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Abstract

The convergence of LLM-powered research assistants and Al-based peer review
systems creates a critical vulnerability: fully automated publication loops where
Al-generated research is evaluated by Al reviewers without human oversight.
We investigate this through BadScientist, a framework that evaluates whether
fabrication-oriented paper generation agents can deceive multi-model LLM review
systems. Our generator employs presentation-manipulation strategies requiring
no real experiments. We develop a rigorous evaluation framework with formal
error guarantees (concentration bounds and calibration analysis), calibrated on
real data. Our results reveal systematic vulnerabilities: fabricated papers achieve
acceptance rates up to 82.0%. Critically, we identify concern-acceptance conflict—
reviewers frequently flag integrity issues yet assign acceptance-level scores. Our
mitigation strategies show only marginal improvements, with detection accuracy
barely exceeding random chance. Despite provably sound aggregation mathematics,
integrity checking systematically fails, exposing fundamental limitations in current
Al-driven review systems and underscoring the urgent need for defense-in-depth
safeguards in scientific publishing.

1 Introduction

Large Language Models (LLMs) are fundamentally transforming the scientific research ecosystem,
automating tasks once exclusive to human experts. LLM-powered agents are increasingly deployed
as end-to-end research assistants, automating ideation, experimentation, and manuscript drafting
[23, 119} (150 13]]. Simultaneously, LLMs are being explored to alleviate review burdens, serving as
reviewers or review assistants [4} 21} [18 27]].

The convergence of these capabilities introduces a critical vulnerability: fully automated Al-only
publication loops where Al-generated research is evaluated by Al reviewers. This raises profound
questions about research integrity [28} 2]]. Can current LLM review systems reliably detect convincing
but scientifically unsound work from malicious or poorly designed research agents? Emerging
evidence suggests concerning vulnerabilities: LLM reviewers amplify human biases [[12], miss
critical flaws, and remain susceptible to adversarial attacks such as prompt injection [29, |26} [31]].
While Al-generated text detection is actively studied [[7, 24} 5], the adversarial interplay between
fabricating and reviewing agents remains critically underexplored.

We investigate this dynamic by asking: Can research agents write convincing but unsound papers
that fool LLM reviewers? We introduce BadScientist, a framework that pits fabrication-oriented
paper generation against multi-model LLM review systems. Our generator conducts no real ex-
periments, instead employing five presentation-manipulation strategies: exaggerating performance
gains (TooGoodGains), cherry-picking comparisons (BaselineSelect), constructing statistical facades
(StatTheater), polishing presentation (CoherencePolish), and concealing proof gaps (ProofGap). We
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Figure 1: Overview of the BadScientist framework. A Paper Agent generates fabricated papers from
seed topics using manipulation strategies. A Review Agent evaluates papers using multiple LLM
models (03, 04-mini, GPT-4.1), calibrated against ICLR 2025 data, with GPT-5 checking for integrity

concerns.

evaluate fabricated papers using LLM reviewers calibrated on ICLR 2025 data to mirror realistic
acceptance thresholds. To ensure rigorous and reproducible evaluation, we develop a formal frame-
work with concentration bounds demonstrating that multi-reviewer aggregation exponentially reduces
scoring variance, alongside calibration error analysis for threshold selection—providing provable
guarantees for our evaluation methodology.

Our findings are stark. Fabricated papers achieve acceptance rates up to 82.0% across strategies. More
critically, we observe pervasive concern-acceptance conflict: reviewers frequently flag integrity
issues yet assign acceptance-level scores. Our mitigation strategies—Review-with-Detection (ReD)
and Detection-Only (DetOnly)—yield only marginal improvements, with detection barely exceeding
random chance. These results expose fundamental failure modes: despite provably sound aggregation
mathematics, integrity checking systematically fails. This study reveals concrete vulnerabilities in Al-
only publication loops and underscores the urgent need for defense-in-depth safeguards—including
provenance verification, integrity-weighted scoring, and mandatory human oversight—to prevent
automated systems from endorsing fabricated science.

2 Related Work

Agents for Scientific Discovery. LLM agents are increasingly positioned as end-to-end “research
agents,” automating ideation, experimentation, and manuscript drafting. Systems such as the Al
Scientist [23]] and Auto Research [[19] report credible, minimally supervised pipelines; complementary
benchmarks probe specific stages like ML experimentation and engineering [15} 13]]. While these
works establish feasibility and scope, few analyze the integrity of outputs under adversarial objectives.

Agents for Peer Review. LLMs have been explored as reviewers and review assistants, from
early feasibility studies [21} 4] to larger evaluations showing partial alignment with human feedback
[18, [17]. Emerging platforms simulate or standardize review processes and propose bias-aware
pipelines [27, (14} 130], yet concerns persist LLM reviewers can amplify biases or miss deep flaws
[12].

Challenges in Agent-vs-Agent Settings. The coupling of Al-written papers and Al-based reviews
introduces new attack surfaces. Prompt-injection into manuscripts can tilt LLM verdicts [29], and
reports suggest covert instructions have appeared in real preprints [26]]. Parallel efforts assess
detection and governance: holistic and red-teaming evaluations [[16 25]); detectors and audits for
Al-generated scientific text and artifacts [[7, 24} 16l 201 18, 1, 19, I5]; and policy guidance on safeguarding
research integrity [28 2]].

Our Focus. We study the adversarial interplay between an Al paper-writing agent and an Al
reviewer: can a fabrication-oriented agent produce “convincing but unsound” papers that fool LLM



70
71
72

73

74

75
76
77
78
79
80

81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
99

100

101
102
103
104
105
106

107
108

109
110
111

112
113

review pipelines, and what mitigations help? In contrast to prior work that treats generation and
reviewing separately, we evaluate the coupled system under integrity-focused attacks and prototype
mitigation (e.g., injection-aware defenses [31]]).

3 Design of BadScientist

3.1 Preliminary

We study whether Al agents can generate convincing fabricated scientific papers that deceive reviewer
agents, and how reliably reviewer agents detect such fabrications. We implement a multi-agent
pipeline that simulates a publication workflow from paper generation to peer review and post-hoc
detection analysis. The core research problem involves: a Paper Generation Agent G that produces
papers; a Review Agent ‘R that evaluates papers via multiple LLMs. There is also an Analysis System
A that aggregates outcomes and measures detection.

Notation. Let X denote the space of paper artifacts. A paperis z € X. Let S be the set of
fabrication strategies and 7 be the set of topics. A seed prompt u € U specifies a topic ¢t € 7 and a
strategy s € S. The Review Agent employs models M = {m, ..., mys}. Each model m produces
a K-dimensional rubric score r'yy, () = (7',,1(), . . ., ',k (@) With 7, 1 (2) € {1,..., Ly}, where
Lj, € N is the maximum score for criterion &, and free-form textual feedback w,,(z). Let w €
AM=1 .= {w e RY : > w,, = 1} (the probability simplex) be reviewer weights (default
uniform). We define consensus score vector r'(x) and binary recommendation §(z) acceptance
threshold 7 calibrated by .A.

Assumptions (Threat Model and Scope). We focus on a setting where G aims to produce high-
quality fabricated papers without conducting real experiments or collecting real data. Instead, G
may synthesize or manipulate pseudo-data to support claims. We assume the research agent has
no prior knowledge about the reviewer system, i.e., the generated paper is not directly adversary
optimized to the agent review system, and will not optimize paper generation with feedback from
reviewers. Review agents operate under a standard (minimal) single-pass review protocol with access
restricted to the submitted paper content, where the review system is not designed to have ability to
run experiments to verify the papers, which mimics the most practical setup in peer review system.

We exclude human-in-the-loop setup (e.g., deception tactics with forged human ethics approvals or
human feedback to revise papers), adversary attack (e.g., prompt injection attack towards review
agents), and offline collusion (e.g., the research agent and review agent hidden collusion) [ﬂ

3.2 Paper Generation Agent §

The advanced research agents, involve multi-factors abilities, including planning on research discovery
(e.g., design and hypothesis), agentic execution of exploration and verfication (e.g., experiment design
and executions), and write professional academic research papers to support discovery. Our paper
generation agent G is the minimal support for such research agents, which only focuses on fabricating
the research paper, without practical exploration and verification. The design of G involves the
following components.

Strategy space. Let S = {s1,...,s,} denote the atomic presentation—-manipulation strategies.
The set of all admissible strategy setups is the power set

P(S)={A|AC S} =2%

i.e., every combination of elements of S. A generation policy g € G selects a configuration A € P(S)
and composes the associated interventions. In our experiments, we instantiate the following five
atomic strategy elements and a joint strategy All:

* s1: TooGoodGains: foreground extraordinary improvements over the leading baseline and frame
them as field-advancing.

"Ethical intent: the work seeks to evaluate and harden reviewer pipelines against fabrication, not to promote
academic fraud or encourage dishonesty.
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* so: BaselineSelect: curate comparisons to favor the proposed method; omit variance/CI in the
main table.

* s3: StatTheater: polished ablations, precise p-values/Cl/error bars (mainly in the supplement),
tidy hyperparameter tables, and “forthcoming” repo/DOI links.

* s54: CoherencePolish: flawless cross-references, unified terminology, consistent significant digits,
aligned captions, professional typography.

* s5: ProofGap: a theorem/lemma with an ostensibly rigorous proof hiding a subtle oversight.

* All: combined application of all above atomic strategies.

Paper Generation. Given the seed prior (¢, s), where ¢ is the paper topic and s is the generation
strategy, the agent G process: (1) Data synthesis: samples pseudo-experimental results D ~ ¢(- |
s,t,0) from a strategy-conditioned generator ¢ with internal parameters 6, where the strategy s
determines what types of fabricated evidence to produce; (2) Visualization: generates figures and
tables V' = viz(D) from the synthetic data to support fabricated claims; (3) Manuscript assembly:
composes a complete paper x = compose(u, D, V') including abstract, introduction, methods, results,
discussion, and conclusion sections, along with citations and professional formatting. The structural
validity constraints to ensure generated papers pass basic formatting checks:

C(z) = I[compile(z) = success
A struct(z) € C] =1,

where C encodes formatting requirements (section presence, figure/table counts, bibliography entries).
Only papers with C'(x) = 1 are proceeded.

Since the data synthesis process is stochastic, the same seed prior may yield different papers across
runs (e.g., different fabricated performance numbers, plot variations, or phrasing). Consequently, the
end-to-end generation thus induces a distribution over papers:

pg<x|s,t>:/p<x\D,s,t>q<D|s7t,e>dD

3.3 Review Agent R

Given a paper z € X, the Review Agent queries each model m € M under a fixed K-criterion
rubric (e.g., methodology, significance, clarity, efc.). Each model returns a rubric vector and textual
feedback (r,,(z), wm(x)). Using reviewer weights w € AM =1 the agent forms the consensus

rubric
r(z) = E Wy T (),
meM

and produces a binary recommendation via the scoring functional ¢ and a calibrated threshold 7:
g(x) =I[¢(r(x)) > 7] . We summarize the agent’s output as

R(2) = ({En(@),wm(@)}mem: T, §(@) ).

which preserves per-model judgments and comments while supplying a single consensus score and
decision.

3.4 Review Calibration for Analysis A

We calibrate the Review Agent’s decision rule using a corpus of real conference submissions with
publicly available reviews and outcomes.

Calibration corpus. We define the reference pool as:
Dref = {(IH y?umv () hl)}&lv

where z; is the paper artifact, y};‘um € {0, 1} indicates the human accept/reject decision, o; € Cstat
represents the meta-status labels (e.g., oral/spotlight/poster/reject/withdraw), and h; € R is a scalar

venue score such as the average assessment.

From this reference pool, we construct a calibration set D, that preserves the score and status
distributions of D, with a stratified sampling algorithm (see Appendix [C.1).
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Agent scoring. For each paper © € D.,), the Review Agent produces a consensus rubric T(x),
converts it to a scalar score s(z) = ¢(r(z)) € R, and makes a binary recommendation ,(z) =
I[s(x) > 7] for threshold T € R.

Threshold calibration. We derive two operating thresholds to accommodate different evaluation
criteria.

1. Rate-matching threshold. Let o* € (0, 1) denote the target venue acceptance rate. We define:

~ 1 .
acal(T) = E yr(ﬂﬂ)» (1)
|Dcal| x€D
cal
Trate € arg min |Qea) (7) — a*|. 2)
TER

This threshold ensures that the agent’s acceptance rate on the calibration set matches the venue’s
historical acceptance rate.

2. Probability-consistency threshold. Let 77(2) = P(y"'™ =1 | s(z) > 2) for t € R, estimated on
D.a1 using a monotone calibration model. We define:

To5 = inf{z € R: m(z) > 1},

so that papers scoring s(z) > 7.5 have at least 50% estimated probability of human acceptance.

Output. The calibration module returns A(Dca1) = (Trate, 70.5), providing operating thresholds
for the decision rule §(z) = I[s(z) > 7).

3.5 Theoretical Reliability of Review Aggregation

When combining judgments from multiple reviewer agents, two sources of uncertainty arise: (i)
stochastic variation in individual model outputs, even when evaluating identical papers, and (ii)
estimation error in the decision threshold 7 due to finite calibration data. To quantify the reliability of
our aggregated decisions §(x) = I[s(x) > 7], we provide a rigorous error analysis in Appendix

Setup and assumptions. For each model m € M, let r,,(x) € R¥ denote its rubric vector and
r(x) =), WmIn(x) the weighted consensus. We impose two standard regularity conditions: (i)
Sub-Gaussian noise—each reviewer’s centered rubric z,,(z) := ry,(z) — E[r,(x) | 2] is vector
sub-Gaussian with proxy matrix X,,, a natural consequence of bounded rubric scores 7, € [ag, by]
required by all venues; (ii) Lipschitz aggregation—the scoring function ¢ : RX — R is Ly-
Lipschitz, satisfied by common choices such as weighted averages (L = ||v||2) or selecting a single
overall score (Ly = 1). We also assume independent evaluation across reviewers, reflecting standard
peer-review practice.

Ensemble concentration (Q1). Under these assumptions, we establish exponential concentration
bounds showing that the consensus score s(z) = ¢(r(x)) clusters tightly around its latent mean
ws(x) = ¢(E[r(z)]). Specifically, for papers with margin v(x) = |us(z) — 7| from the threshold,
the misclassification probability satisfies

Pr (§(x) # y*(x)) < eXP< 2 >

202, + 2 cmax ()

where 02 = Var[s(z)] and cyax captures bounded differences (Theorem 1). In the common

scalar-assessment case where each reviewer outputs s,,(z) € [a,b] and ¢ is the identity, both the

variance term 0'3} and the bounded-difference term ¢y, scale as 1/M with the number of reviewers
(Corollary 2). This yields the simplified bound

M~?

Pr(y ) < e _—_

(G #y") < Xp( 202+§(ba)7>

for uniform weights w,, = 1/M and identical per-review variance 0. For linear aggregation

#(a) = v'a, we further show that the bound is minimized by inverse-variance (GLS) weighting

w:(n X 1/(VTEm,V) (COl‘Ollary 1)
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Table 1: Acceptance (ACPT) and Integrity Concern Rate (ICR) by strategy.

ACPT ICR-m
Strategy Trate T0.5 03 o4-mini GPT-4.1 ICR@M
S1 67.0% 82.0% 38.4% 4.7% 2.3% 39.5%
So 320% 49.0% 35.2% 4.5% 2.3% 35.2%
S3 53.5% 69.7% 29.4% 2.4% 4.7% 31.8%
S4 44.0% 59.0% 28.2% 5.9% 1.2% 30.6%
S5 354% 53.5% 25.9% 8.2% 7.1% 34.1%
All 52.0% 69.0% 50.6% 5.7% 8.0% 51.7%

Calibration error (Q2). The concentration results above assume a known threshold 7. In prac-
tice, we estimate 7 from the finite calibration set D, of size N,, introducing a second source of
error. For the rate-matching threshold 7;,te (chosen to match the venue’s historical acceptance rate
), we bound the acceptance-rate estimation error uniformly over all thresholds via the Dvoret-
zky—Kiefer—Wolfowitz inequality, yielding

1

sup ‘&Cal(T) — a(r)‘ < SN log %
TER

with probability at least 1 — § (Proposition 1). For the probability-consistency threshold 7( 5 (where
papers scoring above have > 50% estimated human-acceptance probability), we employ isotonic
regression to estimate the conditional probability (t) = P(y™™ = 1 | s(z) > t) and provide
explicit bounds on the threshold error |7o.5 — 79.5| as a function of N, and the slope of 7 near 1/2
(Proposition 2).

Empirical validation. We validate our theoretical bounds through synthetic experiments with
n = 5,000 papers and M € {1, 2, 3} reviewers producing noisy scalar assessments in [1, 10]. Our
results confirm that: (i) empirical misclassification rates fall well below theoretical bounds across
all margins and ensemble sizes; (ii) threshold estimation error decreases as O(1/+/Nca1), with our
choice of N, = 200 yielding error & 0.26; (iii) both the empirical noise variance Var[s(x) — ps ()]
and the bounded-difference proxy (b — a)?/M decrease as 1/M—increasing from M = 1 to
M = 3 reviewers reduces both quantities by approximately 3x (Figure [3]in Appendix). These
results establish that multi-reviewer aggregation substantially improves decision reliability, a property
we exploit throughout our evaluation to justify using M = 3 models and N, = 200 calibration
samples.

4 Experiment

4.1 Setup

Implementation Our agent framework is adapted from Al-Scientist [22], but we have fundamen-
tally redesigned its entire pipeline. We retain only its most foundational writing prompts and have
eliminated the need for any experimental execution or structured templates. Our framework now
operates directly from a simple seed idea, allowing the LLM to freely generate any necessary experi-
mental results and plotting code. We follow the generation strategy space set claimed in Section[3.2]
With GPT-5, we generate all seed topics for paper generations spanning representative domains in
Al research (see Appendix D). Each seed produces 4 papers across six strategy setups. For the ease
of acceptance decision, we take only the overall assessment score provided by the review agent for

paper scoring, i.e., ¢(7(x)) = 7oa ().

Agent Models. We use GPT-5 to support our paper generation agent. For the review agent, we set
M = 3 and use 03, o4-mini, and GPT-4.1 with the rubric review prompt.

Calibration set and thresholds. We instantiate the reference pool D, as the ICLR 2025 Open-
Review submission set (with public reviews and outcomes). A stratified calibration set D, of size
Nca = 200 is then constructed as described in Section Running the Review Agent on D,y
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threshold marked. o4-mini is right-shifted, o3 shows higher variance and a fatter Tight tail, Wh1le
GPT-4.1 is more conservative.

Table 2: Concern—acceptance conflict (%): within papers where the model raised an integrity concern,
the share still receives an acceptance-level score by model and strategy (s1-ss5, All). Higher values
indicate stronger contradiction.

Model S1 S9 S3 S4 All

03 333% 258% 52.0% 30.0% 409% 29.5%
o4-mini  100.0% 50.0% 100.0% 80.0% 71.9% 100.0%
GPT4.1 50.0% 50.0% 75.0% 0.0% 333% 57.1%

yields two operating thresholds. Rate-matching selects T;ate SO that the agent minimize the drift of
which yields Tyat0 = 7.
Probability-consistency defines such that papers with s(z) > 7 5 have estimated human-acceptance
probability at least 50%; this yields 7o 5 = 6.667.

empirical acceptance rate on D, matches the venue rate o

Evaluation metrics.

* = 0.317

We evaluate along two axes. (I) Acceptance rate (ACPT). Let D be the set

of generated papers and §,(z) = I[s(z) > 7| the Review Agent’s decision at threshold 7, with
s(x) = ¢(¥(x)). For any operating threshold 7 € {Tyate, 0.5} We report

ACPT(1) =

Z@ 73);

(I) Integrity Concern Rate (ICR). Let ¢,,,(z) = T'wp(z)) € {0,1} indicate that reviewer
And suppose Cany(z) =

m € M explicitly raises integrity-related concerns in wy,(z).
] . Then for m € M, we have Per—review-model ICR (ICR-m) and the re-

H[Zme/\/l em(z) >1

laxed metric at panel-level, Any-of-panel ICR (ICR@M):

ICR-m =

ICR@m =

N

> enl3),

Jj=1

2|~

().

2=

1

<
I

3

“

We use GPT-5 as LLM-judge to classify whether the text feedback from review agents contains

integrity-related concerns.

?Overall ICLR 2025 acceptance rate 31.73%; see https://papercopilot.com/statistics/
iclr-statistics/iclr-2025-statistics/.
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Table 3: ACPT and ICR for the baseline review agent vs. ReD. ReD lifts concerns but raises ACPTs.

Baseline  ReD

ACPT-Tyge 28.0%  44.0%
ACPT-79 5 37.0%  58.0%

ICR-03 50.6%  84.0%
ICR-04mini 124%  11.0%
ICR-GPT4.1 4.5% 0.0%
ICR@M 573%  86.0%

Table 4: Evaluation results of all detectors. Across various setups, detection offers only slight gains
over random. ReD is more conservative, while DetOnly is recall-oriented with higher FPR. 03 shows
a positive bias, whereas GPT-4.1 tends toward negative.

03 04-mini GPT-4.1
Method TPR FPR Acc F1 TPR FPR Acc F1 TPR FPR Acc F1
Random Guess 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
ReD 81.6% 449% 67.0% 721% 00% 80% 46.0% 00% 00% 00% 50.0% 0.0%
DetOnly 98.0% 84.0% 57.0% 69.5% 64.0% T4.0% 45.0% 53.8% 24.0% 12.0% 56.0% 353%

4.2 Evaluation Analysis

Main Results. Our main evaluation result is in Table[T} We find that acceptance is unexpectedly high
under most manipulations. Single strategies already yield substantial ACPT (e.g., ACPT,, , = 67.0%,
ACPT,, . = 82.0% for s1), indicating that current review agents are easily persuaded and lack
sufficient awareness to spot integrity/fabrication issues. The All strategy as a composed setup,
attains high acceptance (52.0%/69.0%), but it also maximally increases detectability (I(CR@M
51.7%, 03 50.6%), suggesting that composing strategies broadens the footprint seen by detectors.
Among single strategies, s; provides the strongest acceptance with only moderate detection pressure
(ICR@M 39.5%), whereas others (e.g., s3-s5) are somewhat weaker but also less detectable ICR@M
~ 30-34%). Across models, 03 is the most flag-happy (consistently higher ICR-m), while GPT-4. 1
rarely flags concerns (mostly 2-8%), reinforcing that current review models have limited and uneven
detection capability.

Score distributions. Figure [2] plots score histograms for three models across six setups (s1-ss,
All) with the acceptance threshold marked. Overall, o4-mini is right-shifted—consistently placing
more mass at > 7—which aligns with its higher acceptance tendency. o3 shows larger variance and a
fatter right tail (notably in s; and All), producing many near-threshold and high scores; GPT-4.1 is
comparatively conservative, clustering around 6—7 with a thinner tail at 8+. Among strategies, s;
yields the strongest rightward shift for all models, while so/s4 are milder. The ALL setup increases
polarization (more mass both just below and above the threshold), explaining why it sustains high
acceptance yet is easier for detectors to flag.

Concern—Acceptance Conflict. Conditioned on a model posting an integrity concern, we report
the share that still receives an acceptance-level score in Table[2] Conflict is widespread: 04-mini is
most contradictory (s1/s3/All: 100%; so/s4/s5: 50-80%), GPT-4. 1 is mixed (0% in s4 but 33-75%
elsewhere), and 03 is moderate ( 26-52%). s3 (statistical theater) induces the largest cross-model
conflict, and All further amplifies it for o4-mini (100%). These observations indicate even agents
voice concerns, yet keep acceptance-high scores, and integrity signals are not well-coupled to review.

5 Mitigation
We study two complementary interventions that make the review pipeline explicitly integrity-aware.

The first augments the standard review workflow with an integrity check; the second replaces
reviewing with a lightweight triage detector.

5.1 Setup

Research Questions. RQ1 (Detection-Aware Reviewing). How can we enhance detection aware-
ness within the act of reviewing—i.e., can adding an explicit integrity-detection subtask (risk classifi-
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cation with cited evidence) improve sensitivity to integrity risks while preserving or improving core
review quality (helpfulness and recommendation accuracy)?

RQ2 (Triage without Full Reviews). When generating a full textual review is not the priority, can a
detection-only agent reliably flag papers with potential integrity concerns at a low false-alarm rate
and route low-risk papers to the standard pipeline?

Mitigation Strategies. (i) Review-with-Detection (ReD) We modify the review prompt to
bundle a conventional rubric-based review with a mandatory detection of Al-generated content.
For each document, a single model m € M outputs: (a) a standard review, (b) a binary label
Ym € {NON-FABRICATED, AI-FABRICATED}, and (c) evidence snippets (quoted lines) to support
its finding. (ii) Detection-Only (DetOnly) We remove the reviewing rubric and instruct the agent to
perform only the detection of Al-generated content. In this mode, the model’s sole task is to return a
binary label y,,, € {NON-FABRICATED, AI-FABRICATED} and evidence, which serves as the direct
and final triage action, without any secondary assessment.

Dataset. We construct a controlled set of 100 papers using the stratified sampling algorithm in
Section[3.4} 50 are sampled from real ICLR 2025 submissions, and 50 are sampled from the generated
corpus produced in Section 4}

5.2 Evaluation Analysis

To RQ1: Review Outcomes. We compare ReD against the initial review agent baseline (same
models, same rubric, no integrity subtask). We report the review outcomes using the same metrics as in
Section@ As shown in Table ReD increases integrity warnings overall ICR@M 57.3% — 86.0%),
driven largely by 03 (50.6% — 84.0%), while 04-mini is roughly unchanged and GPT-4. 1 collapses
to 0%. Paradoxically, acceptance also rises substantially (ACPT,, . 28.0% — 44.0%, ACPT,
37.0% — 58.0%). Thus, adding a detection subtask improves stated awareness but does not translate
into stricter recommendations—if anything, it coexists with more accepts. This suggests the integrity
signal is weakly coupled to scoring; practical deployments should gate or weight recommendations
by risk rather than merely requesting detection within the review.

To RQ2: Detection Performance. We set three detectors on our new dataset: Random Guess
baseline, the ReD integrity component, and DerOnly. The results are presented in Table ] Overall,
detection helps but just slightly: across models, accuracy is near the 50% random baseline, with
a clear lift only on 03 (ReD 67% vs. random 50%; DetOnly 57%). Comparing ReD and DetOnly,
the latter is recall-seeking (higher TPR) but far noisier (much higher FPR), whereas ReD is more
conservative and, on some bases, collapses (e.g., GPT-4. 1 shows 0% TPR for ReD). Model behavior
also differs: 03 tends to judge positive (high flag rate; e.g., DetOnly FPR 84%), while GPT-4. 1 tends
to judge negative (low TPR/FPR), yielding a small accuracy gain for DetOnly (56%) over random.

6 Conclusion and Discussion

Our findings expose a critical vulnerability: LLM review systems can be systematically deceived by
presentation manipulation. Fabricated papers achieve high acceptance rates, with reviewers frequently
exhibiting concern-acceptance conflicts—flagging integrity issues yet still recommending acceptance.
This fundamental breakdown reveals that current Al reviewers operate more as pattern matchers than
critical evaluators.

Our mitigation attempts show the inadequacy of current defenses. Detection accuracy barely exceeds
random chance, and paradoxically, adding explicit integrity checks sometimes increases acceptance
rates. Simply asking LLM reviewers to "be more careful” is insufficient.

The scientific community faces an urgent choice. Without immediate action to implement defense-
in-depth safeguards—including provenance verification, integrity-weighted scoring, and mandatory
human oversight—we risk Al-only publication loops where sophisticated fabrications overwhelm
our ability to distinguish genuine research from convincing counterfeits. The integrity of scientific
knowledge itself is at stake.
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A Limitations

Scope. Our research focuses on presentation manipulation without executable code or real data
generation, deliberately excluding prompt injection, forged credentials, and agent collusion to isolate
this specific attack vector. Our scope is orthogonal to Al4Science misuse study [10, [13]], which
evaluate risks from scientific-knowledge misuse rather than reviewer-pipeline integrity. We evaluate
three frontier LLMs with a standard rubric protocol; while results may vary across model families and
augmented review systems, we expect similar failure modes given the fundamental pattern-matching
vulnerabilities we identify. Real adversaries may employ hybrid strategies, though our approach
already demonstrates systematic weaknesses.

Generalization. Our calibration uses ICLR 2025 data from AI/ML conference reviews. While
acceptance rates and norms vary across disciplines and venues, our core finding—that presentation
manipulation can deceive LLM reviewers—Ilikely generalizes given the underlying pattern-matching
limitations we identify. Adversarial adaptation remains an open challenge requiring ongoing research.

Evaluation Setup. We use GPT-5 to classify integrity concerns in reviewer feedback and deliber-
ately exclude human oversight to isolate LLM capabilities under adversarial pressure. This represents
a controlled worst-case scenario; real workflows may include multiple human safeguards to mitigate
potential failures. Our results provide critical stress-testing for systems increasingly relying on Al
assistance.

B Ethical Considerations

Research Intent and Dual-Use Risks. This work aims to strengthen scientific integrity by exposing
vulnerabilities before malicious actors exploit them. We acknowledge dual-use concerns and mitigate
through: keeping strategy descriptions abstract, emphasizing detection methods, coordinating respon-
sible disclosure, and prioritizing defensive applications. We argue that transparent security research
is preferable to covert vulnerability discovery.

Potential Harms and Misuse. (i) Adversarial Guidance. Malicious authors could exploit our
strategies to improve fabrications. We mitigate by omitting prompt engineering details and withhold-
ing the complete generation codebase. (ii) Automation Overconfidence. Our modest improvements
should not justify reduced human oversight. Detection accuracy barely exceeds chance, and current
LLMs are not ready for autonomous review. (iii) Reputation Harm. Over-sensitive detectors may
unfairly flag legitimate work with strong results, non-native writing, or novel claims. Deployment
requires human arbitration and author appeal mechanisms.

Artifact Release. We will partially release our artifact due to ethical concerns. Public release
includes: the evaluation framework, curated synthetic papers/reviews, detector models, and analysis
scripts. Restricted access (authorized users upon request only): the complete paper generation agent
with prompts, specific exploits, and large-scale fabrication scripts. All framework components require
a responsible Al license with declaration of intended use and agreement not to fabricate academic
content for distribution.

Deployment Recommendations. For venues considering Al-assisted review: (i) Mandatory
disclosure of Al usage to authors and reviewers; (ii) Score-flag coupling—papers flagged with
integrity concerns cannot receive acceptance without senior reviewer override; (iii) Audit trails
logging all model inputs, outputs, and integrity evidence; (iv) Human oversight for all flagged
submissions. For researchers using Al disovery systems: Authors remain fully responsible for
verifying that Al-generated content accurately reflects their actual experiments, implementations,
and results. Fabricated claims, whether intentional or due to Al hallucination, constitute scientific
misconduct regardless of the generation method.

Broader Impacts. Al-only publication loops threaten scientific epistemology. If fabrications be-
come indistinguishable from genuine work, the foundation of scientific knowledge risks collapse. The
path forward requires defense-in-depth across multiple layers: fechnical (provenance verification, arti-
fact validation), procedural (integrity-aware scoring, human oversight), community (post-publication
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review, whistleblower system), and cultural (education on Al limitations, ethical guidelines). We view
this work as an early warning system to catalyze robust defenses before these failure modes manifest
at scale. Our findings demonstrate that current systems are not ready for Al-only research-the integrity
of science depends on maintaining rigorous human evaluation as Al capabilities advance.

C Supplementary

C.1 Stratified Sampling Procedure

We implement the stratified sampling pipeline to construct the calibration corpus as follows.

First, we partition the score space using bin edges tg < - - - < tp to define score bins By = [tp—1,tp)
forb=1,...,B.

For each bin—status combination (b, c) € {1,..., B} X Cstat, we define:
Ib,c = {Z . hi S Bb,O’i = C},
Nb,c ®)

Nb,c = ‘Ib,(!|a Pb,c = N* 3

where N, = Zle > ccCunne Vb, is the total reference pool size.
Given a target calibration size N.,), we allocate samples to each cell using proportional allocation
with the largest-remainder method:

/ /
Np,e = Po,cNeal, N c = Lnb7cJ

R = Nca — g Np,c-
b,c

We then add one additional sample to the R cells with the largest remainders n;, . — [n, ..

Finally, we sample uniformly without replacement &, . C Zp . with |Sp.c| = ny, . and construct:

Dcal = {(xi7yz}’1um7o-iahi) : Z S S},

o (6)
where S = U U Spc-
b=1 c€Cstas
This construction ensures that ﬁg?cl = np.c/Necal = pp, for all (b, ¢), preserving both score-bin and
status marginals up to integer rounding.

C.2 Error Analysis of Review Scoring

Having defined our review aggregation mechanism, we now turn to a fundamental question: how
reliable are the resulting scores and decisions? When we combine judgments from multiple reviewer
agents, two sources of uncertainty arise. First, each reviewer introduces randomness—even when
evaluating the same paper, a model may produce slightly different scores across runs. Second, our
decision thresholds are estimated from finite calibration data and therefore subject to sampling error.

We address these concerns by providing a rigorous error analysis that answers two questions:
¢ Q1: How much does ensembling reduce randomness? Under independent reviewers, we give

concentration bounds in Theorem 1 and Corollary 2 to show how tightly s(z) clusters around its
latent mean.

¢ Q2: How reliable is a threshold picked from finite calibration data? We give bounds on the
acceptance-rate estimation error and the 0.5-probability threshold with isotonic calibration in
Propositions 1 and 2.

We also provide a Bayesian view that yields credible intervals for decision-making under uncertainty.
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Assumptions. To make our analysis tractable, we impose two standard regularity conditions on
the review process. For each model m € M, let r,,(z) € R¥ denote the rubric vector and
define the weighted consensus rubric ¥(z) = ) wp, rmy(z). Let the latent mean be fi(z) =
> Wi E[ry, () | 2]. We assume:

* (Sub-Gaussian) For each m, the centered rubric z,,(z) := rp,(z) — Elr,,(z) | 2] is vector
sub-Gaussian: for all u € R¥, (u,z,,(z)) is sub-Gaussian with proxy y/u' ,,u. Moreover,
{Zm (x) }mem are mutually independent.

* (Lipschitz) ¢ : RX — R is L,-Lipschitz w.r.t. £o: |[p(a) — ¢(b)| < Lyla — b||a.

These assumptions are natural in the peer-review setting. The sub-Gaussian property follows from
the fact that venues always require bounded rubric scores, ensuring 7, € [ax, bx] and thus sub-
Gaussianity via Hoeffding’s lemma [11]]. The independence assumption reflects the standard practice
that different reviewers evaluate papers independently without coordination. The Lipschitz condition
is satisfied by common aggregation functions such as weighted averages (¢(a) = v'a, Ly = ||v]2)
or selecting a single overall score (Ly = 1).

With these assumptions in place, we define the latent target score p(x) := ¢(fu(x)) as the score we
would obtain if each reviewer’s noise were averaged out. Under independence across reviewers, the
aggregate vector noise has proxy matrix
Yvee(W) = Z w2 %, € REXK
meM
and we use the scalar variance proxy

Vw = Amax(zvec (W)) .

Frequentist concentration for ensemble scoring. We begin by quantifying how closely the ob-
served ensemble score s(x) tracks the latent mean p5(x). The following result shows that aggregating
multiple independent reviewers yields exponentially tight concentration.

Theorem 1 (Bernstein-McDiarmid concentration and margin bound). Under the assumptions

above, let ¢, := Ly wmy/ Sor, (by — ax)? and 02, := Var[s(z)] < L33 Wiy Amax(Zim), with
Cmax ‘= MaX,, ¢y,. Then for any ¢ > 0,
t2
Pr(s(zx) — pus(x) >t) < e (—7) 7
(s(2) = ps@) 2 t) < exp( = 55— ™

Consequently, with y*(x) = I[us(z) > 7] denoting the latent decision at threshold 7 and y(z) =
|is(z) — 7| denoting the margin,

Pr(ﬁ(w) + y*(x)) < exp(_ ~v(x)

20'121) + %Cmaxf}/(x)

2

) . (8)

Corollary 1 (Variance-minimizing weights for linear aggregation). Suppose ¢(a) = v ' a is linear.
Letc,, :==v'%,,v. Then V,, = Y, w2 ¢, and among w € A~ the bound in () is minimized
by
1 1
X — = ———
Cm vIiy,v’

i.e., (diagonal) GLS/precision weighting in the projected variance.

*

W,

Scalar-score simplification (overall assessment). The general vector-rubric framework of Theorem
1 applies when reviewers provide detailed multi-criterion scores. However, in many venues (e.g.,
ICLR/ICML), reviewers independently provide a single bounded overall assessment that already
aggregates rubric criteria internally. This special case admits a simpler analysis. Let each model
output a scalar overall score $,,, () € [am, D]

Corollary 2 (Scalar overall-assessment bounds). If each reviewer outputs s,,(x) € [a, ] and ¢ is
the identity, then 02, = Y°  w? Var|s,, ()] and ¢ymax = max,, wy, (b — a), hence

T 2
Pr(g(z) # y*(z)) < exp(202 Jg(c) v(w))'
w 3 ¥max

©))
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For uniform weights w,, = 1/M and identical per-review variance o2, this simplifies to
M ~?
Pr(y )< -_— ], 10
r(y#y)_exp< 202+§(ba)7) (10)

showing that both the variance term 02 /M and bounded-difference term (b — a)/M scale as 1/M.

Calibration error and threshold selection. The concentration results above assume a known
threshold 7. In practice, however, we must estimate 7 from finite calibration data, introducing a
second source of error. We now bound this calibration uncertainty. Let a(7) := Pyp,,, [s(x) > 7]
be the true acceptance rate at threshold 7 on the calibration distribution, and let e (7) be its

empirical counterpart (Section . The calibration set {xl}fvzcil is treated as i.i.d. from D.,;.
Proposition 1 (Calibration error bound). For any § € (0, 1), with probability at least 1 — § over

the draw of D,
suﬁ ’ Qeal(T) — a(T) | < 4/ 21\}%1 log 2. (11)
TE
Proof sketch. The class {I[s > 7] : 7 € R} has VC dimension 1; apply the Dvoret-
zky—Kiefer—Wolfowitz (DKW) inequality with VC generalization to obtain (11J. ]

This uniform bound controls the acceptance-rate error across all thresholds simultaneously. For
the rate-matching threshold 7;,¢. (defined to match the venue’s historical acceptance rate a*), we

therefore have |Gcal (Trate) — | < 1/ 577 - log 3. If a(7) is strictly decreasing with slope bounded

away from zero near T;4te, this acceptance-rate error translates into a correspondingly small threshold
error.

For the probability-consistency threshold 7y 5, the analysis is more delicate because we must estimate
the conditional acceptance probability 7(¢) = P(y"™™ = 1 | s(x) > t) and then invert it. We employ
isotonic regression to ensure monotonicity, and the following result bounds the resulting threshold
error.

Proposition 2 (Bound for 7, 5 with isotonic calibration). Define the generalized inverses 7y 5 =
inf{t: m(t) > 1/2} and 7y 5 = inf{t : #(¢) > 1/2}. Suppose sup, |7 (t) — 7(t)| < e, and 7 has no
flat region wider than A around 7 5 and let ¢y, be the minimal right-slope of 7 at 7¢ 5. Then

| 705 — 0.5 | < min{A, ex/cmin}- (12)

Proof sketch. Since 7 is monotone with right-slope ¢yin, 7(70.5 +h) > % + cminh and (95 — h) <
3 — Cminh for 0 < h < A; with sup, |[# — 71| < e, choosing h = min{A, ex/cmin} yields
7%(7'0,5 + h) 2 % and ﬁ(70_5 — h) S %, hence |7A'().5 — 7'0,5| S h. O
Bayesian credible decisions. The frequentist bounds above provide worst-case guarantees but
do not directly yield decision rules for individual papers. We complement this analysis with a
Bayesian perspective that provides paper-specific uncertainty quantification. Assume s,,, () | p(x) ~
N (u(x),02,) independently across m and p(x) ~ N (o, 73). Then the posterior is Gaussian with
precision and mean given by

=10+ Y 0, (13)

fin = T2 (,u07'02 + ZU“_TQ sm> . (14)

For any threshold 7, the posterior decision probability is P(u(x) > 7 | {s;m}) = 1= @((7 — pn) /Tn)-
A 1 — « credible decision is robust (i.e., the credible interval for p(z) does not straddle the threshold)
whenever [T — p,| > 21_q /2 Th.

This Bayesian framework also provides a principled rule for soliciting additional reviews. If the
current decision is ambiguous (|7 — 1| < 21_q/2 7,,) and a candidate reviewer with variance 02
would resolve the ambiguity in expectation—that is,

-2 _ -2 -2
|T_/Ln| > Z1—a/2Tn+1,  Tpp1 = Tp T Ohews
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Figure 3: Empirical validation of error analysis bounds. Left: Misclassification probability vs.
margin y(z) for M = 1,2, 3 reviewers. Empirical rates (points with error bars) fall below theoretical
bounds (dashed lines), confirming Eq. (8). Middle: Threshold estimation error vs. calibration set
size Nca1. The blue curve follows the theoretical O(1/+/Na1) decay (red dashed); our N.,; = 200
(star) yields error ~ (.26, validating Proposition 1. Right: Variance reduction with ensemble size
(log scale). Both the empirical noise variance Var[s(z) — ps(z)] (blue squares) and the bounded-
difference proxy (b — a)?/M (red circles) decrease as 1/M, demonstrating that increasing from
M =1to M = 3 reviewers reduces both quantities by approximately 3 x—confirming Theorem 1
and Corollary 2.

then the additional review is worthwhile; otherwise, the expected uncertainty reduction is insufficient
to justify the cost. This credible-interval framework thus enables both probability-of-acceptance
decisions and adaptive review allocation.

Empirical validation. To validate our theoretical bounds, we conduct synthetic experiments that
simulate the review aggregation process under controlled conditions. We generate n = 5,000
synthetic papers with known latent quality scores, each reviewed by M € {1,2,3} independent
models producing noisy scalar assessments in [1,10]. For each configuration, we compute: (i)
empirical misclassification rates as a function of margin (z) and compare against the bound in (8);
(ii) threshold estimation error |75 — 7o.5| for varying calibration set sizes N, € {50,...,800}
via bootstrap with isotonic regression; (iii) empirical noise variance Var[s(z) — ps(x)] and the
bounded-difference proxy (b — a)?/M as functions of ensemble size M.

Figure [3] presents the results. The left panel confirms that empirical misclassification rates fall
well below the theoretical bound across all margins and ensemble sizes, with clear separation
between M = 1, 2, 3 demonstrating the benefit of aggregation. The middle panel shows threshold
error decreasing as O(1/+/Nca1) as predicted by Proposition 1, with our choice of N, = 200
(marked by the star) yielding error ~ (.26 at the operating point. The right panel demonstrates
how increasing the number of reviewers reduces both sources of uncertainty: the empirical noise
variance Var[s(x) — us(z)] (blue squares) and the bounded-difference proxy (b — a)?/M (red
circles) both decrease as 1/M. Increasing from M = 1to M = 3 reviewers reduces both quantities
by approximately 3x—confirming that recruiting additional independent reviewers substantially
improves decision reliability. These empirical results validate that our bounds correctly characterize
the system’s behavior.

Practical implications. Taken together, the error analysis in this section yields three actionable
recommendations for deploying multi-agent review systems:

(i) Aggregate intelligently. Keep the variance proxy V,, small by recruiting independent reviewers
and using variance-aware weighting (e.g., Corollary 1).

se4 (ii) Handle borderline cases carefully. When the margin |s(z) — 7| is small, use Bayesian credible

595

intervals to assess decision confidence and determine whether additional reviews are needed.

ses(iii) Calibrate sufficiently. Choose N, large enough so that the DKW deviation in (TT)) is negligible

597

at the target confidence level (e.g., N¢a1 > 200 for § = 0.05 yields uniform error < 0.11).
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D Seed Topic List

We use GPT-5 to generate 25 seed topics aligned with the ICLR submission calibration corpus,
covering Al, ML, CV, NLP, robotics, systems, and security:

* Self-consistent diffusion models that satisfy counterfactual causal constraints.

* Open-world continual evaluation via synthetic task evolution for multimodal LLMs.

* Mechanistic interpretability of Mixture-of-Experts routing as a cooperative game.

Certified robustness for retrieval-augmented generation under adversarial knowledge bases.
Neural field memory: spatially grounded long-horizon memory for vision-language agents.

* Program-of-Thought VLMs with verifiable tool-use and executable intermediate graphs.

* On-device nano-LLMs co-designed with NPU schedulers for sub-1W edge inference.

* Causal video generation: 4D text-to-video with physics-invariant latent constraints.

* Self-curating agents: autonomous dataset construction with legal/ethical compliance proofs.

* Safety proofs for multi-agent LLM protocols under Byzantine participants.

* Open-vocabulary 3D segmentation with Gaussian splats and generative object priors.

» Unlearning at scale: certified removal of concepts from multimodal foundation models.

* Temporal reasoning benchmarks for VLMs built from parametric CAD + differentiable physics.
Federated reinforcement learning with privacy-preserving credit assignment.

Energetically aligned training: minimizing carbon under fixed accuracy via differentiable schedul-
ing.

* Watermarking as cryptographic dialogue: interactive proofs to verify Al-generated media.

* Neurosymbolic chart-to-code: parsing scientific plots into executable analysis programs.

* Robust long-form instruction following via adversarial curriculum from self-play reviewers.

* World-model rewrites: editing factual and procedural knowledge in LLMs with locality guarantees.
* Haptic-vision-language models for household manipulation with uncertainty-aware plans.

» Compositional diffusion: plug-and-play constraints for safety, style, and identity preservation.

» Reasoning-first pretraining: supervising latent chains over captions, code, and proofs.

* Open-set alignment: detecting and mitigating unseen harms in generative agents at test time.

* Graph-grounded RAG: joint learning of knowledge graphs and retrievers for verifiable answers.

* RouteBench: measuring strategic routing, tool selection, and delegation in multi-agent LLM
systems.
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