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Abstract

We introduce two physics-inspired methods for the compression of neural networks that encourage
weight clustering, in anticipation of model quantization, by adding attractive interactions between
parameters to the loss. Our two methods implement interactions either directly or via an intermediary
set of centroids. By applying these methods to pre-trained neural networks, we investigate the
existence of compressible configurations near the bottom of the loss landscape. The direct interaction
approach suggests the existence of multiple, qualitatively distinct compressed configurations close
to pre-trained models, and the centroid-mediated approach provides a pipeline for quantization that
is competitive with extant quantization methods.

1. Introduction

The surprising effectiveness of relatively simple optimization algorithms [16] in training deep neural
networks is often attributed to the accessibility and abundance of ”good” minima in the loss landscape.
A growing body of work suggests that, near the bottom of this landscape, most directions are relatively
flat [18, 21, 23], and seemingly distinct minima can be connected by low-loss, non-linear paths [8].
Moreover, empirical studies indicate that many parameters are functionally redundant, although
identifying which ones a priori remains challenging [9].

Model quantization aims to reduce the number of bits used to represent network weights, forcing
them to take values from a small, discrete set. This is important for deploying large-scale models on
resource-constrained hardware [6, 7]. The two most common quantization strategy paradigms are
Post-Training Quantization (PTQ) [19] and Quantization-Aware Training (QAT) [2, 15, 26].

This work ties the above concepts together via the following question: given a pre—trained model,
can we exploit the abundance of flat directions and redundant parameters near a minimum to direct
the model towards a nearby, compressible solution—one that admits quantization with minimal loss
in performance?

Guided by analogies with statistical physics, we introduce two conceptually related compression
schemes. These schemes allow us to investigate whether pre-trained models can be steered via small
local adjustments into quantizable regions of the loss landscape.

2. Related Work

The idea of combining the training loss with a clustering prior dates back to the work of Nowlan and
Hinton [20], which motivated this prior from the perspective of regularization rather than compression.
More recently, Ullrich et al. [24] applied this idea to model compression via ’soft weight-sharing,”
where a mixture-of-Gaussians prior softly clusters the weights. Both approaches frame clustering
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as a probabilistic prior over the parameters. Related to this, several methods have incorporated
explicit K-means clustering into the quantization process. Existing works [10, 25] optimize cluster
centers after an initial K -means clustering step. Other works [4, 5] propose differentiable variants of
K-means, using attention mechanisms to allow end-to-end training of both cluster assignments and
centroids.

In parallel, a number of QAT techniques have been explored. Notable examples for our work
include BinaryRelax [26], which explores relaxed binary representations, and PARQ [15], which
revisits and improves the straight-through estimator commonly used in QAT. These methods train
quantized models from scratch, often achieving strong performance even at low bit-widths, though
typically at the cost of increased training time and complexity.

3. Methods

Given a target loss function Ly, (@) defined over input-output pairs X, Y, we consider the following
modification of the training objective:

L(0) = Liask(0; X,Y) + L (6; P), (1

where the compression term L biases the optimization toward regions of parameter space where
weights are organized into a small number of distinct clusters, thereby facilitating quantization.
Minimizing £(0) corresponds to solving the original learning problem under an additional structural
constraint favoring clustered solutions. In the following, we introduce two classes of compression
losses, each implementing a different mechanism to steer the optimization toward clustered solutions.

3.1. Compression Via Pairwise Interactions

We consider a pairwise interaction potential between weights within the same layer:

Lo(0:h,w) =3 1> U, (60 —00). @)
L it

where U, () denotes an attractive potential defined by a triangular well of width w (U (x) =
|z|0(w? — 22) + wh(2? — w?), with 0(-) the Heaviside step function). In other words, this potential
looks like |z| for |z| < w and becomes flat for |z| > w. This potential induces attractive forces
between weights which lie within a distance w of each other, thereby promoting local clustering of
weights within each layer. Computing the interaction potential for a single layer requires O(JV, 12)
operations, where /NV; is the number of parameters in the [-th layer. At each training step we
compute the compression loss (2) by randomly subsampling a fraction O ( VN, ) of weights per layer.
This reduces the computational cost to O(NN) overall, and additionally serves as a regularizer that
discourages overly aggressive clustering. We refer to this approach as the weight-weight compression
scheme. Unlike traditional quantization methods, we do not need to specify the bit width, nor do
different layers need to take on the same bit-widths. We do not know a priori to what degree the
model can be quantized, if at all. Instead of specifying a bit-width, we specify a strength and range
for the local interactions between weights.
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3.2. Compression Via Centroids

In this case, an effective attractive interaction between the weights is mediated by a set of K additional
learnable parameters per layer, namely a set of centroids C&Z) with = 1,..., K. In a way this
approach is reminiscent of previously studied soft-weigh sharing methods [11, 24]. These centroids

act as attractors that encourage weight clustering during training, as described by the following loss,
_ - ! Ol
/JC(O,C)—ZZmO}n’Cé)—Gi ’ ) 3)
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where p determines the shape of the potential. We refer to this approach as the centroids—weight
compression scheme. The full training dynamics are then governed by stochastic gradient descent:

P — —

SCY = =maV Lo Lo (6, C), 00 = —mV 0 Lc(0,C) = V0 Loasi(0), ()

In practice, gradients can be efficiently computed without relying on automatic differentiation tools.
To evaluate the true effect of quantization, we assess the final model performance using clamped
parameters, obtained by replacing each weight with the value of its nearest centroid. We allow for
distinct learning rates 7; and 72. This asymmetry gives rise to a form of off-equilibrium dynamics,
in which the centroids evolve on a potentially different timescale than the weights they influence.

4. Experiments

We conduct compression experiments using the two schemes described above, starting from pre—
trained models. We apply both compression schemes to two widely used benchmarks: CIFAR-10 [17]
with the Wide ResNet-16 (WRN-16) architecture [27], and ImageNet-1K [22] with the ResNet-50
(RN50) architecture [12].

4.1. Weight-Weight Compression

Our results suggest that weight-weight compression results in the formation of sharp clusters in the
weight distribution. The number, positions, and sharpness of the clusters depend on the hyperparam-
eters of the pairwise interactions: see Figure 1 (A). Moreover, even under fixed hyperparameters,
different random seeds might result in different clustering, as shown in Figure 1 (B). Compared to the
pre-trained accuracy, the ResNet-50 models highlighted in Figure 1 experience approximately 5%
validation degradation on ImageNet-1K. These results suggest that more than one distinct clustering
configuration is reachable from the same pre-trained configuration via weight-weight compression,
and that stochastic dynamics contribute to which configuration the model approaches. This raises
the prospect that, given a fuller understanding of how stochastic dynamics drive the model into
qualitatively distinct yet similarly performant minima, it may be possible to steer a model into
minima which are more amenable to explicit quantization.

We caution about directly relating this method to quantization. Retraining ResNet-50 with
weight-weight compression yields models whose weight distributions are not perfectly clustered,
with tails that often mimic the weight distribution of the pre-trained model. This is particularly
evident in the last fully connected layer, see Figure 1 (C), which is known to be more challenging to
quantize [1]. One hypothesis for why tails occur is a sampling problem: pairwise interactions are
subsampled at each training step, and interactions between nearby weights at the distribution tails
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Figure 1: ResNet-50 on ImageNet-1K, weight distributions of convolutional kernels for the com-
pressed and the pre—trained model for different weight-weight interaction strengths (A) and for
different random seeds (B). Weight distribution for the fully connected output layer (C). The compres-
sion loss in a single layer as a function of the well width w (D) for the first layers of the compressed
model (blue curves). As a reference we show the analogue (black) curve computed on the first layer
of the pre-trained model.

are much less likely to be sampled than interactions between nearby weights in the middle of the
distribution.

Figure 1 (D) shows the single-layer compression loss (normalized by number of interactions) for
a retrained model as a function of the interaction range. The compression loss does not spike until we
reach an interaction range almost twice the value of the range upon which the model was retrained.
Likewise, clusters form in a manner that is roughly symmetric around zero. Both the spacing and
symmetry of clustering configurations suggest emergent structure in the weight distribution at a
length scale larger than the interaction range itself.

4.2. Centroids-Weight Compression

We compare our method against several state-of-the-art quantization techniques, including QAT
approaches and PTQ with histogram equalization [14]. The results are summarized in Table 1.
Notably, on WRN-16 our method performs marginally better than PTQ. On the larger ResNet-50
model, it significantly outperforms PTQ. QAT methods achieve high accuracy even for low bit-width,
but they required training from scratch [15]. At higher bit-widths, our method achieves competitive
performance with substantially lower computational overhead, requiring only a few fine-tuning
epochs starting from a pre-trained model, 10 epochs for WRN-16 and 3 epochs for ResNet50.
After compressing the model by following (4), we evaluate the task loss and validation accuracy
along two linear interpolation paths: one from the pre-trained model to the compressed model, and
another from the compressed model to the clamped model. In Figure 2(A), we show representative
examples of both successful and failed compression experiments. In the failed case, the compressed
model’s loss remains close to that of the pre-trained model, and most of the performance degradation
occurs during the clamping stage. This suggests that, in order to obtain a configuration whose
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Figure 2: WRN-16 on CIFAR10: Task loss and

performance degradation along linear paths. (A)  Table 1: Top-1 test accuracy (%) under different
Comparison between successful and failed com-  gyantization schemes and bit-widths for CIFAR-
pression experiments. (B) Comparison between 1) (WRN-16) and ImageNet-1K (ResNet-50).
compressions for different number of centroids. Full-precision accuracy is shown in parentheses.

parameters can be clamped/quantized without a significant loss in performance, the optimization
process must sufficiently climb the energy landscape.

Figure 2 (B) illustrates this behavior for successful compression experiments, using the same
interpolation scheme but across different numbers of centroids K = 4, 8, 16, corresponding to 2, 3,
and 4 bits compression, respectively (results in Table 1). The emerging picture is that, near the bottom
of the loss landscape, slightly increasing the loss—i.e., ascending the energy landscape—can provide
access to compressible configurations, defined as parameter configurations whose performance is
preserved under clamping or quantization. The energy barrier that must be overcome to reach such
configurations decreases as the number of centroids increases.

5. Conclusion

We proposed two methods that encourage the formation of clustered weight configurations while
maintaining proximity to pre-trained configurations via a compression-aware loss. Our results support
the hypothesis that the abundance of flat directions and parameter redundancy in deep networks make
it possible to find compressible solutions that do not lie far from the original minima. While the
clustering induced by the compression losses is not always exact, one of the proposed methods—based
on centroid-mediated interactions—naturally yields a quantized model by clamping each weight to
its nearest centroid. This provides a direct path from soft clustering to hard quantization. Preliminary
experiments indicate that our approach achieves performance competitive with state-of-the-art QAT
schemes.
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Figure 3: Weight distribution of WRN-16 convolutional layers for the pre—trained model (gray), a
failed (blue) experiment and a successful (red) experiment, as described in Figure 2.

Appendix A. Details of the experiments

In this appendix we discuss the details of the experiments presented in the main text.

A.1. Weight-Weight Compression Experiments

We conducted compression experiments using the weight-weight interaction potential, defined in
Equation (1), in PyTorch. We use Stochastic gradient descent with a batch size of 512, learning
rate of 1073, and (Nesterov) momentum of 0.9 and no weight decay. We use data augmentation
consisting of horizontal mirroring and random cropping, with the ratio between the cropped and
original image areas randomly chosen from 0.08 to 1. We train all model parameters on the task, and
subject all the parameters to the pairwise interaction excluding the biases and the BatchNorm layers.
For each layer with N; weights, we subsample N; of the NN, 12 pairwise interactions at each training
step.

To mitigate a prohibitively large parameter search in h and w, we choose h; = h, and we choose
a rough scaling between the order of magnitude of w; and the order of magnitude of weights in a
layer: for the models corresponding to information in Figure 1, we choose w; = 0.1 for all layers
with less than 10° weights, and w; = 0.01 for all layers with greater than 10° weights.

A.2. Centroid-Weight Compression Experiments

We conducted compression experiments using the centroid-weight interaction potential implemented
in the JAX/Flax framework [3, 13]. On WRN-16, compression was performed for 10 epochs with a
batch size of 256 using stochastic gradient descent (SGD) with momentum 0.9 and weight decay
5 x 10~*. We have used data augmentation consisting of random 4-pixel crop-resize and horizontal
mirroring. For ResNet-50, we used 3 epochs and a batch size of 256, also with SGD, momentum 0.9,
and weight decay 5 x 10~%. We used data augmentation consisting of random 4-pixel crop-resize
and random rotation in a [— g5, +35] interval. In either cases we do not compress the BatchNorm
layers.

In both settings, we randomly explored the space of hyperparameters including the exponent p
defining the interaction potential of Eq. (3), the coupling strengths ¢g; and go, and the learning rate
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A. We performed experiments across different numbers of centroids K. While our method does
not require K to be a power of two, we chose K = 4,8, 16—corresponding to 2, 3, and 4 bits of
precision, respectively—for consistency with common benchmarks in the literature.

In Figure 3 we show the weight distribution for three different convolutional layers of WRN-16
on CIFAR10, for a failed (blue) and a successful (red) compression experiment. As shown in Figure 2,
if the strength of the compression is not too strong, the weights are widely spread around the centroids
and the performance of the model significantly drops when clamping the parameters to value of the
closest centroid.
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