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Abstract

Effectively leveraging prior knowledge of a system’s physics is crucial for appli-
cations of machine learning to scientific domains. Previous approaches mostly
focused on incorporating physical insights at the architectural level. In this paper,
we propose a framework to leverage physical information directly into the loss
function for prediction and generative modeling tasks on systems like molecules
and spins. We derive energy loss functions assuming that each data sample is in
thermal equilibrium with respect to an approximate energy landscape. By using
the reverse KL divergence with a Boltzmann distribution around the data, we
obtain the loss as an energy difference between the data and the model predic-
tions. This perspective also recasts traditional objectives like MSE as energy-
based, but with a physically meaningless energy. In contrast, our formulation
yields physically grounded loss functions with gradients that better align with
valid configurations, while being architecture-agnostic and computationally ef-
ficient. The energy loss functions also inherently respect physical symmetries.
We demonstrate our approach on molecular generation and spin ground-state pre-
diction and report significant improvements over baselines. Code is available at
https://github.com/kushasareen/energy_loss,

1 Introduction

A key challenge in applications of machine learning to the physical sciences is that data can often be
scarce and expensive to generate. However, we often have some prior knowledge of the physics of the
system of interest, which can be used to design useful inductive biases. A common learning problem
involves training a machine learning model to predict configurations of physical systems based on
data collected close to equilibrium such as protein folding [Noé et al., [2020, Jumper et al.| 2021}
Abramson et al., [2024]], crystal structure prediction [Ryan et al.| 2018 Jiao et al., [2023| [Zeni et al.}
2025]], calculation of ground states given Hamiltonian parameters [Carrasquilla and Melko| 2017]], or
generative modeling of physical systems [Gomez-Bombarelli et al.,|2018],|[Sanchez-Lengeling and
Aspuru-Guzik, [2018]]. A significant body of work has focused on implementing physical inductive
biases, such as equivariance at the level of architectures (see e.g. Zhang et al.|[2023] for a review).

This work explores a complementary direction: embedding physical principles directly into the loss
function. The fundamental question we ask is: can loss functions grounded in physical principles pro-
vide more effective training signals and yield models that better reflect physically valid configurations
compared to generic losses such as the mean-squared error (MSE) and the cross-entropy loss?

As a response, we propose a framework for deriving energy loss functions tailored for physical
systems in the thermal equilibrium regime. This is motivated by the fact that loss functions can be
obtained from a distribution representing the uncertainty around each prediction or data sample. For
physical systems in thermal equilibrium, the sensible choice is the Boltzmann distribution. Employing
the reverse Kullback-Leibler (KL) divergence leads to loss functions that take the form of approximate
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Figure 1: Energy interpretation of loss functions. Ground truth positions are denoted in green
and predictions in blue. (a) The MSE loss function for particle positions corresponds to quadratic
potential energy centered on the data. (b) This choice is however physically unsound and leads to
penalizing the model for configurations that are correct, i.e. related by rigid motion to the target. (c)
A more accurate choice would be to use a loss function based on physically sound energy, which
would not suffer from the aforementioned problem.

energy differences between data and predictions. This allows for a more principled quantification of
the errors made by the model, which we hypothesize provides better gradients for learning.

Our framework is general in the sense that it encompasses many existing loss functions and allows us
to interpret them as energies. The energy loss functions also naturally capture relevant symmetries if
the underlying energy approximation does. Specifically, they make it so that no loss is incurred by
the model for predicting configurations that are related to the data by symmetry. Loss functions that
have this property have been suggested for atomistic systems, but they require expensive alignment or
minimization procedures [Klein et al.,2023]], which our framework does not require. This framework
finds broad applicability to systems in thermal equilibrium, from direct regression tasks to generative
modeling with diffusion models [Sohl-Dickstein et al., 2015} |Ho et al., 2020} |[Song et al., 2021]].
Note that we consider tasks that can be framed as regression and classification problems with data,
not sampling problems where we are given a ground-truth energy (like for example in Boltzmann
generators [Noé et al., 2019]).

Contributions: (i) Methodology for deriving loss functions grounded in physical principles by
minimizing the reverse KL divergence between a prediction and a Boltzmann distribution centered
around data (ii) Instantiation of this framework for atomistic systems that yield distance-based loss
functions and an analysis of the invariance properties of these losses (iii) Applications to diffusion
models and analysis of the resulting score estimator (iv) Instantiation of this framework for spin
systems (v) Empirical evaluation on a range of tasks, showing consistent improvement over baselines.

2 Background

2.1 Forward and reverse KL loss functions

We first consider a regression setting. Consider the empirical distribution pp associated with the 11D
dataset D = {x(V, y(® }ie[N], and a parametric model f; : R — R* x — ¥ associated with the
family of conditional distributions p (y | fo (x)). We take fy (x) to be the model prediction of the

target; the usual assumption is that conditional distribution is parametrized by a location parameter
(like the mean for a Gaussian), and the model is trained to maximize the likelihood of the data

L(0)=-— va logp (y(i) | fo (x(i))). The Gaussian assumption for the model results in the Mean
Squared Error (MSE) loss function. For n-way classification, the model predicts the logits of a
categorical distribution and maximum likelihood yields the cross-entropy loss function. Maximizing
the likelihood is equivalent to minimizing the Kullback-Leibler (KL) divergence.

In this work, we will consider a reverse KL divergence objective. In the regression case, this
amounts to taking the model as deterministic and instead accounting for the uncertainty at the level
of the data samples. For regression, we then have pp (x,y) = Ziv +o(x—x)p(y|y®) and
q(x,y) = va L5 (x—xD) 5 (y — fo (xV)), where p (y | y) is a conditional distribution that
specifies the uncertainty around each target. The reverse KL objective is then

N
D(a | pp) = By lloga (x,3) ~ log pp (x,3)] = = >_logp (fo (x?) [¥?) )



For classification, the model distribution is still a categorical distribution parametrized by logits to
ensure differentiability, but the distribution associated with data samples can be general.

In general, the reverse KL divergence is not equal to the forward KL divergence. Instead, it gives
the likelihood of the prediction given an uncertainty model for targets. However, it is exactly equal
when the sample point and the parameter can be swapped in the distribution p. It is for example the
case when p is chosen as Gaussian. Our general goal will be to define more appropriate distributions
p(y | y) for the loss function. As we will see, the reverse KL formulation is convenient since it
enables defining these distributions only around each data sample.

2.2 Diffusion models

We also consider generative modeling with diffusion models as another use case for more informed
energy loss functions. This class of generative models has proven powerful, as they can efficiently
learn interpolations between a prior distribution and the data distribution [Albergo et al.,[2023]]. The
objective is typically formulated as a noise prediction task [Ho et al., 2020]

1
J0) = /0 Exnp(x),einp(er) [wtlle— éa|\2] dt )

where the noise prediction is the output of a neural network €y = fy (x¢,t), Xt = QX + 01€, 0, ¢
define the noise schedule and w; is a weighting factor. In practice, the expectation is estimated by
Monte Carlo. The objective also admits an interpretation as denoising score matching [Vincent,
2011]], with the optimal noise prediction satisfying €* (x;,t) = —0+Vx, logp (x¢).

The loss can be equivalently seen as prediction of the data sample, with appropriate reweighting, see
— (xt,_atée(xtvt))

e.g. [Kingma and Gao|[2024]. With the sample prediction defined as Xy = . we have:
1 2
Wi R 2
J(0) = /0 Escp(x).ei~p(er) {Uzt I — %q|| ] dt 3)
i

yielding a regression-type objective with the MSE loss.

3 Energy Loss Functions

In Section [2.1] we saw that loss functions can be obtained through a reverse KL formulation with
respect to a conditional distribution p (¥ | y) centered on the data. Importantly, the conditional
distribution p is always an uncertainty model; as such, there is not necessarily a true one.

We will define the conditional distribution p as a Boltzmann distribution

exp (—E(y,y)/T)
Z(y,T)

p(¥yly) =

“

where E : R* x R¥ — R is related to the physical potential energy of the system around the data
point y, T is the temperature and Z (y, T') is the partition function. We assume the system is observed
in physically likely configurations; hence, each data point y is modeled as an approximate local
minimum in the energy landscape. The use of Boltzmann distributions to model the uncertainty
around such configurations is natural and can be motivated from first principles [Jaynes| 1957, |Pathrial
2017]. It is the steady-state distribution of a system undergoing stochastic dynamics in contact with a
reservoir at temperature 7' (see derivation in Appendix [A.72).

Assuming a general Boltzmann distribution, the reverse KL divergence Equation (IJ) loss function we
obtain for the continuous case is

al NORINO - By, y?) (i)
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where the log-partition function does not depend on the parameters. The model is penalized for errors
by an amount given by the approximate increase in energy with respect to the data sample.

This picture allows for obtaining a physical interpretation of different conditional distributions and
loss functions depending on the choice of energy E(y,y). The Gaussian conditional distribution is



obtained with T = 202 and isotropic harmonic potential energy centered around y:
. A 2
E(y,y)=ly-vl" (©)

We can now justify our choice of the reverse KL estimation over maximum likelihood estimation.
First, in the reverse KL case, the partition function, which could be challenging to evaluate for some
energies, does not depend on the model parameters 6. Second, we only need to define potential
functions around each data sample y(*), rather than around each prediction. This is a significant
advantage, as we can expect some predictions to be poor, leading to configurations that are not
approximate equilibria and to nonsensical energies.

3.1 Desiderata for energy functions

There is considerable freedom in the choice of the energy function. One fundamental criterion is
agreement with the system’s underlying physics, but this is not the only one. An appropriate energy
should, in addition, satisfy the following desiderata:

1. Minimized at the data and symmetries: The minimizer of the energy function E(y,y)
should be the data y (and its symmetry equivalents). Many tasks require regressing to the
data even if it is not the minimum of the true energy landscape.

2. Optimization stability: The gradient of the energy function V E(y,y) should be smooth
and bounded to ensure well-behaved optimization with gradient-based methods.

3. Fast evaluation: Evaluation of the energy and its derivative should be efficient and compati-
ble with automatic differentiation.

Based on this, we argue that one should not often use the true energy function, even if it is known,
since it may violate all the criteria. The energy landscapes of systems of interest typically admit
multiple local minima and are highly rugged [Mézard et al.l [1987, [Frauenfelder et al., [1991| [Wales
et al.} 2000]. The cost of evaluating the energy can also be prohibitive [Schuch and Verstraete, 2009].

4 Energies for Atomistic Systems

We consider energies associated with the positions of n atoms in d dimensions, such that y, y € R"*¢,
The potential energy Equation (6)) leading to the Gaussian distribution is poorly motivated from the
physical point of view. It describes the effect of an external force bringing back particles to position
y. However, a realistic potential energy should model interactions between particles (see Figure [Ic).

Many approximations exist for the potential energies of physical systems around equilibrium. For
atomic systems, the Morse potential [Morsel, |1929]] and the Lennard-Jones potential [Lennard-Jones,
1931]] are examples of popular models. However, using these potentials for the loss Equation (5]
can pose challenges for optimization, as they have highly nonlinear gradients that can explode or
vanish. A simple approximation that avoids this issue and that is much more principled than the MSE
potential is to use a quadratic pair potential of the form

. "1 L
EF,y) =) 3 Fis () (lyi = w5l = 119 = ¥il)° (7)
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where the indices i, j are taken over particles. This is the general form of a second-order Taylor
approximation in pairwise distances of an interaction potential (see Appendix [A.3]). Motivated by
the fact that coordinate regression can lead to poor realism due to inconsistencies with bond lengths,
this type of distance-dependent loss function has been used heuristically as a regularizer in some
applications [Peng et al.; 2023} Yang and Gomez-Bombarelli, [2023| |Abramson et al., 2024], but to the
best of our knowledge, not as a primary objective. Note that this is different from directly predicting
the distances [[Simm and Hernandez-Lobato, 2019, [Nesterov et al., 2020, Xu et al., [2021]].

There is significant freedom in the choice of the coefficients k;; (y). We propose simple heuristics to
set these coefficients. First, we consider setting the coefficients are set to a constant value k;; (y) = k.
Note that this can be obtained from Taylor approximation of the Morse potential (see Appendix [A.3).
Second, we consider setting the coefficient as a decreasing function of the distance between two
atoms k;; (y) = f(|ly: — y;l|) to capture the fact that interactions between particles decrease at long



range. We consider inverse, inverse-squared, and exponential decay dependence of f on the distance.
Taylor approximation of the Lennard-Jones potential yields inverse squared distance dependence
(see Appendix[A.3). Other possibilities can be considered: in general, given an interaction potential
between particles, the coefficients can be obtained by a second-order Taylor expansion.

4.1 Invariance properties

An important property of energy loss functions is that they respect the symmetries of the associated
physical energy. We formalize this in the following way:

Definition 4.1 (Invariant loss function). A loss function / : R* x R*¥ — R between a prediction and
a target is invariant to the action of the group G' on R¥ if

g 3.y) =19y =1Fy), Y9G,y yeR" (®)

An invariant loss function essentially compares input and targets up to transformations in G. An
example of a common S E'(3)-invariant loss function is to apply the Kabsch algorithm [Kabsch,|1976]
to find an optimal alignment between a predicted structure and a target, and to use the MSE after
applying the alignment [Klein et al.| 2023]). It has been shown that in cases where there are multiple
possible symmetry-related predictions for a given input— so-called symmetry-breaking predictions
[Smidt et al.| 2021} [Kaba and Ravanbakhsh, |2023[]— non-invariant loss functions exhibit pathological
behaviour [Xie and Smidt, 2024, Jing et al., 2024, [Lawrence et al., 2025|. For example, the MSE is
minimized when the prediction is the mean of the possible targets rather than for any of them. There
are multiple ways to define these invariant losses, which are analogous to the different ways in which
invariant neural networks can be designed (see Appendix [A.4]for more discussion).

It is easy to see that the energy loss Equation (5)) is invariant to G = E(d) if k;; (y) is invariant,
since it then only depends on invariant distances. This is analogous to how invariant functions can be
built from scalars |Villar et al.|[2021]]. These, however, are not the only symmetries of the loss. The
energy loss function is additionally invariant to permutations that correspond to the symmetries of
the ground-truth distance matrix. Denote the distance matrix of the data by Ay;; = |ly; — y;|| and
the automorphism group of a matrix m € R™*" as Aut (m) C S,, where the automorphisms act on
the matrix by conjugation. We then have the following:

Proposition 4.2. The loss function Equation (7)) is invariant to the group
G = E(d) x (Aut (k (y)) N Aut (Ay)). ©)

All the proofs follow in Appendix [A.T]} This allows us to characterize the family of loss minimizers:
Corollary 4.3. Foranyy € R" % and k;; (y) > 0,

argminE(y,y) ={g-y | g €G}. (10)
yeRnxd

The loss landscape, therefore, presents a family of global minimizers associated with symmetries.
We hypothesize that the symmetry is beneficial for learning, since it allows the model to regress
to any target that is equivalent to the data by symmetry, as shown in the example in Figure [2]
As our experimental results show, the benefits of invariance in the loss function are different and
complementary to that of equivariance of the architecture. Equivariance guarantees that the output
changes predictably under transformations of the input. However, it does not guarantee that the
correct output will be learned. Invariant loss functions make the learning task easier by allowing to
regress to any symmetry related configurations, which equivariance with a non-invariant loss does
not allow.

4.2 Diffusion models with distance-based loss functions

The training objective of diffusion models involves the prediction of a data sample from a noisy latent
one. We suggest that the energy loss functions can be used as a straightforward replacement for the
MSE in these objectives. Similar distance-based objectives have been previously used in the context
of diffusion models [Yang and Gomez-Bombarelli, 2023| |Abramson et al., 2024} |(Cognolato et al.,
2025]. However, it is not immediately clear that using such objectives results in learning correct score
estimates. Here, we show that this is indeed the case under some conditions.
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Figure 2: Loss landscapes. The model has to predict the positions of two particles in one dimension.
The prediction for the first particle ¥ is closer to the ground-truth for the second particle y; and vice-
versa. (a) The MSE minimizes the forward KL divergence between a Gaussian model distribution
(blue) and the data distribution (green). It does not capture the symmetry. (b) The energy loss is
obtained via the reverse KL with the pair energy and admits a family of minimizers associated with
symmetries. It results in a gradient that points towards the closest correct configuration.

Consider the energy loss function Equation (7) with constant coefficients k;; (x) = k. The loss
function computes the MSE between distance matrices for the data and the sample prediction, given
by Az;; = d (x) = ||x; — X;||. Denote the Jacobian of this function by J(x) = Vxd (x) € Rnxn®,
We will seek to characterize the minimizers of a diffusion model trained using this loss,

— 04€ 4
€ € argmin Eyxp(xp).e,mp(er) [E <tht—e(xt’),xﬂ (11)
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The following result allows us to obtain an approximation of this set, valid for small noise scales:

Proposition 4.4. Let p (x;) be a continuously differentiable, S E(d)-invariant density. Assume |€| is
bounded. For small o,

€ ~ —0,Vx, logp (x) +v, v Eker(J(xy)) (12)
In addition, the minimum norm minimizer €}, , is given by

€ = —0tVx, logp (x¢) (13)

The set of minimizers is therefore given by the true score, up to a translation in the direction of rigid
motions. The second fact follows since for an invariant measure, the score is orthogonal to the Lie
algebra generators. We can also show that due to its invariance, the distance-based loss function
offers a reduction in variance with respect to the MSE:

Proposition 4.5. Let p (x;) be a continuously differentiable, SFE(d)-invariant density. Denote by
€ and €yqp the minimum norm minimizers of the Monte-Carlo estimators of the energy loss and
MSE loss, respectively. For small o,

Bias €3] ~ 0, Var [€3,] < Var [€}5e] (14)
Note that surprisingly, even though these results are in principle only valid for the energy loss function
with constant coefficient k;; (x), in our results of Section the variants using more physically
motivated coefficients still performed better empirically. We hypothesize that this is because the
evaluation of the model assesses the physical plausibility of the samples rather than the agreement
between the learned and data distributions. Incorporating physical information in the loss function
can therefore be beneficial, even though (or because) it biases the score estimate.

4.3 Linear scaling and rigidity theory

One potential downside of using the energy loss of Equation (7) is that it has a quadratic number of
terms in the number of particles [V, in contrast to the linear number of terms in typical losses such
as MSE loss. While in many architectures— such as transformers or densely connected graph neural
networks— the quadratic cost of operations in the network makes this a non-issue, the feasibility
of linear scaling may prove valuable for applications involving a large number of particles, e.g.,
modelling macromolecules or crystals with large unit cells.



Fortunately, a solution is provided by rigidity theory. Results in rigidity theory [Lamanl (1970,
Asimow and Roth, [1978] provide the conditions for recovering the coordinates of a point cloud from a
linear number of pairwise distances. In this work, we consider a construction for sparse rigid graphs,
reducing the computational cost of energy loss without affecting its global optima (see Appendix [A.3)]
for more background and Appendix [C.4]for wall-times of different loss calculations).

5 Energy Loss for Discrete Systems

The energy loss formulation can be leveraged for other types of systems. We derive a version for
the discrete case, which can replace the cross-entropy loss function. Denote logits predictions as

(4)
%0,
distribution and a Boltzmann distribution around the data Equation () is given by

70= 432 [y [ 09)] 7 a5 18] ez (40.1)] a5

where z((,lz is the model prediction for the logits associated with class j and S[q] is the entropy of
q. The loss is therefore proportional to the free energy difference. The last term is the negative free
energy at the data, and does not depend on the parameters. The loss function, therefore, simply

reduces to the variational free energy of the prediction.

and the associated categorical distribution as ¢ (}7 | z((f)). The reverse KL between the model

5.1 Application to spin systems

We consider modeling systems of spins as an application of the discrete formulation. Predicting
configurations of these systems with machine learning models is a problem of high interest in physics
[Carrasquilla and Melko, |2017} [Pahng and Brenner, [2020] and in combinatorial optimization [Fu
and Anderson, |1986]]. We will be interested specifically in systems on a square lattice A such that
v,y € {1, —l}A. We consider Ising-type Hamiltonians of the form E (y) = —1 ij Jijyiy; where
the coupling —1 < J;; < 1 is non-zero only for neighboring sites in the lattice A, but does not
necessarily exhibit any symmetry. Systems with unstructured couplings are known as spin glasses
[Mézard et al.,|1987] and often exhibit a large number of local energy minima.

Energy loss functions of the form Equation (I5) can be used for classification of spin configurations.
We suggest to use an approximate local energy around the data defined as

A

E(y,y) =) h"(y)3: (16)

9

where the local field is given by hLF (y) = Z?(Jlj + h%)y,. The local field energy captures the
change in energy from flipping a spin in the configuration y. It therefore provides an appropriate way
to quantify deviations from that configuration: large values of local field are associated with spins
that result in large increases of energy and that should be weighted more importantly in the loss.

An alternative would be to use the true energy instead. The objective Equation (T5) would then be
interpreted as entropy-regularized energy minimization. This would be expected to perform well
in strict terms of minimizing the energy. However, the true energy is not a classification objective,
since it does not make use of the data. In addition, it can exhibit a large number of local minima. By
contrast, the local energy loss Equation is convex, due to the linear dependence in y. It also
admits the data point y as its unique minimum if h° > 4 (see Appendix . If the data is a ground
state of the true energy, h° > 0 is sufficient. The energy loss is therefore a proper classification
objective.

6 Experiments

6.1 Regular shape prediction

Experiment Setup. To develop an understanding of energy loss functions, we propose a simple
task where the goal is to generate regular shapes in two dimensions. Given a radius, a model is tasked
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Figure 3: Regular shape prediction results. (a) Typical samples from optimal models trained with
MSE and energy loss when 64,4 = 7. (b) The impact of ., on sample quality. We can see as .4
increases, MSE performance deteriorates but the invariant losses (Energy and Kabsch Align) remain
performant. (c) As the number of shape vertices scales, a sparse version of the energy loss remains
equally performant as a complete-edge energy loss using only O(NV) operations.

with predicting the N vertices of a regular polygon of that radius. The dataset is constructed by
sampling regular polygons of a radius r ~ U[0.3, 5] and then applying an augmentation by randomly
rotating the shape by an angle in U[—6ayg, faug]. Prediction is performed using two hidden-layer
MLP. We compare standard MSE loss with the atomic energy loss using exponential coefficients,
an SE(2)-invariant loss using the Kabsch algorithm to align points, and a version of the energy loss
using sparse rigid graphs. We empirically confirm that the sparse graphs are globally rigid w.h.p.
in Appendix To evaluate, we introduce a quality metric based on the regularity of the angular
differences and the radial variation in a given shape. Intuitively, for a regular shape the angular
difference variation O Aungre and the radial variation 0,44;,,s across points should be small. A full
definition follows in Appendix [C.T}

Results. shows that the energy loss and other invariant losses continue to produce high-
quality shapes when rotation augmentation is applied whereas MSE fails. Additionally, the sparse
energy loss maintains nearly the same performance as the number of vertices N increases, while
reducing computation by O(N) operations. Interestingly, models trained with an invariant loss
automatically learn to produce canonical orientations of shapes.

6.2 Molecul ti
plecule generation Table 1: Metrics for GDM-aug on GEOM-Drugs.

Experiment Setup. First, we
train diffusion models to uncon- LSS Mol. stab. (%) Atom stab. (%) Valid. (%) Unique (%)
ditionally generate molecules in MSE 0.8 85.6 94.8 100
the QMO dataset [Ramakrishnan| Energy 24.6 96.0 89.7 100

et al.l [2014]. We evaluate the
performance of the energy loss
when training EGNN diffusion models (EDM) [Hoogeboom et al., [2022]], GNN diffusion models
with and without data augmentation (GDM and GDM-aug) and near state-of-the-art joint 2D & 3D
diffusion models (JODO) |Huang et al.|[2023]]. As baselines, we compare the convergence properties
to models trained with MSE and a Kabsch-aligned MSE [Kabsch, [1976]. Exponential coefficients are
chosen for the energy loss. Additionally, we compare with a version of the energy loss using sparse
rigid graphs.

Table 2: Evaluation metrics for GDM-aug on QMO9.

Loss Molecule stability (%) Atom stablity (%) Validity (%) Uniqueness (%)
GDM-aug

MSE 83.7+23 98.3 £+ 0.004 93.6 £ 1.7 100.0 + 0.0
Kabsch align 823+ 0.5 97.8 £ 0.004 90.8 £2.0 100.0 + 0.0
Energy 89.8 £ 2.8 993 +0.3 977+ 14 99.9 £+ 0.002
Energy (sparse) 89.1 £ 0.9 99.0 £0.1 974 £25 100 £ 0.0
EDM

MSE 824 +34 98.8 £ 1.7 93.0£25 99.89 4+ 0.32

We also generate large molecules with GDM and GDM-aug using the GEOM-Drugs dataset [|Axelrod
and Gomez-Bombarelli, [2022]], comparing the MSE and energy loss. A similar evaluation setup
to [Satorras et al., 2022, [Hoogeboom et al., 2022 is used for GDM and EDM while JODO uses a
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Figure 4: Molecule generation results. (Left) We observe a dramatic improvement on stability
metrics for the GEOM-Drugs dataset, demonstrating the scalability of our approach. (Right) On
QMO, energy loss improves metrics over all baselines. This is especially present in the low data
regime where energy loss gives +10% molecule stability over MSE.

Table 3: 3D and alignment metrics for JODO variants.

Metric-3D Metric-Align
Model At. stab. (%) Mol. stab. (%) Val. (%) Compl. (%) FCD | Bond | Angle | Dihedral |
JODO (paper) 99.2 93.4 — — 0.885 0.1475 0.0121 6.29¢-4
JODO (ours) 99.2 92.8 95.6 95.5 0.854 0.1218 0.0110 591e-4
JODO + Energy (Inv.) 99.4 94.3 97.1 97.0 0.892 0.1125 0.0046 4.95¢-4
JODO + Energy (Exp.) 99.6 96.6 98.4 98.4 1.495 0.0928 0.0142 4.97e-3

broader set of 3D and align metrics [Huang et al.|[2023]]. Since the MSE is no longer the optimization
objective, we no longer report the ELBO, which depends on the MSE. Instead, we evaluate the method
using several desirable features of generated molecules relevant to the drug discovery pipeline: atom
stability, molecule stability, validity, and uniqueness. Additionally, for JODO, we compute the
Maximum Mean Discrepancy (MMD) for bond lengths, bond angles and dihedral angles against the
data distribution as well as the Fréchet ChemNet Distance (FCD) Preuer et al.|[2018]]. For all settings,
we conduct exhaustive sweeps for learning rate and the weighting between the loss on positions and
atom types. All comparisons are compute-matched.

Results. |Figure 4| shows the energy loss results in faster convergence and better optima over base-
lines{j In addition, we observe that energy loss is much more data efficient than baselines, allowing
for the training of capable molecular generative models, producing over 75% stable molecules using
only 50% of the training set (50K samples). Table 1| contains results on the GEOM-Drugs data.
Table [2] shows results on the QM9 data with GDM-aug model and and its equivariant variant EDM,
with comprehensive results in Appendix [C.2] Importantly, shows that energy loss with a
non-equivariant architecture results in more improvement than using an equivariant architecture, at
negligible computational cost.

The results using the JODO model are reported in Table[3] We observe that using energy loss with
JODO is able to improve all align metrics, and nearly all 3D metrics, with comparable FCD, compared
to the default Kabsch-aligned loss. This suggests that energy loss can push the state of the art and
offers complementary benefits to equivariant architectures.

Ablation. We conduct an ablation over the form  Table 4: Ablation for coefficients k;; (y).
of the spring coefficients k;; (y) in the energy

loss (Table [d). We consider the following func- Coeff Mol. stab. (%)  Atom stab. (%)  Valid. (%)
tional forms: constant, inverse distance, inverse Exp. Dist. 89.8 +2.8 99.3 +0.3 977+ 14
square distance, and exponential decay. A thorough V- Sq. Dist. 846+ 1.8 989402 966+ 15

. : Inv. Dist. 84.5 4+ 2.1 987402 950415
sweep over learning rates was conducted. With  cgngtant 83.6 + 1.5 987 + 0.1 936 + 0.7

EDM/GDM, we find exponential decay to give the
best empirical results. However, inverse distance
coefficients work well for JODO and Appendix shows a less stark decay works better for the

“We note that our results with MSE are better than those reported in [Hoogeboom et al.|[2022] and attribute
this to exhaustive learning rate tuning.



sparse loss function on large molecules. This suggests it is necessary to ablate these coefficients on
new tasks.

6.3 Spin ground state prediction

Experimental Setup We consider the task of predicting the ground states of the spin Hamiltonian
and compare the effectiveness of different loss functions. We construct a dataset of 10,000 training
and test spin-glass Hamiltonians, each with couplings uniformly sampled from [—1, 1]. We consider
grids of size 16 x 16, which offer a challenging problem. The target ground-states are obtained
by solving the associated integer linear program [Billionnet and Elloumi, |2007]]. A convolutional
neural network (CNN) is trained to take as input the coefficients .J;; and predict the ground state
configuration y,;. More details on the architecture and training setup are provided in Appendix
We compare training with the energy loss function of Equation (I6) to the cross-entropy loss
function and the margin loss function, another commonly used loss function for classification. The
evaluation metric we consider is the energy of the predicted configuration. We also compare with
direct minimization of the true energy as a baseline, despite it not being a classification objective.

Results The results in Ta- Table 5: Results on ground-state prediction.

ble [5] show that using
the local energy leads to
lower configuration en-  Testenergy 58.8 4 0.8 4987+15 456+16 | 146+03
ergies than the cross-
entropy loss function and
the margin loss function. As expected, minimizing the true energy still leads to lower overall energy,
despite not using the data. The local-field loss also requires fewer training epochs to converge
than the cross-entropy loss. The results support the hypothesis that directly embedding physical
insights through the local-field formulation effectively guides the learning process toward physically
meaningful predictions.

Loss Cross-entropy ~ Margin loss  Local energy ‘ True energy

7 Conclusion

We demonstrated a new approach to designing loss functions for machine learning tasks in physical
systems based on the system’s energy. When applied to both continuous and discrete settings, we
found that replacing a simple MSE or cross-entropy loss with our energy loss functions leads to
improved predictions across experiments. We further demonstrate the suitability of this loss for
diffusion models and analyze its symmetry-invariance properties and scalability.

Limitations and future work Some limitations remain, which also point to directions for future
work. First, when energy loss functions are used for diffusion models, the correct score is recovered at
low noise levels; exact recovery at higher noise levels would require an explicit correction, which we
leave for later study. Second, while we offer a more principled approach to designing loss functions,
some choices are still ad hoc. Looking ahead, richer surrogate energies that capture torsional angles
could be investigated. The approach could also potentially be fruitfully extended to a broader class of
systems, including crystalline materials and proteins.
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paper’s contributions and scope?
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Justification: As stated in the introduction, we introduce a new perspective on loss functions
for physical systems (Section [3), analyze their properties (Section .1} Section d.2)), and
demonstrate the benefits of this approach via multiple experiments (Section [6).
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss assumptions made in theoretical claims, and in the conclusion
Section [/|we point out further limitations that point to future research directions.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs are included in Appendix[A.1]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details in the paper, and further details are provided
in Appendix [C|

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We intend to make the code public upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Basic details about training and testing are included in Section [6] with full
details included in Appendix[C|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We explain our use of error bars in Appendix [C] based on multiple seeds.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resource details are included in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our contributions are meant to be general enough to apply to a very wide class
of problems within the field of Al for science, including chemistry, physics, and biology. We
consider these applications to be too broad to discuss any particular social impacts, positive
or negative.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new data or pretrained models are released in this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite sources for the datasets that we train our models on, and the models
that we compare against.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No assets are released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as an important, original, or non-standard component of
the core methods of this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Theory

A.1 Proofs
A.1.1 Proof of Proposition4.2]

Proof. For any (g1,92) € E(d) x (Aut(k(y)) N Aut (Ay)) where g1 € FE(d) and g €
(Aut (k (y)) N Aut (Ay)), we have

n

1
E((g1,92)-9,¥) =Y Skis (¥) (lyi = yill = (g1, 92) - i = (91, 92) - v;*an
i

By linearity of the actions, we have
. NN
E((91,92) - Z ki (v) (lyi = y5ll = llgr - (g2 - 35 — 92 - 95)1) (18)

Since the Euclidean norm of a difference is £(d)-invariant we have

E((91,92) - Z ki () (1yi = v5ll = (g2 - 9 — g2 - 9))° (19)
We then have
. "1 . . 2
E((91,92) - 9,¥) = ki (¥) (HYi =yl =l (yg;.i - ygz—l.j) II) (20)
,J

Using the fact that go € (Aut (k (y)) N Aut (Ay)),

n

. 1 . N 2
E((gh,gz) 'Y7Y) = Z 2k92 i,95 1 j (Y) (Hyggl.i - yggl.jH - ” (ygz—l.i - ng—1_j> ||) 21

E((91:92) Zgé[ ) (v = 3l = 15~ 52))7] @)

Since the sum is permutation invariant, we have

n

B((91,92)5:%) = 32 5 [l 0 (s = %3l = 15 = 5] 23)
B(g1.02)5.¥) = E.9) en

For the second argument, we similarly have
E(S’, (glaQZ) y) = E(}A’,y), (25)
due to the FE(d)-invariance of the Euclidean norm and the automorphism of y.

This completes the proof.

O
A.1.2  Proof of Corollary4.3]
Proof. First,
E(y,y)=0= min E(y,y) (26)
yeRnxd
Then, given
"1 N A2
E(y,y) =) ki ) (ly: =il = I3 = 551 27)
2%
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we see that for any k;; (y) > 0 the loss is minimized when each term of the sum is zero which
implies that Ay = Ag when the loss is minimized.

This implies
argmin E(y,y) ={g-y | g€ E(d)}. (28)
S'ER"”

Since the action of the group Aut (k (y)) N Aut (Ay) on y is by definition trivial, the desired result
follows.

O

A.1.3 Proof of Proposition[4.4]

Proof. We first establish some preliminaries. Since SE/(d) is not compact, we do not assume that the
density p (x;) is normalized. This is not an issue since the results depend on the score Vy, logp (x¢),
which is independent of the normalization.

We also parametrize the score in terms of a noise prediction to align with practice. The diffusion
objective for time ¢ is proportional to (multiplication by constants do not change the minimizer)

1 Ot .
—X; — —€p — X

s7t (9) = IExwp(x),er\zp(e) [ o o

2
] (29)

where €g = fy (x¢,t), Xt = ayx + o€ and p (e) = N (0,I). The sample prediction is given by

)A(G — (xt—Utjf(xmt)) X

The expectation can be rewritten as

1 Ot . 2
Tt (0) = Ex,op(xi) xmp(xlx2) [ T X ] (30)
1 O¢ . 2
Ji (0) = Ex,mpxe) | Exmop(xixe) OTtXt - Etee -x (31)
Ji () = Ex,wp(Xt) [\715 (Xt, 9)] (32)

The objective is minimized if for all x;, we have the following noise prediction

1 2
évse = argmin J; (x¢, 0) = arg min Ey p(x|x,) l —xy — ﬁég —x ] (33)
g ERnxd épEeRnXxd Qg Qg
Since expectation and minimization commute for the MSE, we have
A . 1 Ot . ?
€mse = Ex~p(x|x,) |aTgmin || —x; — —€g — X (34)
€y RN Xd (677 (673
- 1
EMSE — 7Ex~p(x|xt) [Xt - OétX} (35)
Ot
Using Tweedie’s formula, we obtain the usual score matching relationship:
énse = —0tVx, logp (x¢) . (36)
To prove our result, we consider the energy loss objective,
1 ot .
u7t (Xta 9) = Exwp(x|xt) |:E (Xt - iega X>:| (37)
it (673
where
n n 2
. N o2 N
B%,x) =Y (Ixi —x;ll = % = %;[)* =) (d (x);; —d (x)ij) (38)
i i
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and d : Rn*d — R computes the distance matrix.

We perform a Taylor approximation of d (x) and d (x) around x;
d(x) = d(x) +J (%) (x = %) (39)
where J (y) is the Jacobian of d.

This approximation is valid when |x — x;| < 1 and |x — %;| < 1 which corresponds to |o;| < %
and |o;| < é respectively. Assuming that € follows a standard normal distribution, and that € is
bounded, for usual diffusion schedules (with monotonically increasing noise) the approximation will
be valid for small values of ¢.

This yields
B(x,x) = ||J (x:) (x = )| (40)
Replacing in Equation (37), we have
1 Ot . 2
u7t (Xta 9) = IExwp(x\xt) J(Xt) — Xy — — € — X (41)
Qi Qg

Since J; is a convex function of €, its minimization with respect to €y can be performed by solving
for vanishing gradient, which leads to the minimizer €* satisfying

1
J (Xt)T J (Xt) (é* — U—tExmp(xlxt) [Xt - OétX]> =0 (42)
J (x0)" T (x4) (€ — 04V, logp (x4)) = 0 (43)

Because of the SFE(d) invariance of d, J (x;) does not have full-rank. Denoting the kernel space of
J (x¢) as ker (J (x;)), we obtain

" 1
e = —PJ(xt)U—tht logp (x;) +v, veker(J(x)) (44)

where P ;(4,) is the orthogonal projector onto range (.J (x;)).

Using the assumption that the measure p (x;) is S E(d)-invariant, the score lies in range (J (x;)) and
is orthogonal to any v € ker (J (x¢)). The norm of €* is therefore minimized when it is equal to the
score. This completes the proof.

O

A.1.4 Proof of Proposition

Proof. We assume the same approximation regime as in Proposition 4.4]

The Monte-Carlo estimators associated with the two losses (for the distance loss, we assume the
minimum norm minimizer) are given by

L1 - 11 & _
€list = _PJ(Xt);N th - atx(l) EMSE = _;tﬁ th — OétX(l) (45)

where the NV samples x(*) are drawn i.i.d. from p(x | x).
Bias [€],] = 0:

This simply follows from Equation and the fact that the true score for an S E/(d)-invariant density
lies in range (J (%)), s0 that — 2P j(x,) Ve, p (Xt) = = - Vi, D (X1).

Var €G] S Var [€sg]:

We have

(46)

Cov [€jiy] = P j(x,)Cov [€yss] P?(xt)
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‘We can then obtain,

Tr (Cov [€i4]) = Tr (P Cov [Euse) P ) )
Tr (Cov [€]iy]) = Tr (P s(x,)CoV [€x1sE] ) (48)

which compared to
Tr (Cov [éyisg)) = Tr (P yx,)Cov [éysg]) + Tr (I — P (x,)) Cov [éxse]) (49)

since (I — P, )) and P j(4,) are both positive semi-definite, we conclude
Tr (Cov [€g]) < Tr (Cov [€ysg]) (50)

which completes the proof. O

At a high-level, the projector P j(4,) removes the components associated with rigid motions from the
estimated score. The minimum norm assumption amounts to the network denoinsing to the closet
sample to x; in the orbit of x.

A.2 The Boltzmann Distribution is the Steady-state Distribution

We consider the potential energy E(y,y) around a configuration y. We assume y in an approximate
equilibrium configuration of the system, and therefore a local minimum of the potential. We model
the evolution of the system using Newton’s equation (in Hamiltonian form), with an additional term
modeling the noise. This gives the SDEs

0K OF
= P=-
oP dt, d oy

where W is generically taken as standard Brownian noise and K is the kinetic energy of the system.
The term proportional to P in the second equation represents the effect of friction and has the effect
of bringing the system back towards the equilibrium configuration. This is the Langevin equation,
introduced by [Einstein| [1905]], Langevin! [1908]] to study Brownian motion. It describes the evolution
of a system in a heat bath at temperature 7'; this is the uncertainty model we consider.

dt — Pdt + v2T'dW. (51)

dy =

We suppose momentum variables are not of interest. We therefore take the kinetic energy (or masses)
as negligible, obtaining the overdamped limit Kramers| [[1940]

oE

dy = —%dt + V2TdW (52)

The probability density of y evolves according to the Fokker-Plank equation Chandrasekhar|[[1943]
Ip(y,tly 5 . )

(TH =TVep(y:t|y) +Vy - [p(3:t [ Y)Vy B, )] (53)

For anything but the simplest potentials, this equation admits no known closed-form solution. How-
ever, under some growth conditions on the potential V' (y) (see e.g. (Gardiner|[|1985]), the Fokker-Plank
equation admits the Boltzmann distribution as a unique steady-state solution when t — oo:

Py ly) = 7T P (—E(y,y)/T) (54)

where Z(y,T) is the partition function.

A.3 Second-order Taylor Approximations of Potential Energies

Below we justify the two practical choices for the coefficients k;; (y) (constant and inverse—squared
decay) by performing second—order Taylor expansions of two standard pair potentials around their
equilibrium bond length r. Throughout we write the equilibrium distance between atoms r =
|ly1 — y2] and the difference between the equilibrium distance and the prediction or = 7 — 7.
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Morse potential The Morse potential (typically used to describe bonded pairs) is given
2
Ewmorse(F,7) = D [1 — exp(—a(f - T‘)):| ) (A.2)

Expanding the exponential for small 6r gives exp(—az) = 1—az+ $a?6r? +O(6r3). The quadratic
approximation is

BEivorse(7,7) = Da?6r? = 3, k™or? (55)

with
kM) = 2Dg? (A.4)

Because D and a are fixed per bond type, k™) is constant in r.

Lennard—Jones potential The 12—-6 Lennard—Jones potential (commonly used for non-bonding
interactions) can be written in terms of its equilibrium separation = 2/¢:

. 12 N

Bu(i,r) =<[(2) - 2(3)°). (A.5)

Expanding for small §r and keeping terms up to second order,

1

E]_J(f, T) = —c+ 5 k/’(LJ)(ST‘Q + O(6T3), (56)

0’E T2e
P = Z 2 = 22 A6
or? |._ r2 (A.6)

Because ¢ is fixed for a given atom-pair type, the resulting spring constant
kM) o p—2

decays with the inverse square of the equilibrium distance.

A.4 Invariance and Invariant Loss Functions

Physical systems frequently have inherent symmetry, and machine learning models built for such
systems benefit from handling these symmetries. Two common symmetries are the £(3) symmetry of
Cartesian coordinates, and the S(n) symmetry of exchangeable objects (such as atoms in an atomistic
systems). In the context of generative models, we note three approaches to designing models that
respect the symmetry of the underlying distribution:

Invariant Distribution If we decide that the probability distribution we want to generate is invariant
to symmetry transformations, a common strategy is to first sample from a distribution that is invariant
to the group of interest, and then applying a function that is equivariant to the group [Kohler et al.,
2020||. For example, Hoogeboom et al.|[2022] samples from a Gaussian distribution that is invariant to
rotations in SO(3), and uses an F'(3)-equivariant neural network to parametrize a denoising diffusion
model. The probability distribution of the resulting structures generated by their model is therefore
invariant to rotations.

Alignment In many situations, we want predictions from a neural network to match ground truth
data, up to some symmetry transformation. This is often the case in generative models for proteins and
molecules, where there is symmetry to SE(3) and S(n). Recent works such as|Hassan et al.|[2024]],
Klein et al.| [2023]] handle this in a flow-matching context by performing an alignment procedure
between samples from a prior and data samples, finding an element of S(n) and SO(3) that minimizes
the distance between them. While costly, this optimal alignment can be found by using the Hungarian
algorithm [Kurtzberg, 1962] and the Kabsch algorithm [Kabsch,|1976|. Similarly, Sareen et al.|[2025]]
use an equivariant network to learn alignments that brings data samples into canonical representatives
[Kaba et al.l |2023]], which are then fed into a generative model. [Zhang et al.| [2024]] use a similar
symmetrization method to achieve equivariance. This technique obviates the need to use an expensive
equivariant network for the generative model.
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Invariance-based loss Another method to handle symmetry is to use a loss based only on invariant
features. Works such as|Xu et al.|[2021]], Simm and Hernandez-Lobato| [2019] and |[Nesterov et al.
[2020]] learn to model interatomic distance matrices rather than atomic coordinates, and convert from
distance matrices into coordinates as a post-processing step. Because distances are invariant under
E(3) transformations, the resulting method is invariant. Our proposed loss function Equation () falls
into this last category.

A.5 More on Rigidity Theory

Background on theory We begin by describing the setting of rigidity theory and the necessary
properties for our energy loss to scale linearly in the number of vertices.

Rigidity theory defines a framework as a graph G = (V, E) and amap ¢ : V — R? which can
be interpreted as the physical coordinates of a given vertex. We call a framework globally rigid
if every ¢’ : V — R that yields the same distances between adjacent vertices is obtained from
¢ by an isometry. A framework is rigid if there are no non-trivial continuous motions of vertices
starting from ¢ that preserves the distance between adjacent vertices. Trivial motions, in this case,
correspond to group elements of F(d). The central problem of rigidity theory is to determine under
which conditions different families of frameworks are rigid or globally rigid [Peled| 2024]] [Thorpe
and Duxbury, |1999].

In our application, it suffices to neglect modeling some interactions between atoms (terms in the sum
in Equation (7)), as long as the minimum loss configuration is unique and thus corresponds to the
data. In other words, we require the edges describing this sum are globally rigid.

Due to the simplicity of their construction, we mention a few recent results on the rigidity of random
graphs. The first result is that a random k-regular graph is rigid with high probability (w.h.p.) in D
dimensions for k£ > D?. It has been conjectured that & > 2D should be enough for rigidity, but the
existing proof is limited to D = 2 [Krivelevich et al.| 2023] [Peled, 2024]. Alternatively, if using
Erdos-Renyi random graphs, in D dimensions, one could keep adding edges at random until the
minimum node degree becomes D, at which point the graph becomes rigid w.h.p. [Lew et al.,[2023].
Note that a promising construction for rigid graphs was also recently proposed in the context of
machine learning [Wang et al.| [2025].

2D-regular graphs are globally rigid w.h.p. To construct a sparse version of the energy loss, we
require that the edges over which the pairwise distances differences are summed in Equation (7)) make
up a globally rigid graph. For simplicity, we use random 2 D-regular graphs in the sparse version of
the energy loss since the number of edges scales linearly in N.

We empirically confirm the conjecture for D and NV in ranges relevant for our setting. We construct
1000 random 6-regular graphs and check the fraction of the graphs that are globally rigid using
rigidity checking code from |Dewar] [2025]. This code implements a rank check of the rigidity matrix
and a random stress test. The key result is depicted in Figure 5

These graphs are used in the sparse energy loss for shape prediction. For molecules, we use a
symmetrized version of these graphs according to molecule symmetries. In both settings, 100 random
graphs are pre-generated for each number of vertices and a random graph from this pool is chosen
when computing the loss.

Symmetrization procedure for random graphs We notice that Proposition[d.2]does not necessarily
hold for Equation (7)) when the edges are not complete. This means atoms symmetric under Aut (Ay)
will not necessarily obtain the same gradients. To remedy this, we introduce a symmetrization
procedure for a given k-regular graph and molecule.

We can select k& random edges for a representative node in each orbit and symmetrize the adjacency
matrix over the orbits via

Agm= >, g-A-g" (57)

geAut(Ay)

Notice that the total number of edges we get by this procedure is
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Figure 5: Global rigidity testing of random k-regular graphs. Here, n denotes the number of vertices
and d the dimension.

|Esym| = O ( > |uG||vG> : (58)

uwvelR

which can be quadratic in | V| if there are large orbits (ie. size O(|V])) directly connected by edges
but is linear otherwise. It may be possible to ensure this is linear w.h.p. by choosing the k£ edges in
a way that depends on G but we leave this for future work. We empirically verify these edges are
sparse in our setting.

A.6 More on Spin Energy

For an Ising configuration y € {—1,+1}" the energy change caused by flipping spin y; is AFE; =
2yihi"(y) with hi¥(y) = 3=, Jijy;. Setting ho = 0 therefore makes

Eip(y,y) = Z i (y) i,
€A
proportional to this exact spin-flip energy around the ground state. The local energy we propose is
therefore a sensible linear approximation to the true energy.

To obtain a convex loss, we make sure the local field weighting is always positive, For this, we add a
global offset hg > 0in Wi (y) = > ;(Jij + ho)y ;. Since each site has at most four neighbours with

|Ji;] <1, we have —4 < hl™® < 4; choosing a single ho > 4 ensures weight (J;; + ho) > 0 and
penalises energetically costly errors more heavily.

A.7 Extension to Flow Matching
The energy loss can be extended to Gaussian flow matching [Lipman et al.| 2023]. We show hereafter
the correspondence for the conditional vector field. The noisy sample is given by the interpolation

x; = (1 —t)x + te.

The flow matching objective aims at regressing the vector field:
Xy — X
ot

Given a vector field prediction, the corresponding sample prediction is

x = x; — tup(xy).
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The correspondence between MSE on the vector field prediction and on sample prediction is therefore:

1
= woll? = 5 x — ol

Therefore, the associated energy objective is obtained by replacement of the regression MSE:

1
t—2E(x—xQ).

Our theoretical results relating to score estimation properties also transfer to flow matching. This is
because Gaussian flow matching also implicitly provides a method for score estimation similar to
diffusion models. Given the optimal vector field, u*(x;) , the score is given by:

1 —tu*(xy) +x
leogp(xt):*( )t( ORR.Y

B Related works

Several different lines of research have also incorporated a concept of energy into a machine learning
framework. In this section, we distinguish our framework from distinct but related areas of research.

Energy-based models Traditional energy-based models approach learning as shaping an energy
landscape, where observed configurations correspond to low-energy states [LeCun et al., 2006]]. Deep
counterparts and their connection to discriminative training have also been extensively explored in
many recent works (e.g., [Du and Mordatch| [2019]], |Grathwohl et al.|[2019]). A key distinction of
the existing literature on energy-based models and our energy loss approach is that, because they
minimize the forward KL (max-likelihood or alternatives such as contrastive and large-margin losses),
they need to deal with the minimization of the partition function or its surrogates — i.e., the energy of
arbitrary points in the domain must be high. In contrast, our treatment remains close to supervised
learning losses and avoids the partition function altogether.

Physics-informed neural networks (PINNs) [Raissi et al.,[2019]] has proposed PINNs as a way to
learn PDEs by penalizing residuals directly in the loss, enforcing solutions consistent with physical
constraints. They have recently been used in the context of diffusion models [Bastek et al.,[2024]. In
contrast to our approach, these models do not rely on training data and models are instead learned to
satisfy known differential equations on randomly generated points from the domain. Another family
of physics-informed losses appears in Hamiltonian Neural Networks (HNN) [Greydanus et al.,2019]
and Lagrangian Neural Networks (LNN) [Cranmer et al.,[2020].

Energy Sampling and Boltzmann Generators A separate line of research incorporating energies
and generative modeling has been in Boltzmann Generators [Noé et al.,|2019, [Kohler et al., 2020,
Klein and Noé, |2025]]. These models are designed to sample physical configurations according to
a Boltzmann distribution stemming from a known energy function. While our framework is also
based on an assumption of data belonging to a Boltzmann distribution, ours is instead simply an
approximation of the local landscape around each data point and does not assume the existence of a
callable energy function.

C Experimental Details and Additional Results

C.1 Regular shape generation

Experimental details and hyperparameters We use a 2 hidden-layer MLP with hidden dimension
64 for this task. We conducted a sweep over hidden dimension and find behaviour is relatively
consistent. Models are trained in parallel on an Nvidia Quadro RTX 8000 using the Adam optimizer.
The dataset size is 100K randomly generated samples and we train all models for 50 epochs. A sweep
over dataset size showed fairly consistent results. We conduct thorough sweeps for learning rate
for each loss, shape degree and augmentation angle. For each setting, the model giving the highest
quality is chosen.
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Table 6: Best hyperparameters for GDM.

Loss Coefficient Learning Rate Positional Loss Weight
Energy Constant 9e-4 0.05
Inv. Dist. Te-4 0.05
Inv. Sq. Dist. 6e-4 0.05
Exp. Dist. 4e-4 0.05
MSE - le-3 1.5
MAE - le-3 0.8
Kabsch Align - 8e-4 0.8

Table 7: Best hyperparameters for EDM.

Loss Coefficient Learning Rate Positional Loss Weight
Energy Constant le-4 0.05
Inv. Dist. le-4 0.05
Inv. Sq. Dist. le-4 0.1
Exp. Dist. le-4 0.05
MSE - 3e-4 1.0
MAE - 3e-4 1.0
Kabsch Align - 3e-4 0.8

Evaluation To evaluate shape quality, we introduce a metric that captures how regular the angular
differences and radial distances are across the shape. In a well-formed, regular shape, we expect
both the variation in angular differences (o4,,,,,.) and the variation in radial distances (0 qgius) to

A

be small. In particular, we choose Quality := — ln(og%“i + % . This is, of course, a design

choice used to map a shape to a single number. We record both oa,,, ;. and o,q4ius to ensure both
terms are well-represented in the quality and find that visually this metric is a good reflection of
the visual regularity of a generated shape. For reference, above a quality of 5-6, shapes look nearly
visually perfect, as in Figure [3p. For quality below this, they become slightly irregular and below 2
they look very disordered as in Figure [3p.

C.2 Molecule generation

C.2.1 QM9 Dataset

Experimental details and hyperparameters On QM9, we match the setup in|Hoogeboom et al.
[2022] as closely as possible. We train GDMs and EDMs with with 9 layers and 256 node features
on 100k samples from the dataset. The diffusion process has 1000 diffusion steps with polynomial
noise schedule and precision 1 x 10~°. An L2 denoising loss is used with mini-batch size 512 on
GDM and 400 on EDM. We use the Adam optimizer. An EMA decay of 0.9999 is used. Runs were
conducted on single 48G GPUs mainly on the Nvidia Quadro RTX 8000, A6000 and L40S. A full
run of 3000 epochs takes 2-4 days on a single GPU.

We conduct extensive sweeps for learning rate and positional loss weight for all losses. We tune
the positional loss weight to ensure there is balance between loss on positions and atom-type for all
losses. Learning rates were searched for in broadly in the range [le-5, le-2] before narrowing the
range to [2e-3, 4e-4]. For the positional loss weight, we choose values in [0.05,0.1,0.5,0.8,1.0, 1.5].
We find final performance is not very sensitive to the positional loss weight. Tuned hyperparameters
are summarized in Table[6]and Table[7]

Additional results Here, we include results for all settings for GDM, GDM-aug and EDM. The
results follow in Table[8] Results are averaged across seeds.

30



Table 8: Complete results on QM9.

Loss Mol. stab. (%) Atom stab. (%) Valid. (%) Unique (%)
GDM
MSE 81.7+33 98.3+0.3 933+ 1.7 99.98 + 0.04
MAE 763 £2.0 97.7+0.3 91.1 £ 1.2  99.96 &+ 0.05
Kabsch Align 81.7+22 98.4+ 0.2 93.1+1.2 9993+0.13
Energy (Sparse) 86.1 +2.3 99.0 + 0.1 962+ 14 100.0£0.0
Energy 86.2 + 2.1 98.9+ 0.2 96.6 + 1.3 100.0 £ 0.0
GDM-aug
MSE 83.7+23 98.3+0.004 936417 100.0+0.0
MAE 76.4+0.9 98.1 £0.3 926+ 1.2 99.99 + 0.02
Kabsch Align 82.3+0.5 97.8+0.004 90.8+2.0 100.0+0.0
Energy (Sparse) 89.1 £ 0.9 99.0 + 0.1 974 +25 100.0 £ 0.0
Energy 89.8 +2.8 99.3+0.3 977+ 1.4 99.99 £+ 0.002
EDM
MSE 824+34 98.8 £ 1.7 93.0£25 99.89 +0.32
MAE 748 £ 1.7 97.8+0.3 88.6 £ 0.7 99.96 + 0.07
Kabsch Align 80.6 + 3.0 98.3+ 3.0 925+3.0 9991 +0.07
Energy 86.6 - 1.6 99.0 + 0.20 96.8 £ 1.1 99.96 + 0.06
Table 9: Complete results for GDM and GDM-aug on GEOM-Drugs.

Loss Mol. stab. (%) Atom stab. (%) Valid. (%) Unique (%)

GDM

MSE 0.3 84.7 93.8 100

Energy 21.1 95.8 89.6 100

GDM-aug

MSE 0.8 85.6 94.8 100

Energy 24.6 96.0 89.7 100

C.2.2 GEOM-Drugs Dataset

Experimental details and hyperparameters On GEOM-Drugs, we use a similar setting to QM9
but now train models with 4 layers and 256 node features, following Hoogeboom et al.| [2022]]. We
train the model for 13 epochs. Training is distributed across 4 80G Nvidia A1001 GPUs and a single
run takes roughly 2.5 days. We use a batch size of 128 with the Adam optimizer.

We start with optimal learning rate and positional loss weight from QM9 and do a sweep over learning
rates [Se-4, le-3, 2e-3] for MSE and [le-4, 4e-4, 1e-3] for energy loss. The hyperparameters in
Table [6] gave the best results. We use exponential coefficients for the energy loss.

Additional results
aug in Table[9]

We additionally report the performance of MSE and energy losses with GDM-

C.3 Spin ground state prediction

Experimental details and hyperparameters The CNN we use for the spin prediction task is a 6
layer ResNet type architecture with 256 hidden layer size. All networks are trained with a learning
rate of 1 x 10~ until convergence. We use the Adam optimizer with batch size 256. Temperature is
setto T' = 0.1 for the local energy loss. Training takes around 5 hours on Nvidia V100 GPUs.
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C.4 More on sparse energy loss

C4.1 Timing

Our objective in including the sparse energy loss is to demonstrate our method can efficiently
generalize to systems with many particles where loss calculation may contribute significantly to
running time (e.g. very large point clouds). This is not the case for molecules, where the neural
network (GNN or Transformer) is typically fully connected and thus scales as N2. As
shows, the most expensive loss calculation is less than 1% of the total backward and forward time.

Table 10: Wall-times for loss computation on QM9 on an NVIDIA L40S.

Component Loss Type Time (ms)
Loss computation MSE 0.18 £ 0.01
Energy 0.51 +£0.02

Sparse Energy  0.57 &+ 0.02
Kabsch Align  1.14 £ 0.03

Forward pass - 74 + 16
Backward pass - 9443
Optimizer step - 1.43 4+ 0.01

To better understand the scale at which this becomes a relevant consideration and the utility of the
sparse energy loss, see the following wall clock times from the shape generation setting in[Table T1]

Table 11: Runtime for different loss functions as the number of nodes increases.

# Nodes Energy (ms) Sparse Energy (ms) MSE (ms) Kabsch Align (ms)

30 0.240 £ 0.0021 0.255 £ 0.0012 0.058 £ 0.0004 0.807 £ 0.0027
300 0.245 £ 0.0011 0.257 £ 0.0024 0.059 £ 0.0004 0.804 £ 0.0048
3000 20.120 £ 0.0055 0.275 £ 0.0018 0.0779 £+ 0.0008 0.944 £ 0.0028
30000 - 0.293 + 0.0029 0.0740 £+ 0.0011 3.242 £0.1452
300000 - 2.652 £ 0.0050 0.131 £ 0.0004 24.381 £ 0.0272

At 30000+ nodes, the energy loss requires too much memory to compute. Importantly, the sparse
energy is cheaper than the Kabsch Align by a factor 5-10x. Note that all losses have some constant
cost that does not scale with N contributing to the wall-clock time. This explains why for QM9 (avg.
28 atoms) energy loss is marginally faster than sparse energy and why in the scaling table wall-clock
times start to increase with N only after a certain point.

Interestingly, using an equivariant network with EDM takes 129.71 + 0.044 ms for the forward pass
and 180.07 + 0.070 ms for the backward pass. Using the energy loss imparts a 0.3% increase on one
backward pass through the model, while using an equivariant architecture imparts a 94% increase,
while providing inferior benefits. The energy loss with a non-equivariant architecture results in more
improvement than using an equivariant architecture, at negligible computational cost, which we think
is a significant finding.

C.5 Sparse energy loss on larger systems

Table 12: Sparse energy loss with GDM on GEOM-Drugs.

Loss Mol. stab. (%) Atom stab. (%) Valid. (%) Unique (%)
MSE 0.3 84.7 93.8 100
Energy 21.1 95.8 89.6 100
Sparse Energy (Inv. Dist) 7.4 91.9 92.6 100

We include the sparse energy results on Geom-Drugs in We found using a more gradual
distance decay in the coefficient worked better when the edges are sparse and random. These results
highlight a potential compute-performance tradeoff for this version of the loss on larger graphs. This
result can likely be improved by being more intentional in the selection of sparse edges. We leave
this to future work.
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