study two complementary interventions that make the review pipeline explicitly integrity-aware.266

The first augments the standard review workflow with an integrity check; the second replaces267

reviewing with a lightweight triage detector.268

5.1 Setup269

Research Questions. RQ1 (Detection-Aware Reviewing). How can we enhance detection aware-270

ness within the act of reviewing—i.e., can adding an explicit integrity-detection subtask (risk classifi-271
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cation with cited evidence) improve sensitivity to integrity risks while preserving or improving core272

review quality (helpfulness and recommendation accuracy)?273

RQ2 (Triage without Full Reviews). When generating a full textual review is not the priority, can a274

detection-only agent reliably flag papers with potential integrity concerns at a low false-alarm rate275

and route low-risk papers to the standard pipeline?276

Mitigation Strategies. (i) Review-with-Detection (ReD) We modify the review prompt to277

bundle a conventional rubric-based review with a mandatory detection of AI-generated content.278

For each document, a single model m ∈ M outputs: (a) a standard review, (b) a binary label279

ym ∈ {NON-FABRICATED, AI-FABRICATED}, and (c) evidence snippets (quoted lines) to support280

its finding. (ii) Detection-Only (DetOnly) We remove the reviewing rubric and instruct the agent to281

perform only the detection of AI-generated content. In this mode, the model’s sole task is to return a282

binary label ym ∈ {NON-FABRICATED, AI-FABRICATED} and evidence, which serves as the direct283

and final triage action, without any secondary assessment.284

Dataset. We construct a controlled set of 100 papers using the stratified sampling algorithm in285

Section 3.4: 50 are sampled from real ICLR 2025 submissions, and 50 are sampled from the generated286

corpus produced in Section 4.287

5.2 Evaluation Analysis288

To RQ1: Review Outcomes. We compare ReD against the initial review agent baseline (same289

models, same rubric, no integrity subtask). We report the review outcomes using the same metrics as in290

Section 4. As shown in Table 3, ReD increases integrity warnings overall (ICR@M 57.3%→86.0%),291

driven largely by o3 (50.6%→84.0%), while o4-mini is roughly unchanged and GPT-4.1 collapses292

to 0%. Paradoxically, acceptance also rises substantially (ACPTτrate 28.0% → 44.0%, ACPTτ0.5293

37.0%→58.0%). Thus, adding a detection subtask improves stated awareness but does not translate294

into stricter recommendations—if anything, it coexists with more accepts. This suggests the integrity295

signal is weakly coupled to scoring; practical deployments should gate or weight recommendations296

by risk rather than merely requesting detection within the review.297

To RQ2: Detection Performance. We set three detectors on our new dataset: Random Guess298

baseline, the ReD integrity component, and DetOnly. The results are presented in Table 4. Overall,299

detection helps but just slightly: across models, accuracy is near the 50% random baseline, with300

a clear lift only on o3 (ReD 67% vs. random 50%; DetOnly 57%). Comparing ReD and DetOnly,301

the latter is recall-seeking (higher TPR) but far noisier (much higher FPR), whereas ReD is more302

conservative and, on some bases, collapses (e.g., GPT-4.1 shows 0% TPR for ReD). Model behavior303

also differs: o3 tends to judge positive (high flag rate; e.g., DetOnly FPR 84%), while GPT-4.1 tends304

to judge negative (low TPR/FPR), yielding a small accuracy gain for DetOnly (56%) over random.305

6 Conclusion and Discussion306

Our findings expose a critical vulnerability: LLM review systems can be systematically deceived by307

presentation manipulation. Fabricated papers achieve high acceptance rates, with reviewers frequently308

exhibiting concern-acceptance conflicts—flagging integrity issues yet still recommending acceptance.309

This fundamental breakdown reveals that current AI reviewers operate more as pattern matchers than310

critical evaluators.311

Our mitigation attempts show the inadequacy of current defenses. Detection accuracy barely exceeds312

random chance, and paradoxically, adding explicit integrity checks sometimes increases acceptance313

rates. Simply asking LLM reviewers to "be more careful" is insufficient.314

The scientific community faces an urgent choice. Without immediate action to implement defense-315

in-depth safeguards—including provenance verification, integrity-weighted scoring, and mandatory316

human oversight—we risk AI-only publication loops where sophisticated fabrications overwhelm317

our ability to distinguish genuine research from convincing counterfeits. The integrity of scientific318

knowledge itself is at stake.319
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A Limitations414

Scope. Our research focuses on presentation manipulation without executable code or real data415

generation, deliberately excluding prompt injection, forged credentials, and agent collusion to isolate416

this specific attack vector. Our scope is orthogonal to AI4Science misuse study [10, 13], which417

evaluate risks from scientific-knowledge misuse rather than reviewer-pipeline integrity. We evaluate418

three frontier LLMs with a standard rubric protocol; while results may vary across model families and419

augmented review systems, we expect similar failure modes given the fundamental pattern-matching420

vulnerabilities we identify. Real adversaries may employ hybrid strategies, though our approach421

already demonstrates systematic weaknesses.422

Generalization. Our calibration uses ICLR 2025 data from AI/ML conference reviews. While423

acceptance rates and norms vary across disciplines and venues, our core finding—that presentation424

manipulation can deceive LLM reviewers—likely generalizes given the underlying pattern-matching425

limitations we identify. Adversarial adaptation remains an open challenge requiring ongoing research.426

Evaluation Setup. We use GPT-5 to classify integrity concerns in reviewer feedback and deliber-427

ately exclude human oversight to isolate LLM capabilities under adversarial pressure. This represents428

a controlled worst-case scenario; real workflows may include multiple human safeguards to mitigate429

potential failures. Our results provide critical stress-testing for systems increasingly relying on AI430

assistance.431

B Ethical Considerations432

Research Intent and Dual-Use Risks. This work aims to strengthen scientific integrity by exposing433

vulnerabilities before malicious actors exploit them. We acknowledge dual-use concerns and mitigate434

through: keeping strategy descriptions abstract, emphasizing detection methods, coordinating respon-435

sible disclosure, and prioritizing defensive applications. We argue that transparent security research436

is preferable to covert vulnerability discovery.437

Potential Harms and Misuse. (i) Adversarial Guidance. Malicious authors could exploit our438

strategies to improve fabrications. We mitigate by omitting prompt engineering details and withhold-439

ing the complete generation codebase. (ii) Automation Overconfidence. Our modest improvements440

should not justify reduced human oversight. Detection accuracy barely exceeds chance, and current441

LLMs are not ready for autonomous review. (iii) Reputation Harm. Over-sensitive detectors may442

unfairly flag legitimate work with strong results, non-native writing, or novel claims. Deployment443

requires human arbitration and author appeal mechanisms.444

Artifact Release. We will partially release our artifact due to ethical concerns. Public release445

includes: the evaluation framework, curated synthetic papers/reviews, detector models, and analysis446

scripts. Restricted access (authorized users upon request only): the complete paper generation agent447

with prompts, specific exploits, and large-scale fabrication scripts. All framework components require448

a responsible AI license with declaration of intended use and agreement not to fabricate academic449

content for distribution.450

Deployment Recommendations. For venues considering AI-assisted review: (i) Mandatory451

disclosure of AI usage to authors and reviewers; (ii) Score-flag coupling—papers flagged with452

integrity concerns cannot receive acceptance without senior reviewer override; (iii) Audit trails453

logging all model inputs, outputs, and integrity evidence; (iv) Human oversight for all flagged454

submissions. For researchers using AI disovery systems: Authors remain fully responsible for455

verifying that AI-generated content accurately reflects their actual experiments, implementations,456

and results. Fabricated claims, whether intentional or due to AI hallucination, constitute scientific457

misconduct regardless of the generation method.458

Broader Impacts. AI-only publication loops threaten scientific epistemology. If fabrications be-459

come indistinguishable from genuine work, the foundation of scientific knowledge risks collapse. The460

path forward requires defense-in-depth across multiple layers: technical (provenance verification, arti-461

fact validation), procedural (integrity-aware scoring, human oversight), community (post-publication462
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review, whistleblower system), and cultural (education on AI limitations, ethical guidelines). We view463

this work as an early warning system to catalyze robust defenses before these failure modes manifest464

at scale. Our findings demonstrate that current systems are not ready for AI-only research-the integrity465

of science depends on maintaining rigorous human evaluation as AI capabilities advance.466

C Supplementary467

C.1 Stratified Sampling Procedure468

We implement the stratified sampling pipeline to construct the calibration corpus as follows.469

First, we partition the score space using bin edges t0 < · · · < tB to define score bins Bb = [tb−1, tb)470

for b = 1, . . . , B.471

For each bin–status combination (b, c) ∈ {1, . . . , B} × Cstat, we define:472

Ib,c = {i : hi ∈ Bb, σi = c},

Nb,c = |Ib,c|, pb,c =
Nb,c

N⋆
,

(5)

where N⋆ =
∑B

b=1

∑
c∈Cstat

Nb,c is the total reference pool size.473

Given a target calibration size Ncal, we allocate samples to each cell using proportional allocation474

with the largest-remainder method:475

n′
b,c = pb,cNcal, nb,c = ⌊n′

b,c⌋

R = Ncal −
∑
b,c

nb,c.

We then add one additional sample to the R cells with the largest remainders n′
b,c − ⌊n′

b,c⌋.476

Finally, we sample uniformly without replacement Sb,c ⊆ Ib,c with |Sb,c| = nb,c and construct:477

Dcal = {(xi, y
hum
i , σi, hi) : i ∈ S},

where S =

B⋃
b=1

⋃
c∈Cstat

Sb,c.
(6)

This construction ensures that p̂calb,c = nb,c/Ncal ≈ pb,c for all (b, c), preserving both score-bin and478

status marginals up to integer rounding.479

C.2 Error Analysis of Review Scoring480

Having defined our review aggregation mechanism, we now turn to a fundamental question: how481

reliable are the resulting scores and decisions? When we combine judgments from multiple reviewer482

agents, two sources of uncertainty arise. First, each reviewer introduces randomness—even when483

evaluating the same paper, a model may produce slightly different scores across runs. Second, our484

decision thresholds are estimated from finite calibration data and therefore subject to sampling error.485

We address these concerns by providing a rigorous error analysis that answers two questions:486

• Q1: How much does ensembling reduce randomness? Under independent reviewers, we give487

concentration bounds in Theorem 1 and Corollary 2 to show how tightly s(x) clusters around its488

latent mean.489

• Q2: How reliable is a threshold picked from finite calibration data? We give bounds on the490

acceptance-rate estimation error and the 0.5-probability threshold with isotonic calibration in491

Propositions 1 and 2.492

We also provide a Bayesian view that yields credible intervals for decision-making under uncertainty.493

13



Assumptions. To make our analysis tractable, we impose two standard regularity conditions on494

the review process. For each model m ∈ M, let rm(x) ∈ RK denote the rubric vector and495

define the weighted consensus rubric r̄(x) =
∑

m wm rm(x). Let the latent mean be µ̄(x) =496 ∑
m wm E[rm(x) | x]. We assume:497

• (Sub-Gaussian) For each m, the centered rubric zm(x) := rm(x) − E[rm(x) | x] is vector498

sub-Gaussian: for all u ∈ RK , ⟨u, zm(x)⟩ is sub-Gaussian with proxy
√
u⊤Σmu. Moreover,499

{zm(x)}m∈M are mutually independent.500

• (Lipschitz) ϕ : RK → R is Lϕ-Lipschitz w.r.t. ℓ2: |ϕ(a)− ϕ(b)| ≤ Lϕ∥a− b∥2.501

These assumptions are natural in the peer-review setting. The sub-Gaussian property follows from502

the fact that venues always require bounded rubric scores, ensuring rm,k ∈ [ak, bk] and thus sub-503

Gaussianity via Hoeffding’s lemma [11]. The independence assumption reflects the standard practice504

that different reviewers evaluate papers independently without coordination. The Lipschitz condition505

is satisfied by common aggregation functions such as weighted averages (ϕ(a) = v⊤a, Lϕ = ∥v∥2)506

or selecting a single overall score (Lϕ = 1).507

With these assumptions in place, we define the latent target score µs(x) := ϕ(µ̄(x)) as the score we508

would obtain if each reviewer’s noise were averaged out. Under independence across reviewers, the509

aggregate vector noise has proxy matrix510

Σvec(w) :=
∑

m∈M
w2

m Σm ∈ RK×K ,

and we use the scalar variance proxy511

Vw := λmax

(
Σvec(w)

)
.

Frequentist concentration for ensemble scoring. We begin by quantifying how closely the ob-512

served ensemble score s(x) tracks the latent mean µs(x). The following result shows that aggregating513

multiple independent reviewers yields exponentially tight concentration.514

Theorem 1 (Bernstein-McDiarmid concentration and margin bound). Under the assumptions515

above, let cm := Lϕ wm

√∑K
k=1(bk − ak)2 and σ2

w := Var[s(x)] ≤ L2
ϕ

∑
m w2

m λmax(Σm), with516

cmax := maxm cm. Then for any t > 0,517

Pr
(
s(x)− µs(x) ≥ t

)
≤ exp

(
− t2

2σ2
w + 2

3cmaxt

)
. (7)

Consequently, with y⋆(x) = I[µs(x) ≥ τ ] denoting the latent decision at threshold τ and γ(x) =518

|µs(x)− τ | denoting the margin,519

Pr
(
ŷ(x) ̸= y⋆(x)

)
≤ exp

(
− γ(x)2

2σ2
w + 2

3cmaxγ(x)

)
. (8)

Corollary 1 (Variance-minimizing weights for linear aggregation). Suppose ϕ(a) = v⊤a is linear.520

Let cm := v⊤Σmv. Then Vw =
∑

m w2
mcm and among w ∈ ∆M−1 the bound in (8) is minimized521

by522

w⋆
m ∝ 1

cm
=

1

v⊤Σmv
,

i.e., (diagonal) GLS/precision weighting in the projected variance.523

Scalar-score simplification (overall assessment). The general vector-rubric framework of Theorem524

1 applies when reviewers provide detailed multi-criterion scores. However, in many venues (e.g.,525

ICLR/ICML), reviewers independently provide a single bounded overall assessment that already526

aggregates rubric criteria internally. This special case admits a simpler analysis. Let each model527

output a scalar overall score sm(x) ∈ [am, bm].528

Corollary 2 (Scalar overall-assessment bounds). If each reviewer outputs sm(x) ∈ [a, b] and ϕ is529

the identity, then σ2
w =

∑
m w2

mVar[sm(x)] and cmax = maxm wm(b− a), hence530

Pr
(
ŷ(x) ̸= y⋆(x)

)
≤ exp

(
− γ(x)2

2σ2
w + 2

3cmaxγ(x)

)
. (9)
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For uniform weights wm = 1/M and identical per-review variance σ2, this simplifies to531

Pr(ŷ ̸= y⋆) ≤ exp

(
− M γ2

2σ2 + 2
3 (b− a)γ

)
, (10)

showing that both the variance term σ2/M and bounded-difference term (b− a)/M scale as 1/M .532

Calibration error and threshold selection. The concentration results above assume a known533

threshold τ . In practice, however, we must estimate τ from finite calibration data, introducing a534

second source of error. We now bound this calibration uncertainty. Let α(τ) := Px∼Dcal

[
s(x) ≥ τ

]
535

be the true acceptance rate at threshold τ on the calibration distribution, and let α̂cal(τ) be its536

empirical counterpart (Section 3.4). The calibration set {xi}Ncal
i=1 is treated as i.i.d. from Dcal.537

Proposition 1 (Calibration error bound). For any δ ∈ (0, 1), with probability at least 1− δ over538

the draw of Dcal,539

sup
τ∈R

∣∣ α̂cal(τ)− α(τ)
∣∣ ≤

√
1

2Ncal
log 4

δ . (11)

Proof sketch. The class {I[s ≥ τ ] : τ ∈ R} has VC dimension 1; apply the Dvoret-540

zky–Kiefer–Wolfowitz (DKW) inequality with VC generalization to obtain (11). □541

This uniform bound controls the acceptance-rate error across all thresholds simultaneously. For542

the rate-matching threshold τrate (defined to match the venue’s historical acceptance rate α⋆), we543

therefore have |α̂cal(τrate)− α⋆| ≤
√

1
2Ncal

log 4
δ . If α(τ) is strictly decreasing with slope bounded544

away from zero near τrate, this acceptance-rate error translates into a correspondingly small threshold545

error.546

For the probability-consistency threshold τ0.5, the analysis is more delicate because we must estimate547

the conditional acceptance probability π(t) = P(yhum = 1 | s(x) ≥ t) and then invert it. We employ548

isotonic regression to ensure monotonicity, and the following result bounds the resulting threshold549

error.550

Proposition 2 (Bound for τ0.5 with isotonic calibration). Define the generalized inverses τ0.5 =551

inf{t : π(t) ≥ 1/2} and τ̂0.5 = inf{t : π̂(t) ≥ 1/2}. Suppose supt |π̂(t)− π(t)| ≤ επ and π has no552

flat region wider than ∆ around τ0.5 and let cmin be the minimal right-slope of π at τ0.5. Then553

| τ̂0.5 − τ0.5 | ≤ min{∆, επ/cmin}. (12)

Proof sketch. Since π is monotone with right-slope cmin, π(τ0.5+h) ≥ 1
2 + cminh and π(τ0.5−h) ≤554

1
2 − cminh for 0 < h ≤ ∆; with supt |π̂ − π| ≤ επ, choosing h = min{∆, επ/cmin} yields555

π̂(τ0.5 + h) ≥ 1
2 and π̂(τ0.5 − h) ≤ 1

2 , hence |τ̂0.5 − τ0.5| ≤ h. □556

Bayesian credible decisions. The frequentist bounds above provide worst-case guarantees but557

do not directly yield decision rules for individual papers. We complement this analysis with a558

Bayesian perspective that provides paper-specific uncertainty quantification. Assume sm(x) | µ(x) ∼559

N (µ(x), σ2
m) independently across m and µ(x) ∼ N (µ0, τ

2
0 ). Then the posterior is Gaussian with560

precision and mean given by561

τ−2
n = τ−2

0 +
∑
m

σ−2
m , (13)

µn = τ2n

(
µ0τ

−2
0 +

∑
m

σ−2
m sm

)
. (14)

For any threshold τ , the posterior decision probability is P(µ(x) ≥ τ | {sm}) = 1−Φ((τ−µn)/τn).562

A 1−α credible decision is robust (i.e., the credible interval for µ(x) does not straddle the threshold)563

whenever |τ − µn| ≥ z1−α/2 τn.564

This Bayesian framework also provides a principled rule for soliciting additional reviews. If the565

current decision is ambiguous (|τ − µn| < z1−α/2 τn) and a candidate reviewer with variance σ2
new566

would resolve the ambiguity in expectation—that is,567

|τ − µn| ≥ z1−α/2 τn+1, τ−2
n+1 = τ−2

n + σ−2
new,
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Figure 3: Empirical validation of error analysis bounds. Left: Misclassification probability vs.
margin γ(x) for M = 1, 2, 3 reviewers. Empirical rates (points with error bars) fall below theoretical
bounds (dashed lines), confirming Eq. (8). Middle: Threshold estimation error vs. calibration set
size Ncal. The blue curve follows the theoretical O(1/

√
Ncal) decay (red dashed); our Ncal = 200

(star) yields error ≈ 0.26, validating Proposition 1. Right: Variance reduction with ensemble size
(log scale). Both the empirical noise variance Var[s(x) − µs(x)] (blue squares) and the bounded-
difference proxy (b − a)2/M (red circles) decrease as 1/M , demonstrating that increasing from
M = 1 to M = 3 reviewers reduces both quantities by approximately 3×—confirming Theorem 1
and Corollary 2.

then the additional review is worthwhile; otherwise, the expected uncertainty reduction is insufficient568

to justify the cost. This credible-interval framework thus enables both probability-of-acceptance569

decisions and adaptive review allocation.570

Empirical validation. To validate our theoretical bounds, we conduct synthetic experiments that571

simulate the review aggregation process under controlled conditions. We generate n = 5,000572

synthetic papers with known latent quality scores, each reviewed by M ∈ {1, 2, 3} independent573

models producing noisy scalar assessments in [1, 10]. For each configuration, we compute: (i)574

empirical misclassification rates as a function of margin γ(x) and compare against the bound in (8);575

(ii) threshold estimation error |τ̂0.5 − τ0.5| for varying calibration set sizes Ncal ∈ {50, . . . , 800}576

via bootstrap with isotonic regression; (iii) empirical noise variance Var[s(x) − µs(x)] and the577

bounded-difference proxy (b− a)2/M as functions of ensemble size M .578

Figure 3 presents the results. The left panel confirms that empirical misclassification rates fall579

well below the theoretical bound across all margins and ensemble sizes, with clear separation580

between M = 1, 2, 3 demonstrating the benefit of aggregation. The middle panel shows threshold581

error decreasing as O(1/
√
Ncal) as predicted by Proposition 1, with our choice of Ncal = 200582

(marked by the star) yielding error ≈ 0.26 at the operating point. The right panel demonstrates583

how increasing the number of reviewers reduces both sources of uncertainty: the empirical noise584

variance Var[s(x) − µs(x)] (blue squares) and the bounded-difference proxy (b − a)2/M (red585

circles) both decrease as 1/M . Increasing from M = 1 to M = 3 reviewers reduces both quantities586

by approximately 3×—confirming that recruiting additional independent reviewers substantially587

improves decision reliability. These empirical results validate that our bounds correctly characterize588

the system’s behavior.589

Practical implications. Taken together, the error analysis in this section yields three actionable590

recommendations for deploying multi-agent review systems:591

(i) Aggregate intelligently. Keep the variance proxy Vw small by recruiting independent reviewers592

and using variance-aware weighting (e.g., Corollary 1).593

(ii) Handle borderline cases carefully. When the margin |s(x)− τ | is small, use Bayesian credible594

intervals to assess decision confidence and determine whether additional reviews are needed.595

(iii) Calibrate sufficiently. Choose Ncal large enough so that the DKW deviation in (11) is negligible596

at the target confidence level (e.g., Ncal ≥ 200 for δ = 0.05 yields uniform error ≲ 0.11).597
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D Seed Topic List598

We use GPT-5 to generate 25 seed topics aligned with the ICLR submission calibration corpus,599

covering AI, ML, CV, NLP, robotics, systems, and security:600

• Self-consistent diffusion models that satisfy counterfactual causal constraints.601

• Open-world continual evaluation via synthetic task evolution for multimodal LLMs.602

• Mechanistic interpretability of Mixture-of-Experts routing as a cooperative game.603

• Certified robustness for retrieval-augmented generation under adversarial knowledge bases.604

• Neural field memory: spatially grounded long-horizon memory for vision-language agents.605

• Program-of-Thought VLMs with verifiable tool-use and executable intermediate graphs.606

• On-device nano-LLMs co-designed with NPU schedulers for sub-1W edge inference.607

• Causal video generation: 4D text-to-video with physics-invariant latent constraints.608

• Self-curating agents: autonomous dataset construction with legal/ethical compliance proofs.609

• Safety proofs for multi-agent LLM protocols under Byzantine participants.610

• Open-vocabulary 3D segmentation with Gaussian splats and generative object priors.611

• Unlearning at scale: certified removal of concepts from multimodal foundation models.612

• Temporal reasoning benchmarks for VLMs built from parametric CAD + differentiable physics.613

• Federated reinforcement learning with privacy-preserving credit assignment.614

• Energetically aligned training: minimizing carbon under fixed accuracy via differentiable schedul-615

ing.616

• Watermarking as cryptographic dialogue: interactive proofs to verify AI-generated media.617

• Neurosymbolic chart-to-code: parsing scientific plots into executable analysis programs.618

• Robust long-form instruction following via adversarial curriculum from self-play reviewers.619

• World-model rewrites: editing factual and procedural knowledge in LLMs with locality guarantees.620

• Haptic-vision-language models for household manipulation with uncertainty-aware plans.621

• Compositional diffusion: plug-and-play constraints for safety, style, and identity preservation.622

• Reasoning-first pretraining: supervising latent chains over captions, code, and proofs.623

• Open-set alignment: detecting and mitigating unseen harms in generative agents at test time.624

• Graph-grounded RAG: joint learning of knowledge graphs and retrievers for verifiable answers.625

• RouteBench: measuring strategic routing, tool selection, and delegation in multi-agent LLM626

systems.627
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