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Abstract

We introduce Llama-Krikri-8B, a cutting-edge
Large Language Model tailored for the Greek
language, built on Meta’s Llama 3.1-8B. Llama-
Krikri-8B has been extensively trained on high-
quality Greek data to ensure superior adapta-
tion to linguistic nuances. With 8 billion param-
eters, it offers advanced capabilities while main-
taining efficient computational performance.
Llama-Krikri-8B supports both Modern Greek
and English, and is also equipped to handle
polytonic text and Ancient Greek. The chat ver-
sion of Llama-Krikri-8B features a multi-stage
post-training pipeline, utilizing both human and
synthetic instruction and preference data, by
applying techniques such as MAGPIE. In ad-
dition, for evaluation, we propose three novel
public benchmarks for Greek. Our evaluation
on existing as well as the proposed benchmarks
shows notable improvements over comparable
Greek and multilingual LLMs in both natural
language understanding and generation as well
as code generation.

1 Introduction

Recent advancements in Al have been largely
driven by the development of large-scale founda-
tion models. Meta’s Llama 3 (Grattafiori et al.,
2024) fostered a new generation of open models,
designed for strong multilingual capabilities, code
generation, reasoning, and tool use. With extended
context windows, and refined training strategies,
models based on Llama 3 have achieved perfor-
mance comparable to proprietary systems like GPT-
4. A critical aspect in this evolution is the develop-
ment of multilingual and language-specific models,
democratizing access to Al technologies and pre-
serving linguistic diversity.

While substantial progress has been made for
widely spoken languages, low and medium re-
source languages remain underrepresented. Greek,
in particular, has received limited attention de-
spite its linguistic complexity, rich cultural her-

itage, and historical significance. Addressing this
gap, we present Llama-Krikri-8B, a cutting-edge
open Large Language Model tailored for the Greek
language. Built on Meta’s Llama 3.1-8B architec-
ture, Llama-Krikri has been continually pretrained
on a diverse, high-quality Greek corpus. This al-
lows the model to effectively capture the syntactic
and semantic nuances of Greek, while retaining the
multilingual strengths of the base model. Notably,
Llama-Krikri also supports English and is capable
of handling polytonic and Ancient Greek texts, ad-
dressing not only contemporary but also historical
forms of the language.

Compared to Meltemi-7B (Voukoutis et al.,
2024), the previous state-of-the-art open Greek
LLM built on Mistral 7B (Jiang et al., 2023),
Llama-Krikri-8B significantly increases the num-
ber of parameters, context length, and training data
scale. Additionally, it features an enhanced post-
training pipeline using both human and synthetic
data. Following the MAGPIE methodology (Xu
et al., 2024), we generate high-quality instruction-
response pairs via prompting of aligned models,
and apply multiple rounds of instruction tuning and
alignment using Direct Preference Optimization
(DPO) (Rafailov et al., 2024). This pipeline en-
sures that the model produces helpful, honest, and
harmless outputs.

To evaluate Llama-Krikri-8B, we also intro-
duce three novel public benchmarks specifically
designed for Greek. These, alongside existing eval-
uation suites, show that Llama-Krikri outperforms
comparable Greek and multilingual LLMs in both
natural language understanding and generation, as
well as code-related tasks. Moreover, it supports
function calling and agentic behaviors, opening
new application domains for Greek users. Llama-
Krikri-8B is available under the Llama 3.1 Com-
munity License Agreement!.

"https://www.1lama.com/1lama3_1/license/
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Our key contributions are:

* We present Llama-Krikri-8B, a state-of-the-
art open Greek foundation model based on
Llama 3.1, demonstrating strong capabilities
in Modern and Ancient Greek, English, and
code generation, along with support for func-
tion calling and agentic behavior.

* We implement a rigorous post-training
pipeline incorporating synthetic instruction
tuning via MAGPIE and alignment through
DPO.

* We introduce three new benchmarks for evalu-
ating Greek LLLMs, covering language under-
standing, generation, and code tasks.

* We show that Llama-Krikri-8B significantly
outperforms existing open Greek and multi-
lingual models across several domains, while
supporting advanced features such as function
calling.

2 Background and Related Work

Large Language Models (LLMs) have achieved
state-of-the-art performance across a wide vari-
ety of natural language processing (NLP) tasks.
These models are typically trained on massive cor-
pora dominated by English, leading to strong per-
formance in English-language tasks but compara-
tively weaker capabilities in other languages (De-
vlin et al., 2019; Brown et al., 2020). As a result,
the development of language-specific LLMs has
become an active area of research, particularly for
under-represented languages.

One prominent strategy for developing such
models is continual pretraining, where a pretrained
base model is further trained on data in the tar-
get language. This approach allows researchers
to leverage the general capabilities of large base
models while improving performance in specific
linguistic domains, without the prohibitive cost of
training from scratch (Gururangan et al., 2020).

Several recent projects have successfully applied
continual pretraining to adapt existing models to
new languages. BegGPT-GEMMA-2-27B-Instruct
(Alexandrov et al., 2024) fine-tunes Google’s
Gemma-2 model (Riviere et al., 2024) for Bul-
garian, combining over 100B tokens of Bulgarian
and English data and applying techniques such as
Branch-and-Merge to mitigate catastrophic forget-
ting. Similarly, LeoLM (LAION, 2023) and the

Sabid models (Pires et al., 2023) adapt LLaMA and
Mistral-based architectures for German and Por-
tuguese, respectively, through targeted continual
pretraining.

For Greek, Meltemi-7B represents the first open
generative LLM tailored to the language. It was
developed by continually pretraining Mistral-7B
on a substantial Greek corpus, followed by instruc-
tion fine-tuning. While effective, Meltemi’s perfor-
mance is bounded by the size and capabilities of
the base model, as well as the limited post-training
alignment techniques employed at the time.

Beyond language adaptation, alignment of
LLMs to generate helpful, harmless, and honest
outputs has become increasingly central. Early ap-
proaches such as InstructGPT (Ouyang et al., 2022)
and Constitutional Al (Bai et al., 2022) rely on
multi-stage fine-tuning pipelines involving human
feedback or rule-based constraints. More recently,
DPO and data synthesis methods like MAGPIE
have enabled scalable and effective instruction tun-
ing. MAGPIE, in particular, leverages high-quality
prompting of already-aligned models to generate
large volumes of instruction-response pairs, demon-
strating that synthetic data can rival or surpass
human-curated datasets.

These advancements highlight a trend toward
bootstrapping high-quality training data using
strong base models, especially in low-resource lan-
guages. Our work builds on this foundation by em-
ploying Llama 3.1 as a base architecture, scaling up
parameter count and context length, and applying
a more rigorous post-training pipeline, including
instruction tuning with MAGPIE-generated data
and DPO for alignment.

3 Methodology

Llama-Krikri-8B is based on the Transformer archi-
tecture (Vaswani et al., 2023), which has become
the de facto standard for large language models.
The model inherits its architecture from Meta’s
Llama 3.1-8B, leveraging the strong foundation in
multilingual understanding, code generation, and
reasoning provided by Llama 3.1.

Adapting an LLLM for the Greek language re-
quires addressing the lack of high-quality Greek
data in the massive datasets typically used to train
foundation models. Even though Llama 3.1’s pre-
training corpus comprises trillions of tokens, it
struggles to generate coherent Greek text, thus in-
dicating that Greek data is only a tiny fraction of



Subcorpus  Original Percentage Upsampled Percentage
Tokens (B) Tokens (B)
Greek 56.7 62.3% 66.1 60.0%
English 21.0 23.1% 25.2 22.9%
Parallel 5.5 6.0% 8.8 8.0%
Math/Code 7.8 8.6% 10.1 9.1%
Total 91.0 100% 110.2 100%

Table 1: Composition of the pretraining corpus - original and upsampled

its training data; we should note however that there
is limited information on the composition of its
pretraining data. Our approach is to perform con-
tinual pretraining with Greek and parallel data to
infuse the model with Greek knowledge. This train-
ing must be done carefully to avoid catastrophic
forgetting (Luo et al., 2025) of the base model’s
prior knowledge in other languages and domains.
We tackle this by (a) constructing a high-quality,
large-scale Greek corpus, (b) extending and tun-
ing the tokenizer , (c) interleaving Greek training
data with datasets containing English, mathemat-
ics, code, and parallel data in languages that the
model has already been trained on, (d) employing
a dataset sampling schedule during training that
prefers data closer to the initial llama-3.1 distribu-
tion in the beginning, while shifting closer to our
true dataset distribution as training continues and
(d) re-warming and re-decaying the learning rate
(Ibrahim et al., 2024).

Pretraining Data Collection & Cleaning: As
a foundation for continual pretraining, we curated
a large corpus of texts totalling approximately 91
billion tokens (after filtering and deduplication),
which was upsampled to 110 billion tokens for the
final pretraining mix. This corpus was constructed
with a primary focus on Greek and aiming on retain-
ing and enhancing the original model’s capabilities.
The distribution included 56.7 billion monolingual
Greek tokens (62.3%), 21 billion monolingual En-
glish tokens (23.1%), 5.5 billion parallel data to-
kens (6.0%), and 7.8 billion math and code tokens
(8.6%). Table 1 presents the distribution of the pre-
training data mix, with more details provided in
Appendix A Pretrained data mix.

After corpus collection, we implemented a multi-
stage preprocessing and filtering pipeline to ensure
a high quality for the pretraining data. Various parts
of our filtering methodology have been informed
by approaches used in Voukoutis et al. (2024) and
large-scale corpus creation efforts such as Zyda

(Tokpanov et al., 2024). However, we have adapted
these approaches to cater for the peculiarities of
the Greek language. We detail the preprocessing
pipelines we used in Appendix B Pretraining data
cleaning pipelines.

Tokenizer Vocabulary Fertility Fertility
Size Greek English
Mistral-7B 32,000 6.80 1.49
Meltemi-7B 61,362 1.52 1.44
Llama-3.1-8B 128,000 2.73 1.33
Llama-Krikri-8B 149,248 1.65 1.33

Table 2: Tokenizer statistics for Greek and English

Tokenizer and Embeddings Expansion: The
original Llama 3 tokenizer comprises 128, 000 to-
kens and is inefficient for Greek texts, as it gen-
erally performs character-level tokenization for
Greek. This was determined, through the approxi-
mation of the llama-3.1 tokenizer’s fertility (Csaki
et al., 2023), a metric of the average tokens per
word produced. To determine the efficiency of
the original Llama 3 tokenizer and compare with
our approach, we conducted tests on diverse Greek
and English corpora (each one containing 100, 000
rows and totalling approximately 2M words) and
calculated the difference in fertility, as can be seen
in Table 2.

In order to develop an optimal tokenizer for
Greek which is also efficient in historical dialects of
the language, as well as in critical domains (such as
legal and scientific texts), we extended the Llama 3
tokenizer with 20,992 new tokens through a multi-
stage process which encompasses curating high-
quality texts and allocating new tokens across five
domains. This process is especially important dur-
ing model inference, as it significantly reduces the
input and output token cost during model use. Fur-
thermore, more compact representations of input
text help to improve model performance. We pro-
vide detail on the steps for the tokenizer and em-
beddings expansion in Appendix C, Tokenizer and
embeddings expansion process.



Greek embeddings training: To effectively in-
tegrate newly introduced Greek tokens into the
model, we implemented an initial, targeted train-
ing phase for their corresponding embeddings. By
preparing the new token representations prior to
full-scale pretraining, we mitigate potential disrup-
tions to the existing model parameters.

We initialized the model with Llama 3.1-8B-
Base weights, freezing all but the embeddings and
output-projection weights for the 20,992 new to-
kens, allowing their initial training without large
gradient updates to the rest of the model. The
dataset for this step was comprised of 5B tokens
sampled from the main pre-training dataset. This
short, several-thousand-step training regimen en-
sured a smoother integration of the new vocabulary
into the model’s existing knowledge representation.

Continual Pretraining Process: After embed-
ding training, all parameters were unfrozen, and
training continued on the 110B token corpus us-
ing a mixed-curriculum strategy. Training alter-
nated between chunks of predominantly Greek text
and supporting data (English, parallel, code) in a
round-robin fashion. This interleaving improved
Greek performance while maintaining/improving
English validation perplexity, similar to findings
in related work. The strategy involved curriculum
learning and experience replay: starting with sim-
pler Greek/more English, progressing to diverse
Greek, and mixing in periodic English/code re-
plays. Training was conducted on two machines,
each equipped with 8 NVIDIA H200 GPUs, us-
ing DeepSpeed Zero 3 and bf16 mixed precision
for ~50 days on the 110B token dataset at 128K
context length. Training used packed sequences,
cosine annealing LR, AdamW optimizer, gradient
clipping, and weight decay.

Annealing Phase: Following pretraining, a short
annealing pass used a curated 3.5B token dataset of
very high-quality texts across all subcorpora. We
used within-dataset normalized perplexity, calcu-
lated using KenLLM (Heafield, 2011), to implement
a dataset-aware fluency scoring method for docu-
ment selection. To boost comprehension and rea-
soning, a synthetic question-answer dataset (189M
tokens) was created by prompting Gemma-2-27B-
IT to generate Q&A triplets with reasoning from
curated documents. Annealing was tested with
and without the synthetic QA data. Performance
(Table 3) showed continual pretraining improved
Greek (+8.7) but reduced English (-4) vs Llama-3.1.

Annealing with curated data gave modest gains.
Most notably, adding synthetic QA significantly
improved Greek (+2.1 vs continual pretraining)
and enhanced English beyond original Llama-3.1
(+0.8). Liger kernels (Hsu et al., 2024) were used
for efficiency.

Training Stage Avg. Greek  Avg. English
Llama-3.1-8B 48.7 66.2
+ Continual Pretraining 57.4 62.2
+ Curated Corpora 58.0 63.4
+ Synthetic QA Dataset 59.5 67.0

Table 3: Average performance across training stages on
Greek and English benchmarks

Instruction Tuning and Alignment: Llama-
Krikri-8B-Instruct was created by fine-tuning the
base model for instruction following and dialogue.
Addressing Greek data scarcity and avoiding trans-
lation artifacts, the pipeline combined data syn-
thesis, filtering, two-stage Supervised Fine-Tuning
(SFT), and Direct Preference Optimization (DPO).

Data collection, synthesis, & curation involved
collecting high-quality English instruction, e.g.,
Tulu 3 (Lambert et al., 2025) and SmolTalk (Allal
et al., 2025), and preference data e.g., UltraFeed-
back (Cui et al., 2023). Additionally, Greek data
was synthesized via translation (with post-editing),
regenerating responses using LLMs (Gemma-2-
27B-IT), and generating synthetic instructions di-
rectly in Greek using the MAGPIE technique. Cu-
rated corpora from annealing were reused for syn-
thetic Q&A and dialogues. Data was scored and
filtered using the Skyword-Reward-Gemma-2-27B-
v0.2 (Liu et al., 2024) reward model, known for
Greek accuracy. Rule-based filters ensured format-
ting and language verification.

SFT was done in two stages (~856k pairs in
Stage 1, ~638k in Stage 2), with progressively
higher data quality. Datasets included filtered origi-
nal English, reward-model-filtered synthetic MAG-
PIE data (higher scores in Stage 2), translated/post-
edited data (Stage 1), regenerated responses (in-
cluding "thinking" in Stage 2), multi-language
translation data, synthetic QA, synthetic multi-
turn dialogues, and upsampled manual safety data.
Training used linear decay LR, AdamW, and Liger
kernels, masking prompt loss. SFT produced a
model that followed instructions but needed align-
ment for helpfulness, precision, and safety.

DPO provided final alignment using ~92k pref-
erence triplets. Data included selected/high-scored
original preferences, preferences from MAGPIE-
synthesized data (using reward model scores), pref-



erences derived from translated data (contrasting
regenerated responses or regenerated vs translated
reference), and safety preferences. DPO maxi-
mized preferred response likelihood while mini-
mizing dispreferred, using length normalization.
Training used AdamW (Loshchilov and Hutter,
2017), linear decay LR, and Liger kernels. DPO
significantly improved response quality, safety, and
helpfulness compared to the SFT-only model. The
DPO-tuned model is the final Llama-Krikri-8B-
Instruct.

4 Evaluation

In this section, we present evaluation details
for Llama-Krikri-8B-Base and Llama-Krikri-8B-
Instruct, across six Greek and six English bench-
marks. We compare our base model directly
with the base model Llama-3.1-8B (Grattafiori
et al., 2024) and the previous Greek state-of-the-art
model Meltemi-7B-v1.5 (Voukoutis et al., 2024).
Additionally, we evaluate our chat model, Llama-
Krikri-8B-Instruct on three challenging English
benchmarks, as well as three novelly constructed
Greek benchmarks which correspond to the English
ones.

4.1 Base Model Evaluation: Krikri-8B-Base

We evaluated Llama-Krikri-8B-Base against
Llama-3.1-8B and Meltemi-7B-v1.5 in a few-shot
setting, consistent with the Open LLM Leader-
board?.

Greek Benchmarks: The evaluation was carried
out on a suite of six Greek-specific benchmarks?
used in Voukoutis et al. (2024), including machine-
translated versions of established English datasets
(ARC-Challenge Greek, Truthful QA Greek, Hel-
laSwag Greek, MMLU Greek ), the existing Bele-
bele Greek benchmark (Bandarkar et al., 2024), and
a novel medical QA benchmark (Medical MCQA).

Results in Table 4 demonstrate substantial im-
provements for Greek (+10.8%) compared to
Llama-3.1-8B. Moreover, we observe that Llama-
Krikri-8B-Base surpasses Meltemi-7B-v1.5 with a
notable +11.6% average improvement across all
benchmarks. On MMLU Greek, Llama-Krikri-
8B-Base surpasses Llama-3.1-8B and Meltemi-7B-
v1.5 by 49.4% and +10.8% respectively, while on

2h’ctps ://huggingface.co/spaces/open-11m-1leaderboard/open_
11m_leaderboard

3https ://huggingface.co/collections/ilsp/
ilsp-greek-evaluation-suite-6827304d5bf8b70d0346b02c

ARC-Challenge Greek, it achieves an accuracy of
49.4%, compared to Llama-3.1-8B’s and Meltemi-
7B-v1.5’s 39.9% and 40.0%, respectively. Simi-
lar substantial gains are observed on the Belebele
Greek dataset, where Llama-Krikri-8B-Base scores
82.7%, surpassing Meltemi-7B-v1.5 and Llama-
3.1-8B by 21.7% and 4+9.9%, respectively. In
the Greek Medical MCQA, Llama-Krikri-8B-Base
reaches 53.8%, demonstrating clear advancements
over Llama-3.1-8B (+20.4%) in a domain-specific
Greek benchmark that was not translated from En-
glish.

English Benchmarks For the evaluation of base
models on English, we utilized six benchmarks,
with five of them being the original versions of
those also used for Greek: ARC-Challenge (Clark
et al., 2018), Truthful QA (Lin et al., 2022), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021), and Belebele (Bandarkar et al., 2024).
Additionally, the Winogrande (Sakaguchi et al.,
2021) test set was used as the sixth benchmark for
English. In the results presented in Table 5 we
see that our training methodology not only miti-
gates catastrophic forgetting effectively, but also
improves average performance across all English
test sets by +0.8%.

4.2 Chat Model Evaluation:
Krikri-8B-Instruct

For evaluating the capabilities of Llama-Krikri-8B-
Instruct as a conversational assistant, suitable for
multi-turn dialogue, instruction-following and com-
plex coding and math queries, we used a suite of
benchmarks in both English and Greek. For En-
glish, we conducted evaluations across two paths:

* We submitted our model to the Open LLM
Leaderboard (Fourrier et al., 2024) which au-
tomatically evaluates models on IFEval, BBH,
MATH, GPQA, MUSR, and MMLU-Pro us-
ing the Eleuther Al Language Model Eval-
uation Harness (Gao et al., 2021), a unified
framework to test generative language mod-
els on a large number of different evaluation
tasks.

* We used the Arena Hard Auto v0.1 (Li et al.,
2024; Chiang et al., 2024), IFEval (Zhou et al.,
2023) (strict avg) and MT-Bench (Zheng et al.,
2023) benchmarks. Although IFEval was al-
ready included in the Open LLM Leaderboard,
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Benchmark Meltemi-7B-v1.5 Llama-3.1-8B Krikri-8B-Base

Medical MCQA EL (15-shot) 42.2 334 53.8
Belebele EL (5-shot) 61.0 72.8 82.7
HellaSwag EL (10-shot) 53.8 52.1 64.6
ARC-Challenge EL (25-shot) 40.0 39.9 49.4
Truthful QA MC2 EL (0-shot) 49.0 51.1 54.2
MMLU EL (5-shot) 41.2 42.6 52.0
Average 479 48.7 59.5

Table 4: Greek benchmark results (accuracy %) for base models.

Benchmark Meltemi-7B-v1.5 Llama-3.1-8B Krikri-8B-Base
Winogrande (5-shot) 73.4 74.6 72.6
Belebele EN (5-shot) 77.7 71.5 79.8
HellaSwag EN (10-shot) 79.6 82.0 80.7
ARC-Challenge EN (25-shot) 54.1 58.5 57.8
Truthful QA MC2 EN (0-shot) 40.5 44.2 44.8
MMLU EN (5-shot) 56.9 66.2 65.1
Average 63.7 66.2 67.0

Table 5: English benchmark results (accuracy %) for base models.

we re-implemented it to enable accurate com-
parison with multiple models. In the evalua-
tion of MT-Bench we used GPT-40 (2024-08-
06) as the judge model, while in the evaluation
of Arena Hard Auto v0.1 we used the standard
approach with GPT-4-0314 as the baseline
model (by default scoring 50%) and GPT-4-
1106-Preview as the judge model, while also
reusing the generations and judgments already
computed by the authors.

For Greek, we created three novel evaluation
benchmarks by translating three challenging, di-
verse, and widely used English benchmarks, ensur-
ing high-quality translations through careful post-
editing and validation:

* IFEval Greek (strict avg.): a manual trans-
lation of 541 prompts from the original
Instruction-Following Evaluation benchmark
(Zhou et al., 2023), featuring verifiable instruc-
tions such as "omdvtnoe ue meplcodTERES
an6 400 MéEeic" (answer with more than 400
words) and "avdgepe T AEEN TN TouAdyio-
Tov 3 @opéc" (mention the word Al at least 3
times), designed to assess the model’s ability
to follow specific instructions.

e MT-Bench Greek: a translated version of the
Multi-turn Benchmark (Zheng et al., 2023)
containing 80 high-quality, multi-turn conver-
sations across eight diverse categories (e.g.,

STEM, humanities, roleplay, coding, etc.),
carefully post-edited to ensure natural Greek
phrasing and cultural appropriateness. MT-
Bench is also used to evaluate the function-
calling capabilities of LLMs (Chen et al.,
2025). The performance of each model is
calculated using LLM-as-Judge (Zheng et al.,
2023) with GPT-40 (2024-08-06) serving as
the scoring model.

Arena-Hard-Auto Greek: a translated version
of Arena-Hard-Auto v0.1, which originates
from Chatbot Arena (Chiang et al., 2024) was
included in m-ArenaHard (Dang et al., 2024)
after translation with Google Translate API
v3. We later post-edited using Claude Son-
net 3.5 (Anthropic, 2024) with 10-shot exam-
ples to address translation issues, particularly
in coding-related prompts where some parts
would best be left untranslated, as well as to
retain the original style of the prompts, since
some of them would be best left vaguely posed
as in the original prompt. We used the version
of the benchmark with style control methods
for Markdown elements*. We set GPT-4o-
Mini (2024-07-18) as the baseline model (by
default 50% score) and GPT-40 (2024-08-06)
as the judge model.

As shown in Table 6, Llama-Krikri-8 B-Instruct

4https ://1msys.org/blog/2024-08-28-style-control/
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Model IFEval EL IFEval EN MT-Bench EL MT-Bench EN
Qwen 2.5 7B 46.2 74.8 5.83 7.87
EuroLLM 9B 51.3 64.5 5.98 6.27
Aya Expanse 8B 50.4 62.2 7.68 6.92
Meltemi-7B-v1.5 32.7 41.2 6.25 5.46
Llama-3.1-8B 45.8 75.1 6.46 7.25
Llama-Krikri-8B 67.5 824 7.96 7.21
Gemma 2 27B IT 63.2 75.6 8.23 8.00
Aya Expanse 32B 60.3 70.2 8.27 7.40

Table 6: Greek and English evaluation results using IFEval and MT-Bench.

demonstrates exceptional performance across both
Greek and English benchmarks, substantially out-
performing not only its parent model Llama-3.1-
8B-Instruct but also other competitive multilingual
models in the 7-9B parameter range. It should be
noted that the IFEval scores reported in this table
reflect our own implementation of the benchmark,
which may differ from the Open LLM Leaderboard
implementation due to variations in prompt format-
ting and evaluation criteria. Despite these method-
ological differences, the relative performance com-
parisons remain valid within each implementation
context.

On IFEval Greek, Llama-Krikri-8B-Instruct
achieves a remarkable 67.5% accuracy, surpassing
Llama-3.1-8B-Instruct by +21.7% and Meltemi-
7B-v1.5 by +34.8%. Notably, our 8B model even
outperforms much larger models like Gemma 2
27B IT (+4.3%) and Aya Expanse 32B (+7.2%) on
this Greek instruction-following benchmark. As
regards the original English IFEval, Llama-Krikri-
8B-Instruct scores 82.4%, significantly higher than
all other models, including those with 3-4 times
more parameters. This dramatic improvement sug-
gests that our data synthesis instruction tuning
approach successfully addresses the unique chal-
lenges of following instructions in Greek, where
naive translations of instruction data often fail to
capture language-specific nuances.

For MT-Bench Greek, which evaluates
multi-turn conversation quality, Llama-Krikri-
8B-Instruct achieves a score of 7.96, making it
the top performer amongst other models in its
size class. While larger models like Gemma
2 27B IT (8.23) and Aya Expanse 32B (8.27)
achieve slightly higher scores on MT-Bench
Greek, the margin is surprisingly small given the
substantial difference in model size. On MT-Bench
English, Llama-Krikri-8B maintains competitive

Task Llama-3.1-Instr.  Krikri-8B-Instr.
IFEval 49.22 60.79

BBH 29.38 29.31
MATH 15.56 11.78
GPQA 8.72 7.05
MUSR 8.61 10.46
MMLU-PRO 31.09 25.70

Avg. 23.76 24.18

Table 7: Comparative evaluation on English benchmarks
from the Open LLM Leaderboard.

performance at 7.21, essentially identical with
Llama-3.1-8B-Instruct (-0.04), though understand-
ably lower than the larger Gemma 2 27B IT (-0.79)
and Aya Expanse (-0.19). This demonstrates that
our instruction tuning approach can achieve a
very high conversational performance on Greek
conversational benchmarks, while also producing a
competitive model for English benchmarks with a
much more compact approach (Grattafiori et al.,
2024).

As detailed in Table 7, Llama-Krikri-8B-
Instruct’s official Open LLM Leaderboard submis-
sion shows an average score of 24.18% across all
tests, slightly surpassing the 23.76% of Llama-3.1-
8B-Instruct. The model shows particularly impres-
sive gains on IFEval implementation (60.79% vs.
49.22%) and MUSR (10.46% vs. 8.61%), while
closely matching performance on the Big Bench
Hard (BBH) benchmark (29.31% vs. 29.38%).
Although Llama-Krikri performs slightly below
Meta-Llama-3.1-8B-Instruct in the MMLU-PRO
category (25.70% vs. 31.09%), the overall per-
formance indicates successful retention of English
capabilities during the Greek-focused continual pre-
training.

The results from our Arena Hard evaluations,
presented in Table 8, reveal that, in the 8B param-
eter range, Llama-Krikri-8B-Instruct significantly
outperforms its competitors, achieving a 31.8%



Model ArenaHard EL  ArenaHard EN
Aya Expanse 8B 23.8 -

Llama 3.1 8B Instr. 4.0 19.7
Krikri 8B Instr. 31.8 351

Aya Expanse 32B 40.1 45.1
Gemma 2 27B IT 322 49.6
Llama 3.1 70B Instr. 274 53.9

GPT 40 Mini 50.0 65.0

Table 8: Arena Hard evaluation results (% win rate) for
Greek and English.

win rate on Arena Hard Greek compared to Aya
Expanse 8B’s 23.8% and Llama 3.1 8B Instruct’s
4.0% (+27.8% improvement). This demonstrates
the effectiveness of our Greek-focused training ap-
proach. Even more impressively, Llama-Krikri-
8B-Instruct achieves a 35.1% win rate on Arena
Hard English, substantially outperforming the orig-
inal Llama-3.1-8B-Instruct (19.7%) by +16.2%,
despite our focus on Greek capabilities. While
Aya Expanse 32B leads on Arena Hard Greek with
40.1%, our 8B model is on par with Gemma 2 27B
IT (31.8% vs. 32.2%) and outperforms the 8.75
times larger Llama-3.1-70B-Instruct (27.4%) by
+4.4% on the Greek evaluation data. On the origi-
nal English Arena Hard, the larger models gener-
ally perform better, although it should be noted that
Llama-Krikri-8B-Instruct outperforms Llama-3.1-
8B-Instruct by +15.4% (35.1% vs. 19.7%).

Please note that while all models trail behind
GPT-40-Mini (used as baseline on the Greek Arena
Hard), recent research (Li et al., 2025) has shown
that judge models are biased towards student mod-
els, i.e., models finetuned on distilled data from the
stronger & larger teacher model which also acts
as a judge. While details on the post-training data
of GPT-40-Mini are undisclosed, it would be very
reasonable to assume that it has been trained -at
least partly- with GPT-4 and GPT-40 serving as
teacher models and, therefore, that the judges that
we utilized are biased towards it compared to all
other evaluated models.

This performance comparison with much larger
models highlights the efficiency of our approach
since Llama-Krikri-8B-Instruct achieves compara-
ble or even superior performance on Greek bench-
marks compared to models with 3-4x more parame-
ters, while maintaining strong English capabilities.
This efficiency is particularly important for deploy-
ment scenarios where computational resources may
be limited, demonstrating that a carefully trained
smaller model can rival much larger ones for spe-
cific languages.

Apart from the comparative evaluations men-

tioned above, we have performed zeroshot MT ex-
periments on an Ancient-Modern Greek (grc<>ell)
translation dataset® that includes 100 sentences of
Ancient Greek texts manually translated into Mod-
ern Greek. Using Llama-Krikri-8B-Instruct we
have observed a 54.66 BLEU score for the Ancient
to Modern Greek (grc—ell) translation direction,
with the reverse direction (ell—grc) being more
challenging (20.41 BLEU).

5 Discussion and Conclusions

In this paper, we presented Llama-Krikri-8B, a
new LLM that exhibits significant skills in under-
standing and generating Greek, while also showing
highly accurate handling of text in English and his-
torical Greek dialects. We achieved this by devel-
oping an efficient tokenizer that exhibits a low to-
ken/words fertility for Greek and by further training
Llama 3.1-8B using a carefully constructed dataset
that covered a wide variety of domains. In evalu-
ation experiments on a benchmark suite compris-
ing Greek and English datasets, we have observed
that Llama-Krikri-8B performs significantly better
in Greek (+10.8%) compared to its base model,
while also showing gains in English (+0.8%). We
then created Llama-Krikri-8B-Instruct, a version
designed for following instructions and engaging
in helpful conversations. This involved a multi-step
process that comprised synthetic data generation
in a multitude of domains, fine-tuning the model
and then aligning it with human preferences. Eval-
uations revealed that Llama-Krikri-8B-Instruct sig-
nificantly outperformed Llama-3.1-8B-Instruct in
both Greek (+21.7%) and English (+7.3%) IFE-
val. Our model also demonstrated highly competi-
tive chat abilities in both languages across several
benchmarks.

6 Limitations

The quality and accessibility of Greek datasets are
critical to the development of Krikri. Greek open-
source corpora are becoming more numerous, but
they might not be as large or varied as datasets
for more extensively spoken languages, like En-
glish. This may result in biases in the model’s
understanding of Greek, especially with regard to
regional variances, dialects, and specialized fields
like technical fields, law, or medicine.

5h‘ctps ://huggingface.co/datasets/ilsp/ancient-modern_
greek_translations
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As an 8B parameter model, our model shows
a fairly high level of Greek fluency, but it is less
effective than larger-class and commercial models
at reasoning and instruction following, and is more
likely to experience hallucinations.

In the future, our evaluation benchmarks should
include more original Greek LLM datasets that
are not the result of machine translation and post-
editing. These datasets will help minimize the ef-
fect of machine translation on evaluation results
and also better reflect the target language and cul-
ture.

7 Risks and ethical considerations

To mitigate potential risks, we took several steps
to ensure the data used for training did not contain
personally identifiable information, offensive, or
otherwise inappropriate content. We sourced data
from publicly available, licensed, or open-access
datasets, ensuring compliance with their respective
policies and any flagged data points were excluded.
We did not collect data from private communica-
tions or data sources that could contain personally
identifiable information. We have also given spe-
cial care to align our model’s responses with safety
guidelines followed by manual reviews.

However, we have not performed a systematic
evaluation against LL.M risks including risks re-
lated to discrimination, hate speech and exclusion;
information hazards; and misinformation harms
(Weidinger et al., 2022). As this was due to lack of
relevant evaluation material in Greek, we want to
contribute towards improving this situation in the
future.

We recognize that these measures are not a
substitute for more thorough evaluation protocols.
Moving forward, we aim to contribute towards ad-
dressing these limitations by promoting the devel-
opment of Greek-language evaluation resources for
LLM risks. This will enable more robust and con-
textually appropriate assessments of ethical risks
in future models.
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A Pretrained data mix

The pretraining data mix (Table 1) contains the
following four components:

1. Greek Texts (56.7B tokens): The Greek
part of the dataset was sourced from publicly
available resources spanning a wide range
of domains and sources: Wikipedia, ELRC-
SHARE (Losch et al., 2021), EUR-LEX &
MultiEUR-LEX (Chalkidis et al., 2019, 2021),
MaCoCu (Bafién et al., 2022), CLARIN-EL
(Gavriilidou et al., 2023), EMEAS, parlia-
mentary proceedings (Erjavec et al., 2022),
7, governmental and legal documents from
the Greek Government Gazette via the Na-
tional Printing House®, the Permanent Greek
Legislation Code — Raptarchis dataset’ (Pa-
paloukas et al., 2021), Greek School Books!?,
the Kallipos initiative of Greek open academic
textbooks'!, full texts from publicly avail-
able articles, theses, and dissertations from
academic repositories and the National Doc-
umentation Center'?, as well as pre-filtered
resources originally compiled from the web,
such as CulturaX (Nguyen et al., 2023) and
CulturaY 3. In addition to Modern Greek, we
incorporated a significant amount of Ancient
Greek texts into our training corpus from Wik-
isource, school books, web pages, and Project
Gutenberg'4, which provides freely available
Ancient Greek texts, including classical litera-
ture and historical documents. By including

6https
7https

://www.ema.europa.eu/
://www.gutenberg.org/
8https://et.gr/
*https://huggingface.co/datasets/AI-team-UoA/
greek_legal_code
lOhttps://ebooks.edu.gr/ebooks/
11https://kallipos.gr/en/homepage/
Phttps://www.ekt.gr/en
Bhttps://huggingface.co/datasets/ontocord/
CulturaY

“https://www.gutenberg.org/
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Ancient Greek data, we ensured that Llama-
Krikri-8B is able process polytonic Greek and
engage with historical texts effectively. This
enhances the model’s utility for classical stud-
ies, historical research, and philological appli-
cations.

. English Texts (21B tokens): A subset of
high-quality English data was mixed into the
training corpus. This subset ensures that the
model is continually trained on English data,
and is drawn from sources that were also
used for the Greek data, such as Wikipedia,
Wikisource, Project Gutenberg (post-1900),
EUR-LEX, EMEA, Greek academic reposi-
tories, etc. We also utilized additional En-
glish texts originating from abstracts and full
texts of academic records found on multiple
scientific repositories (Roussis et al., 2022a,
2024), ECtHR-PCR (Tyss et al., 2024), and
pre-filtered datasets from TxT360 (Tang et al.,
2024), like ArXiv, S20RC (Lo et al., 2020),
and PubMed Central (Roberts, 2001). By in-
corporating diverse and high-quality English
texts, we mitigate the risk of catastrophic for-
getting.

. Parallel Data (5.5B tokens): We compiled
a diverse parallel corpus with language pairs
covering multiple languages: to Greek, En-
glish, French, Portuguese, German, Spanish,
and Italian. The decision to add parallel
data which covers other European languages
(i.e., German, French, Italian, Portuguese, and
Spanish) is informed from the languages that
have been included in the multilingual instruc-
tion tuning of the original Llama-3.1. We
utilized resources such as SciPar (Roussis
et al., 2022a), MediSys (Roussis et al., 2022b),
MultiEUR-LEX (Chalkidis et al., 2021), Eu-
roparl, TED Talk transcripts (Qi et al., 2018),
and other sources with sentence pairs such as
ELRC-SHARE (Losch et al., 2021) & OPUS
(Tiedemann, 2012). Our data include paral-
lel documents and sentence pairs randomly
sampled for each translation direction, e.g.,
EN-EL/EL-EN and EN-DE/DE-EN, as well
as augmented training examples with con-
catenated parallel content across multiple lan-
guages (e.g., a Greek text followed by its En-
glish, German, and Spanish translations with
appropriate prompt templates). The addition
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of these documents has a twofold effect. It has
been shown that parallel data boosts transla-
tion performance (Alves et al., 2024; Martins
et al., 2024), while limited empirical evidence
indicates that pretrained LLMs process multi-
lingual queries by first translating the content
into English, utilizing their English knowl-
edge to answer the query and then translate
the answer back to the original language(Zhao
et al., 2024).

. Code and Math (7.8B tokens): We also inte-
grated datasets containing text with code and
mathematics, leveraging Stack Overflow!,
Python-Edu which is a subset of the SmolLM
corpus (Allal et al., 2025) originating from
The Stack V2 dataset (Lozhkov et al., 2024)
and having been scored with an educational
code classifier, and the AutoMathText dataset
(Zhang et al., 2024), which is a collection of
math-related documents originating from web
data, papers on arXiv, and code/notebooks
on GitHub. AutoMathText has undergone an
automatic selection process using Qwen-72B
(Bai et al., 2023) for relevancy to the mathe-
matical domain and the educational value of
each document. Code and Mathematics data,
although not specific to Greek, were included
to preserve and enhance the model’s ability to
handle coding tasks, math problems and for-
mal language. Maintaining these capabilities
broadens the utility of Llama-Krikri beyond
pure language tasks.

B Pretraining data cleaning pipelines

Our filtering processes began with format standard-
ization in order to facilitate uniform processing
across multiple heterogeneous datasets. We con-
verted all textual content from various formats (e.g.,
PDF, HTML, plain text, etc.) into JSONL contain-
ing both the document text and relevant metadata
such as identified language, word count, and source
information (including source URLSs).

For PDF documents such as academic records
and laws, we implemented a specialized pipeline
which integrated Marker'® for extraction and con-
version into Markdown files, as it exhibits strong
performance for Greek texts. Subsequently, the
pipeline included language identification using

Bhttps://huggingface.co/datasets/
code-rag-bench/stackoverflow-posts
Yhttps://github.com/VikParuchuri/marker


https://huggingface.co/datasets/code-rag-bench/stackoverflow-posts
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https://github.com/VikParuchuri/marker

FastText (Joulin et al., 2017), removal of mark-
down artifacts, and removal of lines with characters
outside Unicode ranges for Greek, Latin, and other
common and scientific symbols. Furthermore, we
utilized document structure metrics (Marker also
extracts various structural metadata) as quality in-
dicators, such as the ratio of tables to pages and the
fraction of removed lines in disallowed scripts.

Our main filtering pipeline used sequential rule-
based and statistical filters to remove outlier doc-
uments across all data sources. First, we imple-
mented URL-based filtering by removing content
from several blacklisted domains known to con-
tain low-quality or problematic content. This was
particularly effective for web-crawled datasets like
CulturaX (Nguyen et al., 2023) where source meta-
data was available. We then applied a set of mini-
mal content-quality filters:

* Removal of documents containing multiple
instances of profane or inappropriate terms
from a curated list of Greek bad words

¢ Removal of short documents based on charac-
ter and word counts

* Removal of documents containing multiple
substrings like "lorem ipsum" which are in-
dicative of content with low educational value

* Removal of documents containing extremely
long words (>60 characters)

e Removal of documents with mean word
length outside specified values.

* Removal of documents with a high fraction of
non-alphanumeric characters.

Parallel datasets were filtered using a different
pipeline featuring various steps from previous work
(Papavassiliou et al., 2018; Roussis and Papavassil-
iou, 2022; Roussis et al., 2024) which include: (a)
rule-based filters, such as length ratio, language
identification verification, and (b) model-based
alignment quality scores using tools like LASER
(Artetxe and Schwenk, 2018, 2019), BiCleaner Al
(Zaragoza-Bernabeu et al., 2022), and CometKiwi
(Rei et al., 2022).

Additionally, in order to mitigate privacy con-
cerns and protect sensitive information, we system-
atically identified and anonymized personally iden-
tifiable information (PII) with the use of regular
expressions. In particular, we aimed to detect and
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replace e-mail addresses with a generic placeholder
(“email @example.gr”’) and mask IP addresses (re-
placing them with 0.0.0.0).

Finally, for Greek, English, and Mathemat-
ics/Code datasets we implemented intra-dataset
deduplication, as well as cross-dataset deduplica-
tion. We utilized MinHashLSH near-deduplication
(Broder, 1997; Leskovec et al., 2020) with 5-gram
subsets, a MinHash signature of 128, and a Jac-
card similarity threshold of 0.8, following param-
eter choices similar to those used in other works
(Nguyen et al., 2023; Voukoutis et al., 2024). Re-
garding the deduplication of parallel datasets, we
followed a different approach. All sentence pairs
were normalized and cleaned, by converting them
to lowercase and removing digits, punctuation.
Pairs were then deduplicated based on the exis-
tance of either the source or target within the same
dataset, thus ensuring that no sentence can be found
multiple times in each parallel dataset (Roussis
and Papavassiliou, 2022; Roussis et al., 2024). It
should be noted that deduplication has consistently
been shown to lead to higher performance, reduced
training costs, as well as reduced model mem-
orization; thus indirectly protecting sensitive in-
formation (Lee et al., 2022; Carlini et al., 2023;
Grattafiori et al., 2024; Albalak et al., 2024). How-
ever, as we mentioned earlier, global deduplication
may also remove documents of high quality and ac-
tually hurt performance (Tang et al., 2024; Penedo
et al., 2024). For this reason, we decided to up-
sample datasets of specific sources with important
content. Table 1 summarizes the composition of
the filtered and deduplicated pretraining corpus. In
total, our collected dataset comprises roughly 91B
tokens, of which 62.3% is Greek text. For the final
training curriculum, we upsampled parts of the cor-
pus to effectively train on an equivalent of 110B
tokens. Upsampling was used to give higher rel-
ative importance to certain underrepresented but
valuable segments and it also leads to higher mem-
orization of important content (Carlini et al., 2023;
Tang et al., 2024). For example, we assigned a
slightly higher weight to datasets with long-context
documents, Wikipedia-like sources, dialogue data,
multi-parallel documents, and to certain important
domains, such as legal, scientific, and medical. The
decision to include a significant amount of English
and parallel data (23.1% and 6% of tokens, respec-
tively) was guided by prior work (Voukoutis et al.,
2024) showing that mixed-language training can
help retain the base model’s general knowledge and



prevent catastrophic forgetting.

C Tokenizer and embeddings expansion
process

The tokenizer and embeddings expansion process
involved the following steps:

* Data Acquisition: We acquired data by col-
lecting sentences from high-quality sources of
our pretraining mix in five domains:

1. General domain which reuses a sam-
pled portion of the data used to train the
tokenizer of Meltemi (Voukoutis et al.,
2024) and covers diverse domains,

. Legal domain which uses legal texts
extracted from the Greek Government
Gazette and are available via the Na-
tional Printing House'!”, as well as the
Permanent Greek Legislation Code —
Raptarchis dataset!® (Papaloukas et al.,
2021),

. Scientific domain which uses publicly
available articles, theses, and disserta-
tions found in the National Documenta-
tion Center'?,

. Literature domain from public-domain
books from Wikisource?® and Project
Gutenberg?! which contain literature, po-
etry, and other original writings across
various variants of Greek (e.g., Koine
Greek, Medieval Greek, Modern Greek,
etc.),

. Ancient Greek which contains texts only
in Ancient Greek sourced from Greek
school books and various publicly avail-
able corpora.

* Filtering and Preprocessing: Each dataset
underwent sequential processing and filtering
including language identification verification
with FastText (Joulin et al., 2017), application
of regular expressions to remove URLs and
other anomalies, symbol-to-word ratio filter-
ing to remove outliers, and NFC normaliza-
tion. We then performed sentence-level exact
deduplication within each individual dataset.

17h’ctps://et.gr/

18h’ctps ://huggingface.co/datasets/AI-team-UoA/
greek_legal_code

1ghttps ://www.ekt.gr/en

Dhttps://el.wikisource.org/

https://gutenberg.org/
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To ensure text quality, we applied fluency scor-
ing using Monocleaner (Sanchez-Cartagena
et al., 2018) which leverages a 7-gram KenLM
model for Greek, and setting a score threshold
of 0.3 for non-polytonic text.

* Creation of Training and Test Sets: For
the tokenizer training and test sets creation,
we sampled 50% of the sentences from each
source and divided it into training and testing
splits (80%—20%).

* Domain-specific Token Allocation: New to-
kens were added sequentially for each do-
main until tokenizer fertility for this domain
remained relatively stable, with most of the
tokens being allocated to the General domain.
This approach ensured that common Mod-
ern Greek patters receive the largest cover-
age, while specialized terminology and older
Greek variants are adequately represented.

Table 2 presents the fertility of several tokenizers
on the original Greek and English corpora. Note
that these test sets have not been used anywhere
in the domain-specific multi-stage training pro-
cess and could be considered as out-of-domain for
the Llama-Krikri-8B tokenizer. We evaluated the
Llama-3.1-8B tokenizer (128,000 vocabulary size)
and our custom-trained Llama-Krikri-8B tokenizer
(149,248 vocabulary size). We observe that the
Llama-3.1-8B tokenizer exhibits a fertility of 2.73
for Greek and 1.33 for English. Our Llama-Krikri-
8B tokenizer demonstrates a significantly lower
fertility of 1.65 for Greek, while maintaining the
same low fertility of 1.33 for English as the base
Llama-3.1-8B tokenizer. This indicates that our
Llama-Krikri-8B tokenizer is more efficient for
Greek texts compared to the standard Llama-3.1-
8B tokenizer. The table also includes the Mistral
and the Meltemi-7B Greek tokenizer for compari-
son.

Furthermore, in Table 9, we list the token alloca-
tion per domain, as well as the tokenizer fertilities
of Llama-3.1-8B and Llama-Krikri-8B for each
of the five domains for which we created test sets
during the tokenizer extention process. We can
observe that tokenizer fertility has dropped signifi-
cantly across all domains, with Ancient Greek ben-
efiting from the highest reduction (-1.62) with just
492 added tokens, whereas fertility for Legal texts
has almost halved (1.54 from 2.82) after the inte-
gration of a significant number of tokens (4,000).


https://et.gr/
https://huggingface.co/datasets/AI-team-UoA/greek_legal_code
https://huggingface.co/datasets/AI-team-UoA/greek_legal_code
https://www.ekt.gr/en
https://el.wikisource.org/
https://gutenberg.org/

Domain Added Tokens Llama-3.1-8B  Llama-Krikri-8B A Fertility

General 15,000 2.65 1.59 -1.06
Legal 4,000 2.82 1.54 -1.28
Scientific 1,000 2.91 1.73 -1.18
Literature 500 2.90 1.89 -1.01
Ancient Greek 492 3.77 2.15 -1.62
Total 20,992 - - -

Table 9: Domain-specific token allocation and fertility comparison

Following the development of the Llama-Krikri-
8B tokenizer with 149,248 tokens, containing the
initial Llama 3 reserved tokens to reach a vocab-
ulary size divisible by 256 for computational effi-
ciency, we expanded the embeddings and Im head
layer of our Llama 3 based model to match this
vocabulary size.

The newly initialized embeddings and Im head
weights for each new token were initialized by av-
eraging the embeddings (or Im head weights re-
spectively) associated with the tokens retrieved by
the initial Llama-3.1 tokenizer when fed with that
token. This provided us with a smoother initial
Greek embeddings and Im head training phase of
the frozen model.
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D Examples of queries and responses

Ex. 1: Programming: Python Fibonacci function

User: I'pdde pra cuvdptnon Python tou unohoyilet tnv axoloudia fibonacci.
Krikri: Axoloudel n vhonoinon g avadpouxic cuvdetnone Python yio tov utohoyloud twv aprdudy Fi-
bonacci:

def fibonacci(n):

nnn

Troloyilel tov n-oot6d aprdud Fibonacci.

Args:
n (int): Yetxdc oxéparoc. n >= @ (@-indexed mpooéyylon)

Returns:
int: o n-ooctéc aprduodc Fibonacci

Raises:
ValueError: av n eivou opvntixde aprdude
o
# 'Eleyyoc eyxupdtntac €.0660L
if not isinstance(n, int) or n < 0:
raise ValueError("H clcodoc mpenel v elvon un opvnuixog oxéponoc™)

# Baon avadpounc:
# F(0) = 0, F(1) = 1 (x\aowol optoyol)
if n in (0, 1):

return n

# Avadpouxoc tonoc: F(n) = F(n-1) + F(n-2)
return fibonacci(n-1) + fibonacci(n-2)

IMopdderyuo xpone:

# TTOAOYLOUOC UEPIXOV OpWY NG
# axoloudioc Fibonacci
for i in range(10):
print(f"F({i}) = {fibonacci(i)}")

# Extinworn arnotelecudtwy
# F) =0
#FQ) = 1
# F(2) = 1
#FG3) =2
# F(4) = 3
# F(5) =5
# F(6) = 8
# F(7) = 13
# F(8) = 21
# F(9) = 34

Ex. 2: Translation: Ancient to Modern Greek

User: Metdgpacé pou oto Néa eAAnvixd to xelyevo:

‘Ot yev 81 Mrhor tocatita dmexplvavtor ol 8¢ Avnvaiol dtoehudpevor 7O Ex @BV Aoywv Epacay AN’ obv
uévoL Ye amd To0TWY TEV BOVAELUETOY, O NUTV BOXETTE, TO HEV LENROVTA TV OpwUEVWY copéotepa xplveTe,
o Be dpavi] @ Bodhecian ¢ yryvoueva Rdn Vediode, xol Aaxedoupoviolc xal tiyn ol éimiol TAgioTov oM
nopaBeBAnuévol xal moteboavtes TAEloToV Xl opoioecVe.y’

Krikri: Axoloudel 1 petdppaon tou xewwévou ota Néo EAAnvind:

Ou MAhiot andvtnoay pe oautd to Aoyl Ov Adnvaiot, xodde amoyweoboay and tn ovlhtnon, elrav: “Oune
eoelc elote oL wévoL mov and auTég T cUINTACELS CUUTEPAUVETE GWO TE TOGO TO 0PAUTA OGO XAt TOL AOEOLTA, COV
va €youv NdN ouuPel. Elote unepBolxd auotddolol xou €yete evanodéoel tic eAnidec oug otoug Acxedouyo-
vioug, oty oYM xaw oTic Tpocdoxiec cac. Kou 660 meptocdtepo €xete moTéYEL o8 auTd, TOCO TEPLOCOTERO
Yo amoyonteuteite.’
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Ex. 3: Translation to JSON Output: Greek to Multiple Languages

User: Metdppocé pouv to mapoxdted xeluevo oamd tor VEo EAANVIXE OTa oy YAXE, OTO LOTOVIXE Xou OTa
YA, Adoe pou Tic petapedoeis o JSON.

Yoppova ye v odnyla 2009/28/EK tou Eupwnoixod KowvoBoukiou, e evépyela and avovemdolues un
opuxTEC TNYEC Vewpelton N oohix, NAtaxn, acpoVepuint), YewDepuixy, LBPOVEPULXY| XAl EVEPYELXL TWV WXEAVEY,
vdponhextent, and Blroudla, amd To EXAUGUEVO GTOUS XWPOUG UYELOVOUIXTG TOPNS aépla, omd oépia LOVEBwY
enelepyaoioc Auudtmy xot and Bloaépeta.

Krikri:

{

n I

en": "According to Directive 2009/28/EC of the European Parliament, energy from renewable
non-fossil sources includes wind, solar, aerothermal, geothermal, hydrothermal and ocean energy,
hydropower, biomass, landfill gas, sewage treatment plant gas and biogases.",

"es": "De conformidad con la Directiva 2009/28/CE del Parlamento Europeo, la energia procedente
de fuentes renovables no foésiles incluye la edlica, solar, aerotérmica, geotérmica, hidrotérmica
y la energia del océano, hidroeléctrica, procedente de la biomasa, de los gases de vertedero,
de los gases de estacidn depuradora de aguas residuales y de los biogas.”,

"fr":. "Conformément a la directive 2009/28/CE du Parlement européen, les énergies renouvelables
non fossiles comprennent 1’éolien, le solaire, 1’aérothermique, la géothermie, 1’hydrothermie
et 1’énergie océanique, 1’hydroélectricité, la biomasse, les gaz de décharge, les gaz de station
d’épuration et les biogaz.”

}

Ex. 4: Summarization: Basketball game

User: Mrnopeic va dnutovpyRoeic wa nepthndm 5 npotdoewy yia tov mopoxdte aydve undoxet: (User provides
the text of an article describing a 2025 basketball game)

Krikri: O Olvpmoxde vixnoe tnv Mnoptoehdva e 90-88 ce éva cuvopmactind mouyvidt, yden oe €va
vixntiplo xohddL tou Povpvié otny exnvon. O Belévxop xou o I'roc onuelwooav and 24 xou 20 névToug
avtioTolya Yo Toug VixnTég, eved 0 Metol ftav o xopugaioc Twv Koatohavov ye 16 novtous. H opddo tou
Mroptloxa napéuetve otny xopueth e Evpwhiyxoc puetd and auth m onuavtieg vixn.

Ex. 5: History: Population exchange between Greece and Turkey

User: Yuvoioe oe pla mopdypapo tmv EAAnvotovexixy avtodhayh tAnduoudy tou 1923

Krikri: H EXAnvotoupxixd avtodhayf tAnduoudy tou 1923, nou npofrépinxe and t Luvirixn tne Awldvng,
anotéleae o palixn yetoxivnon mAnduopmy petald EANGSag xow Tovpxioc ue otdyo tnv opoyevomoinon
Twv edvdv-xpatdyv. Ilepinou 1,5 exatoppdeio EXAnvec ypiotiavol, xuplwe and tnv Avatohuxy) Opdxr, tnv
Tewvia, Tov ITévto xan v Kannoboxia, yetoxwvidnxay otnv EXNGSa, eved avtiotorya 500.000 Mouvcouludvol
(nvplwe Tovpxor odNS xou ITopdxor xouw Adiyyoavol) yetoavidnxay and v EXAEda otnv Tovpxio. Auth 7
AVTAANAY N, TIPS TIC TEAYLXES TNS CUVETELES YL TOUG OVUPOTOUG TOU EXTOTUOTNXAY, ATOTEAECE VAL AT TO.
ONUOVTIXOTERA YEYOVOTA TOU BLodp@waay T cUYYeovn dnuoyeapxy xat e3voTixy cbvieon Twy dV0 Ywedy,
odNYWVTOC OF Uial o OUoLoYEVT) edvixn TowtdtnTa Yot xdde xpdtoc. H Sobixascta auth ohoxinedddnxe to
1924 xou Yewpeitor 0pdoNUO GTIC EAANVOTOUPUIXES CYETELS.

Ex. 6: High school biology: The process of photosynthesis

User: Adoe wa obvodn e Stadiaciog tne pwtochvieonc oe pio napdypopo.

Krikri: H gwtoobvieon elvar 1 Siadixoocior e Ty onolor Tar QUTE, YENOULOTOLWVTOG TNV NALAXY EVERYELD,
peTatpEnovy o dogeldio Tou dvdpaxa ("O2) xou to vepd (H20) oe yhuxdln ("6H1206) xon ouydvo (02).
SUYHEXQWEVA, 1 YAWEOPUAAN 6T QOANL AmOPEOYH PKC, dlaoTd To Vepd aneleuieptyvovTtog oEuydvo, xou
XENOLIOTOLWOVTOSC TO LdpOYSVO cuvlétel YAUxOLn and o Bioleldio tou dvdpaxa. H mopoyduevn yhuxdln
anotehel TNYN EVERYELAC Y TO QUTO, EVEH TO OEUYOVO AMEAELVEPMVETUL OTNV ATUOCHPULEN WG ONUAVTIXO
nopanpoioy, urootnellovtas TNy emBleon TV dEEOPBLOY 0pYUVICUMY.
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Ex. 7: Chain-of-Thought Reasoning: Math problem

System: (Appropriate system prompt used to enable thinking mode)

User: H AAixn éyel éva xahdd pe unho. Afvel ta 2/5 twv phhov oty adep@h Tne xo o 1/5 otov adep@d .
Tehxd tne pévouyv 6 phia. Iléca uhha elye apyixd 6To xahdit;

Krikri:

<thinking>
Ac Noouye autd To TEORAnua Briuc mpog Bruo:

1. 'Eotw x o apywoc aprdudc phlwyv mou elye n Aiixn
2. Tvwplloupe éi:

* Alvel 2/5 tou x otnv adep@R tne

* Afver 1/5 tou x otov adeppd tne

* Metd and 6ho autd TG HEVOLV 6 PHAL

3. Ac xdvouye v eglowon:

* Apywd elye: x unka

* Tne pévouv: 6 unha

* Apo: x = (2/5)x - (1/5)x = 6

* Amlornowdvtac: x - (3/5)x = 6

* Yuvdudlovtac dpouc: (2/5)x = 6

* ITohhamhaoidlovtoc xou Ta 800 péAn pe 5/2:
* x =15

Ac¢ enahndedoovye:

* Apywd elye 15 pRha

* Alver: 2/5 * 15 = 6 uhla oty adeppr g
* Afver: 1/5 * 15 = 3 ufha oTtov abeppd g
* Mévouv: 15 - 6 - 3 = 6 ufha

H Mon elvar owoth!

</thinking>

<output>
H AN elye apywd 15 yfha oto xohdd tne.

Mropobye va to enaindedoouye:

* 'Edwoe 6 uhia otnv adeppr; tne (2/5 tou cuvoiou)
* 'Edwoe 3 yRha otov adeppd tne (1/5 tou cuvdrou)
* 'Etol tng éuewvay 6 unha (15 - 6 - 3 = 6)
</output>
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