
DeCaFlow: A deconfounding causal generative model

Alejandro Almodóvar1, * Adrián Javaloy2,*

Juan Parras1 Santiago Zazo1 Isabel Valera3

1Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ES
2School of Informatics, University of Edinburgh, UK

3 Department of Computer science, Saarland University, DE

Abstract

We introduce DeCaFlow, a deconfounding causal generative model. Training once
per dataset using just observational data and the underlying causal graph, DeCaFlow
enables accurate causal inference on continuous variables under the presence of
hidden confounders. Specifically, we extend previous results on causal estimation
under hidden confounding to show that a single instance of DeCaFlow provides
correct estimates for all causal queries identifiable with do-calculus, leveraging
proxy variables to adjust for the causal effects when do-calculus alone is insufficient.
Moreover, we show that counterfactual queries are identifiable as long as their
interventional counterparts are identifiable, and thus are also correctly estimated
by DeCaFlow. Our empirical results on diverse settings—including the Ecoli70
dataset, with 3 independent hidden confounders, tens of observed variables and
hundreds of causal queries—show that DeCaFlow outperforms existing approaches,
while demonstrating its out-of-the-box applicability to any given causal graph.

1 Causal generative models and hidden confounding

Causal inference seeks to determine how changes in one variable affect others, which is crucial to
evaluate the effects of interventions in fields such as healthcare [15], marketing policing [74] or
education [85]. In real-world scenarios, where empirical trials often are infeasible due to ethical,
financial, or practical constraints, answering causal queries from observational data becomes essential.
However, this is a challenging task, especially in the presence of unmeasured or hidden confounders
affecting a subset of the observed variables [1, 20].
In this work, we aim to propose a practical approach for accurate causal inference on continuous
variables under the presence of hidden confounders. To this end, we build on two key concepts:
i) causal generative models (CGMs) [9, 27, 31], a class of generative models that can generate
samples not only from the observational distribution, but also from interventional and (in some
cases) counterfactual distributions; and ii) proxy variables, i.e., conditionally independent variables
that yield information about the hidden confounders [45, 46, 46, 76]. Consequently, we introduce
the deconfounding causal normalizing flow (DeCaFlow), a CGM which provides correct estimates
of a broad class of interventional and counterfactual queries under hidden confounding, requiring
only observational data, the causal graph, and training once per dataset. Architecturally, DeCaFlow
resembles variational autoencoders [33] as it is trained with the ELBO and comprises: i) a causal
normalizing flow (CNF) [27] as “decoder”, adapted to be conditioned on the (potentially many)
hidden confounders; and ii) a conditional normalizing flow [79] as “encoder”, computing the modeled
posterior distribution of the hidden confounders given the observations.

*Equal contribution. Correspondence to alejandro.almodovar@upm.es and ajavaloy@ed.ac.uk.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:<alejandro.almodovar@upm.es>
mailto:<ajavaloy@ed.ac.uk>

We proved theoretically that DeCaFlow yields correct estimates for both interventional and counter-
factual queries that are identifiable with do-calculus, leveraging the information of proxy variables
when do-calculus alone is insufficient. To that end, we first extend recent advances in proximal causal
inference by Miao et al. [45] and Wang and Blei [76] to include counterfactual causal queries. Then,
we integrate proximal-identifiability with do-calculus, expanding the number of identifiable queries
of which DeCaFlow is shown to provide correct estimates.

b1191

fixC

traA ygcE

eutG

yceP

ibpB yfaD

lacY

sucA

cchB

ycgX

atpD

atpG

b1583

icdA

asnA

lacZ

lacA

cspG

yaeM

cspA yeoC

pspA

pspB

yedE

yhelaceB

hupB

yfiA lpdA

nuoM

dnaG

b1963

folK dnaK

mopB nmpCftsJ

Figure 1: DeCaFlow can be effortlessly ap-
plied to highly complex causal graphs, as that
of the Ecoli70 dataset [66], with multiple hidden
confounders and dozens of variables. We dash
hidden confounders, and highlight direct hidden-
confounded effects as identifiable (and thus cor-
rectly estimated by DeCaFlow), or unidentifiable.

As proof of the flexibility that DeCaFlow offers,
Fig. 1 illustrates the causal graph of the Ecoli70
dataset [66], comprising 43 observed variables
and 3 hidden confounders, showing that De-
CaFlow can effortlessly scale to complex set-
tings and accurately recover diverse causal ef-
fects after a single training process. Remark-
ably, green edges in the figure represent direct
causal effects that DeCaFlow can identify, des-
pite the presence of hidden confounders. We
additionally, provide algorithms to help prac-
titioners easily check in the given the causal
graph whether a particular query of interest can
be correctly estimated by DeCaFlow.

Finally, we empirically validate all our claims
on semi-synthetic and real-world experiments,
demonstrating that DeCaFlow outperforms ex-
isting alternatives while being widely applic-
able. An implementation of DeCaFlow can be
found in github.com/aalmodovares/DeCaFlow.

1.1 Related works

We briefly discuss relevant works in the literature, and defer the reader to §E for further details.

Causal generative models. As mentioned above, we refer as CGMs to the class of generative mod-
els that can generate samples from the observational, interventional and, in some cases, counterfac-
tual distributions. A common recipe to build causally consistent CGMs consists of modeling each
variable as a function of its causal parents with an independent model. In terms of the choice for mod-
eling these functions, prior works range from simple yet well-established additive noise models [24],
to more complex but powerful diffusion-based causal models [9], among others [35, 51, 52, 59, 83].
Due to their sequential nature, these approaches can overfit and propagate errors to downstream vari-
ables. Alternatively, recent works have explored using a single (structurally-constrained) network to
model the SCM at once, e.g., using normalizing flows [27, 31], or graph neural networks [65, 84].
However, all the aforementioned approaches assume causal sufficiency, i.e. the absence of hidden
confounders, limiting their applicability in settings with hidden confounding.

Causal inference hidden confounding. When dealing with hidden confounding, many approaches
handle only interventional queries and are tailored to a specific causal graph and a single treatment-
outcome pair, requiring us to train one model for each query we want to answer. Prior works exploit
instrumental variables [4], mediators [55], and, more recently, proxy variables to account for hidden
confounding [2, 28, 37, 39, 44–46, 76], from which we build upon later in §4. Recent works have
aimed to unify causal inference and generative modeling under hidden confounding [48, 80, 81].
In particular, Neural Causal Models perform causal identifiability and estimation under hidden
confounding on discrete variables [81, 82] by, given a causal query, training two “adversarial” models
and returning their estimation if they coincide. The model by Nasr-Esfahany et al. [48], instead,
focuses on counterfactual queries for simple causal graphs where adjustment sets or instrumental
variables are available. Our work thus aims to complement this line of work by providing a practical
and scalable GCM to solve a broad class of causal queries, interventional or counterfactual, on
continuous variables and large causal graphs with a single end-to-end training.

2

https://github.com/aalmodovares/DeCaFlow

2 Confounded structural causal models

Definition 1. A (confounded) Structural Causal Model (SCM) is a tripletM := (f, Pu, Pz) describ-
ing a data-generating process over D observed (endogenous) variables x := (x1, x2, . . . , xD) ∈ X :

xi := fi(pa(i), ui, z) for i = 1, 2, . . . , D , with u := (u1, u2, . . . , uD) ∼ Pu , z ∼ Pz , (1)

where fi represents the structural equation to compute the i-th endogenous variable, xi, from its
observed causal parents, pa(i), the i-th exogenous variable, ui, and the hidden confounders, z ∈ Z .

While we make the dependence on the hidden confounders explicit for all observed variables in Eq. 1,
we assume w.l.o.g. that a subset of them may not be directly affected by the hidden confounders.
Furthermore, given a SCMM, we denote by G the faithful causal graph that it induces, representing
a direct causal relationship between pairs of endogenous and hidden variables only if it exists.

A core idea of causal inference is the do operator [56], denoted by do(t), which formalizes the action
of externally intervening on the variable t, i.e., to fix t to a value independently of its parents. The do
operator enables the computation of interventional and counterfactual queries in SCMs [58]:

Definition 2. A causal query Q(M) := pM(y| do(t), c) is a distribution over y ∈ x (the outcome
variable), as a result of intervening upon the variable t ∈ x (the treatment variable). Additionally,
Q(M) denotes an interventional or counterfactual query if the variable c is, respectively, the empty
set or the vector of observed factual values, xf.

We call a causal query identifiable if it can be expressed as a function of the observational distribution,
pM(x), and the causal graph G [55]. As a result, any SCM inducing the same graph and matching the
observational distribution produces correct estimates of that causal query. Moreover, any identifiable
query can be rewritten this way using a set of three rules, the do-calculus [54]. Yet, in the presence of
hidden confounders, this may not be possible and even applying the do-operator to evaluate causal
queries would produce incorrect estimates, as unaccounted confounders would bias the results.

3 Deconfounding causal normalizing flows

In this work, we assume the existence of an underlying confounded SCM,M, as in Def. 1, of which
we have access to N i.i.d. observations as well as to the faithful causal graph, G. Our objective is
to design and learn a CGM that can accurately estimate as many causal queries from the original
SCM as possible, despite the presence of unobserved hidden confounding. In other words, we seek a
substitute model ofM that we can use to accurately perform causal inference.

Assumptions. In addition, we assume all variables to be continuous, and the SCMM to: i) have
C1-diffeomorphic causal equations conditioned on z, and ii) induce an acyclic causal graph G.

Note that assumption i) implies that f : U × Z → X is invertible from x to u, given z. This is not
a limiting assumption, since we never observe u and we can always find an invertible mapping by
merging all u producing the same observations and taking their Knöthe-Rosenblatt transport [34, 62],
while remaining causally equivalent to the original SCM assuming all other assumptions hold.

3.1 (Unconfounded) Causal normalizing flows
Causal normalizing flows (CNFs) [27] play an important role in this work, as they form the foundations
of DeCaFlow, given their identifiability guarantees despite a mild set of assumptions. Given a causal
graph G, a CNF, Tθ, is a masked autoregressive normalizing flow [50] built such that, paired with a
distribution Pu, defines an unconfounded SCMMθ = (Tθ, Pu) that induces graph G by design.

As demonstrated by Javaloy et al. [27], CNFs represent a remarkable family of CGMs, as they not
only form a parametric family of identifiable SCMs, but they can provably approximate the underlying
SCM in the three rungs of Pearl’s ladder of causation [55] simply by maximizing the observed joint
evidence, i.e., maxθ log pθ(x). Furthermore, CNFs are also equipped with an exact do-operator for
efficient sampling of any causal query, enabling their use for complex causal-inference tasks.

Their main downside, as discussed in §1, is that CNFs need to assume causal sufficiency—on top
of the assumptions made above—to guarantee the aforementioned capabilities, thus limiting their
application. Next, we attempt to address this limitation without losing theoretical guarantees.

3

n
w

b
t
y
ε

z

un

uw

ub

ut
uy

n
w

b
t
y

Tϕ T−1
θ

G

Deconfounding network Generative network

(a) DeCaFlow training computations.

un

uw

ub

uy

n
w

b
t
y

u′
t = α

T−1
θ

Intervened generative network
z ∼ p(z)

z ∼ qϕ(z | xf)

}

u ∼ p(u)

u = Tθ,z(x
f)

}

(b) Computation of causal queries.

Figure 2: Example of DeCaFlow computations for the causal graph G in Fig. A.2. Circles represent
input/output variables of the masked conditional normalizing flows, and black dots conditional inputs.
(a) Steps performed during training (Eq. 4), where ε is a non-causal random variable needed to model
z with Tϕ. (b) Steps performed to compute an interventional or counterfactual query with CNFs [27],
see §D, where u′

t is the value for which t = α always, i.e., u′
t = Tθ,z(T

−1
θ,z(u)x\t, α)t .

3.2 Deconfounding causal normalizing flows
We now introduce the deconfounding causal normalizing flow (DeCaFlow), a family of models which
extend CNFs [27] to account for hidden confounding while retaining all their theoretical properties.
To achieve this, DeCaFlow follows the structure of a variational autoencoder [33], i.e., DeCaFlow
comprises two main components: i) a generative network that exploits structural constraints to
accurately model the underlying SCM, given a substitute of z; and ii) an inference network which
approximates the intractable posterior distribution of z as modeled by the generative network, given
the observed endogenous variables. In the following, we provide further details on both networks.

Generative network. We adapt CNFs [27] to take the hidden confounders as conditional inputs
by using conditional masked autoregressive normalizing flows [79], instead of unconditional ones.
The resulting model, Tθ, is thus an invertible transformation, conditioned on z, describing a data-
generating process that maps a set of exogenous variables u to endogenous ones and vice versa, i.e.,
Tθ,z(x) = u ∼ Pu and x = T−1

θ,z(u) , where we further exploit the given causal graph G to ensure
that the generative process is faithful, i.e., that

pθ(x | z) =
D∏
i=1

pθ(xi | pa(i), z) , (2)

defining a data-generating process similar to that of Def. 1 and, just as in that definition, in Eq. 2 only
the children of z are actually conditioned on z.

Deconfounding network. To model the posterior distribution of z given our observations as
modeled by Tθ, i.e., the abduction step needed to compute counterfactuals [55], we use another
masked autoregressive conditional normalizing flow [79], as it can approximate this distribution
arbitrarily well. Once again, we exploit knowledge of G and mask the resulting network, Tϕ, such
that it models z using only the strictly necessary variables to ease learning:

qϕ(z | x) = qϕ (z | ch(z) ∪ pa(ch(z))) . (3)

We provide in §C a more general version of Eq. 3 that accounts for several independent hidden
confounders, and empirically validate the architecture and factorization choices in §§B.2 and B.3.

Training process. We jointly train both networks as typically done in deep latent-variable models,
i.e., we maximize the evidence lower bound (ELBO) [33]:

L(θ,ϕ) = Eqϕ [log pθ(x, z)] + H(qϕ(z | x)) = Eqϕ [log pθ(x | z)]−KL[qϕ(z | x)∥ p(z)] , (4)

where KL is the Kullback-Leibler divergence [38], H the differential entropy [36] and p(z) is the prior
distribution of z which we set as a standard Gaussian. The motivation for this loss is three-fold: i) we
want the generative network to explain the observations given samples from qϕ (first term of Eq. 4);
ii) as we do not know the optimal size for z, we need to prevent the deconfounding network from
allocating information exclusive of x in z (entropy term in Eq. 4); and iii) all the results introduced

4

next rely on DeCaFlow matching the observational distribution, pM(x), which we encourage since

max
ϕ,θ

L(ϕ,θ) = min
ϕ,θ

KL[pM(x)∥ pθ(x)] + KL[qϕ(z | x)∥ pθ(z | x)] . (5)

To avoid posterior collapse, i.e., that the approximate posterior matches the prior and thus having
uninformative latent variables [77], we incorporate KL balancing terms [73] to prevent the KL in
Eq. 4 from vanishing, ensuring that the latent representation remains informative during training.
Other implementation details, e.g., the way masking both encoder and decoder with via the causal
adjacency matrix, or how to adapt the do-operator of CNFs can be found in §§C and D, respectively.

3.3 Inherited causal properties
As a consequence of leveraging (causal) normalizing flows, DeCaFlow inherits many of the great
properties of this family of models. For once, both components of DeCaFlow are universal dens-
ity approximators [50] meaning that, given enough resources, the generative network can perfectly
match the observational distribution and the deconfounding network can perfectly learn the modeled
posterior. In other words, we can perfectly minimize the two KL terms that appear in Eq. 5. Further-
more, note that the generative network, combined with two base distributions for u and z, defines a
confounded SCM as in Def. 1, i.e.,Mθ = (T−1

θ , Pu, Pz) .

Causal consistency. As we leverage the causal graph G to appropriately mask the conditional CNF
of the generative network, we have thatMθ respects all causal connections described by G. In other
words,Mθ induces the same causal graph G asM. As a result, we can ensure which variable affects
which when we generate observations with Tθ. Fig. 2 depicts these structural constraints relating u
and z with x, and we provide a detailed description in §C.
Moreover, we prove in §A.1 that DeCaFlow preserves one of the most crucial aspects of CNFs:
Identifying (in the sense of Xi and Bloem-Reddy [80]) the underlying SCM concerning those variables
that are not directly caused by z:

Proposition 3.1 (Informal). If DeCaFlow induces the same causal graph and observational distribu-
tion as the underlying (confounded) SCM generating the data. Then, DeCaFlow recovers the SCM for
every variable not in ch(z), up to an element-wise transformation of their exogenous distributions.

DeCaFlow do-operator. While the above result ensures the causal equivalence ofMθ andM for
unconfounded variables, it is still unclear how to intervene onMθ. To this end, we adapt the do-
operator of CNFs [27], represented in Fig. 2b and detailed in §D, which provides an efficient and
exact way of sampling from any interventional and counterfactual distribution. Namely, to sample
from an interventional distribution p(x| do(t := α)) overMθ we: i) sample z ∼ Pz and u ∼ Pu;
ii) find the value of ut that yields t = α given u, which we can easily do as Tθ is invertible given z;
and iii) return the sample xdo(t) := T−1

θ,z(ux\t, ut) . The counterfactual case is quite similar, as the
bijectivity of Tθ implies that every counterfactual distribution is a delta distribution given z, and we
can simply follow the process above but using z ∼ qϕ(z|xf) and u = Tθ,z(x

f) for step one. As a
result, we can guarantee the correctness of DeCaFlow estimations on a number of causal queries:

Corollary 3.2 (Informal). DeCaFlow provides correct estimates of any causal, interventional or
counterfactual, query for which both the treatment and outcome variables are not direct children of a
hidden confounder, i.e., t, y /∈ ch(z) .

Thus far, we have shown that for causal queries over non-children of z, DeCaFlow inherits the
theoretical guarantees of CNFs. In the following section, we investigate under which conditions
DeCaFlow can also provide correct estimates of causal queries defined over children of z.

4 Estimation of causal queries under hidden confounding
By leveraging recent results in proximal-identifiability, we next show that DeCaFlow not only
preserves the properties of CNFs, but expand them. Namely, we characterize queries which DeCaFlow
correctly estimates despite the hidden confounding. While we present here an intuitive summary of
our main theoretical results, formal statements and derivations can be found in §A. Throughout this
section, we define proxy variables relative to the causal query to estimate: if we are interested in the
causal effect of t over y, which are confounded by z, a proxy is an observed variable related to z
and conditionally independent of t or y (see Prop. 4.1 next for precise definitions). Intuitively, proxy
variables contain exploitable information about the hidden confounders, which we leverage in this
section to provide accurate estimates of the causal queries of interest.

5

4.1 Interventional queries
First, we consider the identifiability of hidden-confounded interventional queries, i.e., queries of the
form Q(M) = pM(y| do(t)) , where y, t ∈ ch(z) are any two children of the hidden confounder. We
summarize our findings in the following proposition, which we properly formalize in §A.2:

Proposition 4.1 (Informal). An interventional query of the form Q(M) = pM(y| do(t)) , where
y, t ∈ ch(z) are two different children of z, is identifiable if there exists a (potentially empty) subset
of blocking variables b ⊂ x \ {t, y}, and two other variables n,w ∈ x \ {t, y,b} such that:

1. (b, z) forms a valid adjustment set, i.e., p(y| do(t)) =
∫∫

p(y| t,b, z)p(b, z) db dz ,
2. w is a proxy variable given b, i.e., w⊥⊥ (t,n)|b, z ,
3. n is a null proxy variable given b, i.e., y⊥⊥n| t,b, z , and
4. both w and n yield enough information about the hidden confounder z.

Prop. 4.1 extends the results from Miao et al. [45] and Wang and Blei [76] to prove identifiable of
queries under hidden confounding even if treatment and outcome have observed parents in common.
In turn, these results render causal queries identifiable in the infinite-data regime by leveraging proxy
information, complementing classical do-calculus [39]. Intuitively, w serves the purpose of building
a function which “substitutes” the hidden confounder for that query, and n is used to ensure that this
substitute yields the correct estimate. From this result, one natural step is then to extend the class of
causal queries which are identifiable using do-calculus, where we introduce the queries identifiable
with Prop. 4.1 as an additional base case for the do-calculus recursive steps:

Corollary 4.2. An interventional query is identifiable if, using do-calculus, it can be reduced to a
combination of observational queries and identifiable interventional queries in the sense of Prop. 4.1.

n t

z b m y1

w y2

Figure 3: Illustrative causal
graph where the presence or
absence of some parts render
p(y1| do(t)) identifiable using
do-calculus. Else, Prop. 4.1
yields identifiability if w and
n are informative proxies.

To understand the implications of Prop. 4.1 and Cor. 4.2, consider the
causal graph in Fig. 3, and suppose we want to compute Q(M) =
p(y1| do(t)) . Then, we can proceed as usual and apply the rules of
probability theory and do-calculus to rewrite Q(M) as

Q(M) = p(y1 | do(t)) =
∫

p(y1 | t, y2)p(y2 | do(t)) dy2 . (6)

As a result, the identifiability of p(y2| do(t)) implies that of Q(M).
We can then devise a few different scenarios:
1. If there is no edge from z to t, i.e., t /∈ ch(z), then the backdoor

criterion holds for {n,b} = pa(t) ⊂ x and both p(y1| do(t))
and p(y2| do(t)) are identifiable.

2. If there exists a mediator variable between t and y2, m, we
can apply the front-door adjustment and both p(y1| do(t)) and
p(y2| do(t)) are identifiable.

3. If y2 is not caused by t, then p(y2| do(t)) = p(y2) and both queries are identifiable.
4. Otherwise, we can still render p(y2| do(t)) (and thus p(y1| do(t))) identifiable if w and n yield

sufficient information about z (intuitively, this means that the posterior of z changes enough as
we change w and n; we formalize this notion in Def. 4) and we can hence apply Prop. 4.1.

The example above nicely illustrates how Prop. 4.1 complements do-calculus: if we find a query
unidentifiable due to reaching a dead end with do-calculus—in this case, p(y2| do(t)))—then Prop. 4.1
provides an additional case for which the query can still be made identifiable. Moreover, this case
clearly shows how Prop. 4.1 extends prior results as these did not allow for common observable
ancestors between outcome and treatment [45, 76]. Nevertheless, note that Prop. 4.1 provides only
sufficient conditions for identifiability, and there could exist identifiable queries which do not comply
with the requirements of the proposition.
Finally, recall from §3.3 that, similar to CNFs [27], we can readily interpret the generative network
of DeCaFlow as a parametric confounded SCM (Def. 1) of the formMθ := (T−1

θ , Pu, Pz). This
SCM induces the same causal graph as the underlying M by design, G, and since the family of
normalizing flows are universal density approximators,Mθ can match the observational distribution
pM(x) given enough resources. We can then leverage the previous results to prove the following:

6

Corollary 4.3. If DeCaFlow induces the same causal graph G asM and pM(x)
a.e.
= pθ(x), then

DeCaFlow provides correct estimates of any query identifiable in the sense of Cor. 4.2.

In other words, Cor. 3.2 guarantees that, if we match the observational distribution with DeCaFlow,
then the do-operator presented in §3.3 provides a correct estimate of the identifiable query of interest.

4.2 Counterfactual queries
Next, we focus on counterfactual queries of the form Q(M) = pM(ycf| do(tcf),xf), where xf is the
observed factual. Intuitively, this query represents the distribution the outcome would have had, had
we intervened on the treatment variable. We demonstrate, for the first time to our knowledge, a one-
to-one correspondence between proxy-identifiable interventional and counterfactual queries. More
specifically, we show that (all formal derivations can be found in §A.3):

Proposition 4.4 (Informal). If an interventional query p(y| do(t)) is identifiable in the sense of
Prop. 4.1, then its counterfactual counterpart, p(ycf| do(tcf),xf) , is also identifiable.

tcf ycf

ncf wcf

un ut z uy uw

nf wf

tf yf

ô ôô

Figure 4: Twin SCM with ob-
served factual nodes grayed
out and edges severed to com-
pute p(ycf| do(tcf),xf) in red.

The proof of Prop. 4.4 exploits the notion of twin SCM [5], which
duplicates the structural equations for the factual and counterfactual
worlds while sharing the exogenous variables, and the fact that
Prop. A.2 (the formal version of Prop. 4.1) allows for queries with
additional covariates as long as they do not form colliders, which
is always the case with xf in pM(ycf| do(tcf),xf), as we show in the
illustrative twin network of Fig. 4. We can then follow the same
derivations from the previous section to show that:

Corollary 4.5. If DeCaFlow induces the same causal graph G asM
and pM(x)

a.e.
= pθ(x), then DeCaFlow provides correct estimates of

any counterfactual query which can be decomposed in a combination
of (proxy-)identifiable queries using do-calculus.

Cor. 4.5 implies that, if DeCaFlow correctly estimates an interven-
tional query, then it also does for its counterfactual counterpart.
While the above results can look surprising at first, recall that we
assume continuous endogenous variables and diffeomorphic causal generators (§3). Moreover, the
correct estimation of counterfactual queries does not come without challenges: i) we need to accur-
ately estimate pθ(z|x), which is why it is crucial to correctly design and train qϕ; and ii) given z and
x, we need to accurately perform the abduction step. Fortunately, the latter step is trivialized using
CNFs as generative networks [27], since they are bijective given z.

Remarks. Whilst DeCaFlow can estimate any causal query, this estimation can be incorrect for
unidentifiable queries. Therefore, we must verify the identifiability for each query of interest, which
we aim to ease by providing algorithms to check the graphical requirements of Prop. 4.1 in §F.
Namely, Alg. 6 checks if a query that involves a specific treatment-outcome pair, which includes
average treatment effects and counterfactuals, is identifiable. If we were interested in a query on all
variables, e.g., as samples from an interventional distribution, we should evaluate the identifiability
of the causal query for all descendants of the treatment, as proposed in Alg. 7. Similarly, note that all
results above rely on the assumption that DeCaFlow matches the observational distribution, and thus
it is crucial to ensure that the training completed successfully.

5 Empirical evaluation

In this section, we assess the performance of DeCaFlow relative to existing methods. Namely,
we show that DeCaFlow accurately estimates interventional and counterfactual queries when the
requirements of Corols. 3.2 and 4.3 are met. All experimental details are described in §B.

Common evaluation. For all experiments, we measure the estimation quality for interventional and
counterfactual queries using the mean absolute error (MAE) of, respectively, the average treatment
effect (ATE) and the counterfactual (CF) samples, as we have access to the ground-truth values. We
use as reference (or oracle) a CNF [27] that does observe the hidden confounders. We also account
for differences across observed variables by computing all errors over the standardized variables.
Note that ATE and CF errors provide complementary measures of estimation quality, and their
interpretation is best understood relative to the oracle performance in each metric.

7

ATE error CF error

Additive

0.0

0.5

1.0

ATE error CF error

Nonadditive

Oracle DeCaFlow Deconfounder CNF ANM DCM

(a) Sachs’ dataset.

ATE error CF error

Additive

0.0

0.5

1.0

1.5

ATE error CF error

Nonadditive

Oracle DeCaFlow Deconfounder CNF ANM DCM

(b) Ecoli70 dataset.

Figure 7: ATE and CF error boxenplots [23] of different CGMs on the (a) Sachs and (b) Ecoli70
datasets, aggregating over all identifiable direct effects (see Figs. 1 and 8) after intervening on their
25th, 50th, and 75th percentiles over 5 random initializations.

Hyperparameter selection. We choose hyperparameters based on the MMD [21] over validation
observational data, following our theoretical premise that DeCaFlow correctly estimates causal
queries when pM(x) = pθ(x); see §B.6.3 for details on the hyperparameter grid.

5.1 Ablation study and practical considerations
In order to provide insights into practical limitations of DeCaFlow, we first conduct an ablation
study to understand the extent for which misspecifying the size of z affects DeCaFlow, as well as its
sensitivity to the number of available proxies. For additional details and results, refer to §B.1.

n1 nS

z1 z2

t y

. . .

Figure 5: Ablation graph.

Experimental setup. We consider two synthetic SCMs with linear and
non-linear causal equations that follow the causal graph G depicted in
Fig. 5, comprising two independent hidden confounders affecting every
variable, and S null proxies. We evaluate how well DeCaFlow estimates
p(y| do(t)) as we change the number of proxy variables, S, and the
specified latent dimensionality, Dz.

Proxy informativeness. The completeness condition (Prop. A.2), i.e.,
that proxies yield “enough information” (Prop. 4.1), is difficult to verify.
Fortunately, Fig. 6 shows that using more proxies consistently improves
the estimation of confounded causal queries in practice, as it is more likely to satisfy completeness.
Thus, practitioners should aim to collect as many informative proxies as possible to ensure correct
causal estimates.

0 2 4 6 8 10

Dz

0.5

1.0

C
F

er
ro

r

Linear

0 2 4 6 8 10

Dz

0.15

0.20

Nonlinear
S
0
1
2
3
5
10
Oracle

Figure 6: CF error as we increase the number of
proxies, S, and the latent dimensionality, Dz. Plots
show mean and 95% CI over 5 realizations, inter-
vening on the 25th, 50th, and 75th percentiles of t.

Latent dimensionality. When the dimension-
ality of the hidden confounders is unknown,
we expect the entropy term in Eq. 4 to prevent
modeling exogenous variables with z, as dis-
cussed in §3.2. Fig. 6 corroborates our intuition,
showing that DeCaFlow remains robust to over-
specification of the latent dimension, Dz, while
error increases as we underestimate it. This sug-
gests that, in practice, choosing a large latent
space is preferable.

Other ablations. We summarize here other experiments of practical interest that can be found in
the appendix. §§B.2 and B.3 corroborate our design choices for the deconfounding network, namely,
the use of conditional normalizing flows and the posterior factorization in Eq. 3. Then, §B.4 assess
the sample efficiency of DeCaFlow, showing that both DeCaFlow and the oracle monotonically
improve their estimations as the training size increases, supporting that correct causal estimates are
obtained when the model accurately fits the observational distribution.

5.2 Semi-synthetic experiments
Next, we evaluate how DeCaFlow performs relative to existing approaches. To this end, we consider
semi-synthetic datasets for which we have access to the ground-truth. Additional details, results, and
a justification on the use of semi-synthetic data can be found in §§B.5 and B.6.

8

Baselines. We consider three CGMs which assume causal sufficiency and are thus unaware of
the hidden confounders: CNFs [27]; ANMs [24]; and DCMs [9]; as well as the Deconfounder [75],
which uses proxies to provide unbiased ATE estimates under hidden confounding, yet it requires to
train one model per outcome. We take the oracle model as a lower bound of the error.

5.2.1 Protein-signaling networks
PKC PKA

Raf Jnk

Mek Erk Akt P38

Plcg PIP3 PIP2

Figure 8: Sachs’ graph.
Green edges mark proxy-
identifiable effects.

Following Chao et al. [9], we first experiment with the protein-signaling
network dataset [63]. Namely, we randomly generate a non-linear SCM
inducing the same causal graph as the original dataset, see Fig. 8, except
for the root nodes, for which we use the original data. As a result, we
have a bidimensional hidden confounder, PKC and PKA, and three treatment
variables to intervene upon, Raf, Mek, and Erk. We consider additive and
non-additive causal equations, measure the effect of interventions on the
downstream nodes and, more importantly, ensure when generating the
SCM that the randomized effect of the hidden confounder is perceptible.

Results. We present a visualization of the results in Fig. 7a, where
we can observe that DeCaFlow outperforms every considered approach in all cases, for both ATE
and counterfactual errors, staying on par with the oracle model. Moreover, we appreciate a great
difference in performance between DeCaFlow and CNFs, which corroborates the importance of the
architecture and variational training employed by DeCaFlow, since a CNF is equivalent to DeCaFlow
with Dz = 0 .

5.2.2 Gene networks
We next conduct a similar experiment as in the previous section, considering this time the causal
graph of the Ecoli70 dataset [66], depicted in Fig. 1, which represents a gene network extracted from
E. coli data. This time, we replace root nodes with Gaussian variables. See §B.6.

Results. Similar to the previous case, the results presented in Fig. 7b demonstrate that DeCaFlow is
indeed able to closely match the performance of the oracle model, outperforming existing approaches.
It is worth-noting, however, that the non-additive case shows long-tailed error distributions for all
models, including the oracle, highlighting unavoidable issues of any data-centric approach, also
DeCaFlow, and that have to be considered during evaluation and deployment.

0.0

0.2

0.4

0.6

0.8

A
T

E
er

ro
r

We feel compelled to explain that the striking performance of the Deconfounder is
an artifact of evaluating on causal queries that it cannot correctly estimate. As we
discuss in §B, the Deconfounder guarantees correct ATE estimation under more
stringent assumptions than those from §4. If we plot the ATE error evaluated on
only those queries that meet Deconfounder’s assumptions, we indeed observe
that it achieves significantly lower error, as shown in the inset figure.
This experiment highlights every strength of DeCaFlow, as it needs to: i) model several hidden
confounders affecting different sets of variables; ii) correctly estimate all causal queries for which we
have proxy information; and iii) achieve the above in an agnostic manner, i.e., training the model
out-of-the-box and one single time, despite the graph G having 43 observed variables.

5.3 Fairness real-world use case
Taking inspiration from the experiments by Kusner et al. [40] and Javaloy et al. [27] we test whether,
by modeling the confounded SCM with DeCaFlow, we can leverage it for more than causal-query
estimation and, in particular, for counterfactual-fairness prediction. See §B.7 for further details.

Sex GPA

Race LSAT Know Decile3

Fam FYA

Figure 9: Assumed causal
graph in §5.3. Only the classi-
fiers consider Decile3.

Dataset and objective. Our aim is to train a gradient-boosted
decision tree [17] on the law school dataset [78], which comprises of
21 790 law students, that remains accurate while being fair toward
the sensitive attributes of the students. In particular, we aim to
predict the decile of a student in its 3rd year of university, given their
undergraduate and 1st year grades, family income, race, and sex.

Experimental setup. First, we train DeCaFlow assuming the
causal graph in Fig. 9, excluding Decile3, where all grades are af-
fected by a common “knowledge” hidden confounder [40]. Then, we train a predictor using as input
the hidden confounder and non-sensitive exogenous variables extracted from DeCaFlow. If, as dis-
cussed in §3.3, DeCaFlow successfully recovers the exogenous variables, we expect the predictor to
be fair yet slightly less accurate, since Decile3 is directly affected by the sensitive attributes.

9

Table 1: Test RMSE on Decile3 prediction and
MMD of inter-group predictive distributions.

Unfair Unaware DeCaFlow Fair K Fair Add Mean

RMSE 1.413 1.419 1.604 2.817 2.826 2.83
MMD 0.163 0.147 0.0054 10−5 10−4 0

Results. Tab 1 provides the prediction error
(RMSE) and the difference between group dis-
tributions (MMD) for the proposed DeCaFlow-
based predictor, comparing with an Unfair pre-
dictor that uses sensitive attributes; an Unaware
predictor that excludes sensitive attributes, and
two fair predictors, Fair K and Fair Add, as ini-
tially proposed by Kusner et al. [40]. We see that the proposed predictor slightly increases the error,
while significantly reducing the MMD between the predicted distributions between sensitive attributes.
Moreover, the other fair classifiers behave just as a baseline always predicting the average prediction.

U
nf

ai
r

SexFemale Male RaceWhite Non-white

5 0 5 10 15

3rd year decile

D
eC

aF
lo

w

5 0 5 10 15

3rd year decile

Figure 10: Distribution of predicted Decile3. A
fair predictor yields similar distributions across the
considered groups per attribute (Sex and Race).

To provide a better intuition on the differences
between predictors, we plot in Fig. 10 the dis-
tributions predicted by the gradient-boosted de-
cision tree stratified by the sensitive classes,
for the Unfair and DeCaFlow-based classifiers.
Fig. 10 shows that, while both classifiers provide
similarly-distributed predictions for both sex
classes, female and male, we find a qualitatively
significant difference between the race classes,
white and non-white, with the predictions of
the Unfair classifier clearly skewed, predicting
much lower deciles for the non-white population. In contrast, the DeCaFlow-based classifier provides
much similar predictions for all sensitive classes at the expense of a slightly higher prediction error.

6 Concluding remarks

In this work we introduced DeCaFlow, a CGM that can enable accurate estimation of interventional
and counterfactual queries under hidden confounding. DeCaFlow expands CNFs, preserving their
properties while offering several key advantages over prior works. Namely, DeCaFlow can be applied
out-of-the-box to any given causal graph and, training once per dataset, it correctly estimates a broad
class of (potentially hidden-confounded) interventional and counterfactual queries over continuous
endogenous variables. Moreover, we theoretically characterized all queries that DeCaFlow correctly
estimates as those for which do-calculus yields observational or proximal-identifiable queries, ex-
tending prior results [45, 76] to include counterfactuals and observed common ancestors. Finally, we
showed that DeCaFlow outperforms existing methods across a variety of settings, accurately recover-
ing more hidden-confounded causal effects and enabling fair downstream predictions.

Limitations. While DeCaFlow relaxes causal sufficiency, it still relies on the existence of
sufficiently-informative proxies. This condition is untestable since we do not observe the hidden
confounder, but collecting additional proxies can help satisfy it [3], as shown in §5.1. Similarly, De-
CaFlow works with continuous random variables by assumption (see §3), although §5.3, Javaloy et al.
[27] and de Vassimon Manela et al. [13] show that CNFs effectively approximate discrete distribu-
tions in practice. Another limitation is assuming perfect knowledge of the causal graph G. In practice,
G may be partially available or noisy. When graph misspecification does not involve children of the
hidden confounders, DeCaFlow inherit from CNFs the ability to operate with a known causal order-
ing or with partially specified graphs where variables are grouped, see [27, App. A.2.2]. However, if
the assumed graph incorrectly specifies the relations involving hidden confounders—and thus violat-
ing the assumptions in Prop. 4.1—our identifiability results under hidden confounding no longer hold,
and estimates for confounded causal queries may become inaccurate. Alternatively, DeCaFlow could
be combined with methods that jointly perform causal identification and estimation for individual
queries [82], which handle cases identifiable beyond our theory but trade scalability for flexibility.

Future work. We believe DeCaFlow opens many intriguing venues we are excited to explore,
such as expanding the range of queries it can estimate using instrumental variables [22], applying
it to settings with time-varying treatments or where multiple interventions take place, investigating
the empirical sensitivity of DeCaFlow to noisy or misspecified causal graphs [49], or extending our
framework to support soft (stochastic) interventions with dedicated evaluation protocols [10]. We are
also excited to see DeCaFlow applied to real-world problems such as decision support systems [64],
educational analysis [47], or policy making [16], yet always validating them with interventional data.

10

Acknowledgments and Disclosure of Funding
The authors would like to thank Luigi Gresele for useful discussions and comments which helped
improving the quality of this work. This work has been supported by the project “Society-Aware
Machine Learning: The paradigm shift demanded by society to trust machine learning,” funded
by the European Union and led by IV (ERC-2021-STG, SAML, 101040177); and the Deutsche
Forschungsgemeinschaft (DFG) grant number 389792660 as part of the Transregional Collaborative
Research Centre TRR 248: Center for Perspicuous Computing (CPEC) (TRR 248 – CPEC). Members
of Universidad Politécnica de Madrid (AA, JP and SZ) have received the funding from the SYNTHIA
project. SYNTHIA (Synthetic Data Generation framework for integrated validation of use cases and
Al healthcare applications) is supported by the Innovative Health Initiative Joint Undertaking (IHI
JU) under grant agreement No 101172872. Funded by the European Union, the private members, and
those contributing partners of the IHI JU. In addition, Programa Propio UPM funded the stay of AA
at Saarland University. Moreover, AJ has received funding from the “UNREAL: a Unified Reasoning
Layer for Trustworthy ML” project (EP/Y023838/1) selected by the ERC and funded by UKRI EPSR.
Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect
those of the aforementioned funding agencies. Neither of the aforementioned parties can be held
responsible for them.

Bibliography
[1] Jeffrey Adams, Niels Hansen, and Kun Zhang. Identification of Partially Observed Linear Causal

Models: Graphical Conditions for the Non-Gaussian and Heterogeneous Cases. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
22822–22833, 2021. (Cited in page 1.)

[2] Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability Of Parameters In
Latent Structure Models With Many Observed Variables. The Annals of Statistics, 37(6A):3099–
3132, 2009. ISSN 00905364, 21688966. (Cited in pages 2, 50, 51, and 52.)

[3] Donald WK Andrews. Examples of l2-complete and boundedly-complete distributions. 2011
(Cited in pages 10 and 27.)

[4] Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s
companion. Princeton university press, 2009 (Cited in pages 2 and 51.)

[5] Alexander Balke and Judea Pearl. Probabilistic Evaluation of Counterfactual Queries. Probabil-
istic and Causal Inference, 1994. (Cited in page 7.)

[6] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep
universal probabilistic programming. Journal of machine learning research, 20(28):1–6, 2019
(Cited in page 45.)

[7] Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, and Dominik Janzing.
DoWhy-GCM: An extension of DoWhy for causal inference in graphical causal models. ArXiv
preprint, abs/2206.06821, 2022. (Cited in page 43.)

[8] Marine Carrasco, Jean-Pierre Florens, and Eric Renault. Linear inverse problems in structural
econometrics estimation based on spectral decomposition and regularization. Handbook of
econometrics, 6:5633–5751, 2007 (Cited in page 27.)

[9] Patrick Chao, Patrick Blöbaum, and Shiva Prasad Kasiviswanathan. Interventional and counter-
factual inference with diffusion models. ArXiv preprint, abs/2302.00860, 2023. (Cited in
pages 1, 2, 9, 38, and 39.)

[10] Juan D. Correa and Elias Bareinboim. A Calculus for Stochastic Interventions: Causal Effect
Identification and Surrogate Experiments. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 10093–10100. AAAI
Press, 2020. (Cited in page 10.)

[11] Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric
proximal causal inference. Journal of the American Statistical Association, 119(546):1348–
1359, 2024 (Cited in page 51.)

11

https://machinelearning.uni-saarland.de/society-aware-ml/
https://perspicuous-computing.science
https://cordis.europa.eu/project/id/101172872
https://proceedings.neurips.cc/paper/2021/hash/c0f6fb5d3a389de216345e490469145e-Abstract.html
http://www.jstor.org/stable/25662188
https://api.semanticscholar.org/CorpusID:18845266
https://arxiv.org/abs/2206.06821
https://arxiv.org/abs/2302.00860
https://aaai.org/ojs/index.php/AAAI/article/view/6567

[12] Alexander D’Amour. On Multi-Cause Approaches to Causal Inference with Unobserved
Counfounding: Two Cautionary Failure Cases and A Promising Alternative. In Kamalika
Chaudhuri and Masashi Sugiyama, editors, The 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89
of Proceedings of Machine Learning Research, pages 3478–3486. PMLR, 2019. (Cited in
page 51.)

[13] Daniel de Vassimon Manela, Laura Battaglia, and Robin J. Evans. Marginal Causal Flows for
Validation and Inference. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan,
Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024. (Cited in page 10.)

[14] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 7509–7520, 2019. (Cited in page 43.)

[15] Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess,
Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
machine learning for predicting treatment outcomes. Nature Medicine, 30(4):958–968, 2024
(Cited in page 1.)

[16] Denis Fougère and Nicolas Jacquemet. Policy evaluation using causal inference methods. In
Handbook of Research Methods and Applications in Empirical Microeconomics, pages 294–
324. Edward Elgar Publishing, 2021 (Cited in page 10.)

[17] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001 (Cited in pages 9 and 45.)

[18] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoen-
coder for Distribution Estimation. In Francis R. Bach and David M. Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 881–889.
JMLR.org, 2015. (Cited in page 46.)

[19] Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and
Michele Sebag. Learning functional causal models with generative neural networks. Explainable
and interpretable models in computer vision and machine learning, pages 39–80, 2018 (Cited
in page 53.)

[20] Sander Greenland. Basic methods for sensitivity analysis of biases. International journal of
epidemiology, 25(6):1107–1116, 1996 (Cited in page 1.)

[21] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.
Smola. A Kernel Method for the Two-Sample-Problem. In Bernhard Schölkopf, John C.
Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7, 2006, pages 513–520. MIT Press, 2006.

(Cited in pages 8 and 44.)
[22] Jason S. Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A Flexible

Approach for Counterfactual Prediction. In Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages
1414–1423. PMLR, 2017. (Cited in pages 10 and 51.)

[23] Heike Hofmann, Karen Kafadar, and Hadley Wickham. Letter-value plots: Boxplots for large
data. Technical report, had.co.nz, 2011 (Cited in page 8.)

[24] Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, and Bernhard Schölkopf.
Nonlinear causal discovery with additive noise models. In Daphne Koller, Dale Schuurmans,
Yoshua Bengio, and Léon Bottou, editors, Advances in Neural Information Processing Systems
21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 689–696. Curran
Associates, Inc., 2008. (Cited in pages 2 and 9.)

12

http://proceedings.mlr.press/v89/d-amour19a.html
http://papers.nips.cc/paper_files/paper/2024/hash/1343e23bc2d34c054040e73ad86582cf-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
http://proceedings.mlr.press/v37/germain15.html
https://proceedings.neurips.cc/paper/2006/hash/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html
http://proceedings.mlr.press/v70/hartford17a.html
https://proceedings.neurips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html

[25] Yimin Huang and Marco Valtorta. Pearl’s calculus of intervention is complete. arXiv preprint
arXiv:1206.6831, 2012 (Cited in page 30.)

[26] Amin Jaber, Adèle H. Ribeiro, Jiji Zhang, and Elias Bareinboim. Causal Identification under
Markov equivalence: Calculus, Algorithm, and Completeness. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. (Cited in
page 53.)

[27] Adrián Javaloy, Pablo Sánchez-Martı́n, and Isabel Valera. Causal normalizing flows: from
theory to practice. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. (Cited in pages 1, 2, 3, 4, 5, 6, 7, 9, 10, 26, 30, 31, 44,
46, 47, 48, and 53.)

[28] Nathan Kallus, Xiaojie Mao, and Madeleine Udell. Causal Inference with Noisy and Missing
Covariates via Matrix Factorization. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 6921–6932, 2018.

(Cited in pages 2, 51, and 52.)
[29] Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval Estimation of Individual-Level Causal

Effects Under Unobserved Confounding. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning
Research, pages 2281–2290. PMLR, 2019. (Cited in pages 51 and 52.)

[30] David Kaltenpoth and Jilles Vreeken. Nonlinear Causal Discovery with Latent Confounders.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pages 15639–15654. PMLR, 2023. (Cited in page 38.)

[31] Ilyes Khemakhem, Ricardo Pio Monti, Robert Leech, and Aapo Hyvärinen. Causal Autore-
gressive Flows. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th International
Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event, volume 130 of Proceedings of Machine Learning Research, pages 3520–3528. PMLR,
2021. (Cited in pages 1 and 2.)

[32] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
(Cited in page 42.)

[33] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. (Cited
in pages 1 and 4.)

[34] Herbert Knothe. Contributions to the theory of convex bodies. Michigan Mathematical Journal,
4:39–52, 1957 (Cited in pages 3 and 37.)

[35] Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, and Sriram Vishwanath. Causal-
GAN: Learning Causal Implicit Generative Models with Adversarial Training. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. (Cited in page 2.)

[36] Andrey Kolmogorov. On the Shannon theory of information transmission in the case of
continuous signals. IRE Transactions on Information Theory, 2(4):102–108, 1956 (Cited in
page 4.)

[37] Benjamin Kompa, David R. Bellamy, Thomas Kolokotrones, James M. Robins, and Andrew
Beam. Deep Learning Methods for Proximal Inference via Maximum Moment Restriction.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors,

13

http://papers.nips.cc/paper_files/paper/2022/hash/17a9ab4190289f0e1504bbb98d1d111a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b8402301e7f06bdc97a31bfaa653dc32-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2018/hash/86a1793f65aeef4aeef4b479fc9b2bca-Abstract.html
http://proceedings.mlr.press/v89/kallus19a.html
https://proceedings.mlr.press/v202/kaltenpoth23a.html
http://proceedings.mlr.press/v130/khemakhem21a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=BJE-4xW0W

Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. (Cited in pages 2 and 51.)

[38] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951 (Cited in page 4.)

[39] Manabu Kuroki and Judea Pearl. Measurement bias and effect restoration in causal inference.
Biometrika, 101(2):423–437, 2014 (Cited in pages 2, 6, 50, 51, and 52.)

[40] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. Counterfactual Fairness. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 4066–4076, 2017. (Cited in pages 9, 10, 44, and 45.)

[41] Christopher P Long and Maciek R Antoniewicz. Metabolic flux analysis of Escherichia
coli knockouts: lessons from the Keio collection and future outlook. Current opinion in
biotechnology, 28:127–133, 2014 (Cited in page 39.)

[42] Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, and Max
Welling. Causal Effect Inference with Deep Latent-Variable Models. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6446–6456, 2017. (Cited in pages 51 and 52.)

[43] Ruiyan Luo and Hongyu Zhao. Bayesian hierarchical modeling for signaling pathway inference
from single cell interventional data. The annals of applied statistics, 5:725–745, 2011. doi:
10.1214/10-AOAS425 (Cited in page 38.)

[44] Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, and Krikamol Muandet. Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 7512–7523. PMLR,
2021. (Cited in pages 2 and 51.)

[45] Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. Identifying causal effects with proxy
variables of an unmeasured confounder. Biometrika, 105(4):987–993, 2018 (Cited in pages 1,
2, 6, 10, 27, 29, 51, and 52.)

[46] Wang Miao, Wenjie Hu, Elizabeth L Ogburn, and Xiao-Hua Zhou. Identifying effects of
multiple treatments in the presence of unmeasured confounding. Journal of the American
Statistical Association, 118(543):1953–1967, 2023 (Cited in pages 1, 2, 27, 51, and 52.)

[47] RJ Murnane. Methods matter: Improving causal inference in educational and social science
research. Oxford University Press, 2010 (Cited in page 10.)

[48] Arash Nasr-Esfahany, Mohammad Alizadeh, and Devavrat Shah. Counterfactual Identifiability
of Bijective Causal Models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 25733–25754. PMLR, 2023. (Cited in pages 2, 27,
and 53.)

[49] Chris J Oates, Jessica Kasza, Julie A Simpson, and Andrew B Forbes. Repair of partly
misspecified causal diagrams. Epidemiology, 28(4):548–552, 2017 (Cited in page 10.)

[50] George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. J. Mach.
Learn. Res., 22:57:1–57:64, 2021. (Cited in pages 3, 5, 30, and 38.)

[51] Álvaro Parafita and Jordi Vitrià. Estimand-agnostic causal query estimation with deep causal
graphs. IEEE Access, 10:71370–71386, 2022 (Cited in page 2.)

[52] Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep Structural Causal Models for
Tractable Counterfactual Inference. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing

14

http://papers.nips.cc/paper_files/paper/2022/hash/487c9d6ef55e73aa9dfd4b48fe3713a6-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/94b5bde6de888ddf9cde6748ad2523d1-Abstract.html
http://proceedings.mlr.press/v139/mastouri21a.html
https://proceedings.mlr.press/v202/nasr-esfahany23a.html
http://jmlr.org/papers/v22/19-1028.html

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. (Cited in page 2.)

[53] J. Pearl and D. Mackenzie. The Book of Why: The New Science of Cause and Effect. Penguin
Books Limited, 2018. ISBN 9780241242643. (Cited in page 33.)

[54] Judea Pearl. Causal Diagrams for Empirical Research. Biometrika, 82(4):669–688, 1995. ISSN
00063444, 14643510. (Cited in page 3.)

[55] Judea Pearl. Causality. Cambridge university press, 2009 (Cited in pages 2, 3, 4, 34, and 51.)

[56] Judea Pearl. The Do-Calculus Revisited. In Nando de Freitas and Kevin P. Murphy, editors,
Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, Catalina
Island, CA, USA, August 14-18, 2012, pages 3–11. AUAI Press, 2012. (Cited in page 3.)

[57] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016 (Cited in page 48.)

[58] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: founda-
tions and learning algorithms. The MIT Press, 2017 (Cited in pages 3, 29, and 34.)

[59] Md. Musfiqur Rahman and Murat Kocaoglu. Modular Learning of Deep Causal Generative
Models for High-dimensional Causal Inference. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.
(Cited in pages 2 and 53.)

[60] Rajesh Ranganath and Adler Perotte. Multiple causal inference with latent confounding. ArXiv
preprint, abs/1805.08273, 2018. (Cited in pages 51 and 52.)

[61] Severi Rissanen and Pekka Marttinen. A Critical Look at the Consistency of Causal Estimation
with Deep Latent Variable Models. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 4207–4217, 2021. (Cited in page 51.)

[62] Murray Rosenblatt. Remarks on a Multivariate Transformation. The Annals of Mathematical
Statistics, 23(3):470–472, 1952. ISSN 00034851. (Cited in pages 3 and 37.)

[63] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal
Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science, 308
(5721):523–529, 2005. doi: 10.1126/science.1105809. (Cited in pages 9, 38, and 39.)

[64] Pedro Sanchez, Jeremy P Voisey, Tian Xia, Hannah I Watson, Alison Q O’Neil, and Sotirios A
Tsaftaris. Causal machine learning for healthcare and precision medicine. Royal Society Open
Science, 9(8):220638, 2022 (Cited in page 10.)

[65] Pablo Sánchez-Martı́n, Miriam Rateike, and Isabel Valera. VACA: Designing Variational Graph
Autoencoders for Causal Queries. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pages 8159–8168. AAAI Press, 2022. (Cited in
page 2.)

[66] Juliane Schäfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical applications in genetics and
molecular biology, 4(1), 2005 (Cited in pages 2, 9, and 39.)

[67] Marco Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3):1–22, 2010. doi: 10.18637/jss.v035.i03 (Cited in pages 38 and 40.)

[68] Xu Shi, Wang Miao, Jennifer C Nelson, and Eric J Tchetgen Tchetgen. Multiply robust causal
inference with double-negative control adjustment for categorical unmeasured confounding.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(2):521–540, 2020
(Cited in page 51.)

[69] Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive
semi-Markovian causal models. In AAAI, pages 1219–1226, 2006 (Cited in pages 29 and 30.)

[70] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2001 (Cited in page 29.)

15

https://proceedings.neurips.cc/paper/2020/hash/0987b8b338d6c90bbedd8631bc499221-Abstract.html
https://books.google.es/books?id=EmY8DwAAQBAJ
http://www.jstor.org/stable/2337329
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2330&proceeding_id=28
https://openreview.net/forum?id=bOhzU7NpTB
https://arxiv.org/abs/1805.08273
https://proceedings.neurips.cc/paper/2021/hash/21c5bba1dd6aed9ab48c2b34c1a0adde-Abstract.html
http://www.jstor.org/stable/2236692
https://www.science.org/doi/abs/10.1126/science.1105809
https://ojs.aaai.org/index.php/AAAI/article/view/20789

[71] Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction
to proximal causal learning. ArXiv preprint, abs/2009.10982, 2020. (Cited in page 51.)

[72] Santtu Tikka and Juha Karvanen. Identifying causal effects with the R package causaleffect.
Journal of Statistical Software, 76:1–30, 2017 (Cited in page 30.)

[73] Arash Vahdat and Jan Kautz. NVAE: A Deep Hierarchical Variational Autoencoder. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
(Cited in pages 5, 37, and 46.)

[74] Hal R Varian. Causal inference in economics and marketing. Proceedings of the National
Academy of Sciences, 113(27):7310–7315, 2016 (Cited in page 1.)

[75] Yixin Wang and David M Blei. The blessings of multiple causes. Journal of the American
Statistical Association, 114(528):1574–1596, 2019 (Cited in pages 9, 40, 51, and 52.)

[76] Yixin Wang and David M. Blei. A Proxy Variable View of Shared Confounding. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 10697–10707. PMLR, 2021. (Cited in pages 1, 2, 6, 10, 27, 29,
40, 51, and 52.)

[77] Yixin Wang, David M. Blei, and John P. Cunningham. Posterior Collapse and Latent Variable
Non-identifiability. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 5443–5455, 2021. (Cited in pages 5 and 52.)

[78] Linda F Wightman. LSAC National Longitudinal Bar Passage Study. LSAC Research Report
Series. 1998 (Cited in page 9.)

[79] Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning Likelihoods
with Conditional Normalizing Flows. ArXiv preprint, abs/1912.00042, 2019. (Cited in
pages 1 and 4.)

[80] Quanhan Xi and Benjamin Bloem-Reddy. Indeterminacy in Generative Models: Characteriza-
tion and Strong Identifiability. In Francisco J. R. Ruiz, Jennifer G. Dy, and Jan-Willem van de
Meent, editors, International Conference on Artificial Intelligence and Statistics, 25-27 April
2023, Palau de Congressos, Valencia, Spain, volume 206 of Proceedings of Machine Learning
Research, pages 6912–6939. PMLR, 2023. (Cited in pages 2, 5, 26, and 53.)

[81] Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, and Elias Bareinboim. The Causal-Neural Connec-
tion: Expressiveness, Learnability, and Inference. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 10823–10836, 2021. (Cited
in pages 2 and 52.)

[82] Kevin Muyuan Xia, Yushu Pan, and Elias Bareinboim. Neural Causal Models for Counterfac-
tual Identification and Estimation. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. (Cited in
pages 2, 10, and 52.)

[83] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. CausalVAE:
Structured causal disentanglement in variational autoencoder. ArXiv preprint, abs/2004.08697,
2020. (Cited in page 2.)

[84] Matej Zečević, Devendra Singh Dhami, Petar Velivcković, and Kristian Kersting. Relating
graph neural networks to structural causal models. ArXiv preprint, abs/2109.04173, 2021.
(Cited in page 2.)

[85] Siyuan Zhao and Neil Heffernan. Estimating Individual Treatment Effect from Educational
Studies with Residual Counterfactual Networks. International Educational Data Mining Society,
2017 (Cited in page 1.)

16

https://arxiv.org/abs/2009.10982
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
http://proceedings.mlr.press/v139/wang21c.html
https://proceedings.neurips.cc/paper/2021/hash/2b6921f2c64dee16ba21ebf17f3c2c92-Abstract.html
https://arxiv.org/abs/1912.00042
https://proceedings.mlr.press/v206/xi23a.html
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://openreview.net/pdf?id=vouQcZS8KfW
https://arxiv.org/abs/2004.08697
https://arxiv.org/abs/2109.04173

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction assert that DeCaFlow provides correct estimates for every do-
calculus and proximal identifiable causal query, including counterfactuals, under hidden confounding and
outperforms prior models. These points are rigorously proven in the theory sections (§4) and demonstrated
by comprehensive empirical results (§5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the results
can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A dedicated “Limitations” paragraph at the end of §6 explicitly states that DeCaFlow
depends on sufficiently informative variables—an untestable assumption—and on a C1-diffeomorphic
confounded SCM, thereby clarifying when the method may fail and why.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper has
limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of these

assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic
approximations only holding locally). The authors should reflect on how these assumptions might be
violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a
few datasets or with a few runs. In general, empirical results often depend on implicit assumptions,
which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For example,
a facial recognition algorithm may perform poorly when image resolution is low or images are taken
in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for
online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how they
scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems of
privacy and fairness.

17

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren’t
acknowledged in the paper. The authors should use their best judgment and recognize that individual
actions in favor of transparency play an important role in developing norms that preserve the integrity
of the community. Reviewers will be specifically instructed to not penalize honesty concerning
limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?
Answer: [Yes]
Justification: Every theorem, proposition and corollary in §4 is stated with explicit numbered assumptions
and the correspoding formal proofs are given in §A and cross referenced. As an example, Prop. A.2 is the
formal version of Prop. 4.1, which includes a list of independence, completeness and regularity conditions
and then supplies a step-by-step proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in the

supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented by formal

proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless
of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main paper explicitly refers to “all experiments details” to §3.2 and §C, §B and §D,
where it specified the data-generation pipelines, the causal graphs, the architecture, the ELBO training
objective with its regularization process, the do-operator, the metrics and the evaluation protocol In
addition, the authors commit to releasing the full codebase, together with the hyper-parameter search and
seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data are
provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make their
results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For example,
if the contribution is a novel architecture, describing the architecture fully might suffice, or if the
contribution is a specific model and empirical evaluation, it may be necessary to either make it possible
for others to replicate the model with the same dataset, or provide access to the model. In general.

18

releasing code and data is often one good way to accomplish this, but reproducibility can also be
provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the
case of a large language model), releasing of a model checkpoint, or other means that are appropriate
to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to provide
some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For
example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce
that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the architecture
clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be a way
to access this model for reproducing the results or a way to reproduce the model (e.g., with an
open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome
to describe the particular way they provide for reproducibility. In the case of closed-source models,
it may be that access to the model is limited in some way (e.g., to registered users), but it should
be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully
reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: he datasets employed are publicly available or fully described, a user-friendly
implementation of DeCaFlow is available in the link of the introduction of this paper
(github.com/aalmodovares/DeCaFlow), as well as examples of use, identifiability check algorithms and
visualizations. In addition, we offer the whole training, hp tuning and validation pipeline, for reproducib-
ility, under request to correspondence authors.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/
CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible, so
“No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is
central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce the
results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guide
s/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access the
raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed method
and baselines. If only a subset of experiments are reproducible, they should state which ones are
omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

19

https://github.com/aalmodovares/DeCaFlow
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how
they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: §B is entirely devoted to experimental details, describing for each dataset the generation
pipeline, train-test splits, the number of runs, the interventions percentiles and exact metrics. In addition,
§C supplements with implementation hyper-parameters, warm-up schedule, posterior factorization and
masking strategy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate information
about the statistical significance of the experiments?
Answer: [Yes]
Justification: Every key figure and table includes statistical uncertainty. Fig. 7 plots boxenplots (with
all percentiles), and tables provide mean and standard deviation of all metrics across all seeds and all
evaluated causal effects. Tables also include significantly better results related with statistical tests and
intervals included in the captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence intervals, or

statistical significance tests, at least for the experiments that support the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for example,

train/test split, initialization, random drawing of some parameter, or overall run with given experi-
mental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a library
function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a

2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not
verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric
error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

20

Question: For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?
Answer: [Yes]
Justification: Details about the execution resources and times are provided in §C,
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the experi-

ments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into the paper).
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of
Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All experiments rely on publicly available or semi-synthetic benchmark data (Sachs protein
signalling, Ecoli70 gene network, and the anonymised LSAC law-school dataset) and introduce no
new personal data collection, human-subject interaction, or high-risk model release; the work explicitly
addresses fairness (§5) and reports moderate compute usage, thereby avoiding the privacy, discrimination,
security, or environmental concerns enumerated in the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation from

the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to

laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of
the work performed?
Answer: [Yes]
Justification: We explain how DeCaFlow can enable better decision-making in domains such as health-
care and education while cautioning that causal assumptions must be validated, especially in sensitive
applications, and state that the method introduces no additional ethical risks beyond those already known
for causal-inference models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or why the

paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinform-

ation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies
that could make decisions that unfairly impact specific groups), privacy considerations, and security
considerations.

21

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications, the
authors should point it out. For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation. On the other hand, it is
not needed to point out that a generic algorithm for optimizing neural networks could enable people
to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used as
intended and functioning correctly, harms that could arise when the technology is being used as
intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of
the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g.,
gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse,
mechanisms to monitor how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of data
or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped
datasets)?
Answer: [NA]
Justification: The release comprises only the DeCaFlow training and evaluation code plus lightweight
models trained on publicly available or semi-synthetic benchmarks; because no large pretrained generative
models or scraped datasets with dual-use potential are distributed, special safeguards are unnecessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should describe
how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require this,
but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: The licenses and all the copyright information will be included in every asset in the code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of that

source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the package should be
provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some
datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived asset
(if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new, fully self-contained DeCaFlow repository released under the
General Public License. No new datasets or personal data are created, so consent and privacy disclosures
are unnecessary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submissions

via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an

anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?
Answer: [NA]
Justification: The study does not involve any crowdsourcing or prospective research with human par-
ticipants; it relies exclusively on pre-existing, publicly available or synthetic datasets (Sachs, Ecoli70,
LSAC), so participant instructions, screenshots, and compensation details are not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
• Including this information in the supplemental material is fine, but if the main contribution of the

paper involves human subjects, then as much detail as possible should be included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor

should be paid at least the minimum wage in the country of the data collector.
15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent
approval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]
Justification: The work uses only pre-existing benchmark datasets—Sachs protein-signalling, a semi-
synthetic Ecoli70 gene network, and the publicly released LSAC law-school dataset—without recruiting
new participants or collecting personal data, so human-subjects review and IRB disclosure are not
applicable.

23

paperswithcode.com/datasets

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly state this
in the paper.

• We recognize that the procedures for this may vary significantly between institutions and locations,
and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if applicable),
such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing, editing, or
formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of
the research, declaration is not required.
Answer: [NA]
Justification: The authors have not used LLMs for important tasks of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs as
any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should
or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents
A Causal identifiability 26

A.1 Model identifiability . 26
A.2 Query identifiability . 27
A.3 Counterfactual query identifiability . 34

B Experimental details and additional results 35
B.1 Ablation study on latent dimension and number of proxies 36
B.2 Ablation study for encoder selection . 36
B.3 Ablation on encoder factorization . 37
B.4 Ablation on train size . 38
B.5 Semi-synthetic Sachs’ dataset . 38
B.6 Semi-synthetic Ecoli70 dataset . 39
B.7 Law school fairness use-case . 44

C Implementation details 46
C.1 Posterior factorization of the deconfounding network . 46
C.2 Regularization of the Kullback-Leibler term in ELBO 46
C.3 Structural inductive bias . 46

D Do-operator 48
D.1 Do-operator in causal normalizing flows . 48
D.2 Do-operator in interventional distributions with DeCaFlow 48
D.3 Do-operator in counterfactuals with DeCaFlow . 49

E Additional details on related work of causal inference with hidden confounders 50
E.1 Methods tailored to graph and query . 50
E.2 CGM with unobserved confounders . 52

F Algorithms for causal query identification 53
F.1 Pipeline for using DeCaFlow . 55

25

A Causal identifiability

A.1 Model identifiability
We briefly discuss the identifiability (in the sense of Xi and Bloem-Reddy [80]) of those variables that are
indirectly confounded by z or not confounded at all, i.e., of those variables that are not children of any hidden
confounder. As we discuss now, we can reduce our SCM (Def. 1) to a conditional one that only models these
aforementioned variables, recovering the identifiability guarantees from Javaloy et al. [27]. To prove model
identifiability, we resort to what we call the induced conditional SCM, which intuitively represents the original
SCM where we restrict our view to a subset of variables, and assume the rest of the variables are given.

Definition 3 (Induced conditional SCM). Given a SCMM = (f, Pu, Pz), and a subset of observed variables
x′ ⊂ x, we define the induced conditional SCM ofM given x′, denoted byM|x′ , to the SCM result of having
observed x′, and where causal generators and exogenous variables are restricted to only those associated with
the unconditioned variables, i.e., x \ x′.

x1 z x2

x3 x5

x6 x7 x8

(a) Confounded SCM.

•
x1

•
x2

x3 x5

x6 •
x7

x8

(b) Conditional unconfounded SCM.

Figure A.1: Example of: (a) a confounded SCMM; and (b) its induced conditional counterpart,M|x′ where
the children of the hidden confounder are observed and fixed, x′ = ch(z) = {x1, x2, x7}. Note thatM|x′

does not exhibit hidden confounding.

We provide a visual depiction of this idea in Fig. A.1. Using this definition, we can observe that, if we were to
condition on the children of the hidden confounder, we would be left with a (conditional) unconfounded SCM,
as the influence of the hidden confounder has been completely blocked by conditioning on its children. Now,
if we have two models that perfectly match their marginal distributions, this means that they perfectly match
their induced conditional SCM, no matter which value we observed for ch(z), and we can thus leverage
existing results from Javaloy et al. [27] for unconfounded SCMs. More specifically:

Corollary A.1. Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that are Markov-
equivalent—i.e., they induce the same causal graph—and which coincide in their marginal distributions,
p(x)

a.e.
= p̃(x). Then, both SCMs, restricted to every variable other than ch(z), are equal up to an element-

wise transformation of the exogenous distributions.

Proof. The proof follows almost directly from [27, Theorem 1]. First, note that the two induced conditional
SCMs are no longer influenced by z once that we have observed a specific realization of ch(z), so that
we can drop z from their structure, i.e., we can rewrite them instead as unconfounded SCMs,M|ch(z) =

(f|ch(z), Pu|ch(z)) and M̃|ch(z) = (f̃|ch(z), Pũ|ch(z)) . To ease notation, let us call xc := x\ch(z) the variables
that are not children of z.
Next, note that for almost every realization of ch(z), we have that p(xc| ch(z)) a.e.

= p̃(xc| ch(z)) since
p(x)

a.e.
= p̃(x) by assumption and p(x) = p(xc| ch(z))p(ch(z)) . As a result, for each realization of ch(z) we

can apply Theorem 1 of Javaloy et al. [27], which yields that the two induced conditional SCMs are equal up
to an element-wise transformation of the exogenous distribution.

26

Finally, since the causal generators and exogenous distributions of the induced SCMs are, for almost every
ch(z), identical to their counterparts in the original SCMs (as we have just discarded those components
associated with ch(z)), we get that, those elements in both SCMs associated with xc, are identical up to said
(possibly ch(z)-dependent) component-wise transformation.

A.2 Query identifiability
We now prove the identifiability of the causal queries considered in the main text. To this end, one key
property that we will use in the following is that of completeness (as, e.g., in the work of Wang and Blei [76]).
Intuitively, we say that a random variable z is complete given another random variable n if “any infinitesimal
change in z is accompanied by variability in n” [46], yielding enough information to recover the posterior
distribution of z. This concept is similar in spirit to that of variability in the case of discrete random variables
[48]. In practice, completeness is more likely to be achieved the more proxies we measure [3].

Definition 4 (Completeness). We say that a random variable z is complete given n for almost all c if, for any
square-integrable function g(·) and almost all c,

∫
g(z, c)p(z| c,n) dz = 0 for almost all n, if and only if

g(z, c) = 0 for almost all z.

The following proposition (informally simplified in Prop. 4.1) is a generalization of the results previously
presented by Miao et al. [45] and Wang and Blei [76], where we include an additional covariate c to the
causal query, and make no implicit assumptions on the causal graph allowing, e.g., for the treatment and
outcome variables to hame some observed parents in common. However, note that c cannot be a collider
(e.g., forming a subgraph of the form n→ c← y). Otherwise, conditioning on c would make independent
variables dependent (in the example, y and n), and the causal effect of t on y would not be identifiable.

Proposition A.2 (Query identifiability). Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume
that they are Markov-equivalent—i.e., they induce the same causal graph—and which coincide in their mar-
ginal distributions, p(x) a.e.

= p̃(x). Then, they compute the same causal query, p(y| do(t), c) = p̃(y| do(t), c),
where y, t, c ⊂ x, if there exists two proxies w,n ⊂ x and b ⊂ x, none of them overlapping nor containing
variables from the previous subsets, s.t.:
i) w is conditionally independent of (t,n) given b, z and c. That is, w⊥⊥ (t,n)|b, z, c .

ii) n is conditionally independent of y given t, b, z and c. That is, y⊥⊥n| t,b, z, c .
iii) (b, z) forms a valid adjustment set for the query p(y| do(t), c). That is, given c, they are independent of t

after severing any incoming edges to it, t⊥⊥ Gt
(b, z)| c , and they block every backdoor path from t to y.

iv) z is complete given n for almost all t, b, and c,
v) z̃ is complete given w for almost all b and c,
and the following regularity conditions also hold:
vi)

∫∫
p̃(z̃|w,b, c)p̃(w| z̃,b, c) dz̃ dw <∞ for all b, c, and

vii)
∫
p̃(y| t,b, z̃, c)2p̃(z̃|b, c) dz̃ <∞ for all t, b, and c.

Proof. First, note that the first three independence assumptions hold for both models,M and M̃, as they
induce the same causal graph. Following the same arguments as Miao et al. [45, Proposition 1], we have that
assumptions v), vi), and vii) guarantee the existence of a function h̃ such that it solves the integral equation
over M̃,

p̃(y | t,b, z̃, c) =
∫

h̃(y, t,b,w, c)p̃(w | b, z̃, c) dw , (7)

since assumption vi) ensures that the conditional expectation operator is compact [8], assumption v) that all
square-integrable functions are in the image of the operator (i.e., the operator is surjective), and assumption
vii) that p̃(y| t,b, z̃, c) is indeed part of the image.

27

We can show that h̃ also solves a similar integral equation, this time over the other SCM,M, as follows:

p(y | t,b,n, c) = p̃(y | t,b,n, c) [equal marginals] (8)

=

∫
p̃(y | t,b,n, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [augment with z̃] (9)

=

∫
p̃(y | t,b, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [assumption ii)] (10)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(z̃ | t,b,n, c) dz̃ dw [plug Eq. 7] (11)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, t,n, c)p̃(z̃ | t,b,n, c) dz̃ dw [assumption i)] (12)

=

∫
h̃(y, t,b,w, c)p(w | t,b,n, c) dw . [equal marginals] (13)

Note that Eq. 13 is a Fredholm equation of the first kind that is implicitly solved by modeling the observational
data. Similarly, we can relate the expression for the interventional distribution of both models:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, z̃, c)p̃(b, z̃ | c) db dz̃ [augment and ass. iii)] (14)

=

∫
p̃(y | t,b, z̃, c)p̃(b, z̃ | c) db dz̃ [backdoor criterion] (15)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(b, z̃ | c) db dw dz̃ [plug Eq. 7] (16)

=

∫
h̃(y, t,b,w, c)p(b,w | c) db dw [equal marginals] (17)

= p(y | do(t), c) , (18)

where the last equality is a consequence of Eq. 13 as we will show now. More specifically, we have that

p(y | t,b,n, c) =
∫

h̃(y, t,b,w, c)p(w | t,b,n, c) dw [Eq. 13] (19)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, t,n, c)p(z | t,b,n, c) dw dz , [augment with z] (20)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(z | t,b,n, c) dw dz . [assumption i)] (21)

Similarly, we have that

p(y | t,b,n, c) =
∫

p(y | t,b,n, z, c)p(z | t,b,n, c) dz [augment with z] (22)

=

∫
p(y | t,b, z, c)p(z | t,b,n, c) dz . [assumption ii)] (23)

Now, equating both expressions we have that

0 =

∫∫ {
p(y | t,b, z, c)−

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw

}
p(z | t,b,n, c) dz , (24)

28

which, due to assumption iv), implies that

p(y | t,b, z, c) a.e.
=

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw . (25)

Finally, putting all together we see that we can write the interventional distribution of the original model
using h̃,

p(y | do(t), c) =
∫∫

p(y | do(t),b, z, c)p(b, z | c) db dz [augment and assumption iii)]

(26)

=

∫∫
p(y | t,b, z, c)p(b, z | c) db dz [backdoor criterion] (27)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(b, z | c) db dzdw [Eq. 25] (28)

=

∫
h̃(y, t,b,w, c)p(b,w | c) db dw , [equal marginals] (29)

which justifies the last equality in Eq. 18.

In Prop. A.2, assumptions i)-iii) regard the conditional independence of different variables in the causal graph,
which can be directly verified given a faithful causal graph. Assumptions iv) and v) regard the information
that w and n contain of the hidden confounders which, intuitively, means that the posterior of the hidden
confounder varies enough as we change the values of w and n, in order to properly perform inference on it.
This assumption is harder to verify but, as we show in §B.1, the more proxy variables we have, the better the
estimation of the hidden confounder’s effect and the more accurate the causal query estimation is. Finally,
assumptions vi) and vii) are standard regularity conditions [45, 76] that are (almost surely) fulfilled in practice,
as long as the random variables are well behaved, e.g., having finite moments. Such conditions are typically
satisfied by most continuous and discrete distributions used in probabilistic modeling, including Gaussian,
exponential family, and bounded-support distributions, making them mild and non-restrictive assumptions.

n z w

t y

b

Figure A.2: Example for
which Prop. A.2 applies,
and where b ̸= ∅ .

Using a causal graph similar to the one presented by Miao et al. [45], we now
provide some intuition on the semantics of each random variable in Prop. A.2.
More specifically, consider the causal graph that we depict in Fig. A.2, and say
that we want to check if the causal query p(y| do(t)) is identifiable (note that
this the same query as in Prop. A.2 but with c = ∅). As it is common in the
causal inference literature [58, 70], t and y represent the treatment and outcome
random variables. More specific to Prop. A.2 are w and n. Here, w is a proxy
variable whose role is that of distinguishing the information from z and other
variables, to reconstruct the information of z and block the backdoor path that z
would usually block. Similarly, the variable n is another proxy variable which,
in this case, serves the purpose of verifying that the substitute formed with w is indeed a good one. Finally,
the variable b serves the purpose of blocking all the remaining backdoor paths that z may not block, so that
we can apply the backdoor criterion.

Moreover, note that for all interventional queries we let c be the empty set, similar to the results proved by
Miao et al. [45] and Wang and Blei [76]. We will consider cases when c is not empty later in §A.3 to prove
counterfactual identifiability. Note also that Prop. A.2 reduces to previous results when c = b = ∅ .

We now turn our attention towards proving Cor. 4.2, i.e., towards broadening the concept of query identifiability
by introducing Prop. A.2 as a base case of do-calculus. To this end, we introduce the concept of a hedge
which will be use later, but we still strongly recommend reading the work by Shpitser and Pearl [69].

29

Definition 5 (Hedge, [69, Def. 6]). Let y, t ⊂ x be disjoint sets of variables in G. Let F , F ′ be r-rooted
C-forests (see [69, Def. 5]) such that F ∩ t ̸= ∅, F ′ ∩ t = ∅, F ′ ⊂ F , and r is a subset of the ancestors of y
after severing the incoming edges of t. Then F and F ′ form a hedge for p(y| do(t)) in G.

Corollary 4.2. An interventional query is identifiable if, using do-calculus, it can be reduced to a combination
of observational queries and identifiable interventional queries in the sense of Prop. 4.1.

Proof. With the additional notion of proxy-identifiability provided by Prop. A.2 (informally presented in
Prop. 4.1), the result is just a consequence of applying the identifiability algorithm provided by Shpitser and
Pearl [69]. See also [25, 72] for other references.
Since the do-calculus rules are complete in the classical sense of identifiability, a query is not identifiable
if the aforementioned algorithm yields a FAIL status (i.e., it executes line 5 of Figure 3 in [69]). If that is
the case, then it means that, at the specific recursive call for which the algorithm failed, the local graph G
contains a hedge and the interventional query p(y| do(t)) is not identifiable in the classical sense.
Crucially, this hedge (F, F ′) expresses the inability of identifying an interventional query of the form
p(r| do(t′)) where the root r is a subset of ancestors of y′ ⊆ y and t′ ⊆ t . Then, this local query can still be
proxy-identifiable if Prop. A.2 can be applied, and thus we can continue running the identification algorithm.
The stated result is then a consequence of successfully applying the logic above each time we find a FAIL
status, yielding a final FAIL status otherwise.

To be even more explicit regarding the identifiability of the queries proven in corollary above, let us callM
the original SCM as usual, and M̃ another SCM inducing the same causal graph asM and which matches the
observational marginal distribution ofM, i.e., p(x) a.e.

= p̃(x). Then, the output of the identifiability algorithm
from the corollary above for both SCMs will be two identical expressions EXP composed of sum, integrals,
and products of observational quantities (i.e., marginals and conditionals of subsets of x) as well as proxy-
identifiable queries of the form p(y| do(t)) as in Prop. A.2. Therefore,

Q(M) = EXP(M) = EXP(M̃) = Q(M̃) , (30)

where the second equality is a consequence of both SCMs having equal observational distributions (and thus
any other quantity than can derived exclusively from p(x)) and of applying Prop. A.2 for any interventional
query that appears in the expression.

Corollary 4.3. If DeCaFlow induces the same causal graph G asM and pM(x)
a.e.
= pθ(x), then DeCaFlow

provides correct estimates of any query identifiable in the sense of Cor. 4.2.

Proof. The proof is a direct consequence of the corollary above and the fact that we can interpret DeCaFlow
as a dense parametric family of confounded SCMs inducing the same causal graph asM (similar to the
interpretation of Javaloy et al. [27] as bijective SCMs) by considering the triplet Mθ := (T−1

θ , Pu, Pz),
where T−1

θ is the inverse of the generative network that transforms u into x given z. This family being dense
is a consequence of the generative networks forming a family of universal density approximators [27, 50].

To be completely exhaustive, in the following we explore the general proposition Prop. A.2 on all scenarios
where t and y may or may not be directly caused by the hidden confounder, as we show in the following
subsections.

A.2.1 Fully hidden-confounded case
In the case where both variables are children of z, we must see whether we can apply do-calculus with
Prop. A.2 as an additional base case, as described in Cor. 4.2.

30

A.2.2 Hidden-unconfounded case
Assume the case where neither t nor y are children of the hidden confounder, i.e., y, t /∈ ch(z) . In this case,
the proof of Prop. A.2 can be simplified and drop the requirement of finding valid proxy variables.

Corollary A.3. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that they are Markov-
equivalent—i.e., they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

=
p̃(x). If y, t /∈ ch(z) , then, p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x .

Proof. The proof follows directly by applying Prop. A.2 with the minimal subset b ⊂ pa(t) \ {c} that blocks
all the backdoor paths, and by noticing that in this case there is no need to use the variables z and z̃. That is,
we can go from Eq. 14 to Eq. 18 directly by using only b and the equal-marginals assumption:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | c) db (31)

=

∫
p̃(y | t,b, c)p̃(b | c) db (32)

=

∫
p(y | t,b, c)p(b | c) db (33)

= p(y | do(t), c) . (34)

Even though we can leverage and simplify Prop. A.2 as shown above, it is worth remarking that, for this
particular case, the model identifiability results described in §A.1 are stronger, as it provides results on the
identifiability of the causal generators and exogenous distributions, and therefore of any causal query derived
from them.

A.2.3 Confounded outcome case
For the case where only the outcome variable is a child of the hidden confounder, we can apply a similar
reasoning as we did in the previous case, although this time we cannot leverage the stronger results from
Javaloy et al. [27]. More specifically:

Corollary A.4. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that they are Markov-
equivalent—i.e., they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

=
p̃(x). Assume that t /∈ ch(z) . Then, p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x .

Proof. The proof is identical to that of Cor. A.3.

z

b t y

Figure A.3: Example of a
front-door causal.

Front-door example. While the proof above is trivial given the previous
results, it is worth stressing the importance of modeling the hidden confounder
as we do in this work with DeCaFlow. As an example, consider the SCM
depicted in Fig. A.3, where we have that the outcome is directly confounded
by z, while t is not. In this case, DeCaFlow can correctly estimate the causal
effects of b and t on y, i.e., to correctly estimate p(y| do(t)) and p(y| do(b)),
using z̃ to model the influence of b onto y that is not explained through t. Other
models that do not model z—e.g., an unaware CNF [27]—would be able to match the observed marginal
distribution (as they are universal density approximators) and therefore to estimate p(y| do(b)) (as it is
identifiable through the mediator t using the front-door criterion), yet they would necessarily fail to estimate
p(y| do(t)), since they assume that y⊥⊥b| t yet we know that y⊥̸⊥b| t in the true model. In other words, an
unaware CNF would hold that p(y| do(t)) = p(y| t) which is clearly false by looking at Fig. A.3.

31

To be even more explicit, in this case we would have a data-generating process that factorizes as

p̃(b, t, y, z̃) = p̃(z̃)p̃(b | z̃)p̃(t | b)p̃(y | t, z̃) , (35)

and hence the estimated interventional distribution from DeCaFlow matches the true one:

p(y | do(t)) =
∫

p(y | t,b)p(b) db [b forms a valid adjustment set] (36)

=

∫ {∫
p̃(y | t,b, z̃)p̃(z̃ | t,b) dz̃

}
p̃(b) db [Factorization and eq. marginals] (37)

=

∫∫
p̃(y | t, z̃)p̃(z̃ | b)p̃(b) db dz̃ [Factorization in Eq. 35] (38)

=

∫
p̃(y | t, z̃)p̃(z̃) dz̃ [marginalize b] (39)

= p̃(y | do(t)) . (40)

A.2.4 Hidden-confounded treatment case

z xi

t y

Figure A.4: Case with no
valid adjustment set.

When only the treatment variable t is a child of z, we can face two different
scenarios: i) we find a valid adjustment set b blocking all backdoor paths, in
which case we can reason just as in the other partially hidden-confounded case,
and ii) we cannot, and then rely on do-calculus and the identifiability w.r.t. b.
For example, if b happens to be a parent of y which is directly caused by the
treatment variable t and the hidden confounder z as in Fig. A.4, we cannot find
a valid adjustment set for the causal query, but it may still serve us if we can
identify the same query with the adjustment set as outcome variable.

Corollary A.5. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) , assume that they are Markov-
equivalent—i.e., they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

=
p̃(x). If y /∈ ch(z) then, p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x if there exists b ⊂ x not containing
variables from the previous subsets, such that one of the following two conditions are true:

i) b forms a valid adjustment set for the query p(y| do(t), c).
ii) b blocks all backdoor paths and the query p(b| do(t), c) is identifiable.

Proof. If condition i) holds, then we have a valid adjustment set, and the proof is identical to that of Cor. A.3.

Otherwise, if condition ii) holds, we have that the interventional query on y equals the observational query
when conditioned on b, but that now b is not independent of do(t), i.e.,

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | do(t), c) db (41)

=

∫
p̃(y | t,b, c)p̃(b | do(t), c) db (42)

=

∫
p(y | t,b, c)p(b | do(t), c) db (43)

= p(y | do(t), c) , (44)

where we needed to use that the query p(b| do(t), c) is identifiable in the third equality.

32

A.2.5 Napkin example

z1

z2

w b t y

Figure A.5: Napkin causal graph [53].

Finally, we want to show one last illustrative example where DeCa-
Flow provides correct estimates of a causal query that is identifiable
by the do-calculus, but neither the backdoor nor the front-door cri-
teria are applicable. While redundant (as the query is identifiable in
the classical sense, and then Cor. 4.2 applies), we believe it can be a
good exercise to convince the reader. Namely, the graph of Fig. A.5
appears as the napkin graph in Pearl and Mackenzie [53, Fig. 7.5].
What is particularly interesting in this graph is that w is not a valid
adjustment set since, despite blocking the backdoor path from t to y
through b, it forms a collider of z1 and z2.
However, z1 only affects the outcome and z2 only affects the treatment. Following from our previous results,
the causal effect from t to y should be correctly estimated by DeCaFlow. Here, we show that this is the case.
First, let us express the causal query of interest in another form applying do-calculus:

p(y | do(t)) = p(y | do(y), do(t)) = [Rule 3 of do-calculus since y⊥⊥ Ḡt,b̄
b | t] (45)

= p(y | t, do(b)) = [Rule 2 of do-calculus y⊥⊥ Gb̄,t
t | b] (46)

=
p(y, t| do(b))
p(t| do(b))

[Conditional probability] (47)

Once we have this expression, let us work on the numerator, considering that DeCaFlow is Markov-equivalent
with the graph in Fig. A.5:

p(y, t | do(b)) =
∫

p(y, t | b,w)p(w) dw [Backdoor criterion] (48)

=

∫∫∫
p̃(y, t, z̃1, z̃2 | b,w)p(w) dw dz̃1 dz̃2 [Eq. marginals] (49)

=

∫∫∫
p̃(y|t, z̃1, z̃2,b,w)p̃(t|z̃1, z̃2,b,w)p̃(z̃1, z̃2|w)p(w) dw dz̃1 dz̃2 [Factorization] (50)

=

∫∫∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1, z̃2 | w)p(w) dw dz̃1 dz̃2 [Do-calculus rule 1] (51)

=

∫ ∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1, z̃2) dz̃1 dz̃2 [Marginalize w] (52)

=

∫ ∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1)p̃(z̃2) dz̃1 dz̃2 [z̃1⊥⊥ Gz2] (53)

=

∫
p̃(y | t, z̃2)p̃(z̃1) dz̃1

∫
p̃(z̃2)p̃(t | z̃2,b) dz̃2 [Separate integrals] (54)

= p̃(y | do(t)) p̃(t | do(b)) [DeCaFlow estimate] (55)

Note also that, as shown in Eq. 40, DeCaFlow correctly estimates p(t| do(b)). Therefore, if we substitute
Eq. 55 in Eq. 47, we have that

p(y | do(t)) =
p̃(y| do(t)) p(t| do(b))

p(t| do(b))
= p̃(y | do(t)) . (56)

That is, we have explicitly shown that DeCaFlow correctly estimates the true causal query p(y| do(t)).

33

n z w

t y

(a)

un ut z uy uw

nf wf

tf yf

(b)

tcf ycf

ncf wcf

un ut z uy uw

nf wf

tf yf

ô ôô

(c)

Figure A.6: Example of the transition from (a) the regular depiction of a (confounded) SCM, to (b) an explicit
SCM where the exogenous variables are drawn, and (c) a counterfactual twin SCM where the data-generating
process is replicated in the “factual and counterfactual worlds”. Figure (c) also depicts which nodes are
observed and which are severed in order to compute a counterfactual query of the type p(ycf| do(tcf),xf) .

A.3 Counterfactual query identifiability
In this section, we show that counterfactual query identifiability is a direct result of the interventional query
identifiability from the previous section.
In order to formally define counterfactuals, in this section we introduce the concept of counterfactual SCMs
in a rather untraditional fashion. Namely, we combine the concepts of twin networks from Pearl [55] (which
replicates the data-generating process) and that of counterfactual SCMs from Peters et al. [58] (which defines
a counterfactual prior to the intervention) as follows:

Definition 6 (Counterfactual twin SCM). Given a SCMM = (f, Pu, Pz), we define its counterfactual twin
SCM as a SCMMcf where all structural equations are duplicated, and the exogenous noise is shared across
replications, and where additionally one of the halves is observed (“the factual world”), and the other half is
unobserved (“the counterfactual world”).

We provide in Fig. A.6 a more intuitive depiction on the construction of these counterfactual twin networks.
From this definition, one can recover the counterfactual SCM defined by Peters et al. [58] by just focusing
on the replicated part of the counterfactual twin network, and conditioning the exogenous noise and hidden
confounder on the observed half, i.e., (f, Pu|xf , Pz|xf) . Similarly, one can compute the usual counterfactual
query by performing an intervention on the counterfactual twin network, i.e., by replacing the intervened
equations by the constant intervened value, and computing the query conditioned on the factual variables,
p(ycf| do(tcf),xf). This is visually represented in Fig. A.6c.
In order to prove query identifiability in the counterfactual setting, we need to use the following technical
result regarding the completeness of a random variable:

Lemma A.6. If a random variable z is complete given n for almost all b, as given by Def. 4, then it is
complete given n for almost all b and c, where c is another continuous random variable.

Proof. We prove this result by contradiction. Assume that the result does not hold, then there must exist a
non-zero measure subset of the space of b× cfor which there exists a square-integrable function g(·) such
that

∫
g(z,b, c)p(z|b, c,n) dz = 0 for almost all n, but g(z,b, c) ̸= 0 for almost all z.

Since this subset has positive measure, there must contain an ε-ball within. If we now focus on the b-
projection of this ball where we fix c to its value on the center, we have that it is a subset of non-zero measure
in the space of b (as otherwise it would be zero-measure in the Cartesian-product measure), where the
function g(·, c) breaks our initial assumption of the completeness of z. Thus, we reach a contradiction.

34

Given Def. 6, it is rather intuitive that, if a causal query is identifiable in a SCMM, then it has to be identifiable
in both halves of its induced counterfactual twin SCMMcf, as they are identical. More importantly, we can
now leverage again Prop. A.2, this time with c = xf, to prove counterfactual query identifiability whenever
we have interventional query identifiability.

Proposition A.7 (Counterfactual identifiability). Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃),
assume that they are Markov-equivalent—i.e., they induce the same causal graph—and that they coincide
in their marginal distributions, p(x) a.e.

= p̃(x). Then, if a query p(y| do(t)) is identifiable in the sense of
Prop. A.2, where y, t ⊂ x, the query p(ycf| do(tcf),xf) is also identifiable in the induced counterfactual twin
SCM as long as the regularity conditions still hold, i.e., if:

i)
∫∫

p̃(z̃|w,b, c)p̃(w| z̃,b, c) dz̃ dw <∞ for almost all b, c, and

ii)
∫
p̃(y| t,b, z̃, c)2p̃(z̃|b, c) dz̃ <∞ for almost all t, b, and c.

Proof. We essentially need to prove that the independence and completeness assumptions keep holding when
we add the factual covariate, c = xf .

For the independence, we need to show that, if we have a set of variables that fulfill the independence
conditions from Prop. A.2, then this set of variables keeps holding them if we include c = xf . This is,
however, easy to show since factual and counterfactual variables only have “tail-to-tail” dependencies, i.e.,
they are connected only through the shared exogenous variables. As a result, if two variables from the same
half are conditionally independent given a third set of variables, conditioning on the other half cannot change
this independence.

For the completeness, we need to show that introducing the factual variable retains the completeness assumed
in Prop. A.2, which is direct to show using Lemma A.6. Specifically, it holds that

i) z is complete given n for almost all t, b, and c, and
ii) z̃ is complete given w for almost all b and c.

Therefore, the requirements of Prop. A.2 hold when we append a factual variable to the twin network, and
thus we can reapply all the results from the previous sections to the counterfactual cases.

Once proven the result above, proving Cor. 4.3 is direct by following the exact same steps as we did in §A.2
to the counterfactual twin network instead of the original network.

It is important to note that, while the results above provide counterfactual identifiability whenever we have
interventional identifiability, we still rely on how much of a good approximation the encoder is to the inverse
of the decoder in the proposed DeCaFlow model. That is, the quality of the encoder determines how well we
can perform the abduction step to compute counterfactuals. This consideration is unique to counterfactuals,
as we just have to sample from the prior of z in the case of interventional queries.

B Experimental details and additional results

This section presents a series of ablation studies designed to answer practical questions about the behavior of
DeCaFlow and to justify key design choices. These analyses provide empirical guidance for practitioners,
clarifying how model performance depends on factors such as training data size, latent dimensionality, and
proxy quality. Beyond validating theoretical claims, the results offer concrete recommendations for effectively
applying DeCaFlow in realistic scenarios.

Finally, we include complementary experimental details and extended comparisons with baseline methods,
covering dataset descriptions, data-generating processes, and additional quantitative results and visualizations
that extend those presented in §5.

35

B.1 Ablation study on latent dimension and number of proxies

0 2 4 6 8 10

Dz

0.5

1.0

A
T

E
er

ro
r

Linear

0 2 4 6 8 10

Dz

0.00

0.05

Nonlinear
S
0
1
2
3
5
10
Oracle

Figure B.1: ATE absolute error as we change the num-
ber of proxy variables, S, and the latent dimensionality,
Dz. We plot mean and 95% CI over 5 realizations, in-
tervening on the 25th, 50th, and 75th percentile value
of t. Oracle represents a causal normalizing flow that
observes z.

We include here additional results of the ATE er-
ror, complementary to those of §5.1. If we observe
Fig. B.1, we extract the same conclusion as ob-
serving counterfactual error, the causal effect is not
recoverable with less than two proxies, and more
proxies result in better estimates. On the other hand,
the selection of the dimension of the latent space big-
ger than the true dimension of the latent confounders
does not affect the performance negatively.
Overall, these findings indicate that DeCaFlow is ro-
bust to latent space over-specification, thanks to KL
regularization, and that, in practice, providing more
and better proxies leads to more accurate estimation
of causal effects even when confounding structure
is unknown.

Details of the generative process. We show the equations that we have used for the ablation study. There
exist two unobserved confounders, z1 and z2. Note that the proxies available in the nonlinear experiment
are bounded or periodic, especially sigmoids and hyperbolic tangents saturate and max(0, x) loses all the
information about the confounder for negative values and sines and cosines are periodic functions. In other
words, the distributions p(z | ni) are not complete, we lose information about z when in the transformations
to each n. However, if we add more proxies of the confounders, the information that the proxies contain
about the confounder is higher, and the causal effect of x1 on x2 becomes recoverable.

Linear Nonlinear



z1 ∼ Pz1

z2 ∼ Pz2

t = 1.5 · z1 + 0.5 · z2 + 0.4 · ut

y = −0.75 · z1 + 0.6 · z2 + 0.9 · t + 0.3 · uy

n1 = −0.5 · z1 + 0.3 · z2 + 0.5 · u2

n2 = 0.75 · z1 − 0.4 · z2 + 0.4 · u2

n3 = −0.85 · z1 + 0.6 · z2 + 0.6 · u3

n4 = 0.6 · z1 + 0.6 · z2 + 0.55 · u4

n5 = −0.8 · z1 + 0.4 · z2 + 0.4 · u5

n6 = 0.9 · z1 − 0.7 · z2 + 0.6 · u6

n7 = −0.72 · z1 + 0.5 · z2 + 0.56 · u8

n8 = 0.78 · z1 + 0.4 · z2 + 0.58 · u8

n9 = −0.55 · z1 + 0.7 · z2 + 0.6 · u9

n10 = 0.88 · z1 + 0.3 · z2 + 0.4 · u10



z1 ∼ Pz1

z2 ∼ Pz2

t =
z21
4

· sin
(z2
2

)
+ z1 + 0.6 · ut

y =
z1 · t
4

+ 0.8 · z2 + 0.5 · t + x1 · u2 · 0.3 + 0.2 · uy

n1 = 0.6 · z21 +
(z2
4

)3

+ 0.3 · sin
(z2
2

)
+ 0.5 · u1

n2 = sin
(z1
2

)
+ cos

(z2
3

)
+ 0.4 · u2

n3 = cos
(z1
2

)
− tanh

(z2
3

)
+ 0.6 · u3

n4 = tanh
(z1
2

)
+ σ

(z2
2

)
+ 0.55 · u4

n5 = σ
(z1
2

)
+max(0,−z2) + 0.4 · u5

n6 = max(0, z1)− 0.5 ·max(0, z2) + 0.6 · u6

n7 = max(0,−z1) + 0.3 ·max(0,−z2) + 0.5 · z1 · u7

n8 = 0.8 ·max(0, z1) + 0.3 ·max(0, z2) + 0.58 · u8

n9 = 0.75 ·max(0,−z1) + 0.5 ·max(0, z2) + 0.6 · u9

n10 = 0.3 · z31 + 0.5 · |z2|+ 0.4 · u10

B.2 Ablation study for encoder selection
We have performed an ablation study for selecting the encoder in the Sachs’ dataset, where we evaluate
the errors in the estimations of causal queries using a conditional normalizing flow (Flow) and a multilayer

36

perceptron (MLP) as encoders. We also evaluate the impact of using the warm-up regularization [73] in the
KL term. We can observe in Fig. B.2 that we achieve lower errors when applying a regularized flow. This is
able to model dependent latent variables and provides a more flexible representation. In addition, we can
appreciate that applying the warm-up regularization term is useful and does not produce negative effects.

ATE error CF error

Additive

0.0

0.2

0.4

0.6

ATE error CF error

Nonadditive

0.0

0.1

0.2

Oracle Flow MLP No encoder Regularized Unregularized

Figure B.2: Ablation for encoder selection in Sachs’
dataset. Metrics and 95% CI over 5 realization and all
confounded identifiable effects, intervening on percent-
iles 25, 50 and 75 of each intervened variable. Oracle
represents a causal normalizing flow that observes all
the confounders.

The improvement achieved by the flow is explained
by the following practical aspects of the conditional
normalizing flows. First, we can efficiently intro-
duce the factorization proposed in Eq. 3, taking ad-
vantage of the structure of the causal graph (see
Fig. C.1 for an example), while this factorization im-
plies the use of several MLP. Second, normalizing
flows are universal density approximators and do not
need to assume specific posterior distributions (i.e.
Gaussians). Note that every continuous distribution
can be modeled by a conditional normalizing flow,
following the Knöthe-Rosenblatt transport [34, 62].

B.3 Ablation on encoder factorization
Using a conditional normalizing flow as the encoder
allows us to model the dependencies between the
observations and the posterior of the latent variables
as desired.

ATE error CF error

Additive

0.0

0.2

0.4

0.6

ATE error CF error

Nonadditive

Oracle DeCaFlow-ch DeCaFlow-all

Figure B.3: Ablation for posterior factorization in
Ecoli70 dataset. Boxenplots of error metrics in the iden-
tifiable edges of Fig. 1. DeCaFlow-ch uses Eq. 57 and
DeCaFlow-all uses Eq. 60 for posterior factorization.

We propose in Eq. 3 (extended in Eq. 60) a factoriz-
ation in which each hidden confounder depends on
its parents (other hidden confounders), its children
and the parents of its children, avoiding cycles. If a
child of an unobserved confounder, c, has other par-
ents, then that child is a collider between the hidden
confounders and the other parents of c. Therefore,
conditioned on c, the hidden confounder is depend-
ent of the other parents of c, given c. That is the
reason because we consider sensible to include the
other parents of c in the factorization of the hidden
confounder, z.

However, we also provide an ablation study on the
Ecoli70 dataset, where we show that this factorization indeed helps to the estimation of causal queries. Note
that in the Ecoli70 dataset, lacY is a collider between eutG and cspG. Therefore, conditioned on lacY, the two
hidden confounders eutG and cspG become dependent. The factorization of Eq. 60 implies that the posterior
of cspG is modeled employing all the children of cspG and also the parents of its children, with eutG among
them. This dependency can be modeled by our encoder in an autoregressive manner.

This factorization incorporates more variables to approximate the posterior of the hidden confounders,
compared with a simpler approach that consist in modeling only children dependencies:

qϕ(z | x) =
Dz∏
k=1

qϕ (zk | ch(zk)) (57)

As shown in Fig. B.3, leveraging the factorization of Eq. 60 reduces the errors estimating causal queries in
complex graphs, where colliders and dependent hidden confounders are present.

37

B.4 Ablation on train size
We have proven theoretically that DeCaFlow is able to produce correct estimates of the identifiable causal
queries, having that DeCaFlow achieves a perfect matching of the observational distribution, pM(x).

Although normalizing flows are universal density approximators [50], as a machine learning method, its
performance improves as we increase the size of the dataset.

102 103 104

Train Size

0.2

0.4

0.6

A
T

E
E

rr
or

102 103 104

Train Size

0.2

0.4

C
fE

rr
or

Oracle DecaFlow CNF

Figure B.4: ATE and Counterfactual error in Sachs’
additive dataset, varying the number of train samples.
Test size are the same for all realizations. Metrics
and 95% CI over 10 realizations and all confounded
identifiable effects, intervening in percentiles 25 and
75 of each intervened variable. Oracle represents a
CNF that observes the confounders.

Therefore, to further investigate the behavior of De-
CaFlow under varying data availability, we conduc-
ted an ablation study on the training data size. This
analysis allows us to assess how the model’s ability
to estimate causal queries evolves as the number of
observed samples increases. Since the objective of
DeCaFlow is to recover the underlying causal mech-
anisms by matching the observational distributions,
it is crucial to understand how data scarcity affects
this matching process and, consequently, the accur-
acy of downstream tasks such as ATE and counter-
factual estimation.

Fig. B.4 reports both ATE and CF estimation errors
as a function of the training set size. As expected,
the errors systematically decrease when more data
are available, since the model obtains a more accur-
ate approximation of the data distribution. Notably,
DeCaFlow exhibits a similar trend to the oracle, with
both ATE and counterfactual errors monotonically
decreasing as the number of training samples grows.

In contrast, the CNF (unaware of confounders) also benefits from larger datasets, but shows a slower
improvement rate and an earlier plateau, since it does not have guarantees of correct causal estimation even if
it matches the observational distribution. These results empirically validate our theoretical claims: as the
training distribution approaches to the true observational distribution, the guarantees of DeCaFlow hold,
leading to vanishing estimation errors.

B.5 Semi-synthetic Sachs’ dataset
This dataset represents a network of protein-signaling in human T lymphocytes. Every variable, except PKA
and Plcg can be intervened upon; therefore, there is not only one causal query of interest, but tens of possible
causal queries can arise in this setting. This highlights one of the strengths of DeCaFlow, because we only
need a single trained model to answer all identifiable causal queries.

The original data contains a total of 853 observational samples; however, we have decided to evaluate our
model on semi-synthetic data because of the following reasons:

• The original network of Sachs et al. [63] contains cycles, which is a violation of one of our assumptions.
However, we have found different versions of the causal graph [30, 43] that do not contain cycles.
Therefore, we have decided to employ the causal graph that appears in the library bnlearn [67]—a
recognized library for Bayesian Network learning—as ground truth causal graph. The best way to ensure
that the causal graph used is the ground truth is by generating samples according to the causal graph. In
addition, that causal graph is the one used by Chao et al. [9].

• We can compare our model with one of the baseline models, DCM, with the same dataset as Chao et al.
[9] used.

• Semi-synthetic data allow us to compute all metrics to evaluate causal queries, having the ground truth.

38

Table B.1: Performance metrics on Sachs datasets. Meanstd over five runs and all causal queries of interest.
Interventions on Raf, Mek and Akt and evaluating on confounded identifiable effects. Bold indicates signific-
antly better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Non-additive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 4.841.84 7.506.17 6.056.83 10.0310.29 5.962.37 6.712.97 2.342.02 4.843.43

Aware DeCaFlow 2.150.54 7.043.87 4.496.76 12.958.00 5.122.42 7.5816.92 5.165.61 1.831.65
Deconfounder – − 34.3433.45 71.1386.98 – − 8.1410.69 63.1579.12

Unaware
CNF 5.801.58 73.9488.78 44.4939.12 56.0938.89 5.111.90 12.7920.73 9.7415.71 15.1515.37
ANM 83.8613.41 110.28112.43 22.4214.06 29.4012.22 81.907.21 60.40144.08 23.8813.94 28.9712.44
DCM 87.802.95 125.59118.20 21.2111.34 28.256.96 14.234.57 69.74390.81 8.447.96 27.5023.71

• The interventions made in the real world dataset are soft interventions, i.e., an external factor is used
that modifies one of the variables, changing. On the other hand, DeCaFlow performs hard interventions,
making it unclear how to compare the two causal queries.

For generating the data in this experiment, we have followed the procedure proposed by Chao et al. [9], where
they take the causal graph of Sachs et al. [63] and the empirical distribution of the root nodes, and generate
the rest of the variables with random non-linear mechanisms. In addition, exogenous variables have been
included in an additive and non-additive manner, respectively.
In the following, we complement the figures presented in §5 with a table that summarizes all the interesting
metrics, evaluated on the confounded identifiable causal queries shown in Fig. 8. Interventional distributions
and counterfactuals have been computed intervening in percentiles 25, 50 and 75 of the intervened variable.
Since observational MMD is computed only once, the statistics given in Tab B.1 are calculated only over 5
runs. On the other hand, we have as many interventional MMDs per run as interventions have been made.
However, the statistics of interventional MMD are computed over all the interventions of all intervened
variables and 5 runs (5 runs × 3 intervened variables = 15 samples). Finally, statistics over counterfactual
error and ate error aggregate all the intervention-outcome pairs over the five runs. For example, in this case we
intervene in 3 variables, performing 3 different interventions and evaluate in 3, 2, and 1 variable, respectively,
for each intervened variable, and we have a total of (3+2+1)×3×5 = 90 different measurements to compute
the statistics.
The metrics in Tab B.1 indicate that DeCaFlow outperforms all baselines across all interventional and
counterfactual causal queries in both settings of the semi-synthetic datasets. However, as discussed in §6, a
limitation of our empirical approach is that the differences in observational MMD, the selection criterion for
CGMs, are marginal between the oracle, DeCaFlow, and CNF. Notably, DeCaFlow even achieves a lower
MMD than the oracle. This discrepancy arises because the number of variables is large, and the MMD
differences are on the order of 10−4.

B.6 Semi-synthetic Ecoli70 dataset
The Ecoli70 dataset represent the gene expression of 46 genes of the RNA sequence of the Escherichia
coli bacteria. The assumed causal graph comes from the study of [66], which provides insight into the
regulatory mechanisms governing E. coli gene expression. Examples of interventions in these networks are
gene knockout and gene over-expression [41]. A priori, there could be several variables in which intervening
can be interesting in evaluating the effects in the cell.
For this experiment, we have generated the data in the same way as done with Sachs’ dataset with random
mechanisms, but in this case, since we do not have enough samples, root nodes follow standard Gaussian
distributions. We have included an additive and a non-additive ways of including exogenous variables. In this

39

Table B.2: Performance metrics on Ecoli70 dataset. ATE and CF error statistics computed aggregating all
causal queries and 5 runs. Intervened and evaluated on the direct confounded identifiable causal effects of
Fig. 1. Bold indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error values
indicate better performance.

Additive Non-additive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 2.340.62 6.055.28 5.047.42 9.9112.46 1.490.57 4.058.22 3.514.84 1.671.64

Aware DeCaFlow 2.420.82 7.043.87 4.496.76 12.958.00 1.580.65 9.2222.38 8.7917.91 2.152.10
Deconfounder – − 27.3526.17 82.15116.90 – − 30.0033.24 9.909.47

Unaware
CNF 2.981.15 10.2512.13 23.9125.16 34.0223.90 1.950.77 10.2020.87 12.7219.21 2.452.06
ANM 32.802.81 44.3317.62 21.8823.89 31.3320.64 13.173.95 27.5631.57 15.0418.18 2.711.88
DCM 31.650.27 49.5036.83 24.4533.31 30.2224.83 18.786.01 33.3736.14 15.0722.37 2.362.08

case, we have used a semi-synthetic dataset because the real dataset available in bnlearn [67] contains only 9
samples.
In Fig. 1 is presented the causal graph of this setting. In addition, note that Fig. 1 has been extracted from our
Alg. 6 of causal effect identifiability. That is, we have specified the causal graph and the variables that are
unmeasured, and our Algorithm returns (in green) all the paths that are identifiable by DeCaFlow. Consider
that black arrows are also identifiable, not only by DeCaFlow, but also for any CGM that approximates the
observed data. In red, arrows that are not identifiable by DeCaFlow because there are not enough proxies to
infer an unbiased causal effect.
A table summarizing the results obtained in the estimation confounded identifiable causal queries are presented
in Tab B.2. The statistics have been computed in the same way as in Sachs’ dataset. In the case of ATE and CF
error, they have been computed only on the direct confounded identifiable paths, i.e., the green paths in Fig. 1.
DeCaFlow significantly outperforms the baselines in ATE and counterfactual estimation in the additive
setting and in ATE estimation in the non-additive setting. The MMD differences, both observational and
interventional, are negligible between the oracle, DeCaFlow, and CNF, likely due to the high number of
variables diluting estimation bias. Counterfactual differences in the non-additive setting are also insignificant.
However, compared to the oracle, the gap between the oracle and unaware CGMs is smaller than in the
additive case. While DeCaFlow reaches an intermediate point, the difference remains insignificant.

B.6.1 Comment on the deconfounder results
One may realize that the errors committed by the deconfounder of [75, 76] are greater than those from unaware
models. First, we want to underline that, although the deconfounder allows us to predict counterfactual
queries, the algorithm does not present any guarantees of a correct counterfactual estimation since it does not
model the exogenous variables of the SCM. We hypothesize this to be the reason behind its performance in
counterfactual estimation.
Moreover, let us explain some of the other paths where the errors of the deconfounder are greater than for
unaware models. In Sachs’ dataset, to model the causal effect Ekt→Akt, the factorization model of the
deconfounder uses Raf, Mek, Jnk and P38 to extract the substitute confounder; the factorization model
assumes that all those variables are independent conditioned to z̃, while that is not the case in the true SCM
and, therefore, this SCM violates the independence assumption of [75]. The same argument is valid for the
paths yceP→yfaD, lacA→yaeM, yceP→yfaD, ydeE→pspA and pspB→pspA.
On the other hand, the paths lacZ→yaeM, asnA→lacY are frontdoor paths that DeCaFlow can identify because
it models the hidden confounder following the true causal graph. However, the deconfounder is not designed
to model this paths. To evaluate its performance for frontdoor paths, deconfounder uses the same variables as
DeCaFlow to extract the substitute of the confounder. However, the deconfounder assumes independence

40

Table B.3: Performance metrics on Ecoli70 dataset. Statistics computed an all samples over 5 runs, intervening
and evaluating only in the causal effects that deconfounder should solve. Bold indicates significantly better
results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Model |ATE err| ×102 |CF err| ×101

Oracle CNF 8.3110.95 1.491.86

Aware DeCaFlow 7.787.30 1.871.50

Deconfounder 14.3515.24 12.0315.81

Unaware
CNF 27.8230.17 4.013.62
ANM 27.6329.74 3.643.15
DCM 42.4554.23 4.084.12

conditioned to the substitute confounder and that is not the case; therefore, we are violating the independence
assumption again.

ATE error CF error

0.0

0.2

0.4

0.6

0.8

1.0

Oracle DeCaFlow Deconfounder CNF ANM DCM

Figure B.5: ATE and CF error evaluating only links
where the deconfounder should work in the additive
case.

The only two paths that meet the deconfounder as-
sumptions in Fig. 1 are lacA→lacY and yedE→pspB.
In consequence, we can observe in Fig. B.5 that in
those paths, the deconfounder performs at least as
well as unaware methods. On the other hand, all the
factor models used for the deconfounder implement-
ation (PPCA, Deep exponential families and Vari-
ational autoencoder) assume additive noise. There-
fore, interventional distributions in non-additive set-
tings are not computable theoretically with these
models.

B.6.2 Metrics on the other paths

ATE error CF error

Additive

0.0

0.1

0.2

ATE error CF error

Nonadditive

Oracle DeCaFlow CNF ANM DCM

Figure B.6: Error boxenplots on the Ecoli70 dataset
for different CGMs, averaged over all unconfounded
direct effects (see Fig. 1) after intervening in their 25th,
50th, and 75th percentiles and 5 random realizations
of the experiment.

In this subsection we include a comparison between
all the models in the unconfounded and the unidenti-
fiable effects. For unconfounded effects, our expect-
ation is to observe that all the CGMs achieve a per-
formance comparable with the oracle. On the other
hand, we expect to have higher errors in unidentifi-
able effects, since we do not have theoretical guar-
antees.

Unconfounded Effects. The results for uncon-
founded effects are summarized in Fig. B.6 and
Tab B.4, considering only direct effects for ATE and
counterfactual error computations. As expected, De-
CaFlow and CNF achieve metrics comparable to the
oracle in both ATE and counterfactual estimations,
particularly evident in Fig. B.6, where error distributions are nearly identical. B.4 does not show statistically
significative differences between DeCaFlow and CNF. Notably, architectures based on causal normalizing
flows outperform ANM and DCM, which model each causal mechanism, fi, with separate networks. This
difference is crucial in settings with many variables and complex relations, where scalability is essential. Un-
like ANM and DCM, which suffer from error propagation and limited scalability, causal normalizing flows
leverage a single amortized model, making them more efficient in high-dimensional scenarios.

41

Table B.4: Performance metrics on Ecoli70 dataset. Statistics computed on all unconfounded direct effects
and 5 runs. Bold indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error
values indicate better performance.

Additive Non-additive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×102 ×104 ×102 ×102

Oracle CNF 3.723.73 2.002.27 1.273.49 1.942.96 1.921.99 1.764.10

Aware DeCaFlow 4.534.98 2.002.07 1.312.93 2.836.36 1.931.95 1.623.87

Unaware
CNF 4.776.09 2.022.21 1.223.18 2.977.64 1.951.92 1.713.93
ANM 34.728.56 3.573.02 2.024.09 15.1312.57 3.533.15 2.645.34
DCM 36.2314.29 3.482.75 2.692.30 21.2213.68 3.422.63 3.003.42

ATE error CF error

Additive

0.0

0.2

0.4

ATE error CF error

Nonadditive

Oracle DeCaFlow CNF ANM DCM

Figure B.7: Error boxenplots on the Ecoli70 dataset for different CGMs, averaged over all unidentifiable
direct effects (see Fig. 1) after intervening in their 25th, 50th, and 75th percentiles and 5 random realizations
of the experiment.

Finally, note that the deconfounder has not been included in these metrics because it is not designed for
unconfounded queries and there are many queries, while one deconfounder model is needed for each query.

Unidentifiable Effects. The results for unidentifiable effects—causal queries that violate the assumptions
in §4—are summarized in Fig. B.7 and Tab B.5. Notably, the oracle performs significantly better than the
other CGMs. As seen in Fig. B.7, error distributions are highly skewed, with ATE and counterfactual errors
reaching extreme values—considering that metrics are computed on the standardized variables. Tab B.5
shows no significant differences between the metrics achieved by DeCaFlow and CNF.

B.6.3 Hyper-parameters and splits
We have performed a hyperparameter grid search over validation data in both experiments on semi-synthetic
datasets, exploring a large combination of hyperparameters for each model and dataset.
These are the parameters that were modified for each model:

• CNF: the number of neurons and hidden layers of the single-layer flow, the type of flow (MAF, NSF). LR
scheduler reducing on plateau and early stopping were applied with Adam optimizer [32].

• DeCaFlow: number of neurons and hidden layers of the single-layer causal flow (generative network),
type of generative network architecture (MAF, NSF), number of neurons and hidden layers of the single-
layer encoder flow (inference network), type of encoder architecture (MAF, NSF), KL regularization (True,
False). LR scheduler reducing on plateau and early stopping was applied with the Adam optimizer [32].

• Deconfounder: type of factorization model (PPCA, VAE, Deep Exponential Families), number of neurons
and hidden layers (in case of deep models), type of outcome model (MLP, random forest, linear regression),
number of neurons and hidden layers of the outcome model (in case of deep models).

42

Table B.5: Performance metrics on Ecoli70 dataset. Statistics computed on all unidentifiable direct effects
and 5 runs. Bold indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error
values indicate better performance

Additive Non-additive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×103 ×105 ×102 ×102

Oracle CNF 3.713.52 1.791.36 5.8815.16 16.986.87 1.751.59 1.624.57

Aware DeCaFlow 3.803.61 3.957.89 33.6280.37 23.0221.96 1.751.66 1.884.97

Unaware
CNF 4.544.81 4.7510.65 44.76126.36 20.226.68 2.323.80 2.136.25
ANM 34.385.17 7.4312.64 52.70137.99 130.7141.64 4.013.82 2.937.21
DCM 35.494.95 7.6713.93 67.46132.21 198.2358.62 3.432.76 3.293.92

• DCM: number of neurons and hidden layers of each network, learning rate and number of iterations (we
have not introduced early stopping or learning rate scheduler). The rest of hyperparameters were selected
to the default value in the original code.

• ANM: an automatic search was performed across several models in the original DCM code. This search
is performed with the DoWhy package [7].

The selection was based on the matching of the observational for the causal generative models, using MMD.
In the deconfounder, the factorization networks were selected by the likelihood of the observed variables and
the outcome models with maximum likelihood.

Although including all hyperparameters would be very extensive, we give here a sample of the hyperparameters
selected for DeCaFlow in the Ecoli70 additive dataset:

• Hidden neurons of causal flow (generative network): 3× 128

• Type of causal flow (generative network): neural spline flow (NSF) [14].
• Hidden neurons of encoder flow (inference network): 3× 64

• Type of normalizing flow (inference network): neural spline flow (NSF) [14].
• Regularize: True (warm-up: 30 epochs)
• Total number of parameters: 182k.

Both experiments were performed with 25,000 data, split into 80%, 10%, 10% (train, validation, and test). All
metrics are given over the test dataset, and hyperparameter search was performed over the validation dataset.

B.6.4 Processing times

All the experiments were conducted on CPU. Although the experiments were carried out on a cluster of
different CPU, we include here two tables for the two semi-synthetic datasets (Tab B.6 and Tab B.7) with
the processing times measured in a CPU Intel(R) Core(TM) i7-13650HX laptop, just to show that even in a
laptop CPU, the training and inference times are sensible even for large datasets as the Ecoli70 dataset.

Note that DeCaFlow takes more time in training. This is because the network is more complex, due to the
inference network, and that we have to sample from the posterior distribution. However, the difference in
inference is not that relevant. In fact, DeCaFlow takes less time than the oracle in inference, even when they
are sampling the same number of variables (hidden confounders + observed variables). The unaware causal
normalizing flow (CNF) only samples from the observed variables. That is why the inference time is lower.

43

Table B.6: Computation times per model across training and evaluation regimes for Ecoli70 additive dataset.
Mean and standard deviation of the training and inference time over 100 epochs in training and over 7
interventions in inference.

Model Epoch Tr. [s] (20000 samples) Interventional [s] (2500 samples) CF [s] (2500 samples)

Oracle 0.640.06 0.300.02 0.360.03
DeCaFlow 0.980.10 0.280.02 0.350.04
CNF 0.600.07 0.260.01 0.320.05

Table B.7: Computation times on the Sachs’ Additive Dataset. Mean and standard deviation of the training
and inference time over 100 epochs in training and over 3 interventions in inference.

Model Epoch Tr. [s] (20000 samples) Interventional [s] (2500 samples) CF [s] (2500 samples)

Oracle 0.320.06 0.080.001 0.1020.010
DeCaFlow 0.750.12 0.050.004 0.0860.005
CNF 0.330.06 0.0480.003 0.0650.006

B.7 Law school fairness use-case
The experiment with real-world data was inspired by Kusner et al. [40] and Javaloy et al. [27]. The goal is to
find a fair estimator of the decile of the grades each student will occupy in their third year of university.
The dataset contains information on 27 000 law students who were admitted by the Law School Admissions
Council (LSAC) from 1991 to 1997. We have performed an experiment similar to that carried out by Kusner
et al. [40], where race and sex were treated as sensitive attributes. We have considered the following variables
to include in our study:

• Race: binary indicator of the race that distinguish between white and non-white.
• Sex: binary indicator of the sex that distinguish between male and female.
• Fam: family income.
• LSAT: the grade achieved in the Law School Admission Test (LSAT).
• UGPA: the undergraduate grade point average (GPA) of the student previous to the admission.
• FYA: first-year average grade.
• Decile3: the decile of the grades in the third year of university. This is the variable to predict.

We consider that an estimator ŷ is fair if it meets Demographic parity, defined as follows [40, Def. 3]: A
predictor ŷ satisfies demographic parity if the predicted distributions for different values of a sensitive attribute
are equal: p(ŷ | t = 0) = p(ŷ | t = 1). We evaluate the difference between predicted distributions using
Maximum Mean Discrepancy (MMD) [21], where a lower distance between the predictions of two sensitive
groups denotes a fairer predictor.
The assumed causal graph is slightly different from that of Kusner et al. [40], since their purpose is to make
a fair prediction FYA accounting only for Race, Sex, LSAT and UGPA. However, we include Fam and FYA as
predictors and the task is to predict Decile3 and the assumed causal graph is the one of Fig. 9.

Proposed fair predictor with DeCaFlow. We propose to model the confounded SCM presented in Fig. B.8,
where are explicitly shown the exogenous variables, that are independent of the other variables of the graph
except of their associated endogenous variable.
Afterwards, we predict the outcome, Decile3 from the extracted latent variable that acts as substitute of the
knowledge and the exogenous variables of FYA and Fam, following the causal graph of Fig. 9, using a gradient-

44

uS Sex GPA uG

uR Race LSAT uL z

uFI Fam FYA uFYA

Figure B.8: Confounded SCM modeled by DeCaFlow.

boosted decision tree [17]: p̃(Decile3 | uFI,uFYA, z). DeCaFlow models z and the exogenous variables as
independent from Race and Sex. Therefore, the prediction of Decile3 should be fair.

Baselines. We consider as baselines the methods Fair K and Fair add proposed by Kusner et al. [40].

Fair K is a fair predictor categorized in Level 2 in Kusner et al. [40], which postulates that the student’s
knowledge, know affects GPA, LSAT, FYA and Decile 3, following the distributions described below.

Fam ∼ N
(
bFam + wR

FamRace, 1
)
,

GPA ∼ N
(
bG + wK

G know+ wR
GRace+ wS

GSex+ wFam
G Fam, σ2

G

)
,

LSAT ∼ Poisson
(
exp(bL + wK

L know+ wR
LRace+ wS

LSex+ wFam
L Fam)

)
,

FYA ∼ N
(
wK

F know+ wR
F Race+ wS

F Sex+ wFam
F Fam, 1

)
,

Decile3 ∼ Poisson
(
exp(wK

D know+ wR
DRace+ wS

DSex+ wFam
D Fam)

)
,

know ∼ N (0, 1).

(58)

Then, the posterior distribution know is inferred using Monte Carlo with the probabilistic programming
language Pyro [6]. The outcome is predicted using the inferred know using a gradient-boosted decision
tree [17]: p̃(Decile3 | know).

On the other hand, Fair Add predicts the outcome from the residuals of predicting each variable with each
parent, which guarantees that these residuals are independents of Race and Sex. That is, the predictor estimates
the distribution p(Decile3 | rFam, rUGPA, rLSAT, rFYA), where these residuals are computed as:

rFam = Fam− E[Fam | Sex, Race]
rUGPA = UGPA− E[GPA | Sex, Race, Fam]
rLSAT = LSAT− E[LSAT | Sex, Race, Fam]
rFYA = FYA− E[FYA | Sex, Race, Fam]

(59)

All predictors used are gradient-boosted decision trees [17].

Discussion of Results. Although the fair methods proposed by Kusner et al. [40] achieve significantly
better demographic parity than our approach using DeCaFlow (as indicated by a much lower MMD), their
predictive performance is substantially inferior. Specifically, their performance is comparable to predicting the
outcome using only the mean of the distribution, which serves as a baseline in Tab 1. In contrast, DeCaFlow
achieves a 98% reduction in MMD while incurring only an 11% increase in RMSE, as illustrated in Fig. 10.

These experiments demonstrate that leveraging DeCaFlow to model confounded Structural Causal Models is
beneficial beyond causal query estimation, leading to improved overall performance.

45

Algorithm 1 KL regularization term in the training loop

1: function ELBO COMPUTATION(epoch, warmup, θ, ϕ)
2: if epoch < warmup:
3: L(ϕ, θ) = Eqϕ [log pθ(x| z)]− β ·KL[qϕ(z|x)∥ p(z)]
4: else:
5: L(ϕ, θ) = Eqϕ [log pθ(x| z)]−KL[qϕ(z|x)∥ p(z)]
6: return L
7: end function

C Implementation details

C.1 Posterior factorization of the deconfounding network

DeCaFlow is capable of modeling confounded SCMs that contain several hidden confounders, z = {zk}Dz

k=1,
as in the Sachs’ dataset (Fig. 8), Ecoli70 dataset (Fig. 1) or the Napkin graph (Fig. A.5). In such cases, the
posterior over latent variables factorizes. We propose a factorized posterior in which each hidden confounder
is conditioned on its children and on the parents of its children.

qϕ(z | x) =
Dz∏
k=1

qϕ

zk | pa(zk) ∪ ch(zk) ∪
⋃

c∈ch(zk)

(pa(c) \ {zj : j ≥ k})

 (60)

Since we propose to use a conditional normalizing flow as the encoder, the dependencies between hidden
confounders are modeled in an autoregressive manner. The rightmost part of the conditioning set accounts for
collider-induced associations: conditioning on a child of zk, c, makes zk dependent on other parents of c.
Other parents of c can also be hidden confounders. To model this, a causal ordering of the z components is
assumed to avoid cycles in factorization, but it does not affect estimation, as collider associations have no
inherent causal direction.

C.2 Regularization of the Kullback-Leibler term in ELBO
We propose the implementation of a warm-up adaptive regularization term that weights the contribution
of the Kullback-Leibler term in the ELBO, to avoid posterior collapse [73]. During training, if the current
epoch is lower than the predefined warm-up parameter, the KL term is weighted by β, which we define as
β = min(1,KL[qϕ(z|x)∥ p(z)]), as shown in Alg. 1.
In this way, we encourage the model to focus on data reconstruction on the first epochs, ignoring the KL
term if the posterior is very similar to the prior, i.e., if KL ≈ 0, then β ≈ 0 and L(ϕ, θ) ≈ Eqϕ [log pθ(x| z)].
After the warm-up epoch, the loss is equivalent to the usual expression for the ELBO. We have tested in the
ablation study of §B.2 that the inclusion of the regularization term is useful in the Sachs’ dataset. On the
other hand, when posterior collapse does not occur, the β term will be upper bounded by 1, therefore, not
affecting the training process.

C.3 Structural inductive bias
As presented in the original paper by Javaloy et al. [27], the adjacency matrix that represents the causal graph
is used to build the normalizing flow. In practice, this is implemented following the usual implementation
of autoregressive normalizing flows using a Masked Autoencoder for Distribution Estimation (MADE)
hypernetwork [18] that uses the causal graph for masking. In this case, we introduce the structural constrains
between i) exogenous and endogenous variables and ii) conditional variables and endogenous variables.
As a result, our deconfounding network factorizes the posterior distribution as shown in Eq. 3, modeling each
hidden confounder as a function of its children, its parents and the parents of its children. Similarly, the

46

t

t y

1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

0 0 1 1 0 0
0 1 0 1 1 0

1 0 0 0 1 1

1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 1 1 0 0
0 1 0 1 1 0
1 0 0 0 1 1

Adjacency

Adjacency matrixCausal Graph

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
1 1 1 1 0 0
1 0 0 0 1 1y

Conditional adjacency

Deconfounding network Generative network

t
y

Conditional adjacency
Adjacency

t

y Diagonal

Figure C.1: Complete illustration of DeCaFlow architecture, expanding Fig. 2 applied to the specific graph of
Fig. A.5. Both the deconfounding and the generative networks are conditional normalizing flows that factorize
the distributions of the posterior and endogenous variables following Eq. 3 and Eq. 2, respectively. Within
these networks, functional dependencies are represented following the compacted version from Javaloy et al.
[27, Fig. 4(c)]. The orange edges of the encoder corresponds to the collider association in the posterior
factorization, and G̃ encodes that associations.

structural information in the generative network allows us to model each endogenous variable exclusively
from its parents, whether these are other endogenous variables or hidden confounders, following Eq. 2.

We include in Fig. C.1 an expanded version of Fig. 2 for the Napkin causal graph (Fig. A.5), where it is shown
in detail how its structural constraint is introduced in each conditional normalizing flow. Finally, note that the
do-operator is inherited from the CNFs [27], and details on its extension for DeCaFlow can be found in §D.

47

D Do-operator

We introduce now the algorithms that DeCaFlow employ to generate interventional and counterfactual
samples. First, we include those of Javaloy et al. [27]. Note that the notation applied for DeCaFlow is slightly
different from the that used for CNFs by Javaloy et al. [27], naming the intervened variable as t, instead of xi,
in order to be consistent with the notation used in §§2 and 4.

D.1 Do-operator in causal normalizing flows

Algorithm 2 Algorithm to sample from P (x | do(xi = α)). From Javaloy et al. [27].

1: function SAMPLEINTERVENEDDIST(i, α)
2: u ∼ Pu ▷ Sample a value from the observational distribution.
3: x← T−1

θ (u)
4: xi ← α ▷ Set xi to the intervened value α.
5: ui ← Tθ(x)i ▷ Change the i-th value of u.
6: x← T−1

θ (u)
7: return x ▷ Return the intervened sample.
8: end function

Traditionally the computation of counterfactual samples follows the abduction, action and prediction steps
postulated by Pearl et al. [57]. The abduction step consists of using the observations to determine the value of
the exogenous variables. Then, the action step computes the intervention, modifying the causal mechanism
of the intervened variable and prediction consist of using the exogenous variables and the modified SCM
to compute the counterfactual. The computation of interventional samples follows a similar pattern, yet
the exogenous values are directly sampled, i.e., skipping the abduction step. Javaloy et al. [27] proposed
an alternative implementation where, instead of modifying the causal mechanisms in the action step, the
distribution of the exogenous variable associated with the intervened variable is changed instead, as described
in Algorithms 2 and 3.

Algorithm 3 Algorithm to sample from P (xcf | do(xi = α),xf). From Javaloy et al. [27].

1: function GETCOUNTERFACTUAL(xf, i, α)
2: u← Tθ(x

f) ▷Abduction: Get u from the factual sample.
3: xif ← α ▷Action: Set xi to the intervened value α.
4: ui ← Tθ(x

f)i ▷Action: Change the i-th value of u.
5: xcf ← T−1

θ (u) ▷Prediction: Get counterfactual
6: return xcf ▷ Return the counterfactual value.
7: end function

D.2 Do-operator in interventional distributions with DeCaFlow

The sampling process consists of first sampling from the prior distribution of the latent variables and from the
exogenous distribution. Then, one can use the generative network (Tθ) to generate interventional sampling,
changing the components of u associated with t as described in the previous section for CNFs. Note that z is
not an input of the normalizing flow, but a condition (or context). Therefore, z is transformed neither in the
forward nor reverse pass of the normalizing flow.

48

Algorithm 4 Algorithm to sample from the interventional distribution, P (x | do(t = α)) with DeCaFlow.

1: function SAMPLEINTERVENEDDIST(t, α)
2: z ∼ Pz ▷ Sample a value from the prior of z.
3: u ∼ Pu ▷ Sample a value from the observational distribution.
4: x← T−1

θ,z(u)
5: t← α ▷ Set t to the intervened value α.
6: ut ← Tθ,z(x)t ▷ Change the component of u associated with t.
7: x← T−1

θ,z(u)
8: return x ▷ Return the intervened sample.
9: end function

Figure D.1: Schematic of the sampling process for an interventional distribution using the graph from
Fig. 3 and intervening in t. By sampling from the prior of the hidden confounders, p(z), and the exogenous
distribution, p(u), we obtain samples of the interventional distribution by appropriately setting ut, i.e., samples
from pθ(y| do(t)). Note that sampling from the interventional distribution only requires the generative
network, Tθ. Dashed gray arrows represent the cancellation of causal effects due to the intervention.

As we can easily sample from interventional distributions, we compute the average treatment effect (ATE)
via Monte Carlo. For example, to compute the ATE comparing two interventions (α1, α2) in the variable t,
we would generate samples of both interventional distributions, p(x | do(t = α1)), p(x | do(t = α1)), and
approximate their expectations by taking the sample average:

ATEx(α1, α2) = E[x | do(t = α2)]− E[x | do(t = α1)] (61)

≈

 1

N

∑
x∼P(x| do(t=α2))

x

−
 1

N

∑
x∼P(x| do(t=α1))

x

 (62)

If we were interested in the ATE of a subset of variables, e.g., y, we would simply need to generate samples
of x and take only those from the variable of interest, y.

D.3 Do-operator in counterfactuals with DeCaFlow

As part of the abduction step, our model estimates the posterior distribution of hidden confounders given a
factual datapoint, qϕ(z | xf). Therefore, we can sample from the inferred posterior of the hidden confounders,
and use those samples as the context for the generative network.

49

Algorithm 5 Algorithm to sample from the counterfactual distribution, P (x | do(t = α)) with DeCaFlow.

1: function GETCOUNTERFACTUAL(xf, t, α)
2: qϕ(z | xf)← Deconfounding network(xf) ▷ Abduction: Get z from the factual sample.
3: z ∼ qϕ(z | xf) ▷Abduction: Sample the posterior distribution.
4: u← Tθ,z(x

f) ▷Abduction: Get u from the factual sample.
5: tf ← α ▷Action: Set t to the intervened value α.
6: ut ← Tθ,z(x

f)t ▷Action: Change the component of u associated with t.
7: xcf ← T−1

θ,z(u) ▷ Prediction: compute the counterfactual
8: return xcf ▷ Return the counterfactual value.
9: end function

Abduction Action Prediction

Figure D.2: Schematic of the process of performing counterfactual inference with the causal graph from Fig. 3
intervening in t. Both the deconfounding network, Tϕ, and the generative network, Tθ , are needed to generate
counterfactual samples. Dashed gray arrows represent the cancellation of causal effect due to the intervention.

E Additional details on related work of causal inference with hidden confounders

E.1 Methods tailored to graph and query
First, we want to remark that all the following methods are designed to address causal inference queries in
specific causal graphs (or sub-graphs), therefore they can be used when these causal relationships hold. We
summarize the causal graphs assumed by each work in Fig. E.1. In the following, we assume the notation
introduced in §2, where z is the hidden confounder, t is the intervened variable (or treatment) and y is the
outcome, i.e., the variable where we want to evaluate the causal effects.
We have classified the different approaches depending on the graph that they are designed to address. However,
there are two considerations that are common for all these approaches. First, these methods follow a two-stage
process: i) extracting a substitute of the unobserved confounder using variables affected by the confounder or
instrumental variables, z̃, and ii) estimating the outcome given this substitute, ỹ ∼ p(y | z̃, t). In this case,
one predictor must be trained per outcome, as well as one extractor per independent confounder. Second,
none of these methods estimate counterfactual distributions, since they do not model exogenous variables.

Presence of null proxies independent of t (Fig. E.1a). We say n to be a null proxy of z if it is a child of z
independent of the outcome, y, given z, i.e., n⊥⊥ y | z. When null proxies of the confounder are available and
they are also independent of the intervened variable, n⊥⊥ t | z, these proxies can be used to infer a substitute
of the hidden confounder. Among these works, Allman et al. [2] and Kuroki and Pearl [39] study the case in

50

which the confounder is categorical, and use matrix factorization to extract a substitute when, either, there
exist three Gaussian proxies [2], when the conditional distribution of the confounder given the proxy is
known [39], or when other proxies are available [39]. Kallus et al. [28] also employ matrix factorization for
cases where the confounder is continuous and the relation with the covariates and treatment (but not with the
outcome) is linear. Similarly, Kallus et al. [29] uses kernel functions to extract the substitute confounder when
the generators are nonlinear. The most relevant method based on deep generative methods is the one proposed
by Louizos et al. [42], where a variational autoencoder (VAE) is used to extract the substitute confounder
when several null proxies are available, although no theoretical guarantees were provided and it was later
shown to struggle in practice with complex distributions [61]. Finally, Miao et al. [46] offer a regression-
based approach to estimate the unobserved confounder under equivalence, which assumes that any model of
the joint achieves element-wise transformations of the latent variables, something that is not feasible to check:
p̃(t, z | n) = p(t, V (z) | n).
Presence of two proxies: null and not null (Fig. E.1b). When the null proxies affect treatment (notice
that in Fig. E.1b the proxy n affects the treatment t), Miao et al. [45] offer theoretic guarantees of causal
identifiability in the presence of another proxy, w, and completeness conditions. The proxy w can be active,
that is, it can directly affect y. Then, Tchetgen et al. [71] introduced the two-stage proximal least squares
(P2SLS), which infers the substitute confounder from p(w | t,n). P2SLS can be implemented using neural
networks to achieve greater flexibility. Several works have followed-up the ideas introduced by Miao et al.
[45], aiming to estimate the bridge function, i.e., finding an explicit form for the function h̃ shown in Eq. 13.
For example, Cui et al. [11] designed a doubly-robust estimator of the ATE by estimating the bridge function
semiparametrically, and Mastouri et al. [44] and Kompa et al. [37] applied moment restrictions to estimate
the bridge function using deep neural networks. Other works have proposed multiple-robust methods when
the confounders are categorical [68].

Instrumental variable (Fig. E.1c). Another condition that enables causal inference is the presence of
instrumental variables (IVs), i.e. variables that affect only the treatment and are independent of both the
unobserved confounder and the outcome, given the treatment (in Fig. E.1c, n is an IV). In the linear case,
Pearl [55] and Angrist and Pischke [4] demonstrated how a two-stage regression process can mitigate the
confounding bias, as the only effect that occurs from the IV to the outcome is through the treatment variable.
A substitute of the confounder is then extracted by computing the conditional distribution of the treatment
given the IV, i.e., z̃ ∼ p(t | n). Furthermore, Hartford et al. [22] extended this idea to include arbitrarily
complex nonlinear data-generating processes, designing a two-step deep approach based on neural networks.

Multitreatment affected by a common confounder (Fig. E.1d). Finally, the multitreatment scenario has
been studied by Wang and Blei [75] and Ranganath and Perotte [60], where it is called multitreatment since
all covariates can be seen as treatments over the outcome variable, y. Here, it is assumed that in the true causal
model there exist several covariates that are independent given the unobserved confounder. Therefore, Wang
and Blei [75] proposed to use a factorization model to infer the substitute confounder, such as probabilistic
PCA or Poisson matrix factorization. In short, a factorization model assumes that the distribution of all the
treatments factorizes as follows: p(t, z) = p(z)

∏d
i=1 p(ti | z), which should allow to construct a substitute

of the confounder from the posterior of z: z̃ ∼ p̃(z̃ | t). Later, D’Amour [12] provided counterexamples
showing that the deconfounder does not achieve nonparametric identification without additional assumptions
and, notably, one of the alternatives proposed by D’Amour [12] highlights the use of proxy variables, which
is the approach adopted by DeCaFlow.
Similar to Wang and Blei [75], Ranganath and Perotte [60] proposed to use a VAE as the factorization model,
adding a regularization term to reduce the additional mutual information between the estimated confounder
and the treatment tj , given the rest of treatments, t−j . However, the theoretical guarantees of this approach
require an infinite number of treatments to achieve unbiased estimates of the causal effects. Wang and
Blei [76] connect the ideas of Miao et al. [45] and Wang and Blei [75] ensuring causal identification in the
multitreatment setting when we know that some of the treatments can act as null proxies, that is, when they
do not affect the outcome. This assumption allows them to provide theoretical guarantees when the number

51

of treatments does not tend to be infinite. In despite of that, a factorization model such as the one Wang et al.
[77] propose can only model independent treatments given the hidden confounder, which greatly limits its
practical utility.
What is the relation of the deconfounder Wang and Blei [75, 76] with DeCaFlow? Similar to DeCaFlow,
the deconfounder infers the posterior distribution of the confounder substitute from observational data using a
generative model. However, the application of a factorization model restricts the structural dependencies that
the it can model. For example, the deconfounder cannot model the structural dependencies of Fig. E.1b, since
the factorization model assumes n⊥⊥ t⊥⊥w | z. In contrast, DeCaFlow leverages CNFs which can model
these dependencies since the causal graph is encoded in the normalizing flow architecture. It is also important
to stress that DeCaFlow models the whole confounded SCM, including the exogenous variables. This allows
us to compute counterfactuals and train in a query-agnostic manner. In contrast, the deconfounder cannot
compute counterfactuals and needs of a separate model per causal query.

n z

t y

(a) One proxy.

n z w

t y

(b) Two proxies.

n z

t y

(c) Instrumental variable.

z

t1 t2 t3 t4

y

(d) Multitreatment.

Figure E.1: Graphs assumed by prior works. (a) Allman et al. [2], Kallus et al. [28, 29], Kuroki and Pearl
[39], Louizos et al. [42], Miao et al. [46] address the case where n is independent of t. (b) Miao et al. [45]
assumes the case where there exist two proxies. (c) Graph with an instrumental variable. (d) Ranganath and
Perotte [60], Wang and Blei [75, 76] work with the multitreatment setting.

E.2 CGM with unobserved confounders
There exist several works that employ causal generative models (CGMs) in the presence of hidden confounders.
We explain here the differences with our proposal, highlighting the practical advantages of DeCaFlow.

Neural Causal Models (NCMs). Xia et al. [81] proposed a class of sequential causal generative models
where each structural equation—i.e., the functional relationship between a variable and its parents in the
causal graph—is modeled by a different neural network. The model is trained end-to-end to jointly learn
all structural mechanisms. Beyond estimation, NCMs aim to determine whether a given causal query is
identifiable from the data-generating process. To assess identifiability, two NCMs are trained: one that
maximizes the causal query, subject to a perfect observational fitting, and one that minimizes it. If both
NCMs yield the same outcome, the query is deemed identifiable. Interestingly, this approach formalizes
identifiability as an empirical condition based on optimization agreement.
However, the framework presents significant practical constraints: i) it only supports finite discrete variables,
typically binary and low-dimensional, due to tractability constraints; ii) it assumes that the true observational
distribution is available for training; iii) two NCMs are trained per query, leading to high computational
cost; and iv) identifiability is only revealed post-training, offering no guidance before the model is trained.
To perform counterfactual inference, Xia et al. [82] extended NCMs to estimate queries involving latent
exogenous variables. However, their approach relies on rejection sampling to perform the abduction step,
which is inefficient and unsuitable for continuous or high-dimensional settings, thus limiting its applicability
in real-world scenarios.
In contrast, DeCaFlow addresses these limitations. First, we provide a principled criterion to estimate the
identifiability of a query prior to model training. Second, our framework supports continuous variables
and scales to high-dimensional settings. Third, we train a single model that jointly estimates all causal
mechanisms and enables efficient inference of counterfactual queries. Fourth, we use variational inference

52

to approximate the posterior of hidden confounders, avoiding the inefficiency of rejection-based methods.
Finally, we guarantee the identifiability of unconfounded exogenous variables (in the sense of Xi and Bloem-
Reddy [80]) by leveraging the theoretical framework of CNFs [27]. As a result, DeCaFlow is substantially
more efficient and suited for real-world applications.

Modular Causal Generative Models. Rahman and Kocaoglu [59] introduce a modular framework for high-
dimensional causal inference, where variables influenced by the same hidden confounder are modeled jointly
in end-to-end submodules. A key advantage of this approach is the ability to incorporate pretrained models into
submodules, enabling flexible modeling of complex or structured variables when the modular criterion holds.
The method supports continuous and discrete variables and uses adversarial training to match observational
distributions. Symbolic identifiability is computed using the algorithm of Jaber et al. [26], and they prove that
identifiable queries remain estimable under their modular decomposition. However, the framework does not
support counterfactual inference nor proximal learning, and it relies on adversarial optimization.
In comparison, DeCaFlow trains a single end-to-end model, estimates both observational and counterfactual
distributions also in proximal settings, and enables efficient inference with broad applicability to real-world
settings.

Counterfactual Identifiability of Bijective Causal Models. Nasr-Esfahany et al. [48] propose a sequential
causal model using conditional normalizing flows to map exogenous to endogenous variables. The model
focuses on counterfactual inference under backdoor and instrumental variable (IV) settings, with identifiability
proven only for discrete variables. Proxy variables are not considered, and the use of invertible mappings over
discrete domains makes theoretical claims less robust. Although the model claims support for continuous data,
guarantees are restricted to discrete IV scenarios. Moreover, it does not model observational nor interventional
distributions, and lacks parameter amortization due to its sequential structure.
In contrast, DeCaFlow supports continuous variables, models both observational and interventional distribu-
tions, and enables counterfactual inference under general confounding and proxy settings. It also requiresa
single end-to-end model and scales efficiently to real-world data.

Learning Functional Causal Models with Generative Neural Networks. Goudet et al. [19] propose a
method for causal discovery rather than causal inference under unobserved confounding. Given a Markov
equivalence class (or graph skeleton), their approach uses generative neural networks to model each causal
direction, selecting the graph that best matches the observational distribution evaluated via maximum mean
discrepancy (MMD). The model is trained sequentially and assumes no hidden confounders. While not
directly comparable to our work, such causal discovery tools may serve as a preprocessing step when the
causal graph is unknown, enabling downstream application of models—such as ours—that assume a known
and correct structure.

F Algorithms for causal query identification

As explained in §4.2, we can ask DeCaFlow to estimate any causal query, but we do not have the guarantee
that the estimation DeCaFlow does is correct unless the query is identifiable. Therefore, we provide the
practitioner with algorithms to check the identifiability of causal queries.

Specific treatment-outcome pair. We start presenting in Alg. 6 an algorithm to identify a causal query,
given a pair of treatment and outcome variables, which is valid for estimating the interventional distribution
of the outcome, p(y| do(t), c), and the counterfactual one, p(ycf| do(t),xf), as we postulated in §4 that the
latter is identifiable if the former is.
We have employed Alg. 6 on all direct paths of the Sachs and Ecoli70 datasets to check their identifiability, in
order to get a visual representation of the queries that DeCaFlow can estimate in such complex graphs. If one
is interested in evaluating a query which involves several outcomes, {y1, y2, . . . , yO}, one causal query per
outcome variable should be evaluated.

53

Algorithm 6 Identification of causal queries that include intervention and outcome (t, y)

Require: Graph G, intervention variable t, outcome variable y, covariates c, hidden variables z
Ensure: Boolean indicating if query is identifiable

1: z← hidden variables that are parents of both t and y
2: return True if z is ∅ ▷ Unconfounded is identifiable
3: for all zk ∈ z do
4: Comment: Each zk is an independent component of z
5: n-proxies← children of zk d-separated from t given (z, c)
6: w-proxies← children of zk d-separated from y given (z, c)
7: if there exist n ∈ n-proxies and w ∈ w-proxies such that n is d-separated from w given (z, c) then
8: zk is deconfounded
9: end if

10: end for
11: return all zk are deconfounded

Evaluation on all the variables. Although Alg. 7 consists of iteratively applying Alg. 6, we also find it
interesting to include the extension to identify causal queries evaluated on all variables in the dataset, which is
useful for the case where we DeCaFlow as a generative model for the joint interventional distribution, p(x |
do(t)), or to generate joint counterfactual samples intervening in a specific variable, t ⊂ x, p(xcf | do(t),xf).

Algorithm 7 Identification of causal queries, intervening in t and evaluating in all variables

Require: Graph G, intervention variable t, hidden variables z
Ensure: Boolean indicating if the interventional distribution is identifiable

1: z← hidden variables that are parents of t
2: for all xi ∈ descendants of t do
3: Comment: Evaluate only on descendants of the intervention
4: Check (t, xi) identifiability with Alg. 6
5: end for
6: return all (t,xi) are identifiable

54

F.1 Pipeline for using DeCaFlow

N

Dataset D Graph G Queries {Qi}Ni=1

for each Qi do

Query Qi

Train DeCaFlow

DeCaFlow trained
Check Query identifiability

Alg. 6 and Alg. 7

Is Qi identifiable?Estimate Qi(M)
Alg. 4 and Alg. 5

Q̂i(M) ⌢

NoYes

Figure F.1: Block diagram of our pipeline.

Our framework provides a systematic approach to estimating
causal queries by integrating DeCaFlow, a model trained on
observational data, with algorithms designed for query identi-
fiability analysis.
As depicted in the pipeline, the framework takes as input a
dataset D, a causal graph G, and a set of N interesting queries
{Qi}Ni=1. The process begins by training DeCaFlow on D and
G, enabling it to learn the confounded SCM,M.
Simultaneously, the identifiability of each causal query Qi is
assessed using dedicated algorithms (Alg. 6 and Alg. 7). If
Qi is identifiable, the trained DeCaFlow is used to estimate
Qi(M) (Alg. 4 and Alg. 5), yielding the estimated causal effect
Q̂i(M). If Qi is not identifiable, the framework indicates that
answering the query is not feasible given the available data and
causal structure. Other causal queries can be answered by the
model without retraining, provided that their identifiability is
verified beforehand.
This workflow ensures a principled approach to causal infer-
ence, leveraging both data-driven modeling and theoretical
guarantees on identifiability.

Validation with interventional data. As a final step in the pipeline for real-world scenarios, especially in
sensitive applications, we encourage practitioners to validate the framework with interventional data. Causal
queries such as the average treatment effects (ATEs) can be validated if a randomized experiment is available
in which interventions are carried out on the treatment variable.

55

	Causal generative models and hidden confounding
	Related works

	Confounded structural causal models
	Deconfounding causal normalizing flows
	(Unconfounded) Causal normalizing flows
	Deconfounding causal normalizing flows
	Inherited causal properties

	Estimation of causal queries under hidden confounding
	Interventional queries
	Counterfactual queries

	Empirical evaluation
	Ablation study and practical considerations
	Semi-synthetic experiments
	Fairness real-world use case

	Concluding remarks
	 Appendix
	Causal identifiability
	Model identifiability
	Query identifiability
	Counterfactual query identifiability

	Experimental details and additional results
	Ablation study on latent dimension and number of proxies
	Ablation study for encoder selection
	Ablation on encoder factorization
	Ablation on train size
	Semi-synthetic Sachs' dataset
	Semi-synthetic Ecoli70 dataset
	Law school fairness use-case

	Implementation details
	Posterior factorization of the deconfounding network
	Regularization of the Kullback-Leibler term in ELBO
	Structural inductive bias

	Do-operator
	Do-operator in causal normalizing flows
	Do-operator in interventional distributions with DeCaFlow
	Do-operator in counterfactuals with DeCaFlow

	Additional details on related work of causal inference with hidden confounders
	Methods tailored to graph and query
	CGM with unobserved confounders

	Algorithms for causal query identification
	Pipeline for using DeCaFlow

