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ABSTRACT

Autonomous vehicles (AV) rely on learning-based perception modules
parametrized with neural networks for tasks like object detection. These mod-
ules frequently have low expected error overall but high error on atypical groups
of data due to biases inherent in the training process. Multiple heuristics are em-
ployed to identify ‘failures’ in AVs, a typical example being driver interventions.
After identification, a human team combs through the associated data to group
perception failures that share common causes. More data from these groups is
then collected and annotated before retraining the model to fix the issue. In other
words, error groups are found and addressed in hindsight as they appear. Our main
contribution is a pseudo-automatic method to discover such groups in foresight by
performing causal interventions on simulated driving scenes. To keep our inter-
ventions on the data manifold, we use masked language models. We verify that
the prioritized groups found via intervention are challenging for the object detector
and show that retraining with data collected from these groups helps inordinately
compared to adding more IID data. We also release software to run interventions
in simulated scenes, which we hope will benefit the causality community.

1 INTRODUCTION

To deploy autonomous road vehicles, it is vital that they are robust and safe. An important aspect of
safety is handling unusual scenarios. Current data-driven approaches trained to minimize expected
error are sensitive to imbalanced data distributions. Even models with low expected error can still
exhibit large errors on atypical groups of data that are nonetheless important for safe driving. The
status quo approach to finding these groups in the AV stack operates in hindsight by analyzing real-
world scenes requiring driver intervention or by feeding replayed or simulated scenes to a model
and finding those that result in poor performance. Advanced techniques may use adversarial attacks
to actively find failures (Xie et al., 2017; Athalye et al., 2017; Wang et al., 2021a). In all cases, the
found data is fed back into the retraining process. While this improves the model, a notable problem
remains — without knowing the underlying cause of a failure, it is impossible to ensure that the
problem is adequately resolved. To identify the causal factors in the failures, human experts typically
comb through the data and group commonalities, an expensive and time-consuming procedure.

We propose an alternative method to discover potential failures in foresight. Instead of finding
failures from previously collected data, we perform interventions on existing data to find those
interventions that are consistently detrimental to the performance of an AV stack. We focus on
perception, and object detection specifically, in this work. We identify interventions that consistently
cause performance drops as challenging groups. Concretely, consider a scene where a truck was not
detected. Many explanations exist, ranging from the scene composition to the weather conditions
to the way the light reflects off of a puddle and into the camera. The actual cause is unclear. If we
however arrived at this scene counterfactually, by performing a single intervention on another scene,
e.g. changing a car to the truck, we now have some clue that the underlying causal error is related
to the truck itself. We can duplicate this intervention across many scenes and see if it consistently
remains a problem. While the exact cause is still opaque, the proposed method provides automatic
insight into what interventions cause consistent errors without collecting new data to analyze or
manual scrubbing of failures.
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Figure 1: Instead of retrospectively discovering individual failure cases for AV perception, we actively search
for causal interventions (edits) to existing scenes that consistently result in perception failures. Shown in the
middle is an example of a single intervention causing perception failure, which we attribute to the intervention,
as opposed to the left side where a combinatorial set of factors could explain the error. Consistent failures
through this type of intervention constitute a challenging group for the perception model as seen on the right.

Performing such interventions requires the ability to manipulate scenes and re-render images. We
demonstrate this in simulation, although recent advances (Ost et al., 2020) show promise in migrat-
ing our approach to real-world scenes. We assume access to a scene graph representation of the
underlying scene on which we perform interventions. These interventions include changing agent
properties like position, rotation, or asset type, as well as global weather conditions. While many in-
terventions can potentially fail the detector, not all are useful. A scene with a flying truck could drop
perception performance, but it is unlikely to occur in the real world. Ideally, interventions should
be from the data distribution. We achieve this by training a density model of scenes (represented
as flattened scene graphs) using a masked language model (MLM), a keystone in modern natural
language processing pipelines. Taking interventions using the MLM amounts to masking a part of
the scene graph and re-sampling from the predicted distribution.

Our work focuses on 2D object detection from input images of driving scenes. We verify that the
prioritized groups we find via intervention are indeed challenging for the base object detector and
show that retraining with data collected from these groups helps inordinately compared to adding
more IID data. We additionally confirm our hypothesis that interventions on the data distribution
are preferred vis a vis data efficiency by comparing against random interventions. The latter are
confounded by their propensity to stray from the data distribution.

Our contribution is a novel method using Masked Language Models (MLMs) to intervene on
scene graphs of simulated scenes to causally uncover semantic groups of data upon which a
detection model is likely to fail. Unlike sporadic failures, our found failure groups provide insight
into the model’s weaknesses and help us systematically improve the model.

2 BACKGROUND

Notation Our objective is to ascertain the capabilities of a given object detection model ϕ. We
represent a scene x as a triplet x = (G, I, L) of a scene graph, scene image, and a set of bounding
box labels, respectively. We flatten and discretize G to get the corresponding sequence S ∈ NO(d)

where d is the variable number of objects in the scene. The scene image I ∈ R3 is the RGB image
of the scene as observed by the ego car and is deterministically defined by G. The label L is a set of
ground truth bounding boxes lk ∈ R4, where k < d is the number of objects to identify in the scene.
Scenes are drawn from a distribution pR(x) dictated by the scene generation process R. Examples
of R include driving scenes from a particular city or simulations from AV simulators. We also need
a per-example scoring function f : (ϕ, I, L) → y as well as a threshold τ with which to gauge
whether an intervention was detrimental.

Scene Graphs are 3D world representations, with nodes corresponding to objects and edges to
hierarchical relationships between nodes, where the hierarchy is determined by physical presence
(e.g. road is a parent of the vehicles on the road). Objects include the vehicles and pedestrians,
the weather, the camera parameters, and the orientation of the ego agent. Each node has associated
attributes, exemplified by continuous rotation, continuous position, discrete asset type, etc.

Object Detection reached a milestone with Faster RCNN (Ren et al., 2016). We use their approach
as the representative state of the art detection module via the Detectron2 library (Wu et al., 2019).
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Simulation is crucial to our method. We need a simulator that can initialize from G, have satis-
factory traffic policies for autonomous vehicles, and return the current G on command. The chosen
CARLA (Dosovitskiy, 2019) simulator satisfies these constraints and is ubiquitous in the field.

Masked Language Models (MLM) are density models for generating from sequences. Devlin
et al. (2019) showed their tremendous efficacy in language generation. They are trained by receiving
sequences of discrete tokens, a few of which are masked, and predicting what tokens are in the
masked positions. Through this process, they learn the data distribution (Ng et al., 2020; Wang and
Cho, 2019) of those sequences. At inference, they are fed a sequence with a chosen token masked
and replace the mask with their prediction. We perform causal intervention on scenes by asking a
pre-trained MLM to re-sample a single position from a scene graph - see Section 5.1 for details.

3 METHOD

We aim to improve object detection models by utilizing the advantages of AV simulators over col-
lecting real world data, namely that they quickly synthesize scenes in parallel and that we have fine
control over the synthesis. A naive approach is to generate lots of scenes, test detection on those
scenes, and set aside the hard ones for retraining. A more advanced one is to use adversarial tech-
niques to find hard scenes. Both approaches share two downsides: a) we are much more interested
in plausible scenes than implausible ones and b) we still have the combinatorial challenge of under-
standing what in the scenes was the problem; only if we know why the error is happening can we
understand if it is fixed after we retrain.

We propose an efficient procedure that tackles both of these concerns. We find hard groups of
data for a trained model ϕ by taking interventions on scene sequences with a pre-trained MLM,
the results of which are assessed with our surrogate scoring function f . Identifying challenging
scenes does not provide insight into why nor how to fix ϕ, but asserting that a type of intervention is
consistently hard narrows greatly where the model’s difficulties lay and how to fix those difficulties.
After finding challenging interventions, we utilize hard negative mining (Wang et al., 2017; Kumar
et al., 2017; Wang et al., 2014), a common technique for improving models by first mining the data
for the hardest examples and then emphasizing those examples by either retraining or fine-tuning.
Our approach notably achieves this without relying on humans in the loop. We now explain in detail
each of the components of our method.

The scoring function f should delineate between interventions that were minimal and those that
caused a significant change in perception performance, with the assumption being that large negative
(positive) changes imply that the intervention (reverse intervention) was detrimental to ϕ.

Our goal in designing f is to replicate the average precision (AP) score’s intent, which values having
few predictions with high intersection over union (IOU) to ground truth targets. Another goal was
to evaluate entire scenes and not just target assets. This is important because even though our
interventions are local to a node, they may still impact detecting any scene constituent. We choose
not to use the popular mAP because it is defined over a dataset and thus is not suitable for identifying
individual challenging scenes. To compute f , we get the model’s predictions and order them by
descending confidence. We sequentially align each prediction with the highest IOU ground truth. If
IOU > .05, an empirically chosen threshold, then we mark this ground truth as claimed. The per
prediction score is the product of the prediction’s confidence and its IOU. We then take the mean
over all predictions to get the model’s final score on this example. This penalizes the model for
having low confidence or a poor IOU and bolsters it for having high confidence on quality boxes.

Causal interventions on simulated scenes We draw from causal inference where interventions
allow us to assess the causal links between the scene and the model’s score. We change an aspect of
a scene sequence Si, such as a rotation or location of a specific vehicle, render this new scene S′

i as
I ′, and then compute the δ = f(ϕ, I ′, L′) − f(ϕ, I, L). We decide sufficiency by whether |δ| ≥ τ ,
the aforementioned threshold parameter. After performing this procedure N times, filtering by
sufficiency, and then grouping by the intervention type, we arrive at a prioritized list of challenging
groups defined by either rotation, vehicle type, or weather pattern.

Generating interventions Uniformly random interventions produce unlikely scenes under the
true data distribution1. Even if such an intervention would identity a weakness in the detector,

1Empirically, so do interventions sampled uniformly over the categories of interest.
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its utility in improving our model is unclear because such a weakness may be very far from a realis-
tic setting. We should favor finding groups that have higher probability under the data distribution.
This is especially true for a limited model capacity because learning to detect flying cars and other
unrealistic low-priority scenarios will take capacity away from pressing needs.

Formally, with pR(x) as the generation process, y our surrogate score, and z a confounder that
affects both x and y, we need to draw a counterfactual x′ that is independent of z with which we
can causally probe the model’s weaknesses. Sampling from pR(x) is challenging because retrieving
the same scene again with just one change is difficult. We could act directly on the scene graph and
model the conditional distributions of a single node change, then select changes via Gibbs sampling,
and define interventions as sampling from these conditional distributions. Instead, we choose to
discretize the scene (van den Oord et al., 2016; Engel et al., 2017; Razavi et al., 2019) and use
masked language models (Dosovitskiy et al., 2021; Khan et al., 2021) because of their resounding
recent success modeling distributions of combinatorial sequences relative to other approaches, as
demonstrated clearly in language. Specifically, we train an MLM as a denoising autoencoder (DAE)
to sample from pR(x) (Bengio et al., 2013; Mansimov et al., 2019; Vincent et al., 2008), where the
MLM operates on discretized scene graphs, flattened to be sequential. This provides a mechanism
to sample counterfactuals from the data distribution DAE (Ng et al., 2020; Wang and Cho, 2019).

For each scene drawn from the original training distribution, the MLM infers a new scene close
to the original distribution by making a singular semantic change over weather, vehicle asset type,
rotation, or location. Because the MLM was trained to a low perplexity on data drawn from the
distribution, it samples scenes that are likely under the original distribution pR(x). Because it is not
the exact distribution and errors will accumulate when applying many interventions sequentially, we
intervene for just one step, equivalent to a single node change in the scene graph.

Figure 2: A complete diagram of our approach: We intervene on the scene by performing transformations
like the pictured yellow truck becoming a white car and then evaluating the delta change in the object detection
model’s efficacy. The interventions are guided by a trained MLM. Repeat 10000 times and group the scores to
attain an ordered list of challenging groups drawn from vehicle type, weather, and rotation.

4 RELATED WORK

MLM as a generator While we believe we are the first to propose using an MLM as a generator
in order to take causal interventions, Ng et al. (2020) generates from an MLM in order to augment
training with generated examples. Mansimov et al. (2019) and Wang and Cho (2019) do so in
order to generate high quality examples for use in downstream examples, with the former producing
molecules closer to the reference conformations than traditional methods and the latter producing
quality and diverse sentences.

AV Testing and Debugging See Corso et al. (2020) for a detailed survey on black-box safety vali-
dation techniques. While we believe that we are the first to take causal interventions in static scenes
to test AV detection systems, multiple approaches (Ghodsi et al., 2021; Abeysirigoonawardena et al.,
2019; Koren et al., 2018; Corso et al., 2019; O’Kelly et al., 2018) test AV systems through adversar-
ial manipulation of actor trajectories and operate on the planning subsystem rather than detection.
Wang et al. (2021a) generates adversarial scenarios for AV systems by black-box optimization of ac-
tor trajectory perturbations, simulating LiDAR sensors in perturbed real scenes. Prior research has
focused on various optimization techniques for adversarial scenario generation through the manipu-
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lation of trajectories of vehicles and pedestrians. They either test only the planning subsystem in an
open-loop manner or the AV system as a whole in a closed-loop fashion. Unlike our work, they do
not allow a practitioner to glean causal factors for the errors. We focus on open-loop evaluation of
AV perception and attempt to find causal factors for performance degradation through the generation
of in-distribution counterfactuals with a masked language model trained on scene graphs. Concur-
rently, Leclerc et al. (2021) proposed a configurable system to diagnose vulnerabilities in perception
systems through synthetic data generation. Compared to this work, we show how to generate com-
plex scene manipulations using the MLM and study scenes of significantly higher complexity. It is
possible in theory to implement our method within their framework.

Scene manipulation Ost et al. (2020) learn neural scene graphs from real world videos via a
factorized neural radiance field (Mildenhall et al., 2020), while Kar et al. (2019); Devaranjan et al.
(2020) generate scene graphs of AV scenes that match the image-level distribution of a real AV
dataset as a means to produce realistic synthetic training data. All three can be seen as a precursor
to our method for handling real world data. Dwibedi et al. (2017) generate synthetic training data
for object detectors by learning to cut and paste real object instances on background images, which
elicits a confounder because of how artificial the pasted scenes appear.

Adversarial detection is another way of viewing our work. Xie et al. (2017) showed that we
should consider the detection task differently from the perspective of adversarial attacks, but did not
explore finding root causes. Liu et al. (2018) use a differentiable renderer to find adverse lighting and
geometry. Consequently, images appear stitched, a confounder to the natural distribution. Athalye
et al. (2017) synthesizes real 3D objects that are adversarial to 2D detectors. They are limited to
single objects, moving in the location, rotation, or pixel space, and do not identify causal factors.
Zeng et al. (2019); Tu et al. (2020) synthesize 3D objects for fooling AV systems, both camera and
LIDAR, with a goal to demonstrate the existence of one-off examples.

Challenging groups Improving the model to recognize found groups, potentially sourced from
the distribution’s long tail, is an important goal. Numerous methods (Ren et al., 2019; An et al.,
2021) do this by re-weighting or re-sampling the training set, with Chang et al. (2021) focusing on
detection. Sagawa et al. (2020) uses regularization and Wang et al. (2021b) uses dynamic routing
and experts. All of these approaches require us to know the problematic groups in advance, which
would only happen after applying our method. Further, they do not assess why the model is weak,
but only seek to fix the problem. This makes it challenging to understand if the core issue has been
addressed. Gulrajani and Lopez-Paz (2020) suggests that these approaches are not better than ERM,
which is how we incorporate our found groups in Section 5.

5 EXPERIMENTS

We run a suite of experiments analyzing our method and compare it against random interventions.

5.1 SETUP

Model From Detectron2, we selected six battle-tested models: 18C4, 18FPN, 34C4, 34FPN,
50C4, and 50FPN. These are all common ResNet (He et al., 2015) architectures that include a
litany of other attributes such as Feature Pyramid Networks (Lin et al., 2017). We created additional
configurations that are 2x, 3x, 4x, and 5x wider versions of 50FPN, exemplified by 50FPN2x, for
a total of ten tested model architectures. The C4 and FPN mix provided variation in model config-
uration, while the 18, 34, and 50 layer counts and their widths vary in capacity. We made minimal
changes to the models to account for training on our dataset and with 4 gpus instead of 8. All models
were trained for 90000 steps (8-9 hours) without pre-training; none reached zero training loss.

Datasets We first selected the CARLA preset map – Town03 or Town05. Then we randomly chose
from among the pre-defined weather patterns. We sampled the camera calibration and the number
V of vehicle assets according to the Nuscenes (Caesar et al., 2019) distributions, then placed those
V vehicles, the ego agent, and P = 20 pedestrian assets, at random town waypoints suitable for
the asset type. Finally, we attached the calibrated camera to the ego agent and enabled autopilot for
all agents. We stabilized the scene for 50 timesteps after spawning, then recorded for 150 steps and
saved every 15th frame. We needed the 2D ground truth boxes for each asset, but found the suggested
approach2 lacking because it frequently had trouble with occlusions and other challenging scenarios.

2See client bounding boxes.py in the CARLA library, commit 4c8f4d5f191246802644a62453327f32972bd536.
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See the Appendix for heuristics we developed to help filter the ground truth boxes. For detection
results on all charts, we report average precision (AP) over vehicle datasets.

MLM To train the MLM, we used the MaskedLMModel transformer architecture3 from the
FairSeq (Ott et al., 2019) library. We train and validate on held out IID datasets of sequences
converted from scene graphs. Encoding the scene graph language required us to translate G with
continuous node attributes into discrete sequence S. The first 10 tokens corresponded to weather
attributes (cloudiness, precipitation, sun altitude angle, etc), the next 5 to camera intrinsics, and the
following 15 to the ego agent. After these 30, we had a variable number of agents, each sequentially
represented by 17 tokens. The two extra tokens for the non-ego agents were related to vehicle type,
which was fixed for the ego agent. Although the 10 weather attributes were each continuous, we
selected these vectors from 15 weather choices during training and so, with regards to the encoding,
they each corresponded to discrete choices. Similarly, because the camera intrinsics were drawn
from the (realistic) discrete Nuscenes distribution, their encoding was discrete.

The agent tokens had a set order. First is discrete type (‘blueprint’), then continuous (x, y, z) loca-
tions and (roll, yaw) rotations. To discretize the locations, we first subtracted their minimum pos-
sible value. The resulting value (in [0, 600)) was encoded with tokens w0 ∈ [0, 5] for the hundreds
place, w1 ∈ [0, 99] the ones, and w2 ∈ [0, 9] the decimal. This small precision sacrifice marginally
impacted scene reproduction. Rotation used the same encoding, albeit is bounded in [0, 360).

5.2 INTERVENTIONS

In this section, we investigate the relative ordering of groups by the MLM, where the order is deter-
mined by the degree to which that group is involved in a detrimental intervention.

Intervention Percent > 0.2 Total
Tier 1: Likely Challenging Groups

DiamondbackBike 24.4 123
Cloudy Dark 19.4 36
GazelleBike 18.9 122

Cloudy Dark Puddles 17.2 29
CrossBike 16.5 121

Rotation - 178.6 15 20
Rotation - 121.3 13.0 23

Tier 2: Borderline Groups
KawasakiBike 6.5 92

Cybertruck 6.4 94
Carla Cola 6.0 198

Sunny Puddles 5.4 56
Tier 3: Easy Groups

Citroen C3 1.6 188
Mercedes CCC 1.0 206

Table 1: Illustrative table of interventions, or-
dered by the percent of time that they were
involved in a high magnitude δ intervention.
Section 5.3 suggests that between 6.0 and 6.4
is where our cutoff resides.

Table 1 shows selected ordered results from the in-
tervention procedure described in Section 3. We
performed the procedure on N = 10000 held out
scenes Gk where our ϕ was an 18C model trained
on the base 10000 subset from Town03 and τ =
0.2. We additionally filtered the categories to have
at least 20 entrants.

On the left side we see the intervention taken, for
example changing a single agent type to a Cy-
bertruck or changing the weather such that it is
now sunny with reflective puddles. The second
column shows the probability that the intervention
produced a δ ≥ 0.2. We include both when the
change was to that target and the delta was negative
as well as when it was from that target and the delta
was positive. The last column in the table reports
how many times in total this intervention occurred
in the 10000 scenes.

Summarizing the table, we find that a handful of as-
set switches appear to be detrimental for the model
according to this metric. Small bikes had an out-
sized effect, as did cloudy weather and the rotations
where a car faced the ego agent or turned to the left.
Just after the last bike are two large vehicles, the Cybertruck and the Cola Car. The specificity of
the weathers and rotations are because they are translations of our discretization. Practically, there
is a range of rotation and weather values around the group that would all suffice. Finally, we do not
include location results in the table because the MLM frequently re-positioned the asset outside the
camera’s view. This said more about the asset than it did about the location and was rife with con-
founders based on what was behind that asset. We could have localized the location interventions
more by masking MLM options, but leave that for future work.

3See masked lm.py#L30 in the FairSeq library, commit 1bba712622b8ae4efb3eb793a8a40da386fe11d0
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5.3 ANALYSIS

Figure 3: Test results with config 18C4 when train-
ing on disjoint IID subsets. Results are consistent,
suggesting that the harder groups - bikes, rotations,
and cybertruck - are ubiquitously hard.

After obtaining candidate groups from the de-
signed interventions, we investigated the effect
of modifying the data sampling procedure to in-
crease the prevalence of these groups by building
and evaluating datasets sampled from the MLM
training set. For asset groups, for each datum, we
uniformly sampled nv ∈ [3, 6] vehicles selected
from the scene. We then randomly chose vehi-
cles v0, v1, . . . , vnv in that scene, including vehi-
cles that may not be in the camera’s purview, and
changed them to be the target group. So as to
not accidentally introduce a bias through the ran-
dom process, we selected the same vehicles vk for
all group datasets. For rotation groups, we chose
those same vehicles but rotated them to be the tar-
get rotation instead of switching their asset. For
weather groups, we changed those scenes to have
the target weather instead.

Does our method correlate with AP score? Figure 3 shows evaluation results on these groups
when training 18C4 on four disjoint 10000 sized subsets of the data. The models performed best on
the IID data from Town03 and just a little bit worse on the same from Town05. Further, they did
exceptionally well on those two datasets, validating that they were trained sufficiently. The group
results are mostly in line with our expectations from the interventions - the models did well on
Citroen and Mercedes, poorly on the rotations, and terribly on the bikes. There is a large jump from
the reasonable results on ColaCar and SunnyPuddles to the mediocre results on Cybertruck, which
is directionally correct per Table 1. However, the strong results on CloudyDark are surprising.

Figure 4: Independently increasing the model capacity
(left) and increasing the data size (right). No model
distinguished themselves and we quickly taper in how
effectively the model utilizes the data. We consider the
dip in the capacity chart to be an artifact of the training
procedure and using the same settings for all models.

Summarizing, if the threshold for choosing a
group is between 5.5% and 6.5% and we fo-
cus on interventions affecting vehicles directly
(rotation and type), then our method correlates
well with empirical results. This does not mean
that we have found the exact causes plaguing
the model, but that we have narrowed them
greatly. The model’s regression when chang-
ing a car to a bike may be because it performed
poorly on bikes. It may also be because the
car was occluding another vehicle or that it it-
self was not occluded. This is especially true
in light of the weather results suggesting that
weather is not a conclusive factor. Finding the
exact cause is a difficult problem, even in sim-
ple settings Arjovsky et al. (2020). We restrict
our scope to this level of understanding and
leave improvements for future work.

Can we address these issues by increasing capacity? Recent papers Zhai et al. (2021); Bahri
et al. (2021) suggest that scaling our models will improve results. An affirmative answer would
mean we would not need to collect more data. While it is possible that we did not scale enough or
use the right architectures, the left side of Figure 4 suggests a negative answer. We see that no model
was distinguished with respect to their final values when training on 10000 IID examples.

What if we increased IID data? This is preferable because IID data is easier to collect than group
specific data. The right side of Figure 4 suggests this will not be sufficient. Test efficacy on town
and group data jumped from 1000 to 10000 IID examples, but then slowed precipitously. Figure 8
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Figure 5: Results of training 18C4 on the base IID 10000 training set plus additional group data. The five
groups in the top left (Cybertruck, Cola Car, Diamondback, Gazelle, and Crossbike) were added equally. For
all charts, adding any one group improved all of the other evaluation scores, and at no point did we lose efficacy
on the IID data as a whole. Figure 10 (Appendix) zooms in on the initial jump.

(Appendix) affirms that this is unlikely to change by suggesting that the percentage of representation
of the group is what matters, rather than absolute count.

Figure 6: How much IID data is required to match a
small amount of extra hard group data. Top left shows
20000 more IID data was required to reach par on IID
with 250 group data. Bottom left shows that we never
reached the same level on Diamondbacks with IID data
as with adding Cybertrucks, let alone actual bikes.

What if we increased data and capacity
simultaneously? Results remained negative,
as seen in Figures 7 and 9 (Appendix). The left
graphic in Figure 7 evaluates all of the models
on 85000 examples and the right one hones in
on the 34C4 model, showing its results across
a range of IID data counts. Three aspects stand
out. The first was that all of the models have
similar evaluation scores. The second is that
they all struggled on the harder groups. And the
third, seen more clearly in Figure 9, is that more
data yielded a small accretive effect. All else
equal, adding data may be better than adding
model capacity.

Using group data We expect that when we
add data from the groups to the training set that
we will address the issues. The top left plot in

Figure 5 confirms that to be true. We added an even amount of each group to the base 10000 IID
subset and see that every group improved without impacting the Town03 and Town05 results. The
other plots in Figure 5 show what happens when we add in training data from any one group M .
This predictably improved the model’s results on M ’s validation set. It surprisingly also improved
results on all of the other M ′ and the Town data. The improvement to M ′ is smaller than that to
M , but it is notable. The gains for a specific group were more pronounced for like groups - adding
data from a biker group (Diamondback, Omafiets, Crossbike) improved the other biker groups more
than adding data from the heavy car groups (Cybertruck, Colacar), and similarly for the heavies.
Adding rotation groups helped ubiquitously albeit not as much as adding a bike group did for the
other bikes. The least effective fix was adding the CloudyDark weather mode. Figure 8 shows that
these trends persisted for a base of 85000 IID data as well.

Comparison with random interventions As we alluded to in Section 3, taking random inter-
ventions is problematic because whether the group is reasonable for the distribution will be a con-
founder. We wish to prioritize the found groups to be those that are more likely seen in the wild. We
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show here that this is true by taking the 10000 source scenes used for the MLM interventions and
applying random manipulations of the same type. For example, if we changed agent aj’s vehicle
type in Gk → GMLM

k , then we changed aj to a random vehicle type in Gk → GRandom
k .

Intervention MLM Rand Rand Total
CrossBike 16.5 19.0 126

GazelleBike 18.9 18.7 171
DiamondbackBike 24.4 15.8 152

Carla Cola 6.0 8.1 210
Cybertruck 6.4 6.8 176

KawasakiBike 6.5 6.6 121
Citroen C3 1.6 3.5 197

Mercedes CCC 1.0 3.8 183

Table 2: Results for MLM and Random asset in-
tervention strategies, ordered by the percent of
times that they were involved in a high magni-
tude δ random event. While the top three are the
same, Random flubbed the dividing line by plac-
ing a) Cybertruck above Kawasaki and b) Carla
Cola well ahead of both. Its failure rate for the
easy cars was much higher and, in general, posited
3% more failures than MLM. All told, its results
created more need for human verification and test-
ing and reduced the degree of automation that we
could employ to find hard groups.

Table 2 shows results for random and MLM in-
terventions over the same assets specified in Ta-
ble 1. Observe that the assets were ordered in-
correctly with CarlaCola higher than both Cy-
bertruck and Kawasaki Bike. Second, note that
Random had a higher percent of high thresh-
old events. This held in general, with 13.2%
of random interventions impacting the model
versus 10.2% of MLM interventions. We hy-
pothesize this is because random re-sampling
of elements of the scene graphs corresponded
to sampling from a data distribution that does
not faithfully represent the original training dis-
tribution. A 3% difference is large with respect
to how much extra work would be required by
humans combing through the data for plausibil-
ity and whether to include in retraining.

Figure 11 (Appendix) shows density plots for
rotation and cloudiness interventions, condi-
tioned on the intervention having been detri-
mental. We use density plots to demonstrate
the differences between Random and MLM be-
cause these interventions are continuous for
Random. For rotation, there was a mostly steady plateau for Random while MLM showed a clear
single group aligned with the bi-modal humps in Original. For weather, Original and MLM were
almost overlapping and, while Random was similarly bi-modal, its shape was less pronounced and
more even as expected. These both reinforce our claim that the advantage of MLM is that it gears
us towards higher priority groups to fix that are in line with the actual data distribution.

Why do these groups exist? With causal groups in hand, we can now ascertain why our models
were failing. For the bikes, it was because they are underrepresented in Nuscenes. For Rotation121,
the model infrequently trained on turning cars due to the town layout. For Rotation178, the model
infrequently trained on cars facing it due to the traffic policy and car quantity. The Cybertruck was
challenging because it is large and caused occlusion labeling issues. The ColaCar also had this issue,
just not as severely as the Cybertruck. Without the groups, these issues can only be hypothesized.

6 CONCLUSION

Combining causal interventions, MLMs, and simulation, we presented a novel method that finds
challenging groups for a detection model in foresight by having the MLM resample scene con-
stituents. These interventions help identify and prioritize groups with poor performance without
humans in the loop. Our approach is a significant step towards addressing safety-critical concerns
in AV. Beyond AV, we think the associated software4 will benefit the causality community because
the current state of the art (Koh et al., 2020) involves static datasets with low complexity tasks.

Our method has limitations. We cannot yet apply it to real world data because we need full control
over the scenes for the MLM to properly operate Ost et al. (2020) is a step towards overcoming
this concern. Until then, the sim2real gap (Sadeghi and Levine, 2017; Jakobi, 1998) is ever-present.
Another limitation is that our method only works on first-order interventions because the samples
drift from the data distribution, but intervening multiple times is necessary for understanding com-
plicated causal interactions. Each of these limitations are also potential future directions. A final
one is understanding better why many groups improved when adding a single group, which remains
a compelling question.

4We will release a github repository after the review period.
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A APPENDIX

A.1 TABLE OF NOTATION

Symbol Description
ϕ Detection model
x Scene
G Scene graph

d ∈ N Number of objects in scene
S ∈ NO(d) Sequence encoding of scene graph
I ∈ R3 Scene image

L ∈ R4×d Scene bounding box labels
lk ∈ R4, k < d The bounding box of the kth object

R Scene generation process
pR(x) Distribution over scenes

f : (ϕ, I, L) → R Per-example scoring function
δ ∈ R The change in score by intervention: δ = f(ϕ, I ′, L′)− f(ϕ, I, L)
τ ∈ R Threshold value for classifying interventions as detrimental

Table 3: Table of notation

A.2 DATASET DETAILS

CARLA refuses to spawn agents that collide with the environment, including the ground. To ensure
agents are grounded, for any asset that causes a spawn collision, we increase its Z coordinate and
try to spawn again . This approach allows us to place every agent on the map, albeit some of the
conflicting agents have to ‘drop’ from above, and consequently we wait for 50 timesteps so those
agents can settle. In that duration, the autopilot policy guides the agents to satisfactory positions.
After those 50 steps, we then record for another 150 steps and save every 15th frame. The resulting
episodes each have ten frames following an initial distribution influenced by Nuscenes and CARLA,
and a traffic policy influenced by only CARLA determining the final settled distribution.

We then need the 2D ground truth boxes for each asset. We found the existing suggested approach
lacking because it frequently has trouble with occlusions and other challenging scenarios. See below
for heuristics we developed to help filter the ground truth boxes. While they are not airtight, the
resulting ground truths were qualitatively perceived as more reliable.

• Filter Height: We require that the final 2d box is at least 30 pixels. This is in between the
easy (40) and medium/hard (25) settings on KITTI Geiger et al. (2012).

• Max Distance: We require that the ground truth detection not be more than 250 meters
away. We enforce this through the use of a depth camera attached to the ego agent.

• Visible Pixel Percent (VPP) and Min Visible Count (MVC): The 2D box is attained by
pairing the 3D box with the camera’s calibration. With the latter, we get the closest point
P to the ego agent. We then get the depth camera’s output at the 2D box. VPP asks what
percent t of that box is closer than P and filters it if t ≥ 80, ensuring that at least 20% of
the object is not occluded. MVC asks how many pixels q are further than P and filters it if
q < 1300, ensuring that the occluded object is big enough.
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A.3 SUPPORTING CHARTS

Figure 7: Charts showing increasing both data and model capacity at the same time. The left side ranges over
model capacity with maximum IID data size (85000), while the right side ranges over IID data size with a
bigger model - 34C4.

Figure 8: Performance of 18C4 on select test sets when adding mode data from the three bikes, the ColaCar,
and the Cybertruck on top of either 10000 or 85000 base IID data. Towards improving the results, these two
charts show that it is not the absolute count of the mode data that is important but rather the percent of it relative
to the IID data. We see that in how the trendlines for the two bases are only consistent in the percent chart. The
other modes are not shown for clarity but it holds in general.

Figure 9: We can see that the model size does matter in that for every group the 34C4 model improves over
the 18C4 model. However, the increase is quite small and the data quality and quantity appear to matter much
more.
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Figure 10: Results adding mode data to the base IID 10000 training set. This is the same as Figure 5 but
zoomed into just [0, 1000]. The five modes in the top left are the Cybertruck, Cola Car, Diamondback, Gazelle,
and Crossbike, each added in equal proportion.

Figure 11: Comparing rotation and weather results for MLM and Random intervention strategies. We see that
MLM fits with Original much better than Random does. Further, Random has a much wider berth of possible
problematic modes, which is a concern given practical limits to model capacity and data budgets.
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