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Abstract 

Large neural network language models 

trained on huge corpora of text have 

achieved state-of-the-art results on several 

natural language tasks. Using the pre-

trained language model GPT-2, we propose 

algorithms for grammar error detection 

(GED). Our approach frames the GED 

problem as an anomaly detection problem 

and requires no additional training data. We 

leverage the next-word probability, word-

embeddings from GPT-2 to detect 

anomalous sentences, and evaluate the 

result on the English learners’ corpora, 

Lang-8, CoNLL-2014, FCE, and BEA-

20191. Our methods achieve a competitive 

area under the receiver operating 

characteristic (AUROC) on the English 

learners' corpora when detecting 

ungrammatical sentences. An experimental 

comparison of normalization methods 

shows that rule-driven methods are the 

most effective. 

1 Introduction 

Anomaly detection (AD) on texts is a task to 

identify datapoints that have distinct properties 

from the normality in a dataset. In the domain of 

grammar, this type of task can be seen as a type of 
Grammar Error Detection (GED) and can further 

be developed into Grammar Error Correction 

(GEC). AD on texts, GED, and GEC can be 

beneficial in the process of language learning and 

document editing, since language learners and 

editors often need to pick out unnatural sentences 

to modify. In addition to grammar, some tasks 

focus on detecting the contextual anomalies (Ruff 

et al., 2019) and words that evoke specific events 

in texts, namely, Event Detection (Veyseh et al., 

 
1 Our code is available at https://github.com/limkhaiin1012/ad 

2021). AD on texts also can be repurposed for other 

types of data. For instance, previous studies have 
applied grammar-based detection to time-series 

data (Senin et al., 2014, Gao, 2020). It also has been 

widely applied to real-world problems, such as 

fraud detection (Dorronsoro et al., 1997).  

In this paper, we present methods of AD 

primarily based on the next-word probability and 

word-embeddings of the popular pre-trained 

language model, GPT-2 (Radford et al., 2019). The 

next-word probability can include a mix of 

information, specifically, grammar, meaning, and 

contexts. These pieces of information are all 

included in the next-word probability and word-

embeddings. We leverage this to detect anomalous 

sentences. We applied four algorithms to detect 

anomalous sentences based on the given next-word 

probability and word-embeddings: Baseline, 

embedding-conditioned (Cosine) method, 

Frequency-conditioned methods, and Positional 

probability-conditioned method. We also reduce 

sentence-level algorithms to token-level ones and 

compare our results with those in the GED 

literature. Our methods do not require further 

training and labeling and can save a large amount 

of time.  

To summarize, we present an anomaly detection 

study based on the next-word probability and 

word-embeddings in the pre-trained language 

model GPT-2. Our main contributions are (i) an 

examination of the performance of the popular 

language model, GPT-2, (ii) detecting anomalies 

that leverage the pre-trained next-word probability 

and word-embeddings in GPT-2 to save time, (iii) 

new methods which have the potential to develop 

into AD on other types of data, (iv) competitive 

scores compared with existing AD on grammar. 

Detecting Anomalies on Texts using GPT-2 
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2 Related Work 

Early Grammar error detection works train a 

classifier to detect specific grammatical types of 

errors made by non-native English speakers (e.g. 

Han et al., 2006, Tajiri, 2012). Rei and 

Yannakoudakis (2016), and subsequent 

improvements based on this work (Rei, 2017, Rei 

et al., 2017) train GED neural networks which 

capture many different types of grammatical errors. 

These models perform a binary and a multi-class 

classification task based on token-level 

embeddings. More recent works (e.g. Bell et al., 

2019, Yuan et al. 2021) started to leverage 

embeddings of pre-trained language models as the 

input to a similar bi-LSTM model that Rei (2017) 

proposed. These studies are focused on token-level 

accuracy and require another stage of training. 

Yasunaga et al. (2021)’s work employs the next-

word probability from GPT-2, but mainly focuses 

on training models for GEC, a task that provides 

suggestions for anomalous tokens. 

Previous studies on AD of texts, such as 

Schölkopf et al. (2001) and Manevitz and Yousef 

(2001) use a one-class classification of OC-SVM. 

Manevitz and Yousef (2007) employ a 

compression-decompression autoencoder on 

document classification. Kannan et al. (2017)’s 

method includes a non-negative matrix 

factorization and the document-terms matrices. 

Mahapatra et al. (2012) created a context-detection 

algorithm based on external corpora. This is for 

detecting anomalies in particular datasets and uses 

an LDA-based text clustering algorithm. Ruff et al. 

(2019) introduce a Context Vector Data 

Description (CVDD) method which leverages the 

embeddings of pre-trained models—Glove and 

Fasttext and BERT. The CVDD finds several 

compact descriptions of contexts in the training 

data which are optimized as context vectors. An 

anomaly in a CVDD model is defined as a 

deviation from the contextual embedding of a 

datapoint from these context vectors. Most of these 

AD studies focus on contextual anomalies and 

require another training stage. 

Our study is similar to AD, in the sense that a 

model is trained to represent a normal probability 

distribution and an anomaly is defined as a sample 

with low probability. Also, it detects sentence-level 

plausibility, which conforms to a typical anomaly 

detection task if a sentence is seen as a datapoint. 

On the other hand, since we perform this task on 

the naturalness of sentences, it could be seen as a 

type of GED. We also include the result of token-

level detection and compare it to those in previous 

GED literature. 

 

3 Description of Algorithms 

In this section, we introduce several sentence-

level algorithms for detecting anomalies. Our 

algorithms include steps of hyperparameter-tuning 

(described in 3.5) and detection. We further reduce 

each of these sentence-level algorithms to token-

level ones. The results are included in the next 

section. 

3.1 Baseline Method 

We define sentence alpha (α) as the formal 

conceptualization of the naturalness of sentences. 

We use the term ‘naturalness’ as the opposite of 

anomaly because next-word probability and word-

embeddings can not only include grammatical 

information, but also include semantic and 

pragmatic correctness. The next-word probability 

in GPT-2 is predicted based on the past tokens in a 

sentence as shown in (1). 

 

W<t:= (w1, . . . , wt−1)   (1) 

  

GPT-2 can give the next token using the 

conditional probability of past tokens of a current 

token in a sentence. This is defined in (2), where V 

is the vocabulary of GPT-2. 

 

P(wt|W<t), wt ∈ V   (2) 

 

To get the sentence alpha (α) for each input 

token in an evaluation sentence, we extract the 

unnormalized next-word probabilities of all the 

tokens (logits) in the vocabulary and we normalize 

these logits using a softmax layer. The normalized 

probability of the next token wt in the evaluation 

sentence (p(wt|W<t)) is selected. After all the next-

word probabilities in the evaluation sentence are 

selected, we process these next-word probabilities 

in the following way: if a next-word probability is 

lower than a threshold (Tw), it is replaced with the 

negative length of the evaluation sentence, as 

shown in (3). This manipulation is to ensure that 

the alpha (α) of an anomalous sentence can always 

be negative. If not lower than the threshold, the 

original next-word probability is appended to a 

sentence list. 
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p(𝑤𝑡|𝑊<𝑡) =

{
−𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒), 𝑖𝑓  𝑝(𝑤𝑡|𝑊<𝑡) < 𝑇𝑤

𝑝(𝑤𝑡|𝑊<𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (3)  

 

We keep processing until all the next-word 

probabilities are processed. A sentence list should 

now consist of the same amounts of next-word 

probabilities as the sentence length. Then we take 

the arithmetic mean of the sentence list to get the 

sentence alpha (α). When the sentence alpha is 

positive, the sentence is seen as natural; when the 

sentence alpha is negative, the sentence is seen as 

an anomaly.   

In the token-level algorithm, a token is labeled 

as an anomaly once the next-word probability is 

lower than a threshold (Tw). If not lower, it is 

labeled as normal.  

3.2 Frequency-conditioned method 

The Frequency-conditioned method is also a rule-

based method. We use the same method to get the 

next-word probabilities of a sentence, but these 

next-word probabilities are further conditioned on 

the occurrence count in the Natural Language Tool 

Kit (NLTK) Brown database. The Normalized 

Frequency (NF) is defined as in (4), where VB is the 

total number of tokens in the Brown corpus and the 

function c is the count of the token: 

 

NF= c(wt)/c(VB)  (42) 

 

In this method, the next-word probability 

conditioned on NF is defined as (5). This 

manipulation can ensure a token gets a high or low 

probability not because it is frequent or rare. 

 

Pft (next token|NF) 

= P(wt|W<t)/ NF  (5) 

 

After converting the next-word probability into 

a frequency-conditioned probability, we process 

the frequency-conditioned probability using a rule. 

If Pft is lower than a threshold (Tw), we replace Pft 

with a negative threshold (Tw) multiplied by the 

length of the sentence (see (6)). This is to ensure 

the alpha (αf) of an anomalous sentence can always 

be negative and rejected at the end of the algorithm 

if the sentence is not natural. 

 

Pft = -Tw *len(sentence)  (6) 

 
2 This is also known as term frequency (tf) in tf-idf. 

 

After all the next-word probabilities in a 

sentence are processed, we take the arithmetic 

mean of each Pft in the sentence list to get the 

normalized frequency-adjusted sentence alpha (αf). 

αf=mean (Pf1, Pf2,…Pft)  (7)  

The same rule is used for αf: if αf is lower than 0, 

the sentence is rejected and seen as an anomaly; 

otherwise, the sentence is seen as natural. 

In addition to the frequency-conditioned 

method, we use Youden’s Index to select an 

optimal threshold value. Youden’s Index is a 

statistical method to obtain an optimal threshold of 

AUROC. An optimal threshold is defined as the 

largest value of the difference between the True 

positive rate and the False positive rate in this 

method. After all the next-word probabilities are 

converted into frequency-conditioned 

probabilities, no replacement rule of Pft is further 

implemented, and the original Pft in a sentence is 

always appended to the sentence list. We take the 

arithmetic mean of the sentence list to get αf and 

use Youden’s Index to calculate an optimal 

threshold value. This optimized threshold is used to 

get the prediction of an anomaly: if αf is lower than 

the threshold, the sentence is rejected and seen as 

an anomaly; otherwise, the sentence is seen as 

natural. No hyperparameters are tuned in this 

method. 

In the token-level algorithm, a token is marked 

as an anomaly once Pft is lower than a threshold 

(Tw, rule-method). We also leverage Youden’s 

Index to get an optimal threshold. A token is 

marked as an anomaly when Pft is lower than the 

optimized threshold; otherwise, Pft is seen as 

natural. 

3.3 Word Embeddings Cosine Similarity 

method 

The cosine method follows the same steps before 

getting the next-word probability (P(wt|W<t)) in 

previous methods. If the next-word probability of 

an input token is lower than the threshold, we find 

the k most probable next tokens from the next-

word probabilities of an input token. After 

extracting word vectors of these k tokens from the 

embedding layer of GPT-2, we compare the cosine 

similarity loss of word vectors of the k most 

probable tokens, to the word vector of the next 
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token (wt) in the evaluation sentence. If the cosine 

similarity loss 3  of any of the k most probable 

tokens is lower (very similar) than a cosine-

threshold (Tc), the original next-word probability 

of an input token is appended to the sentence list. 

Otherwise, a negative integer, that equals the 

negative of the length of the sentence is appended 

to the sentence list. After all the next-word 

probabilities in a sentence are processed, we take 

the arithmetic mean of the sentence list. The same 

procedure to get the sentence alpha with a cosine 

method (αc) is used: when the sentence alpha is 

positive, the sentence is seen as natural; when the 

sentence is negative, the sentence is seen as an 

anomaly.   

In the token-level algorithm, a token (wt) is 

marked as an anomaly if its next-word probability 

P(wt|W<t) is lower than a threshold (Tw), and its 

cosine similarity losses of word vectors with any k 

most probable token are not lower than Tc. 

 

3.4 Positional probability conditioned 

method 

The Positional probability-conditioned method is 

similar to the Frequency-conditioned method. The 

same method is used to get the next-word 

probabilities in a sentence, but these next-word 

probabilities are further conditioned on the 

positional probabilities that GPT-2 provides. We 

first get the positional probability of a token Pt from 

GPT-2, which is the probability of a token being in 

different positions in a sentence. The positional 

probability Pt is defined in (8):  

Pt =p (Pt|P1…Pt)     (8) 

We take the log to avoid an overflow of numbers, 

and define the next-word probability conditioned 

on a positional probability PLt as: 

PLt=log(P(wt|W<t)/Pt) (9)

   

We then process PLt in the following way. If PLt 

is lower than a threshold (Tw), we replace PLt with 

Tw multiplied by the length of the sentence. This is 

to ensure that the alpha (αp) of an anomalous 

sentence can always be larger than the threshold 

and be rejected at the end of the algorithm. 

 
3 Cosine similarity is often used to measure the angle 

distance between two word vectors. The cos(θ) is 

defined as 

PLt = len(sentence)*Tw   (10) 

After all of the next-word probabilities are 

processed in a sentence, the sentence alpha 

conditioned on the positional probability (αp) is 

defined as the arithmetic mean of all the PLt in a 

sentence list. 

αp=mean (PL1, PL2,…PLt) (11) 

The same procedure is used to get αp: if αp is lower 

than the threshold (Tw), the sentence is rejected and 

seen as an anomaly; otherwise, the sentence is seen 

as natural. 

In addition to the above rule-based method, we 

also use Youden’s Index to get an optimal threshold 

and apply the threshold to get the prediction of 

anomaly. Similar to the frequency-based method, 

after a next-word probability is converted to 

positional probability-conditioned probability, no 

replacement of PLt is further implemented, and the 

original PLt in a sentence is appended to a sentence 

list. We take the arithmetic mean of the sentence 

list to get sentence alpha (αLt) and use Youden’s 

Index to calculate an optimal threshold. We use this 

threshold to get the prediction of an anomaly: when 

the sentence alpha is positive, the sentence is seen 

as natural; when the sentence is negative, the 

sentence is seen as an anomaly.  No 

hyperparameters are tuned. 

In the token-level algorithm, a token is marked 

as an anomaly when PLt is lower than a threshold 

(Tw, rule-method). We also leverage Youden’s 

Index to get an optimal threshold. In this method, a 

token is marked as an anomaly when PLt is higher 

than the optimized threshold.  

3.5 Hyperparameter tuning 

We select hyperparameters for these methods and 

use Grid search (LaValle et al., 2004) to get optimal 

hyperparameters. In section 3.1, Tw ∈ {0.002, 

0.0001, 0.0005, 0.00001, 0.00005, 0.000001, 

0.000005} for sentence-level algorithms and Tw ∈ 

{0.1, 0.05, 0.01, 0.005, 0.002, 0.0001, 0.0005} for 

token-level algorithms. In 3.2, Tw ∈ {5, 10, 20, 40, 

100, 200}. In 3.3 Tw ∈ {0.002, 0.0001, 0.0005, 

0.00001, 0.00005, 0.000001, 0.000005} for 

sentence-level algorithms and Tw ∈ {0.1, 0.05, 

0.01, 0.005, 0.002, 0.0001, 0.0005} for token-level 

cos(θ) = 𝐴 ∙ 𝐵/∥ 𝐴 ∥∥ 𝐵 ∥  

, where A and B are two vectors. The numerator is the 

inner product of two vectors and the denominator is 

the product of the lengths of two vectors. 
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algorithms. Tc ∈ {-0.25, -0.26, -0.27, -0.28, -0.29, 

-0.30, -0.31, -0.32, -0.33, -0.34, -0.35} for 

sentence-level algorithms and Tc ∈ {-0.4, -0.45, -

0.5, -0.55, -0.6, -0.65, -0.7, -0.75, -0.8, -0.85} for 

token-level algorithms, k ∈ {2, 3, 4, 5, 6, 7}. In 3.4, 

Tw ∈ {40, 50, 60, 70, 80, 90, 100}. We use AUROC 

scores to tune hyperparameters in sentence-level 

algorithms and F1 scores to tune hyperparameters 

in token-level algorithms. 

4 Experiment 

4.1 Pre-trained model, Datasets 

We employ the pre-trained GPT-2 LMHeadModel 

to test the proposed algorithms. The next-word 

probabilities and the word embedding are extracted 

from this model. 

We follow previous GED studies and use the 

four English learners’ corpus of Lang-8 (Mizumoto 

et al., 2011), the First Certificate in English (FCE) 

corpus (Yannakoudakis et al., 2011), CoNLL-14 

(Ng et al., 2014), and the Cambridge English Write 

& Improve + LOCNESS corpus released in the 

Building Educational Applications (BEA-19) 

shared task. The Lang-8 data are labeled with the 

number of grammatical errors in sentences. A 

sentence is labeled as anomalous during 

preprocessing when there is at least one error in the 

sentence. The CoNLL-14 training data, FCE, and 

BEA-19 are corpora with suggestions on the errors 

of tokens. In the sentence-level detection task, once 

a suggestion on an error is given in a sentence in 

CoNLL-14, we label the entire sentence as 

anomalous. We shuffle Lang-8 and CoNLL-14 and 

extract 10,000 evaluation sentences for the sake of 

processing time. The other 100 sentences are 

extracted for hyperparameters tuning. As for BEA-

19, we extract the first 100 sentences for 

hyperparameter tuning and the rest of the sentences 

are used for evaluation.  

To compare our result with Yasunaga et al. 

(2021), we perform model selection on 70% of the 

BEA-19 dev sentences (2717 sentences), and the 

result is included in the Appendix. The 30% held-

out evaluation sentences (1186 sentences) are used 

for comparison. 

 

 

 

 

 

 

AD Lang-8 CoNLL-14 BEA-dev 

P R F1 AUROC P R F1 AUROC P R F0.5 AUROC 

Baseline 61.69 79.89 69.62 61.68 49.30 99.28 65.89 51.60 68.24 96.22 72.45 56.96 

Frequency 

(auroc) 
54.25 51.09 52.63 51.00 45.92 47.07 46.49 50.77 64.18 43.62 58.65 49.44 

Frequency 

(rule) 
50.23 48.93 49.57 51.45 49.89 34.52 40.80 52.67 66.50 71.09 67.37 52.65 

Cosine 64.58 64.04 64.47 61.75 45.91 97.47 62.42 51.57 74.59 71.09 73.86 63.30 

Position 

(auroc) 
53.23 53.23 50.42 53.12 45.57 50.11 47.73 49.56 66.77 54.95 64.02 52.35 

Position(rule) 56.87 87.16 68.83 61.45 52.27 82.57 64.01 55.80 70.88 75.13 71.69 59.22 

Yasunaga et 

al. (2021) 
        

71.4 71.3 71.4  

 

 

 
GED CoNLL-2014 BEA-dev FCE-test 

 P R F0.5 AUROC P R F0.5 AUROC P R F0.5 AUROC 

Baseline 08.60 44.10 10.25 54.26 11.44 70.45 13.75 55.65 18.14 56.02 20.98 57.41 

Frequency 

(auroc) 

08.25 51.63 09.91 54.00 12.07 56.78 14.33 55.96 17.26 57.34 20.07 56.27 

Frequency 

(rule) 

09.94 52.15 09.70 54.10 10.32 84.20 12.51 52.40 15.30 82.69 18.28 54.05 

Cosine 08.36 33.42 09.83 52.80 11.65 66.07 13.94 55.85 18.10 55.64 20.91 57.30 

Position(auroc) 07.36 52.79 08.89 51.18 10.02 53.50 11.96 50.68 14.44 49.20 16.81 50.83 

Position (rule) 07.14 91.49 08.75 50.56 09.77 95.00 11.91 49.92 14.26 91.65 17.15 50.90 

Bell et al. 

(2019) 

38.04 33.12 36.94  53.31 35.65 48.50  64.96 38.89 57.28  

Yuan et al. 

(2021) 

55.15 39.78 51.19  72.81 46.85 65.54  82.05 50.49 72.93  

Table 2: token-level performance on CoNLL-2014, BEA-dev and FCE-test. 

 

Table 1: sentence-level performance on Lang-8, CoNLL-2014 and BEA-dev. 
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As for CoNLL-14, FCE, and BEA-19 in the 

token-level detection task, we extract the first 100 

sentences from each corpus for hyperparameter 

tuning and the rest of the sentences in each corpus 

are used for evaluation. A token is labeled as an 

anomaly once a suggestion is given. 

4.2 Results 

The results of the experiments are shown in Table 

1 and Table 2. Overall, the results show 

competitive AUROC scores. This demonstrates the 

effectiveness of our algorithms. Specifically, in 

sentence-level detection (Table 14), most methods 

show high F scores and AUROC scores. The 

Baseline method works the best as evidenced by 

the two highest F scores (69.62% and 65.89%) out 

of three corpora. This suggests that our method can 

correctly filter out anomalous sentences. It also 

suggests the next-word probability from GPT-2 

model is effective in finding anomalous sentences 

from different types of language data we tested. 

Only a slight adjustment to next-word probabilities 

is required to get the optimal result. 

 Moreover, Frequency (rule) and Positional 

probability-based methods (rule) often show higher 

AUROC scores than methods including Youden’s 

Index. The F1 scores based on Positional 

probability also largely improve with the rule-

based method rather than methods including 

Youden’s Index method. This suggests that the 

rule-based detection and hand-tuning 

hyperparameters can detect anomalous sentences 

more than methods including Youden’s Index. 

We also note that the Cosine method can give 

satisfactory results, as shown by its competitive 

precision, recall rate, and F score in some corpora. 

Since the Cosine method compares the cosine 

similarity between the k most probable tokens and 

the next token using word vectors in the word-

embeddings, it suggests word-embeddings can be 
another effective resource to leverage. This again 

shows that the next-word probability and word-

embeddings from GPT-2 provide reliable 

information for AD.  

We compare our result on BEA-dev with 

Yasunaga et al. (2021). Our F0.5 scores from the 

baseline, Cosine, and Position methods show 

competitive results on 70% of the sentences during 

 
4 Yasunaga et al. (2021)’s LM-Critic is the closest work but is 

different from ours in that we include 1186 sentences solely from 

BEA-dev (not from GMEG-wiki and GMEG-yahoo) but Yasunaga 

our model selection (Table 3), so we specifically 

focus on these methods when evaluating on the 

30% held-out sentences (Table 1). We found that 

these three methods consistently show better 

performances and all outperform Yasunaga et al. 

(2021)’s 71.0-71.4 F0.5 score,   

As for token-level detection (Table 2), we 

include precision, recall, and F0.5 to compare our 

results with previous works. We found that these 

algorithms show decent AUROC scores and reflect 

a similar trend to what we have observed in the 

previous sentence-level detection: the Baseline 

method yields most of the best AUROC scores. 

Other methods, e.g. frequency-based method 

(auroc) also show a high AUROC score. Note that 

our methods do not require training data and 

labeling of training data, which are required in the 

literature. Also, unlike models in previous 

literature, we do not train a model specifically for 

GED tasks and GPT-2 is not specifically trained for 

GED as well. Therefore, even though the F0.5 scores 

are disappointing, we suggest these algorithms can 

still be useful.   

Overall, we have shown that next-word 

probabilities and word-embeddings from GPT-2 

can successfully be harnessed to detect anomalous 

sentences in the corpora, but to detect anomalous 

tokens, further improvements should be 

considered. 

5 Conclusion 

We have performed several anomaly detection 

tasks based on the next-word probabilities and the 

word-embeddings in GPT-2. Our methods do not 

require further training and labeling and have 

yielded competitive results. This largely reduces 

the time for training and data-preprocessing. 

Importantly, the finding in this study reveals that 

the next-word probabilities in GPT-2 are reliable 

for checking sentential anomalies, and rule-driven 

methods can correctly detect anomalous sentences. 

Token-level experiments also show decent 

AUROC scores but require further improvement 

on precision and recall rates. We applied these 

algorithms on AD and GED but these algorithms 

et al. (2021) samples 600 sentences from the three datasets. Despite 

the difference, we still use F0.5 scores here just to compare our 

results with Yasunaga et al. (2021). 
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can be further adapted into a GEC task or other AD 

tasks on different datatypes. 
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Appendix 

Table 3 shows the result of 70% of the BEA-dev 

evaluation sentences. We found that some rule-

driven methods (Baseline, Cosine, Position) show 

higher AUROC and F0.5 scores, so we specifically 

compare our results from the three methods with 

Yasunaga et al. (2021). 

 BEA-dev 

 P R F0.5 AUROC 

Baseline 70.22 96.59 74.28 55.09 

Frequency (auroc) 68.84 47.9 63.3 51.08 

Frequency (rule) 71.11 72.51 71.38 55.19 

Cosine 75.01 70.06 73.97 60.42 

Position (auroc) 69.66 52.85 65.5 52.16 

Position(rule) 73.34 75.49 73.76 58.81  

Table 3:  model selection on BEA-dev 
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