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ABSTRACT

Structure-based drug design (SBDD) aims to generate potential drugs that can bind
to a target protein and is greatly expedited by the aid of AI techniques in generative
models. However, a lack of systematic understanding persists due to the diverse
settings, complex implementation, difficult reproducibility, and task singularity.
Firstly, the absence of standardization can lead to unfair comparisons and inconclu-
sive insights. To address this dilemma, we propose CBGBench, a comprehensive
benchmark for SBDD, that unifies the task as a generative graph completion, analo-
gous to fill-in-the-blank of the 3D complex binding graph. By categorizing existing
methods based on their attributes, CBGBench facilitates a modular and extensible
framework that implements cutting-edge methods. Secondly, a single de novo
molecule generation task can hardly reflect their capabilities. To broaden the scope,
we adapt these models to a range of tasks essential in drug design, considered sub-
tasks within the graph fill-in-the-blank tasks. These tasks include the generative
designation of de novo molecules, linkers, fragments, scaffolds, and sidechains, all
conditioned on the structures of protein pockets. Our evaluations are conducted with
fairness, encompassing comprehensive perspectives on interaction, chemical prop-
erties, geometry authenticity, and substructure validity. We further provide insights
with analysis from empirical studies. Our results indicate that there is potential for
further improvements on many tasks, with optimization in network architectures,
and effective incorporation of chemical prior knowledge. Finally, to lower the
barrier to entry and facilitate further developments in the field, we also provide a
single codebase (https://github.com/EDAPINENUT/CBGBench) that unifies
the discussed models, data pre-processing, training, sampling, and evaluation.

1 INTRODUCTION

The rapid and remarkable progress in Graph Neural Networks (GNNs) and generative models have
advanced the bio-molecule design in these years (Jumper et al., 2021; Watson et al., 2023; Krishna
et al., 2023). In structure-based drug design, AI-aided methods aim to learn the chemical space of the
molecules that can bind to certain proteins as targets, which decreases the general chemical space of
molecule compounds (∼ 1060) to a more compact search space and enables the model to explore the
potential binding drugs. Recent success in generative models such as diffusion models (Ho et al.,
2020; Lipman et al., 2022; Song et al., 2020) further enhanced these methods to fully exploit the
targeted chemical space, and AI-aided SBDD has been propelled into another prominence.

Despite the significance of the SBDD and the development of various approaches, there remains a
lack of a comprehensive benchmark for this field covering various practical application scenarios.
On the one hand, although different methods are proposed for the task, the experimental setup is not
unified, and the evaluation protocol also differs. For example, GRAPHBP (Liu et al., 2022) use a
different training and test split of Crossdocked2020 (Francoeur et al., 2020) from concurrent works
like POCKET2MOL (Peng et al., 2022) and 3DSBDD (Luo et al., 2022); And DIFFBP (Lin et al.,
2022) and GRAPHBP employ Gnina (McNutt et al., 2021) instead of AutoDock Vina (Trott &
Olson, 2009) as the evaluator for obtaining docking score as binding affinity. Besides, the complex
implementation of models makes the modules coupled, so it is hard to figure out which proposed
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module contributes to the improvements in performance. For example, though TARGETDIFF (Guan
et al., 2023b) and DIFFBP are both diffusion-based methods, the first one uses EGNN (Satorras
et al., 2022) to predict the ground-truth position of each atom in the molecule while the later
one uses GVP (Jing et al., 2020) to remove the added noise in a score-based way. To have a
systematic understanding of the designation for diffusion models in molecule generation, the network
architectures should be fixed to keep the expressivity equal. On the other hand, the task of de novo
generation of molecules is a branch of SBDD. There are also other important tasks, such as the design
of molecular side chains in lead optimization, or linker design to combine functional fragments into
a single, connected molecule (Igashov et al., 2022; Guan et al., 2023a). It is highly meaningful to
explore whether these methods can be successfully transferred to applications in drug optimization.

In this way, here we propose CBGBench as a benchmark for SBDD, with the latest state-of-the-art
methods included and integrated into a single codebase (Appendix. C). Firstly, we unify the generation
of the binding molecule as a graph completion task, i.e. fill-in-the-blank of the 3D Complex Binding
Graph. Therefore, the systematic categorization of existing methods is based on three dichotomies:
(i) voxelized v.s. continuous position generation, (ii) one-shot v.s. auto-regressive generation, and
(iii) domain-knowledge-based v.s. full-data-driven generation. As a result, the methods can be easily
modularized and extensible in a unified framework. Secondly, CBGBench introduces a unified
protocol with a comprehensive evaluation, including (i) chemical property, (ii) interaction, (iii)
geometry and (iv) substructure analysis, with metrics extended and fair ranking considered. Moreover,
thanks to our reformulation of the problem and extensible modular implementation, we can easily
extend these methods to the other four tasks in lead optimization, including the designation of (i)
linkers, (ii) fragments, (iii) side chains and (iv) scaffolds. Comprehensive evaluation is also conducted
for these tasks, to explore the potential application value of the existing methods in lead optimization.

As a result, several brief conclusions can be reached as the following:

• CNN-based methods by modeling voxelized density maps as molecule representations
remain highly competitive in target-aware molecule generation, and the diffusion-based
ones achieve the state-of-the-art.

• For autoregressive methods, it is essential to enable the model to successfully capture the
patterns of chemical bonds in training and generation of binding molecules.

• Prior knowledge has been incorporated into the model in recent works, but the improvements
remain limited. Effective design of integrating physical and chemical domain knowledge
remains a challenge, leaving substantial room for future research.

• Most evaluated methods can be well generalized to lead optimization. Empirical studies
show that scaffold hopping is the most challenging task among them, while linker design is
relatively the easiest. However, there is still a large space for improvements in these tasks.

• The conclusions drawn from the experimental results and with the evaluation protocol
of CBGBench, are mainly consistent with those obtained on real-world disease targets,
demonstrating generalizability and effectiveness of our benchmark.

2 BACKGROUND

2.1 PROBLEM STATEMENT

o
c

c
c

c

c

c

c
c

c

N

N

Binding Site

BlankBlank

Occupied

c

c c

O

c

Figure 1: Filling the blank
in the complex binding site.

For a binding system composed of a protein-molecule pair as (P,M),
in which P contains Nrec atoms of proteins and M contains Nlig atoms
of molecules, we represent the index set of the protein’s atom as Irec
and the molecule’s atoms as Ilig, with |Irec| = Nrec and |Ilig| = Nlig.
The binding graph can be regarded as a heterogenous graph. One
subgraph is protein structures, as P = (Vrec,Erec), where Vrec =
{(ai,xi, si)}i∈Irec

is the node set, and Erec = {(i, j, ei,j)}i,j∈Irec

is the edge set. Here, ai is the atom types with ai = 1, . . . ,M ,
xi ∈ R3 is the corresponding 3D position, and si = 1, . . . , 20 is the
amino acid types that i-th atom belongs to; elments in edge set means
there exists a bond between i and j, with edge type ei,j . The other
graph is the molecule structures, written as M = (Vlig,Elig), where
Vlig = {(ai,xi)}i∈Ilig

and Elig is the edge set with the same form
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Table 1: Categorization of included
methods. LIGAN, 3DSBDD and
VOXBIND model atom positions as
discrete variables; One-shot meth-
ods maintain a constant atom number
in a generation, like diffusion-based
ones; FLAG and D3FG use frag-
ment motifs, and DECOMPDIFF uses
arm&scaffolding priors.

Method Continous
Position

One-shot
Generation

Domain
Knowledge

LIGAN % " %

3DSBDD % % %

POCKET2MOL " % %

GRAPHBP " % %

TARGETDIFF " " %

DIFFBP " " %

DIFFSBDD " " %

FLAG " % "

D3FG " " "

DECOMPDIFF " " "

MOLCRAFT " " %

VOXBIND % " %

One-shot Generation Auto-regressive Generation

Voxelized Position Continuous Position

Domain-Knowledge-Based Data-Driven

A

B

C

Figure 2: The demonstration of the classification criteria
for the existing methods. The gray thick curves outline
the contact surface of the protein, and the circles represent
different types of atoms.

as Erec. Besides, there are virtual edges that exist between protein and molecule, which make up
cross-edge set Ecrs. Denote the probabilistic model for binding graph by p(M,P). For the de novo
molecule generation, the model aims to learn the probability of p(M|P), as to fill the blank of the
protein pocket with atoms in a molecule, by using a generative model p(·).
A comparable analogy can be made that if we also divide the atoms in a molecule into known and to-
be-generated parts, we can extend the aforementioned ‘filling-in-the-blank’ task as shown in Figure. 1.
In specific, for the missing blanks, we write the node set for generation as G = (Vgen,Egen),
and the known atoms in the molecule as elements in the context set C = (Vctx,Ectx), in which
Ictx = Ilig \ Igen. Therefore, the generative model for filling the blanks of the missing parts of
molecules aims to learn the probability of p(G|C,P). The newly-defined task of fill-in-the-partial-
graph is of great significance in SBDD, especially in lead optimization, and we establish other four
sub-tasks of it besides de novo design, with accessible datasets in Sec. 3.

2.2 RELATED WORK AND TAXONOMY

The SBDD methods are initially combined with deep neural networks on voxel grids, such as
LIGAN (Masuda et al., 2020) generating atom voxelized density maps using VAE (Kingma &
Welling, 2022) and incorporating Convolutional Neural Networks (CNNs) as the architecture, and
3DSBDD (Luo et al., 2022) predicts whether the position on grids is occupied with which type
of atoms in auto-regressive ways with Graph Neural Networks (GNNs). Then, the development
of Equivariant Graph Neural Networks (EGNNs) boosts the SBDD methods to directly generate
the continuous 3D positions, such as POCKET2MOL (Peng et al., 2022) generating the molecules’
atom types, positions, and the connected bonds and GRAPHBP (Liu et al., 2022) employing nor-
malizing flows to generate these attributes, both in an auto-regressive way. The diffusion denoising
probabilistic models (DDPM) (Ho et al., 2020) further propel the AI-aided SBDD methods, such
as TARGETDIFF (Guan et al., 2023b), DIFFBP (Lin et al., 2022) and DIFFSBDD (Schneuing et al.,
2022), inspired by EDM (Hoogeboom et al., 2022), generating full atoms’ positions and element
types, with different diffusion models. In recent years, domain knowledge has been used to constrain
or guide the generation of binding drugs. For example, FLAG (Zhang et al., 2023b) and D3FG (Lin
et al., 2023) use prior knowledge of fragment motifs to model the coarse structures, which generate
fragments in molecules in one-shot and auto-regressive ways, respectively; And DECOMPDIFF (Guan
et al., 2023c) harnesses virtual points searching for arm- and scaffold-clustering as prior knowledge,
and using multivariate Gaussian process to model atom positions in different clusters, with validity
guidance for sampling. More recently, thanks to technological breakthroughs brought by generative
AI, more related approaches have been proposed, which not only build upon previous modeling
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concepts but also incorporate new generative model techniques. MOLCRAFT (Qu et al., 2024),
as the SBDD version of GEOBFN (Song et al., 2024), employs Bayesian Flow Network (Graves
et al., 2024) as the variant of diffusion models, to address the continuous-discrete gap in modeling
the elements’ type and atoms’ positions by applying continuous noise and smooth transformation;
VOXBIND (Pinheiro et al., 2024a), following their pioneering exploration of VOXMOL (Pinheiro
et al., 2024b), continues modeling the 3D voxelization of molecules in a diffusion denosing way,
with walk-jump sampling method used to generate molecules. The latest FLEXSBDD (Zhang et al.,
2024b) aims to generate the dynamic conformation of protein as well as design the binding molecules
with Flow Mathcing techniques. Since the structure of protein targets may change significantly in
FLEXSBDD, leading to different validation protocols, we will not conduct in-depth comparison here.

In this way, we can categorize these methods with the three standards:

• Whether the positions of atoms are generated in continuous 3D space or voxelized grids.

• Whether the generation process is auto-regressive or one-shot.

• Whether the domain knowledge is introduced to integrate extra prior into the model.

To better articulate, we classify them according to Table. 1, and Figure. 2 gives a simple demonstration
of the criteria for taxonomy. A detailed review of these methods is given in Appendix. A.

3 TASK AND DATASET

For the de novo molecule generation, we follow the previous protocol to use Crossdocked2020 (Fran-
coeur et al., 2020) and data preparation with splits proposed in LiGAN (Masuda et al., 2020) and
3DSBDD (Luo et al., 2022) as the training and test sets. Besides the de novo generation, the modular-
ized methods can be extended to four subtasks which are branches of our defined fill-in-the-blank
of the complex binding graph, including the target-aware linker, fragment, side chain, and scaffold
design (Zhang et al., 2024a), leading to the generative targets G for the probabilistic model p(G|C,P)
to be the four components, and the molecular context C as the rest, as shown in Figure. 3. We
demonstrate the significance of the four tasks in lead optimization and how the corresponding datasets
are established below. The datasets are all established based on previous splits of Crossdocked2020
for a fair comparison.

Linker Design is a critical strategy in fragment-based drug discovery (Grenier et al., 2023). It focuses
on creating linkers that connect two lead fragments and obtaining a complete molecule with enhanced
affinity. Effective linker design can significantly influence the efficacy and pharmacokinetics of the
drug, by ensuring that the molecule maintains the desired orientation and conformation when bound
to its target (Erlanson et al., 2016). We define linkers following specific rules: (i) A linker should
act as the intermediate structure connecting two fragments. (ii) A linker should contain at least two
atoms on the shortest path between two fragments. (iii) Each connecting fragment must consist of
more than five atoms.

Fragment Growing focus on expanding a fragment on the lead compound to better fill the binding
pocket (Bancet et al., 2020). It also relates to adjusting pharmacological properties, such as enhancing
solubility or reducing toxicity (Hung et al., 2009). We decompose the entire ligand into two fragments
and select the smaller one for expansion based on specific criteria: (i) Each fragment must contain
more than five atoms. (ii) The smaller fragment should be larger than half the size of the larger one.

Side Chain Decoration differs from fragment growing in that it permits modifications at multiple
sites on the lead compound, whereas fragment growing typically modifies a single site. The taxonomy
of arms-scaffold in previous work (Guan et al., 2023c) is similar to side-chain-scaffold, while we
focus on a chemist-intuitive approach, Bemis-Murko decomposition (Bemis & Murcko, 1996), which
treats all terminal non-cyclic structures as side chains.

Scaffold Hopping is introduced by Schneider et al. (1999), as a strategy in medicinal chemistry
aiming to replace the core structure of molecules to explore more diverse chemical space or improve
specific properties. While various empirical definitions exist (Sun et al., 2012), for consistency, the
Bemis-Murko decomposition is utilized to define the scaffold structure.

Since chances are that there is no substructure in a molecule according to the discussed definition of
the decomposition, we here give the instance number of training and test set for each task in Table. 2.
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Table 2: The instance number
of training and test split in the
datasets for the four tasks and De
novo generation. The decompo-
sition is conducted separately in
the training and test set of Cross-
Docked2020 to avoid label leak-
age. Side chain decoration and
scaffold hopping are two dual
tasks, so the training and test set
numbers are the same.

Dataset # Training # Test

De novo 99900 100
Linker 52685 43

Fragment 61379 61
Side Chain 70617 64

Scaffold 70617 64

Linker Design Fragment Growing

Side Chain Decoration Scaffold Hopping

Target atom 

Condition

zGenerated Molecule

Figure 3: Demonstration of the four tasks.

4 EVALUATION PROTOCOL

In previous works, the evaluation usually focuses on two aspects including interaction and chemical
property. While lots of works start to focus another two standards on molecule 3D structure’s
authenticity with geometry analysis and the 2D graphs reliability with subsutructure analysis, the
evaluation protocol is usually not unified. In this way, we extend them in a unified protocol including
the four aspects as the following:

Substructure. To evaluate whether the model succeeds in learning the 2D graph structures for
drug molecules. We expand previous metrics to functional groups, as certain functional groups in the
drugs act as pharmacophores, such as phenol and pyrimidine. We identify the 25 most frequently
occurring functional groups by using EFG (Salmina et al., 2015) (Appendix. B.1 gives the details),
and calculated mean frequency of each function group generated in a molecule and the overall
multinomial distribution. In the same way, the two values can also be obtained according to rings
and atom types. The generated frequency and distribution against the references lead to 6 metrics on
substructure analysis including the Jensen-Shannon divergence as JSD and mean absolute error as
MAE, listed as (i) JSDat(↓), (ii) MAEat(↓), (iii) JSDrt(↓), (iv) MAErt(↓), (v) JSDfg(↓), and
(vi) MAEfg(↓), where ‘at’ means atom type, ‘rt’ means ring type and ‘fg’ means functional group.

Chemical Property. We continue the evaluation of chemical properties from most previous
works, including (i) QED(↑) as quantitative estimation of drug-likeness; (ii) SA(↑) as synthetic
accessibility score; (iii) LogP represents the octanol-water partition coefficient, and in general LogP
values should be between -0.4 and 5.6 to be good drug candidates (Ghose et al., 1999); (iv) LPSK(↑)
as the ratio of the generated drug molecules satisfying the Lipinski’s rule of five.

Interaction. In evaluating the generated molecules’ interaction with proteins, the binding affinity
is usually the most important metric. Here we unify the affinity calculation with AutoDock Vina
for fair comparison. However, previous studies show that larger molecule sizes will lead to a higher
probability that the generated molecules can interact with the protein, resulting in higher predicted
binding affinity (Abad-Zapatero & Metz, 2005; Hopkins et al., 2014). It is also an observation in this
paper as the Pearson correlation of Vina Energy v.s. atom number reaches −0.67 (See Appendix. B.2).
Besides, in some structures, there are more atoms in the protein participating in the interaction, which
also causes the average to be unreasonable. Therefore, besides the commonly-used (i) Evina(↓) as
the mean Vina Energy, and (ii) IMP%(↑) as the improvements indicating the ratio of the generated
molecule with lower binding energy than the reference, we use mean percent binding gap as (iii)
MPBG(↑) (Appendix. B.3 gives computation) and ligand binding efficacy as (iv) LBE(↑), written
as LBEi = −Evina

Nlig
, indicating how much does a single atom in the molecule contribute to the binding

affinity, to eliminate the effects of molecule sizes. We give a detailed discussion on the reasonality
of LBE in Appendix. B.4. Moreover, it is important for the generated molecules to keep the same
or similar interaction patterns with proteins (Zhang et al., 2023a). Therefore, we aim to figure out
whether the SBDD models can learn the microscopic interaction patterns hidden in the data of the
3D conformations. We use PLIP (Adasme et al., 2021; li Zuo et al., 2023; Salentin et al., 2015)
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to characterize the 7 types of interactions and calculate per-pocket and overall JSD between the
categorical distributions of generated types and reference types and MAE between the frequency
of each generated types v.s. it of reference types, in which the frequency is defined as the average
number of occurrences of each type of interaction produced by different single generated molecules
binding to the same protein, leading to four metrics including (v) JSDPP(↓), (vi) JSDOA(↓), (vii)
MAEPP(↓), (viii) MAEOA(↓), where ‘PP’ and ‘OA’ means per-pocket and overall respectively.

Geometry. The internal geometry is an important characteristic for distinguishing between general
point clouds and molecular structures. The torsion angles (Jing et al., 2022; Swanson et al., 2023) are
flexible geometries, while bond lengths and bond angles are static to reveal whether the generated
molecules have realistic structures. Hence, we evaluate the overall JSD of bond length and angle
distribution between reference and generated ones, written as (i) JSDBL(↓) and (ii) JSDBA(↓).
The other perspective for validating structural resonability is the clash, the occurrence of which is
defined when the van der Waals radii overlap by ≥ 0.4Å (Ramachandran et al., 2011). Hence, the
ratio of number of atoms generating clashes with protein atoms to the total atom number is written
as (iii) Ratiocca(↓) (cross clashes at atom level). Besides, the ratio of molecules with clashes as
(iv) Ratiocm(↓) (molecule with clashes) are evaluated, which indicates if any atom in a molecule
causes a clash, we consider that molecule to have a clash.

We here evaluate the 12 methods discussed in Table. 1, and use Friedman rank (Friedman, 1940;
1937; Wang et al., 2022) as the mean ranking method, to fairly compare the performance of different
models in the four aspects. The ranking score is calculated by (12 − rank), and the final rank is
according to the weighted mean ranking score. Appendix. B.3 gives detailed computation of the
metrics, and their explanations as preliminary. The review of each method’s evaluation aspect in the
published papers is given in Apppendix. B.5.

5 BENCHMARK RESULT

5.1 De novo GENERATION

5.1.1 SETUP

Training. We use the default configuration in each model’s released codebase as the hyper-
parameter, and set the training iteration number as 5,000,000 for fair comparison. It is noted that
the loss of autoregressive methods exhibits a faster convergence rate of loss, typically requiring
only a few tens of thousands of epochs to reach the final best checkpoint. To eliminate the effect
brought about by the architecture of GNNs, in implementation, we use GVP (Jing et al., 2020) and
EGNN (Satorras et al., 2022) with GAT (Veličković et al., 2018), as message-passing modules of
auto-regressive and diffusion-based models, respectively. Especially, the GNN for encoding and
decoding functional groups in D3FG is a combination of GAT and LoCS (Kofinas et al., 2022), CNN
for processing atom density maps is four convolution blocks in LIGAN, and larger-scaled UNet for
VOXBIND. The details in hyperparameter tuning and training strategy are given in Appendix. D.

Evaluation. Following the previous protocol, we generate 100 molecules per pocket in the test set,
while not all the generated molecules are chemically valid (See Appendix. E.4), which will lead to
<10,000 molecules. In affinity evaluation, we employ three modes of AutoDock Vina, including
‘Score’, ‘Minimize’, and ‘Dock’. MPBG and LBE are added to the ‘Vina Dock’ mode. For Vina
energy that is larger than 0, we think it is invalid, so we will not report it, and give the lowest ranking
in the column of metrics. Moreover, LogP only provides a reference range for drug molecules, so we
assigned a rank of 1 to the generated molecules within the range and 2 to those outside the range. In
all the tables, values in bold are the best metric, and values with underline are the second and third.

5.1.2 RESULT ANALYSIS

Substructure. Table. 3 gives results on 2D substructures, showing that (i) Overall, the auto-
regressive models perform worse than the one-shot ones, especially in ring-type evaluation, where the
former ones are more likely to generate triangular and tetrahedral rings. (ii) Diffusion-based models
also exhibit advantages in atom type, according to the results of TARGETDIFF and MOLCRAFT,
except for DIFFBP has difficulties in generating atoms with low occurrence frequencies. (iii) Besides
VOXBIND, MOLCRAFT shows the overall superiority in complex functional group generation, as it
states in addressing the mode collapse issues, while DECOMPDIFF and D3FG also exhibit advantages
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Table 3: Results of substructure analysis.

Methods
Metrics Atom type Ring type Functional Group Rank

JSDat MAEat JSDrt MAErt JSDfg MAEfg

LIGAN 0.1167 0.8680 0.3163 0.2701 0.2468 0.0378 6.50
3DSBDD 0.0860 0.8444 0.3188 0.2457 0.2682 0.0494 6.50
GRAPHBP 0.1642 1.2266 0.5061 0.4382 0.6259 0.0705 11.33

POCKET2MOL 0.0916 1.0497 0.3550 0.3545 0.2961 0.0622 8.50
TARGETDIFF 0.0533 0.2399 0.2345 0.1559 0.2876 0.0441 4.00
DIFFSBDD 0.0529 0.6316 0.3853 0.3437 0.5520 0.0710 8.33

DIFFBP 0.2591 1.5491 0.4531 0.4068 0.5346 0.0670 10.83
FLAG 0.1032 1.7665 0.2432 0.3370 0.3634 0.0666 8.83
D3FG 0.0644 0.8154 0.1869 0.2204 0.2511 0.0516 5.17

DECOMPDIFF 0.0431 0.3197 0.2431 0.2006 0.1916 0.0318 2.67
MOLCRAFT 0.0490 0.3208 0.1196 0.0477 0.2469 0.0264 2.17
VOXBIND 0.0942 0.3564 0.1053 0.0761 0.2401 0.0301 3.17

Table 4: Results of chemical property.
QED LogP SA LPSK Rank

LIGAN 0.46 0.56 0.66 4.39 4.75
3DSBDD 0.48 0.47 0.63 4.72 3.50
GRAPHBP 0.44 3.29 0.64 4.73 3.75

POCKET2MOL 0.39 2.39 0.65 4.58 4.75
TARGETDIFF 0.49 1.13 0.60 4.57 4.25
DIFFSBDD 0.49 -0.15 0.34 4.89 3.50

DIFFBP 0.47 5.27 0.59 4.47 5.25
FLAG 0.41 0.29 0.58 4.93 4.25
D3FG 0.49 1.56 0.66 4.84 2.00

DECOMPDIFF 0.49 1.22 0.66 4.40 3.75
MOLCRAFT 0.48 0.88 0.67 4.39 4.00
VOXBIND 0.54 2.22 0.65 4.70 2.75

Table 5: Results of interacton analysis.

Methods
Metrics Vina Score Vina Min Vina Dock PLIP Interaction Rank

Evina IMP% Evina IMP% Evina IMP% MPBG% LBE JSDOA MAEOA JSDPP MAEPP

LIGAN -6.47 62.13 -7.14 70.18 -7.70 72.71 4.22 0.3897 0.0346 0.0905 0.1451 0.3416 2.91
3DSBDD - 3.99 -3.75 17.98 -6.45 31.46 9.18 0.3839 0.0392 0.0934 0.1733 0.4231 7.17
GRAPHBP - 0.00 - 1.67 -4.57 10.86 -30.03 0.3200 0.0462 0.1625 0.2101 0.4835 11.33

POCKET2MOL -5.23 31.06 -6.03 38.04 -7.05 48.07 -0.17 0.4115 0.0319 0.2455 0.1535 0.4152 5.67
TARGETDIFF -5.71 38.21 -6.43 47.09 -7.41 51.99 5.38 0.3537 0.0198 0.0600 0.1757 0.4687 4.67
DIFFSBDD - 12.67 -2.15 22.24 -5.53 29.76 -23.51 0.2920 0.0333 0.1461 0.1777 0.5265 9.25

DIFFBP - 8.60 - 19.68 -7.34 49.24 6.23 0.3481 0.0249 0.1430 0.1256 0.5639 7.41
FLAG - 0.04 - 3.44 -3.65 11.78 -47.64 0.3319 0.0170 0.0277 0.2762 0.3976 9.00
D3FG - 3.70 -2.59 11.13 -6.78 28.90 -8.85 0.4009 0.0638 0.0135 0.1850 0.4641 8.17

DECOMPDIFF -5.18 19.66 -6.04 34.84 -7.10 48.31 -1.59 0.3460 0.0215 0.0769 0.1848 0.4369 6.08
MOLCRAFT -6.15 54.25 -6.99 56.43 -7.79 56.22 8.38 0.3638 0.0214 0.0780 0.1868 0.4574 3.75
VOXBIND -6.16 41.80 -6.82 50.02 -7.68 52.91 9.89 0.3588 0.0257 0.0533 0.1850 0.4606 4.00

due to the incorporation of prior knowledge in ring types and functional groups. DIFFBP and
DIFFSBDD perform poorly due to inconsistencies in generating complex fragments. For a detailed
comparison, see Appendix. E.1.1

Chemical Property. The chemical property is calculated with 2D molecule graphs, so it can be
greatly influenced by the molecule substructures. From Table. 4, we can conclude that (i) In terms of
the four metrics, the differences among the compared methods are not significant. (ii) D3FG shows
the best overall properties, with the competitive QED, SA, and LPSK.

Interaction. From Table. 5 shows that (i) LIGAN and VOXBIND as CNN-based methods gen-
erate molecules that are initialized with high stability according to its competitive performance in
Vina Score and Vina Min. It also performs well in Vina Dock mode, with a positive MPBG and
high LBE, providing good consistency in interaction patterns. (ii) Auto-regressive methods except
POCKET2MOL can hardly capture the pocket conditions and generate stably-binding molecules well,
with very low IMP% in all Vina modes, while POCKET2MOL is the state-of-the-art auto-regressive
method in de novo generation. (iii) In diffusion-based methods, MOLCRAFT outperform the other
competitors in overall interaction comparison, and TARGETDIFF and DECOMPDIFF perform compet-
itively since the difference between these two methods is minimal. DIFFBP’s performance in docking
mode is comparable, but in other modes, it performs less satisfactorily. Performance of DIFFSBDD
is less than satisfactory. D3FG generates molecules with comparable Vina Energy but small atom
numbers, leading to high LBE. For details, see Appendix. E.1.2.

Geometry. From Table. 6, conclusions can be drawn that (i) MOLCRAFT generates overall the
most realistic structures, according to the internal geometries, and DECOMPDIFF is comparable.
(ii) The molecule-protein clashes can usually be avoided by diffusion-based models. However, in
the auto-regressive models, only POCKET2MOL avoids clashes. The high frequency of clashes in
auto-regressive methods can be explained as follows: These models first identify frontier amino acids
or atoms within the molecule. During the placing of new atoms, incorrect binding site localization
leads to an erroneous direction for the molecule’s auto-regressively growing path, causing it to extend
inward towards the protein. For detailed results, see Appendix. E.1.3.

Conclusion and Discussion. From Table. 7 and the previous discussion, we conclude that

(i) The CNN-based methods like LIGAN and VOXBIND are highly competitive, especially
in aspects of Interaction, which explains why such methods in the field of drug design
and molecule generation still prevail in recent years. This is partly attributed to the fact
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Table 6: Results of geometry analysis.

Methods
Metrics Static Geometry Clash Rank

JSDBL JSDBA Ratiocca Ratiocm

LIGAN 0.4645 0.5673 0.0096 0.0718 5.75
3DSBDD 0.5024 0.3904 0.2482 0.8683 8.75
GRAPHBP 0.5182 0.5645 0.8634 0.9974 11.50

POCKET2MOL 0.5433 0.4922 0.0576 0.4499 8.50
TARGETDIFF 0.2659 0.3769 0.0483 0.4920 4.50
DIFFSBDD 0.3501 0.4588 0.1083 0.6578 7.25

DIFFBP 0.3453 0.4621 0.0449 0.4077 5.25
FLAG 0.4215 0.4304 0.6777 0.9769 9.00
D3FG 0.3727 0.4700 0.2115 0.8571 8.50

DECOMPDIFF 0.2576 0.3473 0.0462 0.5248 4.00
MOLCRAFT 0.2250 0.2683 0.0264 0.2691 2.00
VOXBIND 0.2701 0.3771 0.0103 0.1890 3.00

Table 7: Ranking scores and overall ranking.

Methods
Weights Substruc. Chem. Interact. Geom. Rank0.2 0.2 0.4 0.2

LIGAN 1.10 1.45 3.64 1.25 5
3DSBDD 1.10 1.70 1.93 0.65 7
GRAPHBP 0.13 1.65 0.27 0.10 11

POCKET2MOL 0.70 1.45 2.53 0.70 7
TARGETDIFF 1.60 1.55 2.93 1.50 3
DIFFSBDD 0.73 1.70 1.10 0.95 9

DIFFBP 0.23 1.35 1.84 1.35 8
FLAG 0.63 1.55 1.20 0.60 10
D3FG 1.37 2.00 1.53 0.70 6

DECOMPDIFF 1.87 1.65 2.57 1.60 4
MOLCRAFT 1.97 1.60 3.30 2.00 1
VOXBIND 1.77 1.85 3.20 1.80 2

that CNNs have an advantage over GNNs in perceiving many-body patterns within a single
filter (Townshend et al., 2021). As a result, it encourages further research into GNNs for 3D
point clouds to develop architectures that can match the expressivity of CNNs.

(ii) In GNN-based methods, MOLCRAFT achieves the best overall performance, with TARGETD-
IFF closely following. In contrast, DECOMPDIFF and D3FG as the variants of TARGETDIFF
that incorporate domain knowledge show some degeneration in performance. It reveals
that the current incorporation of physicochemical priors can hardly improve the quality
of generated molecules. Effectively integrating domain knowledge to guide the model to
generate structurally sound molecules remains a challenge. For example, atom clashes are
very common in generated molecules. While DECOMPDIFF employs the prior guidance
for this, the problem has still not been fully solved. Integrating domain knowledge into the
training process may mitigate this issue (Huang et al., 2024a; Adams & Coley, 2023).

(iii) Only POCKET2MOL as an auto-regressive method achieves competitive results, which we
attribute to the following reasons: First, it utilizes chemical bonds to constrain atoms to
grow orderly along chemical bonds rather than to grow based on distance to the pocket
as in DIFFBP. Second, it simultaneously predicts the bond types and employs contrastive
learning by sampling positive and negative instances of atom positions as real and fake
bonds, which is not fully considered by FLAG, enhancing the model’s ability to perceive
chemical bond patterns. Therefore, we believe that enabling the autoregressive methods
model to successfully capture the patterns of chemical bonds is very essential.

5.2 EXTENSION ON SUBTASKS

Setup. Lead optimization is to strengthen the function or property of the binding molecules by
remodeling the existing partial 3D graph of molecules. We show the interaction analysis and chemical
property in the main text and omit the interaction pattern analysis since maintaining the patterns is not
necessary for lead optimization. The domain-knowledge-based methods can hardly be transferred for
these tasks since different tasks require different priors, so we have not compared them here. Besides,
the voxelize-based methods are not easily extended to these tasks, and we regard the transferring of
methods like LIGAN and 3DSBDD as future work. Hence, we here compare 6 methods that model
atoms’ continuous positions with GNNs and have not employed domain knowledge. When training,
since the number of training instances is smaller, we use the pretrained models on de novo generation
and finetune the auto-regressive models with 1,000,000 iterations. For diffusion-based models with
one-shot generation, we train them from scratch because the zero-center-of-mass (Satorras et al.,
2021) technique is shifted from employing protein geometric centers to using molecule context’s
ones. For detailed results, please refer to Appendix. E.2.

Conclusion and Discussion. From Table. 8 and the previous discussion, we conclude that

(i) Overall, the performance gap among these methods in the lead optimization is not as
pronounced compared to de novo generation. MOLCRAFT, TARGET and POCKET2MOL
maintain the good performance. Notably, in the evaluation of the stability of initial poses, the
other three also complete the binding graph near the given partial molecular conformations
well, according to the columns of Vina Score and Vina Min. The applicability of GRAPHBP
also reflects the Argument. (ii) in our de novo geometry analysis: The failure of GraphBP
mainly stems from the difficulty in locating the correct atoms for auto-regressive growth.

8



Published as a conference paper at ICLR 2025

Table 8: Results of subtasks for lead optimization.

Tasks Methods
Metrics Vina Score Vina Min Vina Dock Chem. Prop. Rank

Evina IMP% Evina IMP% Evina IMP% MPBG% LBE QED LogP SA LPSK
L

in
ke

r
GRAPHBP - 5.63 -0.97 12.43 -7.51 28.18 -7.36 0.3288 0.41 0.86 0.70 3.60 4.75

POCKET2MOL -6.89 18.99 -7.19 25.04 -8.07 37.22 -3.85 0.3276 0.45 1.93 0.67 4.25 2.83
TARGETDIFF -7.22 36.11 -7.60 41.31 -8.49 50.73 2.61 0.2993 0.39 1.63 0.61 4.02 3.17
DIFFSBDD -5.64 11.06 -6.38 19.15 -7.88 34.97 -4.42 0.3110 0.42 1.14 0.66 4.10 4.25

DIFFBP -6.27 35.49 -7.19 36.80 -8.74 54.33 6.60 0.3078 0.43 3.45 0.55 4.01 3.25
MOLCRAFT -7.13 38.80 -7.81 42.56 -8.81 58.44 5.09 0.3334 0.43 1.06 0.67 4.14 1.50

Fr
ag

m
en

t GRAPHBP -5.54 4.86 -6.28 9.78 -7.16 16.21 -11.88 0.3749 0.54 0.87 0.66 4.66 3.58
POCKET2MOL -6.87 22.78 -7.61 37.45 -8.33 54.05 -0.28 0.3310 0.46 1.02 0.63 4.07 2.00
TARGETDIFF -6.06 24.56 -6.78 30.43 -7.96 42.00 -2.38 0.3003 0.45 1.43 0.58 4.28 3.33
DIFFSBDD -4.64 19.14 -5.84 28.90 -7.66 37.18 -6.67 0.3076 0.47 0.73 0.58 4.39 4.17

DIFFBP -4.51 22.31 -6.18 29.52 -7.90 45.70 -1.92 0.2952 0.46 2.24 0.49 4.30 4.08
MOLCRAFT -6.75 21.12 -7.06 36.07 -7.92 43.02 -0.09 0.3236 0.46 1.27 0.51 4.64 2.58

Si
de

ch
ai

n GRAPHBP 5.01 10.15 -5.43 11.46 -6.14 9.71 -11.05 0.4459 0.61 1.93 0.76 4.93 3.75
POCKET2MOL -5.99 22.26 -6.56 33.29 -7.26 41.04 -4.34 0.3600 0.49 0.21 0.65 4.20 2.91
TARGETDIFF -5.80 23.90 -6.50 35.81 -7.40 46.87 -2.55 0.3213 0.48 0.88 0.60 4.41 2.58
DIFFSBDD -4.43 15.12 -5.99 30.23 -7.58 44.09 -9.38 0.3178 0.43 1.20 0.65 4.03 3.83

DIFFBP -4.61 14.31 -5.73 24.29 -7.03 38.96 -7.38 0.3143 0.49 1.29 0.56 4.50 4.25
MOLCRAFT -6.10 24.10 -6.64 35.58 -7.49 41.67 -3.12 0.3227 0.44 1.22 0.61 4.36 2.42

Sc
af

fo
ld

GRAPHBP - 0.00 - 0.06 -3.90 0.99 -50.62 0.3797 0.43 0.14 0.76 4.98 4.16
POCKET2MOL -4.80 16.84 -5.71 23.08 -6.89 38.18 -8.07 0.3378 0.43 0.91 0.64 4.48 2.42
TARGETDIFF -5.52 31.47 -5.86 34.39 -7.06 44.32 -6.22 0.3038 0.43 0.89 0.59 4.26 2.00
DIFFSBDD -3.85 18.44 -4.90 22.12 -6.81 34.98 -10.23 0.2985 0.42 -0.13 0.53 4.29 4.17

DIFFBP -2.09 13.89 -4.35 16.84 -6.46 32.43 -12.14 0.3025 0.43 3.37 0.56 4.44 4.17
MOLCRAFT -4.71 14.03 -5.35 30.16 -7.02 43.53 -7.34 0.3146 0.42 1.01 0.56 4.55 2.83

(ii) In these tasks, scaffold hopping is the most challenging task, as the improvement of generated
molecules relative to the reference is minimal; Linker design is relatively the easiest. Notably,
in scaffolding, there are still some methods that fail.

(iii) There is a large space for improvements in these tasks, since the MPBG% metrics are
usually negative, indicating that in most cases, the molecule is not optimized. Some edge-
cutting techniques such as DPO (Rafailov et al., 2024; Cheng et al., 2024; Gu et al., 2024)
and ITA (Yang et al., 2020; Kong et al., 2023; Lin et al., 2024) may be used to augment the
optimized molecules as supervision signals for the models.

Additionally, several points warrant further detailed design. For instance, in linker design, the
fragments of the molecule that need to be connected may change orientation due to variations in the
linker (Guan et al., 2023a); In side chain decoration, the protein’s side chains, which are the main
components in interaction, should be generated together with the molecule’s side chains to achieve a
stable conformation as the entire complex (Luo et al., 2023; Huang et al., 2024b).

5.3 CASE STUDY ON REAL-WORLD DISEASE TARGETS

Introduction. In order to verify whether the included methods can generalize to pharmaceutic
targets related to disease and the applicability of CBGBench to real-world scenarios, we use the
pretrained model in de novo generation, and apply them to two proteins belonging to the G-Protein-
Coupled Receptor (GPCR) family: ARDB1 (beta-1 adrenergic receptor) and DRD3 (dopamine
receptor D3). ARDB1 participates in the regulation of various physiological processes by responding
to the neurotrans mitter epinephrine (adrenaline) and norepinephrine, and drugs that selectively
activate or block this receptor are used in the treatment of various cardiovascular conditions. For
DRD3, it is primarily expressed in the brain, particularly in areas such as the limbic system and the
ventral striatum with functions of mediating the effects of the neurotrans mitter dopamine in the
central nervous system.

Setup. On these targets, there are molecules reported active to them experimentally, we here
randomly select 200 of them for each target and conduct two kinds of experiments. Firstly, we try
to figure out if the model can generate binding molecules that have similar chemical distributions
with the actives. We use extended connectivity fingerprint (ECFP) (Rogers & Hahn, 2010) to get
the molecule fingerprint and employ t-SNE (van der Maaten & Hinton, 2008) for 2-dimensional
visualization. Secondly, we aim to find out the distribution of Vina Docking Energy and LBE
of the generated and the actives as the metrics for binding affinities. Eight methods except for
voxelized-based ones (inflexible to extend) and DECOMPDIFF (requiring complex data-preprocessing
for domain knowledge) are tested on the two targets. Besides, we select 100 molecules randomly
from GEOM-DRUG (Axelrod & Gómez-Bombarelli, 2022), as a randomized control sample set.
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Figure 4: T-SNE visualization of chemical distributions
of generated and active molecules on ADRB1.
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Figure 5: Distribution of binding affinities.

Conculusion and Discussion. Figure. 4 and Figure. 5 gives the results on target ADRB1.

(i) In Figure. 4, we can see that POCKET2MOL, TARGETDIFF, D3FG, and MOLCRAFT have
better consistency in the chemical distribution of molecules, as evidenced by a greater degree
of overlap with the actives. In addition, in comparison to randomly selected molecules in
GEOM-DRUG, these models show different preferences in generating binding molecules
since the clustering center in the chemical space differs.

(ii) Figure. 5 shows that in generating molecules based on the real-world target ADRB1 related
to hypertension and heart failure, D3FG exhibits superior performance. TARGETDIFF and
MOLCRAFT perform comparably.

These conclusions are essentially consistent with the conclusion in Sec. 5.1, reflecting that the
established evaluation protocols exhibit consistency and generalizability on real-world disease
target data, especially in evaluating the binding affinity through Vina Dock. Besides, it is worth
noting that DIFFBP, GRAPHBP, and POCKET2MOL can possibly generate molecules with small
atom numbers and high LBE. This indicates that they have the potential to excel in lead discovery on
ADRB1, as a good lead should possess good synthesizability and modifiability and smaller molecular
weight. For DRD3, please refer to Appendix. E.3 for details.

6 CONCLUSION AND LIMITATION

CBGBench unifies the tasks of SBDD and lead optimization into a fill-in-the-blank 3D binding
graph, comprehensively categorizes and modularizes existing methods, and integrates them into
a unified codebase for fair comparison. Additionally, it extends existing evaluation protocols by
incorporating more aspects with metrics, addressing the issue of incomplete and diverse evaluation
process. Extensive experiments including case studies on disease targets for molecule generation
give insightful conclusions and identify future research directions.

However, there are certain limitations. Firstly, this codebase is based on GNNs, so the voxelized-
grid-based methods with CNNs have not been included. Engineering the integration of these types
of methods will be a focus of our future work. Secondly, due to the inability to use wet lab
experiments for validation, most metrics are obtained through computational methods, some of which
are considered unable to accurately reflect the chemical properties of molecules, such as SA as a
very important metrics but its deficiency is usually ignored by molecule design methods (Luo et al.,
2024). Therefore, how to utilize AI to assist in accurate metric calculation will also be a key focus of
our future research. Besides, several works (Zheng et al., 2024) emphasized the potential of 1D/2D
molecule designation in these year, which is also an important aspect of research interest.
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A REVIEW ON THE METHODS’ TIMELINE

Here we give a brief review of the 12 included methods in chronological order, with Table. ?? giving
some standardized information on these methods.

• LIGAN is firstly proposed to incorporate a generative model for the SBDD task, in which the
encoder and the decoder are 3-layer CNNs, and the Variational Auto-Encoder is employed
to model the probability of the atom’s density map in a molecule. It split the training and
test set in CrossDocked2020.

• Due to the rise of Graph Neural Networks (GNNs), 3DSBDD subsequently adopted GNNs
for modeling this task. At that time, GNNs were more adept at handling pairwise information,
so an autoregressive graph network modeling approach was chosen as an effective method
for molecular modeling. However, the development of graph networks for 3D tasks remained
slow, leading 3DSBDD to continue modeling molecules using voxelized maps. 3DSBDD
leverages graph networks to predict the voxel position that the next atom will occupy, as well
as the atom type, thereby generating molecules in an autoregressive manner. In addition,
3DSBDD further standardized the evaluation protocol of the experiment by using Vina
Docking Energy to assess the stability of the generated molecules.

• The rise of EGNN has enabled autoregressive modeling of continuous atomic coordinates
in the SBDD task while preserving equivariance and invariance properties. Following this
development, GRAPHBP adopted the EGNN architecture, using a depth-first search approach
to rank the molecules from near to far on the protein surface. This allows for autoregressive
molecular generation starting from the protein frontier and ultimately modeling a complete
molecule. However, GRAPHBP did not consider critical chemical priors such as bond
lengths and bond angles between atoms, making it challenging to capture the internal
patterns of molecules. The evaluation is based on Gnina Docking, different from 3DSBDD.

• Meanwhile, POCKET2MOL directly modeled atomic coordinates using GVP. Compared to
GRAPHBP, POCKET2MOL took molecular bonds into account and employed contrastive
learning, where false atoms were used to regularize the coordinates and bonding of real
atoms. This significantly improved the stability of the generated molecules. The evaluation
follows 3DSBDD.

• The rise of generative models, particularly the widespread application of diffusion models
in the field of images, has drawn attention to these cutting-edge generative techniques in the
molecular domain as well. Diffusion models are inspired by particle systems in statistical
physics, which aligns closely with the task of generating atomic coordinates in molecules.
DIFFSBDD, as pioneering works in applying diffusion models to the SBDD task, have also
achieved significant results. DIFFSBDD followed most of the concepts from EDM, such
as the zero-center-of-mass technique, and was tested and generalized on Binding MOAD
beyond CrossDocked2020.

• Meanwhile, DIFFBP also proposed to use the Gaussian Diffusion model on atoms’ positions
and masked type diffusion for elements’ types. DIFFBP analyzed the drawbacks of autore-
gressive models from the perspective of the Boltzmann energy distribution in statistical
physics and observed that molecular weight severely affects docking performance, being the
first to adopt a grouping approach for model comparison.

• After that, following previous explorations like GEODIFF and EDM in molecular (confor-
mation) generation, TARGETDIFF innovatively introduced a diffusion model-based SBDD
method, achieving new state-of-the-art (SOTA) performance. For validation, TARGETDIFF
first proposed using Vina Score and Vina Min mode to assess the stability of the generated
molecules’ initial states. Additionally, the embeddings learned by the model can also be
used for affinity prediction.

• On the other hand, fragment-based generative methods are also in the early stages of
exploration. FLAG follows the autoregressive generation approach of POCKET2MOL,
breaking molecules into fragments and individual atoms, allowing for the generation of
complex molecules with fewer steps. However, its modeling approach lacks sufficient
consideration of chemical bond participation, which is a key reason for its suboptimal
molecular generation performance.
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• Afterward, D3FG combined fragment-based generation with the diffusion method, leverag-
ing protein generation techniques to establish a diffusion model that predicts the orientation
matrix, central coordinates, and fragment types based on fragment information. The model
then uses linkers to connect the molecule fragments. Additionally, D3FG enables molecular
optimization by replacing fragments that are either prominent or insufficiently contributing.

• In contrast to D3FG, which treats fragments as rigid bodies, DECOMPDIFF considers
fragments as flexible structures, thereby decomposing molecules into arms and scaffolds,
and performing multivariate Gaussian diffusion within different decomposition clusters.
Additionally, DECOMPDIFF employs non-intersection guidance to mitigate the issue of
atomic overlap between the molecule and protein amino acids.

• In addition, work on voxelized maps is steadily progressing. VOXBIND builds on the
pioneering work of VOXMOL, using diffusion-based denoising modeling on the voxelized
density map of molecules. During the generation steps, it incorporates wj-sampling to
reduce computational complexity, while also producing structurally stable molecules.

• More recently, MOLCRAFT was proposed, utilizing the Bayes Flow Network, which is
designed for modeling probabilistic densities’ parameters. This allows molecules to avoid
the difficulty of coupling the two modalities: the discrete variable of atomic types and the
continuous positions of atoms in the molecule. It effectively addresses issues such as mode
collapse and has demonstrated outstanding performance as the most recent SOTA model.

Recently, several cocurrent benchmark works are also proposed for SBDD tasks, such as Zheng
et al. (2024), which aims to demonstrate that 1D/2D molecular generation methods remain highly
competitive compared to 3D approaches, which is insightful for researchers to rethink that if 3D-
molecule design is required for the tasks. In contrast, our work focuses solely on generative 3D
SBDD tasks. Moreover, we provide a comprehensive evaluation of 3D molecular generation methods,
incorporating over 10 3D-based methods compared to the five included in Zheng et al. (2024).

Table 9: A brief review of the included methods and task adaptation in our CBGBench.

Method Time Generative Model Network Architecture Prior Knowledge Evaluation Datasets Task adaptation (CBGBench)

LIGAN Oct. 2020 VAE CNN None CrossDocked2020 De novo design

3DSBDD Mar. 2022 Auto-regressive GNN None CrossDocked2020 De novo design
Lead optimization

GRAPHBP Apr. 2022 Auto-regressive EGNN None CrossDocked2020 De novo Design
Lead optimization

POCKET2MOL May. 2022 Auto-regressive GVP None CrossDocked2020 De novo Design
Lead optimization

DIFFSBDD Oct. 2022 DDPM EGNN None CrossDocked2020
Binding MOAD

De novo Design
Lead optimization

DIFFBP Nov. 2022 DDPM GVP None CrossDocked2020 De novo design
Lead optimization

TARGETDIFF Feb. 2023 DDPM EGNN None CrossDocked2020 De novo design
Lead optimization

FLAG Feb. 2023 Auto-regressive GVP Fragment CrossDocked2020 De novo design

D3FG May. 2023 DDPM EGNN + IPA Fragment CrossDocked2020 De novo design

DECOMPDIFF Feb. 2024 DDPM EGNN Arm&Scaffold CrossDocked2020 De novo design

MOLCRAFT Apr. 2024 BFN EGNN None CrossDocked2020 De novo design
Lead optimization

VOXBIND May. 2024 DDPM CNN None CrossDocked2020 De novo design
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B SUPPLEMENTARY EVALUATION DETAILS

B.1 INCLUDED FUNCTIONAL GROUPS

Here we show the functional groups included in this paper, in which we follow D3FG and give a
demonstration of them in Table. 10.

Table 10: The included functional groups in CBGBench. ‘T’ is the occurrence times of the functional
group in the datasets (100,000 ligands). ‘A,B,C’ are the framing node index.

Smiles 2D graph 3D structures A B C T

c1ccccc1 CH:0

CH:1CH:2

CH:3

CH:4 CH:5

c1ccccc1

1 0 2 131148

NC=O NH2:0
CH:1

O:2

NC=O

1 0 2 49023

O=CO O:0
CH:1

HO:2

O=CO

1 0 2 39863

c1ccncc1 CH:0

CH:1CH:2

N:3

CH:4 CH:5

c1ccncc1

3 2 4 15115

c1ncc2nc[nH]c2n1
CH:0

N:1
CH:2

C:3
N:4

CH:5

NH:6
C:7

N:8

c1ncc2nc[nH]c2n1

7 3 6 11369

NS(=O)=O
H2N:0

SH:1
O:2

O:3

NS(=O)=O

1 0 2 10121

O=P(O)(O)O
O:0

P:1
OH:2

OH:3

HO:4

O=P(O)(O)O

1 0 2 7451

OCO OH:0
CH2:1

HO:2

OCO

1 0 2 6405

c1cncnc1 CH:0

CH:1N:2

CH:3

N:4 CH:5

c1cncnc1

3 2 4 5965

c1cn[nH]c1 CH:0

CH:1
N:2

NH:3
CH:4

c1cn[nH]c1

2 3 1 5404

18



Published as a conference paper at ICLR 2025

Smiles 2D graph 3D structures A B C T
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B.2 LBE ANALYSIS

The LBE is motivated by the following phenomena in Fig. B.2, which shows that the Vina Energy
has an strong correlation with the atom number. Besides, in Appendix B4, we give a more detailed
analysis of LBE.
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Figure 6: A demonstration of how the molecule size affects the binding energy. The 6 pockets that
are most linear-correlated with atom number.

B.3 METRIC CALCULATION

The metric of MPBG can be written as MPBGj = Meani(
Ei,gen−Eref

Eref
× 100%), in which i is

the indicator of the generated molecules in a single protein and Meani(·) calculates average along
indicator i, with MPBG = Meanj(MPBGj). The MPBG is a per-pocket metric that is calculated
within a single pocket, which differs from other averaging metrics.

For chemical property calculation, we use functions in RDKit (RDKit, online), and note that the SA
is the normalized one employed in the previous studies.

For interaction pattern analysis, we employ PLIP, which considers 7 kinds of interaction types includ-
ing ‘hydrophobic interactions’, ‘hydrogen bonds’, ‘water bridges’, ‘π-stacks’, ‘π-cation interactions’,
‘halogen bonds’ and ‘metal complexes’.

For MAE metrics that are related to the molecule sizes, the generative model tends to achieve higher
scores when the atom number is close to that of the reference. We suppose it is reasonable, considering
that the size of the molecule itself is determined by factors such as the size and shape of the pocket,
and these characteristics should be captured by the models.

B.4 DISCUSSION ON LBE.

- Is it possible that smaller molecules exhibit higher efficacy, thus leading LBE to be meaningless?
(Reynolds et al., 2008)

Meaning. The introduction of Ligand Binding Efficiency (LBE) is motivated by observations in
Appendix B.2, where we identified a strong positive correlation between the size of the generated
molecules and the Vina docking energy. To address this size-related bias, LBE was incorporated
as an additional metric. This approach is consistent with the basic principles of energy calculation,
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Table 11: Ratio of generated molecule’s size and the corresponding LBE.
Method Mol Size [1,3] (3,10] (10,20] (20,30] >30

LiGAN Ratio(%) 0.01 13.61 40.09 36.77 9.59
LBE 0.37 0.42 0.44 0.35 0.30

3DSBDD Ratio(%) 0.01 15.48 54.44 22.63 7.42
LBE 0.39 0.42 0.41 0.33 0.31

GRAPHBP Ratio(%) 0.00 0.77 91.29 6.07 1.84
LBE - 0.36 0.33 0.21 0.20

POCKET2MOL
Ratio(%) 0.08 24.22 48.83 20.19 6.64
LBE 0.43 0.45 0.44 0.33 0.30

TARGETDIFF
Ratio(%) 0.00 10.24 28.17 39.51 22.05
LBE - 0.44 0.44 0.31 0.29

DIFFSBDD Ratio(%) 0.13 21.54 41.43 28.01 8.86
LBE 0.37 0.38 0.30 0.24 0.22

DIFFBP Ratio(%) 0.00 7.29 32.19 43.08 17.42
LBE - 0.41 0.42 0.31 0.29

FLAG Ratio(%) 0.04 39.01 54.29 6.52 0.13
LBE 0.40 0.35 0.33 0.24 0.19

D3FG Ratio(%) 0.00 8.31 61.70 27.72 2.55
LBE - 0.44 0.45 0.32 0.25

DECOMPDIFF
Ratio(%) 0.00 9.99 35.50 33.98 20.51
LBE - 0.38 0.38 0.33 0.30

MOLCRAFT
Ratio(%) 0.00 9.18 30.97 39.62 20.21
LBE - 0.44 0.41 0.33 0.29

VOXBIND
Ratio(%) 0.00 6.10 36.64 43.39 15.85
LBE - 0.43 0.41 0.34 0.26

where the total binding energy is derived from the sum of interaction energies contributed by each
atom, i.e. Evina ∼ Ebind =

∑Natom

i=1 Ei. Thus, using LBE as a measure of the average per-atom
contribution to binding affinity is both logical and appropriate, as LBE = − Ebind

Natom
. Furthermore,

numerous studies in medicinal chemistry have highlighted Ligand Efficiency as a critical evaluation
criterion, advocating for its widespread use as an effective metric for assessing molecular binding
affinity (Hopkins et al., 2014; Kenny, 2017; Murray et al., 2010).

Resonability. It can be usually concluded from Reynolds et al. (2008) that ‘smaller molecules
tend to have higher LBE’, while we believe this conclusion is incorrect. We claim that different
protein pockets exhibit a preference for molecule sizes. If this conclusion were true, it would imply
that molecules consisting of a single atom would have the optimal LBE? To explore this issue, in
Table. 11, we give statistics of molecule sizes v.s. LBE of methods evaluated. It shows that such
molecules with extreme sizes (less than 4) that make the LBE meaningless are scarcely generated
since they have a small ratio. Ligands with sizes less than 20 usually have better LBE because of the
preference of the pockets, as a consequence of protein binding sites being limited in their size, thus
generating the preference of binding molecules’ sizes. Larger ligand with sizes of more than 20 gets
decreased LBE because it becomes increasingly difficult to form optimal interactions with every site
on the protein without introducing unfavorable ligand strain.

Little Effects of Extreme Samples. Besides, we use a weighted ranking with equal weights as
previous benchmarks (Wang et al., 2022), to give an unbiased evaluation. Given that LBE accounts
for one-twelfth of the total weight in interaction analysis, the impact of failed samples in LBE on
calculating the LBE metrics and final ranking is minimal. Therefore, we claim that the inclusion of a
minimal number of invalid LBE calculations will not render the overall ranking ineffective.

B.5 PREVIOUSLY-USED METRICS FOR EVALUATION

The aspects of evaluation are commonly used with different methods, while they hardly give a very
comprehensive evaluation. We give a brief review of each method’s evaluation on these aspects in
Table. 12.
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Table 12: Different methods’ evaluation aspects in the published papers.
Method Substructure Geometry Chem Property Interaction

LIGAN Figure. S6 Figure. S7, S8, S9 Figure. 3, S3, S4, S5 Figure. S13, S14
POCKET2MOL Table. 2 Table. 3; Figure. 4 Table. 1 Table. 1
GRAPHBP - Table. 2; Figure. 5 - Table. 1; Figure. 2
TARGETDIFF Table. 2 Table. 1; Figure. 2 Table. 3 Table. 3, Figure. 4
DIFFBP Table. 3 - Table. 2 Table. 1
DIFFSBDD - Figure. 8, 9 Table. 1 Table. 1, 2; Figure. 2
FLAG Table. 3 Table. 2; Figure. 4 Table. 1 Table. 1
D3FG Table. 1, 3; Figure. 3 Table. 2 Table. 4 Table. 4
DECOMPDIFF - Table. 1, 2; Figure. 3 Table. 3 Table. 3
MOLCRAFT Table. 1 Table. 2 Table. 2 Table. 2
VOXBIND - Figure. 7 Table. 1 Table. 1; Figure. 5

C CODEBASE STRUCTURE

In this section, we provide an overview of the codebase structure of CBGBench, where four abstract
layers are adopted. The layers include the core layer, algorithm layer, chemistry layer, and API layer
in the bottom-up direction as shown in Fig. 7. This codebase is licensed under the Apache License,
Version 2.0. It provides a robust and flexible framework for building and evaluating graph neural
network models for structure-based drug design and lead optimization.

Train Generation Evaluation
Chem. Prop.

Interaction

Geometry

Substructure

Rdkit Utility Vina Docking Scoring Func. Protein Motif Fragment Motif

API

Chemistry

Algorithm

Core

CBGBench: Complex Binding Graph Benchmark

Training
· LR Scheduler
· TensorBoard
· Timer
· Checkpoints
· Logging

...

Dataset
· De novo
· Linker
· Fragment

· Scaffold
· Side Chain

Embedding
· Time
· Distance
· Angle

· Residue
· Atom

· Fragment

Base
· Config
· Dataset
· Data Loader
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· Transform
· Optimizer
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· EGNN
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Method
- Diffusion

· DiffBP

· TargetDiff
· DiffSBDD

· D3FG
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- AutoRegressive

· GraphBP
· FLAG
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· Distribution
· SO3 group
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Module
· MLP
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· Normalization
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Sampling
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· Bond Constru.
· Context Saver
· Mol Saver

...

Figure 7: Structure of CBGBench Codebase, consisting of 4 layers. The core layer provides the
common functions, datasets, and modules for CBG methods. The algorithm layer mainly implements
the prevailing CBG algorithms. The Chemistry layer is used for data preprocessing and evaluation.

Core Layer. In the core layer, we implement the commonly used core functions for training and
sampling CBG algorithms. Besides, the code regarding datasets, data loaders, and basic modules
used in CBGBench is also provided in the core layer.
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Algorithm Layer. In the algorithm layer, we first implement the base class for CBG algorithms,
where we initialize the datasets, data loaders, and basic modules from the core layer. We modularize
each method, first using embedding layers to project the input into high-dimensional space, and then
employing different 3D equivariant GNNs to construct the algorithm, including Diffusion-based
and Auto-regressive-based ones. We further abstract the algorithms, enabling better code reuse and
making it easier to implement new algorithms. The voxel-based methods are not included because
our framework is mostly based on EGNNs, which will be added to the codebase as future work, and
DecompDiff requires different data preprocessing. Based on this, we support 7 core CBG algorithms.
More algorithms are expected to be added through continued extension.

Chemistry Layer. The chemistry layer is mostly built with post-processing utilities and evaluators
such as atom type, bond angle, and docking modules. Besides, several prior decomposition functions
are used as molecule parsers, and the molecule and protein fragment motifs serve as prior knowledge.

API Layer. We wrap the core functions and algorithms in CBGBench in the API layer as a
public Python package. It is friendly for users from different backgrounds who want to employ CGB
algorithms in new applications. Training and sampling can be done in only a few lines of code. In
addition, we provide the configuration files of all algorithms supported in CBGBench with detailed
parameter settings, allowing the reproduction of the results.

D EXPERIMENTAL IMPLEMENTATION DETAILS

Experiments are conducted based on Pytorch 2.0.1 on a hardware platform with Intel(R) Xeon(R)
Gold 6240R @ 2.40GHz CPU and NVIDIA A100 GPU. We give the detailed parameters for training
the included models in Table. 13. Note that most of the hyperparameters’ combinations are directly
the officially-provided ones. Specifically, The methods included in our codebase are either self-trained
or trained by us when the official repository does not provide a pretrained checkpoint. For methods
that are not included, we validate them using the pretrained models that have been provided. In the
Lead-Optimization tasks, the finetuning parameters are the same.

Table 13: The hyper-parameters in for training and sampling molecules for the SBDD methods.
Different from GNN-based methods, CNN-based methods usually have a different hidden dimension
size, so we report the highest ones. ‘Num steps’ are the sampling steps which is usually used in
diffusion-based methods, including DDPMs and BFNs. For other hyper-parameters in detail, please
read the config files provided in the supplementary materials from ./configs/denovo/train.

Method Batch Size Hidden Dim Layer num Learning rate Optimizer Num Steps

LIGAN 8 128 4 1E-05 RMSprop /
3DSBDD 4 256 6 1E-04 Adam /
GRAPHBP 16 64 6 1E-04 Adam /

POCKET2MOL 8 256 6 1E-05 Adam /
TARGETDIFF 4 128 9 5E-04 Adam 1000
DIFFSBDD 16 256 6 1E-03 Adam 500

DIFFBP 16 256 6 1E-04 Adam 1000
FLAG 4 256 6 1E-04 Adam /
D3FG 16 128 6 1E-04 Adam 1000

DECOMPDIFF 4 128 6 5E-04 Adam 1000
MOLCRAFT 8 128 9 5E-04 Adam 1000
VOXBIND 32 512 4 1E-05 AdamW 100

E EXPERIMENTAL RESULT DETAILS

E.1 DE NOVO GENERATION

E.1.1 SUBSTRUCTURE

Table. 14 gives the generated molecules’ atom distribution in detail. It shows DIFFBP and GRAPHBP
tend to generate more C atoms and have a low probability of generating uncommon atoms. In contrast,
D3FG and FLAG, which directly use a motif library, have a higher probability of generating these
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uncommon atoms. Table. 15 gives the generated molecules’ ring distribution in detail. DIFFBP
and DIFFSBDD perform poorly due to significant inconsistencies in generating large complex
fragments. For example, they also generate a large number of unreasonable triangular and tetrahedral
rings. Similarly, these methods also fall short in generating complex functional groups, as shown in
Table. 16. This leads to their subpar performance in substructure generation.

Table 14: Distribution of different atom types across different methods.

Method C N O F P S Cl

REF. 0.6715 0.1170 0.1696 0.0131 0.0111 0.0112 0.0064
LIGAN 0.6477 0.0775 0.2492 0.0005 0.0224 0.0019 0.0008

3DSBDD 0.6941 0.1311 0.1651 0.0025 0.0063 0.0010 0.0000
GRAPHBP 0.8610 0.0397 0.0868 0.0036 0.0040 0.0039 0.0010

POCKET2MOL 0.7623 0.0855 0.1413 0.0025 0.0044 0.0027 0.0013
TARGETDIFF 0.6935 0.0896 0.1924 0.0110 0.0059 0.0052 0.0025
DIFFSBDD 0.7000 0.1154 0.1611 0.0081 0.0017 0.0093 0.0031

DIFFBP 0.9178 0.0030 0.0792 0.0000 0.0000 0.0000 0.0000
FLAG 0.5585 0.1341 0.2077 0.0265 0.0312 0.0347 0.0074
D3FG 0.7336 0.1158 0.1286 0.0056 0.0035 0.0088 0.0040

DECOMPDIFF 0.6762 0.0978 0.1927 0.0064 0.0149 0.0088 0.0033
MOLCRAFT 0.6735 0.0917 0.2056 0.0103 0.0094 0.0058 0.0035
VOXBIND 0.7359 0.1083 0.1390 0.0000 0.0046 0.0120 0.7382

Table 15: Distribution of different ring sizes across various methods.

Method 3 4 5 6 7 8

REF. 0.0130 0.0020 0.2855 0.6894 0.0098 0.0003
LIGAN 0.2238 0.0698 0.2599 0.4049 0.0171 0.0096

3DSBDD 0.2970 0.0007 0.1538 0.5114 0.0181 0.0116
GRAPHBP 0.0000 0.2429 0.1922 0.1765 0.1533 0.1113

POCKET2MOL 0.0000 0.1585 0.1822 0.4373 0.1410 0.0478
TARGETDIFF 0.0000 0.0188 0.2856 0.4918 0.1209 0.0298
DIFFSBDD 0.2842 0.0330 0.2818 0.2854 0.0718 0.0193

DIFFBP 0.0000 0.2195 0.2371 0.2215 0.1417 0.0707
FLAG 0.0000 0.0682 0.2716 0.5228 0.0996 0.0231
D3FG 0.0000 0.0201 0.2477 0.5966 0.0756 0.0283

DECOMPDIFF 0.0302 0.0378 0.3407 0.4386 0.1137 0.0196
MOLCRAFT 0.0000 0.0022 0.2494 0.6822 0.0489 0.0072
VOXBIND 0.0000 0.0062 0.2042 0.7566 0.0232 0.0021

Table 16: Distribution of the top ten functional groups across different methods.

Method c1ccccc1 NC=O O=CO c1ccncc1 c1ncc2nc[nH]c2n1 NS(=O)=O O=P(O)(O)O OCO c1cncnc1 c1cn[nH]c1

REF. 0.3920 0.1465 0.1192 0.0452 0.0340 0.0303 0.0223 0.0191 0.0178 0.0162
LIGAN 0.3464 0.0998 0.1549 0.0546 0.1028 0.0127 0.0490 0.0897 0.0197 0.0000

3DSBDD 0.3109 0.1488 0.1219 0.0769 0.0090 0.0000 0.0814 0.0915 0.0148 0.0291
GRAPHBP 0.0133 0.1330 0.1888 0.0000 0.0000 0.0000 0.0000 0.6064 0.0000 0.0000

POCKET2MOL 0.3794 0.1098 0.2906 0.0305 0.0000 0.0000 0.0150 0.0964 0.0030 0.0000
TARGETDIFF 0.2729 0.1520 0.3085 0.0427 0.0001 0.0000 0.0241 0.0855 0.0069 0.0065
DIFFSBDD 0.0073 0.1985 0.5787 0.0194 0.0000 0.0073 0.0000 0.0145 0.0000 0.0000

DIFFBP 0.1962 0.0108 0.4440 0.0010 0.0000 0.0000 0.0000 0.3289 0.0000 0.0000
FLAG 0.2223 0.1880 0.1736 0.0365 0.0009 0.0000 0.0014 0.2471 0.0135 0.0014
D3FG 0.3002 0.1597 0.2078 0.0323 0.0114 0.0000 0.0212 0.0751 0.0410 0.0000

DECOMPDIFF 0.3173 0.1660 0.2125 0.0527 0.0094 0.0057 0.0418 0.0443 0.0134 0.0128
MOLCRAFT 0.3960 0.1798 0.2361 0.0377 0.0001 0.0000 0.0362 0.0344 0.0053 0.0002
VOXBIND 0.4705 0.1138 0.1663 0.0762 0.0001 0.0000 0.0191 0.0334 0.0110 0.0000

E.1.2 INTERACTION

PLIP Interaction Pattern. Table. 17 and 18 provide detailed interaction pattern analysis. Most
models captured good interaction patterns, generating a substantial amount of hydrophobic and
hydrogen interactions. DiffSBDD excessively generated hydrophobic interactions. Additionally,
for interactions such as π-stacking, π-cation, and halogen interactions, which do not exist in the
reference molecules, the models could probabilistically generate molecules capable of producing
such interactions with the protein.

E.1.3 GEOMETRY

Here we give detailed bond length and bond angle distribution of the evaluated method’s generated
molecules and the reference, in Table. 19 and 20. It shows that the

24



Published as a conference paper at ICLR 2025

Table 17: Frequency of interaction type.

Method hydrophobic hydrogen water bridge π-stacks π-cation halogen metal

REF. 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIGAN 3.1354 3.5078 0.0000 0.1045 0.0441 0.0034 0.0000

3DSBDD 3.1237 3.0853 0.0000 0.1405 0.0434 0.0053 0.0000
GRAPHBP 5.2008 0.8039 0.0000 0.0007 0.0046 0.0060 0.0000

POCKET2MOL 4.9366 1.8840 0.0000 0.0176 0.0081 0.0045 0.0000
TARGETDIFF 4.2444 3.5309 0.0000 0.1159 0.0377 0.0384 0.0000
DIFFSBDD 3.9009 3.3202 0.0000 0.0986 0.0338 0.0279 0.0000

DIFFBP 4.1027 1.4830 0.0000 0.0213 0.0039 0.0000 0.0000
FLAG 1.9319 2.1490 0.0000 0.0134 0.0185 0.0528 0.0000
D3FG 4.3149 2.4718 0.0000 0.0607 0.0260 0.0200 0.0000

DECOMPDIFF 3.9284 3.4531 0.0000 0.1177 0.0436 0.0290 0.0000
MOLCRAFT 4.0147 3.9456 0.0000 0.2038 0.0667 0.0377 0.0000
VOXBIND 4.4920 2.8395 0.0000 0.1659 0.0599 0.0001 0.0000

Table 18: Distibution of interaction type.

Method hydrophobic hydrogen water bridge π-stacks π-cation halogen metal

REF. 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
LIGAN 0.4614 0.5162 0.0000 0.0154 0.0065 0.0005 0.0000

3DSBDD 0.4882 0.4822 0.0000 0.0220 0.0068 0.0008 0.0000
GRAPHBP 0.8645 0.1336 0.0000 0.0001 0.0008 0.0010 0.0000

POCKET2MOL 0.7206 0.2750 0.0000 0.0026 0.0012 0.0007 0.0000
TARGETDIFF 0.5327 0.4432 0.0000 0.0146 0.0047 0.0048 0.0000
DIFFSBDD 0.5285 0.4498 0.0000 0.0134 0.0046 0.0038 0.0000

DIFFBP 0.6579 0.3398 0.0000 0.0020 0.0004 0.0000 0.0000
FLAG 0.4638 0.5159 0.0000 0.0032 0.0045 0.0127 0.0000
D3FG 0.6259 0.3586 0.0000 0.0088 0.0038 0.0029 0.0000

DECOMPDIFF 0.5188 0.4560 0.0000 0.0155 0.0058 0.0038 0.0000
MOLCRAFT 0.4855 0.4771 0.0000 0.0246 0.0080 0.0045 0.0000
VOXBIND 0.5943 0.3757 0.0000 0.0219 0.0007 0.2012 0.0000

Table 19: JSD Bond Length Comparisons across different methods.

METHOD C-C C-N C-O C=C C=N C=O

LIGAN 0.4986 0.4146 0.4560 0.4807 0.4776 0.4595
3DSBDD 0.2090 0.4258 0.5478 0.5170 0.6701 0.6448
GRAPHBP 0.5038 0.4231 0.4973 0.6235 0.4629 0.5986

POCKET2MOL 0.5667 0.5698 0.5433 0.4787 0.5989 0.5025
TARGETDIFF 0.3101 0.2490 0.3072 0.1715 0.1944 0.3629
DIFFSBDD 0.3841 0.3708 0.3291 0.3043 0.3473 0.3647

DIFFBP 0.5704 0.5256 0.5090 0.6161 0.6314 0.5296
FLAG 0.3460 0.3770 0.4433 0.4872 0.4464 0.4292
D3GF 0.4244 0.3227 0.3895 0.3860 0.3570 0.3566

DECOMPDIFF 0.2562 0.2007 0.2361 0.2590 0.2844 0.3091
MOLCRAFT 0.2473 0.1732 0.2341 0.3040 0.1459 0.2250
VOXBIND 0.3335 0.2577 0.3507 0.1991 0.1459 0.3334

Table 20: JSD Bond Angle Comparisons across different methods.

JSDBA LIGAN 3DSBDD GRAPHBP POCKET2MOL TARGETDIFF DIFFSBDD DIFFBP FLAG D3GF DECOMPDIFF MOLCRAFT VOXBIND

C#C-C 0.6704 0.4838 0.7507 0.6477 0.6845 0.6788 0.7204 0.4591 0.7027 0.8174 0.4922 0.6275
C-C#N 0.8151 0.2980 0.8326 0.5830 0.7437 0.7388 0.7928 0.3461 0.7120 0.7254 0.2252 0.7320
C-C-C 0.5260 0.2189 0.5015 0.4663 0.2955 0.3825 0.5234 0.3439 0.3703 0.2306 0.1926 0.2742
C-C-N 0.5102 0.2934 0.4975 0.4790 0.2738 0.4265 0.5189 0.3650 0.3592 0.1987 0.1097 0.2280
C-C-O 0.5198 0.3279 0.5216 0.5078 0.3335 0.3930 0.5327 0.3710 0.4021 0.2124 0.1277 0.3233
C-C=C 0.4657 0.2701 0.4430 0.2826 0.1815 0.3163 0.5047 0.2830 0.2706 0.2215 0.2267 0.1823
C-C=N 0.4441 0.4159 0.4376 0.3507 0.2075 0.3185 0.5171 0.3353 0.3205 0.2094 0.3175 0.2707
C-N-C 0.5209 0.3176 0.4586 0.3981 0.2915 0.4168 0.5378 0.4237 0.3597 0.1952 0.1475 0.1532
C-N-N 0.5889 0.2847 0.5403 0.4997 0.2626 0.4022 0.6005 0.4161 0.3505 0.2825 0.2702 0.1813
C-N-O 0.7019 0.4996 0.6338 0.6173 0.3263 0.4653 0.7070 0.5560 0.4943 0.3120 0.2002 0.3300
C-N=C 0.3646 0.4011 0.5133 0.3728 0.3105 0.3191 0.4433 0.4085 0.4517 0.3467 0.4092 0.3626
C-N=N 0.3597 0.6214 0.7639 0.7062 0.4400 0.4212 0.8326 0.7023 0.7380 0.3917 0.6954 0.7196
C-O-C 0.5111 0.4259 0.4872 0.4204 0.2865 0.3786 0.5478 0.4606 0.3765 0.1882 0.1113 0.3305
C-O-N 0.7893 0.3465 0.6637 0.6140 0.4312 0.5485 0.7520 0.6257 0.4988 0.4064 0.3336 0.4436
C=C-N 0.4580 0.4140 0.5415 0.3732 0.2359 0.3223 0.4075 0.3361 0.3226 0.2574 0.1760 0.2905
C=C=C 0.7593 0.6866 0.7793 0.7373 0.7445 0.7549 0.7752 0.7419 0.7603 0.7703 0.6388 0.8326
N#C-C 0.8151 0.2980 0.8326 0.5830 0.7437 0.7388 0.7928 0.3461 0.7120 0.7254 0.2252 0.7320
N-C-N 0.5157 0.3795 0.4179 0.5544 0.3058 0.4409 0.6764 0.4316 0.4464 0.2994 0.2604 0.2569
N-C-O 0.4713 0.2673 0.6054 0.5879 0.3926 0.4346 0.5923 0.4089 0.4987 0.3029 0.2612 0.4190
N-C=N 0.4598 0.3670 0.3450 0.3986 0.2175 0.3558 0.5498 0.2654 0.3531 0.2593 0.1366 0.1360
N-C=O 0.5275 0.3900 0.4285 0.2347 0.2664 0.3690 0.5719 0.3636 0.3695 0.1197 0.0378 0.2508
N-N-O 0.8326 0.6048 0.7791 0.7639 0.5862 0.5912 0.7447 0.7117 0.6875 0.4831 0.6708 0.5859
N=C-N 0.4598 0.3670 0.3450 0.3986 0.2175 0.3558 0.5498 0.2654 0.3531 0.2593 0.1366 0.1360
O=C-N 0.5275 0.3900 0.4285 0.2347 0.2664 0.3690 0.5719 0.3636 0.3695 0.1197 0.0378 0.2508

E.2 LEAD OPTIMIZATION

We here give the details of interaction analysis. Since these tasks have provided a partial of the
molecules as the context, it is hard to tell the superiority of generated substructures or geometries.
Table. 21 and 22 gives details. it shows that
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Table 21: Frequency of interaction type on lead optimization tasks.

Method hydrophobic hydrogen water bridge π-stacks π-cation halogen metal

REF. 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000

L
in

ke
r

GRAPHBP 5.5795 2.9812 0.0000 0.5362 0.3537 0.0000 0.0000
POCKET2MOL 5.1879 3.2759 0.0000 0.1708 0.1082 0.0326 0.0000
TARGETDIFF 5.3811 3.7133 0.0000 0.1675 0.0827 0.0404 0.0000
DIFFSBDD 5.4132 3.1350 0.0000 0.1153 0.0132 0.0308 0.0000

DIFFBP 7.0697 2.6017 0.0000 0.1226 0.0678 0.0204 0.0000
Fr

ag
m

en
t GRAPHBP 3.0084 3.2071 0.0000 0.0947 0.0499 0.0196 0.0000

POCKET2MOL 4.4064 4.0854 0.0000 0.1238 0.0956 0.0131 0.0000
TARGETDIFF 4.3187 3.6436 0.0000 0.1040 0.0648 0.0405 0.0000
DIFFSBDD 4.3086 3.6720 0.0000 0.1087 0.0089 0.0468 0.0000

DIFFBP 5.6128 2.7838 0.0000 0.0552 0.0339 0.0175 0.0000

Si
de

C
ha

in GRAPHBP 3.0173 1.2207 0.0000 0.2029 0.0321 0.0001 0.0000
POCKET2MOL 3.0643 3.8911 0.0000 0.0872 0.0708 0.0194 0.0000
TARGETDIFF 3.3468 3.6206 0.0000 0.0975 0.0527 0.0851 0.0000
DIFFSBDD 3.6822 3.3479 0.0000 0.0271 0.0242 0.0098 0.0000

DIFFBP 4.5444 2.5941 0.0000 0.0696 0.0349 0.0141 0.0000

Sc
af

fo
ld

GRAPHBP 0.9560 2.3953 0.0000 0.0000 0.0007 0.0007 0.0000
POCKET2MOL 3.2220 3.4761 0.0000 0.0282 0.0295 0.0246 0.0000
TARGETDIFF 3.5427 4.1047 0.0000 0.0612 0.0383 0.0303 0.0000
DIFFSBDD 4.6225 3.2649 0.0000 0.0021 0.0138 0.1786 0.0000

DIFFBP 5.0840 2.4424 0.0000 0.0061 0.0055 0.0110 0.0000

Table 22: Distibution of interaction type on lead optimization tasks.

Method hydrophobic hydrogen water bridge π-stacks π-cation halogen metal

REF. 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000

L
in

ke
r

GRAPHBP 0.5904 0.3154 0.0000 0.0567 0.0374 0.0000 0.0000
POCKET2MOL 0.5912 0.3733 0.0000 0.0195 0.0123 0.0037 0.0000
TARGETDIFF 0.5734 0.3957 0.0000 0.0178 0.0088 0.0043 0.0000
DIFFSBDD 0.6216 0.3600 0.0000 0.0132 0.0015 0.0035 0.0000

DIFFBP 4.1027 1.4830 0.0000 0.0213 0.0039 0.0021 0.0000

Fr
ag

m
en

t GRAPHBP 0.4716 0.5027 0.0000 0.0148 0.0078 0.0031 0.0000
POCKET2MOL 0.5051 0.4683 0.0000 0.0142 0.0110 0.0015 0.0000
TARGETDIFF 0.5285 0.4459 0.0000 0.0127 0.0079 0.0050 0.0000
DIFFSBDD 0.5289 0.4508 0.0000 0.0133 0.0011 0.0057 0.0000

DIFFBP 0.6601 0.3274 0.0000 0.0065 0.0040 0.0021 0.0000

Si
de

C
ha

in GRAPHBP 0.6746 0.2729 0.0000 0.0454 0.0072 0.0000 0.0000
POCKET2MOL 0.4296 0.5455 0.0000 0.0122 0.0099 0.0027 0.0000
TARGETDIFF 0.4647 0.5027 0.0000 0.0135 0.0073 0.0118 0.0000
DIFFSBDD 0.5192 0.4721 0.0000 0.0038 0.0034 0.0013 0.0000

DIFFBP 0.6262 0.3575 0.0000 0.0096 0.0048 0.0019 0.0000

Sc
af

fo
ld

GRAPHBP 0.2851 0.7144 0.0000 0.0000 0.0002 0.0002 0.0000
POCKET2MOL 0.4752 0.5127 0.0000 0.0042 0.0043 0.0036 0.0000
TARGETDIFF 0.4555 0.5278 0.0000 0.0079 0.0049 0.0039 0.0000
DIFFSBDD 0.5719 0.4039 0.0000 0.0003 0.0017 0.0221 0.0000

DIFFBP 0.6735 0.3235 0.0000 0.0008 0.0007 0.0015 0.0000

• The optimization on the side chains has the least effect on the interaction pattern in an
overall result and has the greatest influence on the linker.

• GRAPHBP’s failure in scaffold hopping also can be reflected by the fact that the interaction
pattern cannot be produced with the molecules.

E.3 CASE STUDY

DRD3. For DRD3, we give the distribution of different models’ generated molecules in chemical
space in Figure. 8 and 9. Different methods capture different clustering centers of the actives, while
their distributions show a great gap from the GEOM-DRUG’s randomly sampled molecules.

E.4 VALIDITY

Validity is an important metric to evaluate whether the molecules generated by the models are valid.
There are two methods to reconstruct the 3D positions of the atoms into a molecule with bonds, one
is used in TARGERDIFF, POCKET2MOL and 3DSBDD, which we name as Refine; The second is
to use Openbabel (Open Babel development team) the software, used in DIFFSBDD. However,
using these methods to reconstruct molecules always carries the risk of broken bonds, which makes
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Figure 8: T-SNE visualization of chemical distributions
of generated and active molecules on DRD3.
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Figure 9: Binding affinities on DRD3.
Table 23: Denovo Validity and Rank

Method Validity Rank

LiGAN 0.42 12
3DSBDD 0.54 11
GraphBP 0.66 10

Pocket2Mol 0.75 6
TargetDiff 0.96 1
DiffSBDD 0.71 7

DiffBP 0.78 4
FLAG 0.68 9
D3FG 0.77 5

DecompDiff 0.89 3
MolCraft 0.95 2
VoxBind 0.74 8

the strategy of selecting connected atoms to form fragments and ultimately the final molecule crucial.
Here, we define a chemically valid molecule as one where the number of atoms in the largest fragment
is greater than 85% of the total number of atoms, and we use this as the criterion for the reconstruction.
Additionally, we employed a ‘Refine + Openbabel’ strategy, where if refinement is unsuccessful,
Openbabel is added as a reconstruction method. Under this definition, the validity of various methods
in the de novo task is shown in Table. 23. DecompDiff and TargetDiff have the highest validity.
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