
1

Abstract

Large neural network language models

trained on huge corpora of text have

achieved state-of-the-art results on several

natural language tasks. Using the pre-

trained language model GPT-2, we propose

algorithms for grammar error detection

(GED). Our approach frames the GED

problem as an anomaly detection problem

and requires no additional training data. We

leverage the next-word probability, word-

embeddings from GPT-2 to detect

anomalous sentences, and evaluate the

result on the English learners’ corpora,

Lang-8, CoNLL-2014, FCE, and BEA-

20191. Our methods achieve a competitive

area under the receiver operating

characteristic (AUROC) on the English

learners' corpora when detecting

ungrammatical sentences. An experimental

comparison of normalization methods

shows that rule-driven methods are the

most effective.

1 Introduction

Anomaly detection (AD) on texts is a task to

identify datapoints that have distinct properties

from the normality in a dataset. In the domain of

grammar, this type of task can be seen as a type of
Grammar Error Detection (GED) and can further

be developed into Grammar Error Correction

(GEC). AD on texts, GED, and GEC can be

beneficial in the process of language learning and

document editing, since language learners and

editors often need to pick out unnatural sentences

to modify. In addition to grammar, some tasks

focus on detecting the contextual anomalies (Ruff

et al., 2019) and words that evoke specific events

in texts, namely, Event Detection (Veyseh et al.,

1 Our code is available at https://github.com/limkhaiin1012/ad

2021). AD on texts also can be repurposed for other

types of data. For instance, previous studies have
applied grammar-based detection to time-series

data (Senin et al., 2014, Gao, 2020). It also has been

widely applied to real-world problems, such as

fraud detection (Dorronsoro et al., 1997).

In this paper, we present methods of AD

primarily based on the next-word probability and

word-embeddings of the popular pre-trained

language model, GPT-2 (Radford et al., 2019). The

next-word probability can include a mix of

information, specifically, grammar, meaning, and

contexts. These pieces of information are all

included in the next-word probability and word-

embeddings. We leverage this to detect anomalous

sentences. We applied four algorithms to detect

anomalous sentences based on the given next-word

probability and word-embeddings: Baseline,

embedding-conditioned (Cosine) method,

Frequency-conditioned methods, and Positional

probability-conditioned method. We also reduce

sentence-level algorithms to token-level ones and

compare our results with those in the GED

literature. Our methods do not require further

training and labeling and can save a large amount

of time.

To summarize, we present an anomaly detection

study based on the next-word probability and

word-embeddings in the pre-trained language

model GPT-2. Our main contributions are (i) an

examination of the performance of the popular

language model, GPT-2, (ii) detecting anomalies

that leverage the pre-trained next-word probability

and word-embeddings in GPT-2 to save time, (iii)

new methods which have the potential to develop

into AD on other types of data, (iv) competitive

scores compared with existing AD on grammar.

Detecting Anomalies on Texts using GPT-2

Anonymous ACL submission

https://github.com/limkhaiin1012/ad

2

2 Related Work

Early Grammar error detection works train a

classifier to detect specific grammatical types of

errors made by non-native English speakers (e.g.

Han et al., 2006, Tajiri, 2012). Rei and

Yannakoudakis (2016), and subsequent

improvements based on this work (Rei, 2017, Rei

et al., 2017) train GED neural networks which

capture many different types of grammatical errors.

These models perform a binary and a multi-class

classification task based on token-level

embeddings. More recent works (e.g. Bell et al.,

2019, Yuan et al. 2021) started to leverage

embeddings of pre-trained language models as the

input to a similar bi-LSTM model that Rei (2017)

proposed. These studies are focused on token-level

accuracy and require another stage of training.

Yasunaga et al. (2021)’s work employs the next-

word probability from GPT-2, but mainly focuses

on training models for GEC, a task that provides

suggestions for anomalous tokens.

Previous studies on AD of texts, such as

Schölkopf et al. (2001) and Manevitz and Yousef

(2001) use a one-class classification of OC-SVM.

Manevitz and Yousef (2007) employ a

compression-decompression autoencoder on

document classification. Kannan et al. (2017)’s

method includes a non-negative matrix

factorization and the document-terms matrices.

Mahapatra et al. (2012) created a context-detection

algorithm based on external corpora. This is for

detecting anomalies in particular datasets and uses

an LDA-based text clustering algorithm. Ruff et al.

(2019) introduce a Context Vector Data

Description (CVDD) method which leverages the

embeddings of pre-trained models—Glove and

Fasttext and BERT. The CVDD finds several

compact descriptions of contexts in the training

data which are optimized as context vectors. An

anomaly in a CVDD model is defined as a

deviation from the contextual embedding of a

datapoint from these context vectors. Most of these

AD studies focus on contextual anomalies and

require another training stage.

Our study is similar to AD, in the sense that a

model is trained to represent a normal probability

distribution and an anomaly is defined as a sample

with low probability. Also, it detects sentence-level

plausibility, which conforms to a typical anomaly

detection task if a sentence is seen as a datapoint.

On the other hand, since we perform this task on

the naturalness of sentences, it could be seen as a

type of GED. We also include the result of token-

level detection and compare it to those in previous

GED literature.

3 Description of Algorithms

In this section, we introduce several sentence-

level algorithms for detecting anomalies. Our

algorithms include steps of hyperparameter-tuning

(described in 3.5) and detection. We further reduce

each of these sentence-level algorithms to token-

level ones. The results are included in the next

section.

3.1 Baseline Method

We define sentence alpha (α) as the formal

conceptualization of the naturalness of sentences.

We use the term ‘naturalness’ as the opposite of

anomaly because next-word probability and word-

embeddings can not only include grammatical

information, but also include semantic and

pragmatic correctness. The next-word probability

in GPT-2 is predicted based on the past tokens in a

sentence as shown in (1).

W<t:= (w1, . . . , wt−1) (1)

GPT-2 can give the next token using the

conditional probability of past tokens of a current

token in a sentence. This is defined in (2), where V

is the vocabulary of GPT-2.

P(wt|W<t), wt ∈ V (2)

To get the sentence alpha (α) for each input

token in an evaluation sentence, we extract the

unnormalized next-word probabilities of all the

tokens (logits) in the vocabulary and we normalize

these logits using a softmax layer. The normalized

probability of the next token wt in the evaluation

sentence (p(wt|W<t)) is selected. After all the next-

word probabilities in the evaluation sentence are

selected, we process these next-word probabilities

in the following way: if a next-word probability is

lower than a threshold (Tw), it is replaced with the

negative length of the evaluation sentence, as

shown in (3). This manipulation is to ensure that

the alpha (α) of an anomalous sentence can always

be negative. If not lower than the threshold, the

original next-word probability is appended to a

sentence list.

3

p(𝑤𝑡|𝑊<𝑡) =

{
−𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒), 𝑖𝑓 𝑝(𝑤𝑡|𝑊<𝑡) < 𝑇𝑤

𝑝(𝑤𝑡|𝑊<𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

We keep processing until all the next-word

probabilities are processed. A sentence list should

now consist of the same amounts of next-word

probabilities as the sentence length. Then we take

the arithmetic mean of the sentence list to get the

sentence alpha (α). When the sentence alpha is

positive, the sentence is seen as natural; when the

sentence alpha is negative, the sentence is seen as

an anomaly.

In the token-level algorithm, a token is labeled

as an anomaly once the next-word probability is

lower than a threshold (Tw). If not lower, it is

labeled as normal.

3.2 Frequency-conditioned method

The Frequency-conditioned method is also a rule-

based method. We use the same method to get the

next-word probabilities of a sentence, but these

next-word probabilities are further conditioned on

the occurrence count in the Natural Language Tool

Kit (NLTK) Brown database. The Normalized

Frequency (NF) is defined as in (4), where VB is the

total number of tokens in the Brown corpus and the

function c is the count of the token:

NF= c(wt)/c(VB) (42)

In this method, the next-word probability

conditioned on NF is defined as (5). This

manipulation can ensure a token gets a high or low

probability not because it is frequent or rare.

Pft (next token|NF)

= P(wt|W<t)/ NF (5)

After converting the next-word probability into

a frequency-conditioned probability, we process

the frequency-conditioned probability using a rule.

If Pft is lower than a threshold (Tw), we replace Pft

with a negative threshold (Tw) multiplied by the

length of the sentence (see (6)). This is to ensure

the alpha (αf) of an anomalous sentence can always

be negative and rejected at the end of the algorithm

if the sentence is not natural.

Pft = -Tw *len(sentence) (6)

2 This is also known as term frequency (tf) in tf-idf.

After all the next-word probabilities in a

sentence are processed, we take the arithmetic

mean of each Pft in the sentence list to get the

normalized frequency-adjusted sentence alpha (αf).

αf=mean (Pf1, Pf2,…Pft) (7)

The same rule is used for αf: if αf is lower than 0,

the sentence is rejected and seen as an anomaly;

otherwise, the sentence is seen as natural.

In addition to the frequency-conditioned

method, we use Youden’s Index to select an

optimal threshold value. Youden’s Index is a

statistical method to obtain an optimal threshold of

AUROC. An optimal threshold is defined as the

largest value of the difference between the True

positive rate and the False positive rate in this

method. After all the next-word probabilities are

converted into frequency-conditioned

probabilities, no replacement rule of Pft is further

implemented, and the original Pft in a sentence is

always appended to the sentence list. We take the

arithmetic mean of the sentence list to get αf and

use Youden’s Index to calculate an optimal

threshold value. This optimized threshold is used to

get the prediction of an anomaly: if αf is lower than

the threshold, the sentence is rejected and seen as

an anomaly; otherwise, the sentence is seen as

natural. No hyperparameters are tuned in this

method.

In the token-level algorithm, a token is marked

as an anomaly once Pft is lower than a threshold

(Tw, rule-method). We also leverage Youden’s

Index to get an optimal threshold. A token is

marked as an anomaly when Pft is lower than the

optimized threshold; otherwise, Pft is seen as

natural.

3.3 Word Embeddings Cosine Similarity

method

The cosine method follows the same steps before

getting the next-word probability (P(wt|W<t)) in

previous methods. If the next-word probability of

an input token is lower than the threshold, we find

the k most probable next tokens from the next-

word probabilities of an input token. After

extracting word vectors of these k tokens from the

embedding layer of GPT-2, we compare the cosine

similarity loss of word vectors of the k most

probable tokens, to the word vector of the next

4

token (wt) in the evaluation sentence. If the cosine

similarity loss 3 of any of the k most probable

tokens is lower (very similar) than a cosine-

threshold (Tc), the original next-word probability

of an input token is appended to the sentence list.

Otherwise, a negative integer, that equals the

negative of the length of the sentence is appended

to the sentence list. After all the next-word

probabilities in a sentence are processed, we take

the arithmetic mean of the sentence list. The same

procedure to get the sentence alpha with a cosine

method (αc) is used: when the sentence alpha is

positive, the sentence is seen as natural; when the

sentence is negative, the sentence is seen as an

anomaly.

In the token-level algorithm, a token (wt) is

marked as an anomaly if its next-word probability

P(wt|W<t) is lower than a threshold (Tw), and its

cosine similarity losses of word vectors with any k

most probable token are not lower than Tc.

3.4 Positional probability conditioned

method

The Positional probability-conditioned method is

similar to the Frequency-conditioned method. The

same method is used to get the next-word

probabilities in a sentence, but these next-word

probabilities are further conditioned on the

positional probabilities that GPT-2 provides. We

first get the positional probability of a token Pt from

GPT-2, which is the probability of a token being in

different positions in a sentence. The positional

probability Pt is defined in (8):

Pt =p (Pt|P1…Pt) (8)

We take the log to avoid an overflow of numbers,

and define the next-word probability conditioned

on a positional probability PLt as:

PLt=log(P(wt|W<t)/Pt) (9)

We then process PLt in the following way. If PLt

is lower than a threshold (Tw), we replace PLt with

Tw multiplied by the length of the sentence. This is

to ensure that the alpha (αp) of an anomalous

sentence can always be larger than the threshold

and be rejected at the end of the algorithm.

3 Cosine similarity is often used to measure the angle

distance between two word vectors. The cos(θ) is

defined as

PLt = len(sentence)*Tw (10)

After all of the next-word probabilities are

processed in a sentence, the sentence alpha

conditioned on the positional probability (αp) is

defined as the arithmetic mean of all the PLt in a

sentence list.

αp=mean (PL1, PL2,…PLt) (11)

The same procedure is used to get αp: if αp is lower

than the threshold (Tw), the sentence is rejected and

seen as an anomaly; otherwise, the sentence is seen

as natural.

In addition to the above rule-based method, we

also use Youden’s Index to get an optimal threshold

and apply the threshold to get the prediction of

anomaly. Similar to the frequency-based method,

after a next-word probability is converted to

positional probability-conditioned probability, no

replacement of PLt is further implemented, and the

original PLt in a sentence is appended to a sentence

list. We take the arithmetic mean of the sentence

list to get sentence alpha (αLt) and use Youden’s

Index to calculate an optimal threshold. We use this

threshold to get the prediction of an anomaly: when

the sentence alpha is positive, the sentence is seen

as natural; when the sentence is negative, the

sentence is seen as an anomaly. No

hyperparameters are tuned.

In the token-level algorithm, a token is marked

as an anomaly when PLt is lower than a threshold

(Tw, rule-method). We also leverage Youden’s

Index to get an optimal threshold. In this method, a

token is marked as an anomaly when PLt is higher

than the optimized threshold.

3.5 Hyperparameter tuning

We select hyperparameters for these methods and

use Grid search (LaValle et al., 2004) to get optimal

hyperparameters. In section 3.1, Tw ∈ {0.002,

0.0001, 0.0005, 0.00001, 0.00005, 0.000001,

0.000005} for sentence-level algorithms and Tw ∈

{0.1, 0.05, 0.01, 0.005, 0.002, 0.0001, 0.0005} for

token-level algorithms. In 3.2, Tw ∈ {5, 10, 20, 40,

100, 200}. In 3.3 Tw ∈ {0.002, 0.0001, 0.0005,

0.00001, 0.00005, 0.000001, 0.000005} for

sentence-level algorithms and Tw ∈ {0.1, 0.05,

0.01, 0.005, 0.002, 0.0001, 0.0005} for token-level

cos(θ) = 𝐴 ∙ 𝐵/∥ 𝐴 ∥∥ 𝐵 ∥

, where A and B are two vectors. The numerator is the

inner product of two vectors and the denominator is

the product of the lengths of two vectors.

5

algorithms. Tc ∈ {-0.25, -0.26, -0.27, -0.28, -0.29,

-0.30, -0.31, -0.32, -0.33, -0.34, -0.35} for

sentence-level algorithms and Tc ∈ {-0.4, -0.45, -

0.5, -0.55, -0.6, -0.65, -0.7, -0.75, -0.8, -0.85} for

token-level algorithms, k ∈ {2, 3, 4, 5, 6, 7}. In 3.4,

Tw ∈ {40, 50, 60, 70, 80, 90, 100}. We use AUROC

scores to tune hyperparameters in sentence-level

algorithms and F1 scores to tune hyperparameters

in token-level algorithms.

4 Experiment

4.1 Pre-trained model, Datasets

We employ the pre-trained GPT-2 LMHeadModel

to test the proposed algorithms. The next-word

probabilities and the word embedding are extracted

from this model.

We follow previous GED studies and use the

four English learners’ corpus of Lang-8 (Mizumoto

et al., 2011), the First Certificate in English (FCE)

corpus (Yannakoudakis et al., 2011), CoNLL-14

(Ng et al., 2014), and the Cambridge English Write

& Improve + LOCNESS corpus released in the

Building Educational Applications (BEA-19)

shared task. The Lang-8 data are labeled with the

number of grammatical errors in sentences. A

sentence is labeled as anomalous during

preprocessing when there is at least one error in the

sentence. The CoNLL-14 training data, FCE, and

BEA-19 are corpora with suggestions on the errors

of tokens. In the sentence-level detection task, once

a suggestion on an error is given in a sentence in

CoNLL-14, we label the entire sentence as

anomalous. We shuffle Lang-8 and CoNLL-14 and

extract 10,000 evaluation sentences for the sake of

processing time. The other 100 sentences are

extracted for hyperparameters tuning. As for BEA-

19, we extract the first 100 sentences for

hyperparameter tuning and the rest of the sentences

are used for evaluation.

To compare our result with Yasunaga et al.

(2021), we perform model selection on 70% of the

BEA-19 dev sentences (2717 sentences), and the

result is included in the Appendix. The 30% held-

out evaluation sentences (1186 sentences) are used

for comparison.

AD Lang-8 CoNLL-14 BEA-dev

P R F1 AUROC P R F1 AUROC P R F0.5 AUROC

Baseline 61.69 79.89 69.62 61.68 49.30 99.28 65.89 51.60 68.24 96.22 72.45 56.96

Frequency

(auroc)
54.25 51.09 52.63 51.00 45.92 47.07 46.49 50.77 64.18 43.62 58.65 49.44

Frequency

(rule)
50.23 48.93 49.57 51.45 49.89 34.52 40.80 52.67 66.50 71.09 67.37 52.65

Cosine 64.58 64.04 64.47 61.75 45.91 97.47 62.42 51.57 74.59 71.09 73.86 63.30

Position

(auroc)
53.23 53.23 50.42 53.12 45.57 50.11 47.73 49.56 66.77 54.95 64.02 52.35

Position(rule) 56.87 87.16 68.83 61.45 52.27 82.57 64.01 55.80 70.88 75.13 71.69 59.22

Yasunaga et

al. (2021)

71.4 71.3 71.4

GED CoNLL-2014 BEA-dev FCE-test

 P R F0.5 AUROC P R F0.5 AUROC P R F0.5 AUROC

Baseline 08.60 44.10 10.25 54.26 11.44 70.45 13.75 55.65 18.14 56.02 20.98 57.41

Frequency

(auroc)

08.25 51.63 09.91 54.00 12.07 56.78 14.33 55.96 17.26 57.34 20.07 56.27

Frequency

(rule)

09.94 52.15 09.70 54.10 10.32 84.20 12.51 52.40 15.30 82.69 18.28 54.05

Cosine 08.36 33.42 09.83 52.80 11.65 66.07 13.94 55.85 18.10 55.64 20.91 57.30

Position(auroc) 07.36 52.79 08.89 51.18 10.02 53.50 11.96 50.68 14.44 49.20 16.81 50.83

Position (rule) 07.14 91.49 08.75 50.56 09.77 95.00 11.91 49.92 14.26 91.65 17.15 50.90

Bell et al.

(2019)

38.04 33.12 36.94 53.31 35.65 48.50 64.96 38.89 57.28

Yuan et al.

(2021)

55.15 39.78 51.19 72.81 46.85 65.54 82.05 50.49 72.93

Table 2: token-level performance on CoNLL-2014, BEA-dev and FCE-test.

Table 1: sentence-level performance on Lang-8, CoNLL-2014 and BEA-dev.

6

As for CoNLL-14, FCE, and BEA-19 in the

token-level detection task, we extract the first 100

sentences from each corpus for hyperparameter

tuning and the rest of the sentences in each corpus

are used for evaluation. A token is labeled as an

anomaly once a suggestion is given.

4.2 Results

The results of the experiments are shown in Table

1 and Table 2. Overall, the results show

competitive AUROC scores. This demonstrates the

effectiveness of our algorithms. Specifically, in

sentence-level detection (Table 14), most methods

show high F scores and AUROC scores. The

Baseline method works the best as evidenced by

the two highest F scores (69.62% and 65.89%) out

of three corpora. This suggests that our method can

correctly filter out anomalous sentences. It also

suggests the next-word probability from GPT-2

model is effective in finding anomalous sentences

from different types of language data we tested.

Only a slight adjustment to next-word probabilities

is required to get the optimal result.

 Moreover, Frequency (rule) and Positional

probability-based methods (rule) often show higher

AUROC scores than methods including Youden’s

Index. The F1 scores based on Positional

probability also largely improve with the rule-

based method rather than methods including

Youden’s Index method. This suggests that the

rule-based detection and hand-tuning

hyperparameters can detect anomalous sentences

more than methods including Youden’s Index.

We also note that the Cosine method can give

satisfactory results, as shown by its competitive

precision, recall rate, and F score in some corpora.

Since the Cosine method compares the cosine

similarity between the k most probable tokens and

the next token using word vectors in the word-

embeddings, it suggests word-embeddings can be
another effective resource to leverage. This again

shows that the next-word probability and word-

embeddings from GPT-2 provide reliable

information for AD.

We compare our result on BEA-dev with

Yasunaga et al. (2021). Our F0.5 scores from the

baseline, Cosine, and Position methods show

competitive results on 70% of the sentences during

4 Yasunaga et al. (2021)’s LM-Critic is the closest work but is

different from ours in that we include 1186 sentences solely from

BEA-dev (not from GMEG-wiki and GMEG-yahoo) but Yasunaga

our model selection (Table 3), so we specifically

focus on these methods when evaluating on the

30% held-out sentences (Table 1). We found that

these three methods consistently show better

performances and all outperform Yasunaga et al.

(2021)’s 71.0-71.4 F0.5 score,

As for token-level detection (Table 2), we

include precision, recall, and F0.5 to compare our

results with previous works. We found that these

algorithms show decent AUROC scores and reflect

a similar trend to what we have observed in the

previous sentence-level detection: the Baseline

method yields most of the best AUROC scores.

Other methods, e.g. frequency-based method

(auroc) also show a high AUROC score. Note that

our methods do not require training data and

labeling of training data, which are required in the

literature. Also, unlike models in previous

literature, we do not train a model specifically for

GED tasks and GPT-2 is not specifically trained for

GED as well. Therefore, even though the F0.5 scores

are disappointing, we suggest these algorithms can

still be useful.

Overall, we have shown that next-word

probabilities and word-embeddings from GPT-2

can successfully be harnessed to detect anomalous

sentences in the corpora, but to detect anomalous

tokens, further improvements should be

considered.

5 Conclusion

We have performed several anomaly detection

tasks based on the next-word probabilities and the

word-embeddings in GPT-2. Our methods do not

require further training and labeling and have

yielded competitive results. This largely reduces

the time for training and data-preprocessing.

Importantly, the finding in this study reveals that

the next-word probabilities in GPT-2 are reliable

for checking sentential anomalies, and rule-driven

methods can correctly detect anomalous sentences.

Token-level experiments also show decent

AUROC scores but require further improvement

on precision and recall rates. We applied these

algorithms on AD and GED but these algorithms

et al. (2021) samples 600 sentences from the three datasets. Despite

the difference, we still use F0.5 scores here just to compare our

results with Yasunaga et al. (2021).

7

can be further adapted into a GEC task or other AD

tasks on different datatypes.

References

Samuel Bell, Helen Yannakoudakis, and Marek Rei.

2019. Context is key: Grammatical error detection

with contextual word representations. In

Proceedings of the Fourteenth Workshop on

Innovative Use of NLP for Building Educational

Applications, pages 103–115, Florence, Italy.

Association for Computational Linguistics.

Jose R. Dorronsoro, Francisco Ginel, Carmen Sanchez,

and Carlos S. Cruz. 1997. Neural fraud detection in

credit card operations. IEEE transactions on neural

networks, 84:827–34.

Yifeng Gao, Jessica Lin and Constantin Brif. 2020.

Ensemble Grammar Induction For Detecting

Anomalies in Time Series. In Proceedings of the

22nd International Conference on Extending

Database Technology (EDBT).

Na-Rae Han, Martin Chodorow, and Claudia Leacock.

2006. Detecting errors in English article usage by

nonnative speakers. Natural Language

Engineering, vol. 12, no. 02, 115–129,

Ramakrishnan Kannan, Hyenkyun Woo, Charu C

Aggarwal, and Haesun Park. 2017. Outlier detection

for text data. In Proceedings of the 2017 SIAM

International Conference on Data Mining, pages

489–497.

LaValle, S. M., Branicky, M. S., & Lindemann, S. R.

2004. On the relationship between classical grid

search and probabilistic roadmaps. The

International Journal of Robotics Research, 23(7–

8), 673–692.

Amogh Mahapatra, Nisheeth Srivastava, and Jaideep

Srivastava. 2012. Contextual anomaly detection in

text data. Algorithms, 5(4):469–489.

Larry M. Manevitz and Malik Yousef. 2001. One class

svms for document classification. Journal of

Machine Learning Research 2(Dec):139–154.

Larry M. Manevitz and Malik Yousef. 2007. One-class

document classification via neural networks.

Neurocomputing, 70(7-9):1466–1481.

Tomoya Mizumoto, Mamoru Komachi, Masaaki

Nagata, and Yuji Matsumoto. 2011. Mining revision

log of language learning SNS for automated

Japanese error correction of second language

learners. In Proceedings of 5th International Joint

Conference on Natural Language Processing, pages

147–155, Chiang Mai, Thailand. Asian Federation

of Natural Language Processing.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian

Hadiwinoto, Raymond Hendy Susanto, and

Christopher Bryant. 2014. The CoNLL-2014 Shared

Task on Grammatical Error Correction. In

Proceedings of the Eighteenth Conference on

Computational Natural Language Learning: Shared

Task.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. OpenAI

blog.

Marek Rei and Helen Yannakoudakis. 2016.

Compositional sequence labeling models for error

detection in learner writing. In Proceedings of the

54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 1181–1191, Berlin, Germany.

Association for Computational Linguistics.

Marek Rei. 2017. Semi-supervised multitask learning

for sequence labeling. In Proceedings of the 55th

Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 2121–2130, Vancouver, Canada.

Association for Computational Linguistics.

Marek Rei, Mariano Felice, Zheng Yuan, and Ted

Briscoe. 2017. Artificial error generation with

machine translation and syntactic patterns. In

Proceedings of the 12th Workshop on Innovative

Use of NLP for Building Educational Applications,

pages 287–292, Copenhagen, Denmark.

Association for Computational Linguistics.

Lukas Ruff, Yury Zemlyanskiy, Robert Vandermeulen,

Thomas Schnake, and Marius Kloft. 2019.

Selfattentive, multi-context one-class classification

for unsupervised anomaly detection on text. In

Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages

4061– 4071, Florence, Italy. Association for

Computational Linguistics.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor,

Alex J. Smola, and Robert C.Williamson. 2001.

Estimating the Support of a High-Dimensional

Distribution. Neural computation, 13(7), 1443–

1471.

Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil

Gandhi, Arnold P. Boedihardjo, Crystal Chen, Susan

Frankenstein, and Manfred Lerner. 2014.

GrammarViz 2.0: a tool for grammar-based pattern

discovery in time series. In Machine Learning and

Knowledge Discovery in Databases. Springer, 468–

472.

Toshikazu Tajiri, Mamoru Komachi, and Yuji

Matsumoto. 2012. Tense and aspect error correction

for ESL learners using global context. In

Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics, 198–

202.

8

Amir Pouran Ben Veyseh, Viet Lai, Franck

Dernoncourt, and Thien Huu Nguyen. 2021.

Unleash GPT-2 Power for Event Detection. In

Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the

11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers),

pages 6271–6282, Online. Association for

Computational Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.

2011. A new dataset and method for automatically

grading ESOL texts. In Proceedings of the 49th

Annual Meeting of the Association for

Computational Linguistics: Human Language

Technologies, pages 180–189, Portland, Oregon,

USA. Association for Computational Linguistics.

Michihiro Yasunaga, Jure Leskovec, Percy Liang.

2021. LM-Critic: Language Models for

Unsupervised Grammatical Error Correction. In

Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, pages

7752–7763. Association for Computational

Linguistics.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis,

and Christopher Bryant. 2021. Multi-Class

Grammatical Error Detection for Correction: A Tale

of Two Systems. In Proceedings of the 2021

Conference on Empirical Methods in Natural

Language Processing, pages 8722–8736, Online

and Punta Cana, Dominican Republic. Association

for Computational Linguistics.

Appendix

Table 3 shows the result of 70% of the BEA-dev

evaluation sentences. We found that some rule-

driven methods (Baseline, Cosine, Position) show

higher AUROC and F0.5 scores, so we specifically

compare our results from the three methods with

Yasunaga et al. (2021).

 BEA-dev

 P R F0.5 AUROC

Baseline 70.22 96.59 74.28 55.09

Frequency (auroc) 68.84 47.9 63.3 51.08

Frequency (rule) 71.11 72.51 71.38 55.19

Cosine 75.01 70.06 73.97 60.42

Position (auroc) 69.66 52.85 65.5 52.16

Position(rule) 73.34 75.49 73.76 58.81

Table 3: model selection on BEA-dev

	1 Introduction
	Anomaly detection (AD) on texts is a task to identify datapoints that have distinct properties from the normality in a dataset. In the domain of grammar, this type of task can be seen as a type of Grammar Error Detection (GED) and can further be devel...
	In this paper, we present methods of AD primarily based on the next-word probability and word-embeddings of the popular pre-trained language model, GPT-2 (Radford et al., 2019). The next-word probability can include a mix of information, specifically,...
	2 Related Work
	3 Description of Algorithms
	3.1 Baseline Method
	3.2 Frequency-conditioned method
	3.3 Word Embeddings Cosine Similarity method
	3.4 Positional probability conditioned method
	3.5 Hyperparameter tuning

	4 Experiment
	4.1 Pre-trained model, Datasets
	4.2 Results

	Moreover, Frequency (rule) and Positional probability-based methods (rule) often show higher AUROC scores than methods including Youden’s Index. The F1 scores based on Positional probability also largely improve with the rule-based method rather than...
	We also note that the Cosine method can give satisfactory results, as shown by its competitive precision, recall rate, and F score in some corpora. Since the Cosine method compares the cosine similarity between the k most probable tokens and the next ...
	We compare our result on BEA-dev with Yasunaga et al. (2021). Our F0.5 scores from the baseline, Cosine, and Position methods show competitive results on 70% of the sentences during our model selection (Table 3), so we specifically focus on these meth...
	As for token-level detection (Table 2), we include precision, recall, and F0.5 to compare our results with previous works. We found that these algorithms show decent AUROC scores and reflect a similar trend to what we have observed in the previous sen...
	Overall, we have shown that next-word probabilities and word-embeddings from GPT-2 can successfully be harnessed to detect anomalous sentences in the corpora, but to detect anomalous tokens, further improvements should be considered.
	5 Conclusion
	We have performed several anomaly detection tasks based on the next-word probabilities and the word-embeddings in GPT-2. Our methods do not require further training and labeling and have yielded competitive results. This largely reduces the time for t...
	References
	Appendix

