

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTEXT TOKENS ARE ANCHORS: UNDERSTANDING THE REPETITION CURSE IN DMLLMs FROM AN IN- FORMATION FLOW PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent diffusion-based Multimodal Large Language Models (dMLLMs) suffer from high inference latency and therefore rely on caching techniques to accelerate decoding. However, the application of cache mechanisms often introduces undesirable repetitive text generation, a phenomenon we term the **Repeat Curse**. To better investigate underlying mechanism behind this issue, we analyze repetition generation through the lens of information flow. Our work reveals three key findings: (1) context tokens aggregate semantic information as anchors and guide the final predictions; (2) as information propagates across layers, the entropy of context tokens converges in deeper layers, reflecting the model’s growing prediction certainty; (3) Repetition is typically linked to disruptions in the information flow of context tokens and to the inability of their entropy to converge in deeper layers. Based on these insights, we present **CoTA**, a plug-and-play method for mitigating repetition. CoTA enhances the attention of context tokens to preserve intrinsic information flow patterns, while introducing a penalty term to the confidence score during decoding to avoid outputs driven by uncertain context tokens. With extensive experiments, CoTA demonstrates significant effectiveness in alleviating repetition and achieves consistent performance improvements on general tasks. Code will be made available.

1 INTRODUCTION

Recent advances in diffusion-based large language models (dLLMs) Nie et al. (2025); Zhu et al. (2025a); Ye et al. (2025); Gong et al. (2025) have demonstrated impressive reasoning and parallel decoding capabilities. Unlike autoregressive large language models Touvron et al. (2023a); Yang et al. (2024a); Chiang et al. (2023), which generate text by sequentially predicting the next token, dLLMs produce tokens in parallel by framing response generation as an iterative denoising process over a fully masked discrete token sequence. Building on this foundation, diffusion-based Multimodal Large Language Models (dMLLMs) You et al. (2025); Yang et al. (2025); Li et al. (2025b) have emerged as powerful multimodal systems that integrate vision instruction tuning with dLLMs, and have achieved performance comparable to leading autoregressive architectures across multiple benchmarks Liu et al. (2023c); Chen et al. (2024b); Fu et al. (2023).

Current efforts to accelerate dMLLMs Liu et al. (2025); Wu et al. (2025) primarily exploit customized caching strategies for both prefix and suffix tokens. While these approaches effectively reduce inference latency, our experiments demonstrate that they often introduce a severe side effect: the generated text exhibits substantial repetition, as shown in Figure 1. This repetition significantly reduces the performance and readability of the model outputs. We refer to this phenomenon as “**Repeat Curse**”. We propose four complementary metrics to quantitatively evaluate the “Repeat Curse” phenomenon. As illustrated in Figure 2.a, our empirical analysis shows that this issue consistently emerges in dMLLMs when cache techniques are employed.

However, the inherent black-box nature of dMLLMs presents a major obstacle to uncovering the internal mechanisms responsible for Repeat Curse. Recent advances in information flow analysis Yu et al. (2024); Wang et al. (2023); Chen et al. (2024a) have introduced an interpretable approach for understanding the relationship between model outputs and internal mechanisms, which has moti-

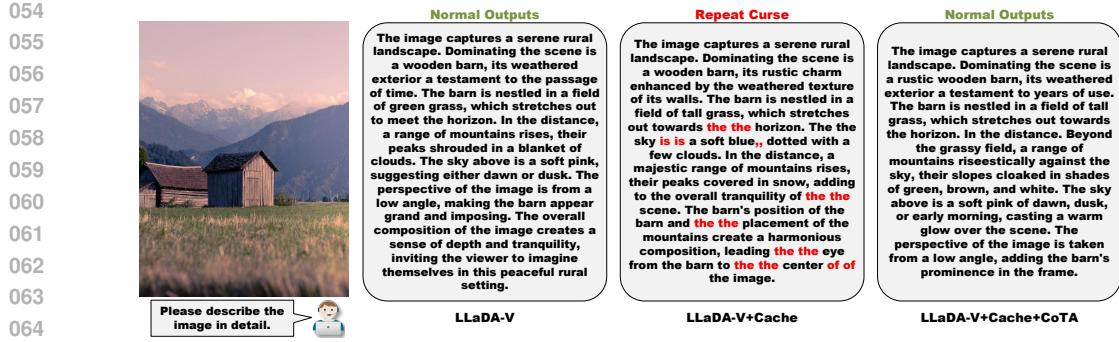


Figure 1: **Motivation.** When cache is applied to accelerate dMLLMs, the generated responses often exhibit excessive token repetition—a phenomenon we term the Repeat Curse.

vated the development of numerous methods for mitigating abnormal output patterns (e.g., hallucination Tang et al. (2025c) and degeneration Yona et al. (2025)). Inspired by these successes, this work conducts an in-depth analysis from the perspective of information flow to reveal the connection between the internal mechanisms of dMLLMs and the “Repeat Curse.”

By visualizing the attention interaction patterns among tokens (as shown in Figure 3), we observe that in dMLLMs, the bidirectional attention mechanism enables context tokens adjacent to the query to act as anchors that progressively aggregate semantic information across layers, **causing attention to gradually concentrate on these context tokens**. We further introduce information entropy to analyze the impact of context tokens on decoding, as illustrated in **Figure 4 a**. We find that **the entropy of context tokens converges in deeper layers**, reflecting that as information is progressively aggregated across layers, the model’s predictive certainty consistently increases. When repetition arises after applying the cache, the model exhibits random attention allocation (**Figure 2.b**). In addition, context tokens corresponding to repeated outputs sustain abnormally high entropy in deeper layers (**Figure 4.b**). Together, these findings suggest that caching disrupts the inherent mechanisms of dMLLMs, thereby triggering the Repeat Curse. We attribute this phenomenon to two key factors: 1. The introduction of caching disrupts the attention distribution and the inherent information flow patterns of context tokens; 2. Some context tokens whose entropy fails to converge in deeper layers induce the model to generate uncertain tokens, which are often accompanied by repetition.

Building on these insights, we propose **CoTA**¹, a plug-and-play approach that addresses the abnormal patterns underlying the Repeat Curse and mitigates repetition. CoTA is built on two key components: (1) Context-token Attention Enhancement (CTAE): a distance-aware attention intervention that strengthens attention to context tokens, thereby preserving the intended information flow during token interactions; (2) Context-token Entropy-guided Voting (CTEV): a mechanism that leverages the aggregated deep-layer entropy of context tokens as a penalty term in the confidence score, discouraging the model from generating uncertain and repetitive outputs. CoTA can be seamlessly integrated with baseline dMLLMs and existing caching strategies in a training-free manner, while incurring only modest computational overhead. Experimental results show that CoTA is highly effective in mitigating repetition, reducing the adjacent repetition rate by up to 92%. Furthermore, across several multimodal benchmarks, CoTA consistently surpasses the baseline, demonstrating substantial improvements in overall robustness and generalization.

Our contributions are three-fold.

- First, we identify the Repeat Curse phenomenon that emerges when caching is applied in dMLLMs and uncover its underlying causes through information flow analysis.
- Second, we introduce CoTA, a plug-and-play approach specifically designed to alleviate repetition.
- Third, we validate the effectiveness of CoTA through extensive experiments, demonstrating consistent performance improvements across multiple general multimodal tasks.

¹The name CoTA is derived from our key finding: **CO**ntext Tokens are Anchors.

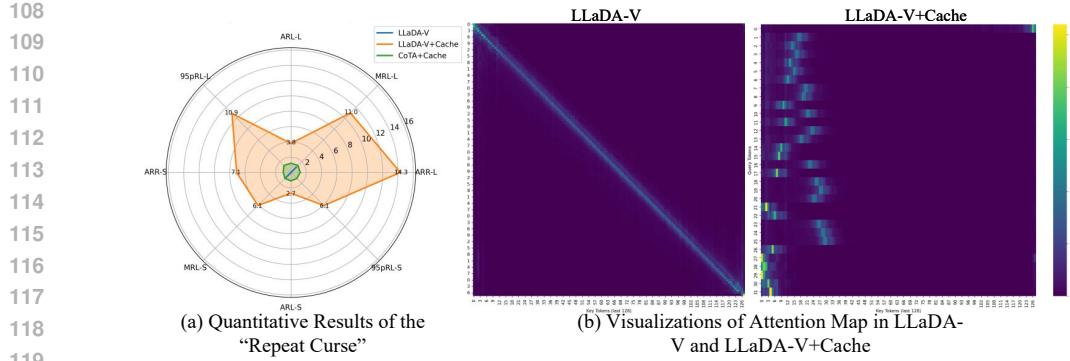


Figure 2: (a) presents the quantitative results of the “Repeat Curse”. L and S indicate evaluations on long-text responses (512 tokens) and short-text responses (64 tokens). The evaluation metrics ARR, MRL, ARL, and 95pRL are introduced in Section 3.2 and Appendix J. (b) visualizes the attention maps of LLaDA-V and LLaDA-V+Cache.

2 RELATED WORK

Diffusion-based Multimodal Large Language Models. The latest diffusion-based large language models (dLLMs) Nie et al. (2025); Zhu et al. (2025a); Ye et al. (2025); Gong et al. (2025) have been successfully scaled to 8B parameters, achieving performance comparable to state-of-the-art autoregressive large language models Dubey et al. (2024); Bi et al. (2024); Yang et al. (2024a). By combining visual instruction tuning Liu et al. (2023a) with dLLMs, You et al. (2025); Yang et al. (2025); Li et al. (2025b) successfully develops diffusion-based multimodal large language models.

Information Flow. Recent studies have underscored the importance of information flow as an intuitive means of representing the internal mechanisms of black-box models. Common approaches for analyzing information flow mainly include saliency scores Yu et al. (2024); Wang et al. (2023), attention maps Xiao et al. (2023); Huang et al. (2023), Grad-CAM Zhang et al. (2024), and massive values Jin et al. (2025), among others. Prior studies Yu et al. (2024); Chen et al. (2024a); Tang et al. (2025a) have demonstrated the existence of certain anchor tokens in autoregressive models, which aggregate information and play a crucial role in cross-layer information flow. **Additionally, ADLM Rout et al. (2025) discusses the role of anchors in semantic guidance within diffusion language models.** These findings inspire our exploration of information flow in dMLLMs.

3 MOTIVATION AND ANALYSIS

In this section, we begin with a brief overview of baseline dMLLMs and the cache mechanism². We then investigate the ‘Repeat Curse’ through both quantitative and qualitative analyses. Finally, we compare the information flow in dMLLMs with and without cache, shedding light on the underlying cause of the Repeat Curse.

3.1 PRELIMINARY

Diffusion-based Multimodal Large Language Models (dMLLMs). Typically, a dMLLM \mathcal{F} consists of three main components: a pretrained vision encoder \mathcal{F}_v , a dLLM \mathcal{F}_t , and a projector f that maps visual features into the text embedding space. Given an image input I_v and an instruction prompt I_p (e.g., “Please describe the image in detail”), the model converts them into tokens and concatenates them into a multimodal sequence: $\{\mathcal{S}_v, \mathcal{S}_t\}$, where $\mathcal{S}_v = f(\mathcal{F}_v(I_v)) = \{w_i\}_{i=1}^V$ and $\mathcal{S}_t = \mathcal{F}_t(I_p) = \{w_i\}_{i=1}^T$ represent visual and instruction tokens of lengths V and T , respectively. Subsequently, a fully masked token sequence $\mathcal{S}_m = \{w_i\}_{i=1}^M$ of lengths M is initialized as the response sequence and concatenated with $\{\mathcal{S}_v, \mathcal{S}_t\}$ to form the final input sequence $\mathcal{S} = \{\mathcal{S}_v, \mathcal{S}_t, \mathcal{S}_m\}$. In such sequence, different tokens share the same dimension.

²This paper adopts LLaDA-V You et al. (2025) and dLLM-Cache Liu et al. (2025) as the baseline dMLLMs and cache method.

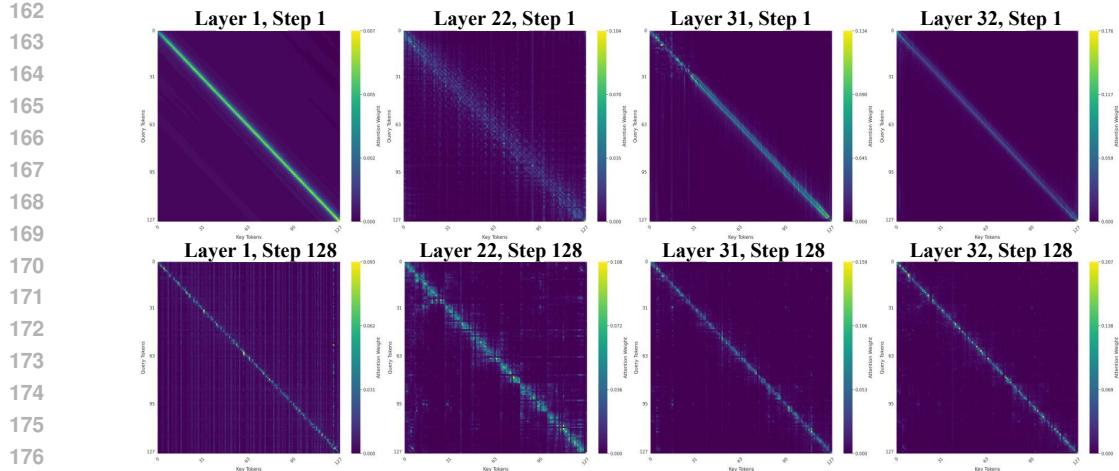


Figure 3: **Attention Maps Visualization of LLaDA-V.** Based on LLaDA-V 8B with a generation length of 128 and 32 decoding steps, we visualize the attention matrices corresponding to the masked (response) tokens, with the x-axis denoting key tokens and the y-axis denoting query tokens. Brighter colors indicate higher attention values. Context tokens act as anchors to aggregate information across layers and absorb attention.

Inference and Sampling in dMLLMs. Let $\mathcal{S}^t = \{\mathcal{S}_v^t, \mathcal{S}_t^t, \mathcal{S}_m^t\}$ denote the input sequence state at decoding step t . Starting from \mathcal{S}^0 , where the response sequence \mathcal{S}_m is fully masked, the dMLLM performs an iterative unmasking process over T discrete steps to generate the final text response. At each step t , the model computes a probability distribution $p_\theta(\mathcal{S}^t | \mathcal{S}^{t-1})$ for every masked token. From these distributions, the most likely token predictions $\hat{\mathcal{S}}_{(i)}^t$ and their corresponding confidence scores $c_{(i)}$ are determined:

$$\hat{\mathcal{S}}_{(i)}^t = \arg \max_{v \in V} p_\theta(\mathcal{S}_{(i)}^t = v | \mathcal{S}^{t-1}) \quad \text{and} \quad c_{(i)} = p_\theta(\mathcal{S}_{(i)}^t = \hat{\mathcal{S}}_{(i)}^t | \mathcal{S}^{t-1}), \quad i \in M_{t-1}, \quad (1)$$

where M_{t-1} represents the index set of masked token positions at step $(t-1)$ and V is the vocabulary. Finally, the model selects the k positions in M_{t-1} with the highest confidence scores $c_{(i)}$ and obtains the set of indices to update U_t . The k selected tokens are unmasked at this step, producing the updated sequence:

$$\mathcal{S}_{(i)}^t = \begin{cases} \hat{\mathcal{S}}_{(i)}^t, & \text{if } i \in U_t, \\ \mathcal{S}_{(i)}^{t-1}, & \text{otherwise.} \end{cases} \quad (2)$$

The indices of the masked tokens at step t are updated by $M_t = M_{t-1} - U_t$.

Cache Mechanism for dMLLMs. During the iterative unmasking process of dMLLMs, attention needs to be computed over all tokens in the sequence \mathcal{S} at each step, which leads to significant inference latency. Since dMLLMs adopt a bidirectional attention mechanism, the conventional KV-cache technique Xiao & et al. (2024) is not applicable. To address this, several caching methods Liu et al. (2025); Wu et al. (2025) leverage a similar observation: prefix tokens $\{\mathcal{S}_v, \mathcal{S}_t\}$ and parts of the suffix tokens \mathcal{S}_m exhibit minimal changes in their attention values during inference, which enables the design of token state caching and reuse. For example, in Liu et al. (2025), the core caching mechanism is defined as follows:

$$\begin{cases} \text{Recompute}(\{\mathcal{S}_v^t, \mathcal{S}_t^t\}), & \text{if } t \bmod \frac{T}{\mathcal{E}_p} = 0, \\ \text{Recompute}(\mathcal{S}_m^t), & \text{if } t \bmod \frac{T}{\mathcal{E}_s} = 0, \\ \text{Recompute}(\mathcal{S}_{(i)}^t), & \text{if } \mathcal{S}_{(i)}^t \in \arg \min_{\alpha} \left(\text{Sim}(\mathcal{S}_m^t, \mathcal{S}_m^{t-1}) \right). \end{cases} \quad (3)$$

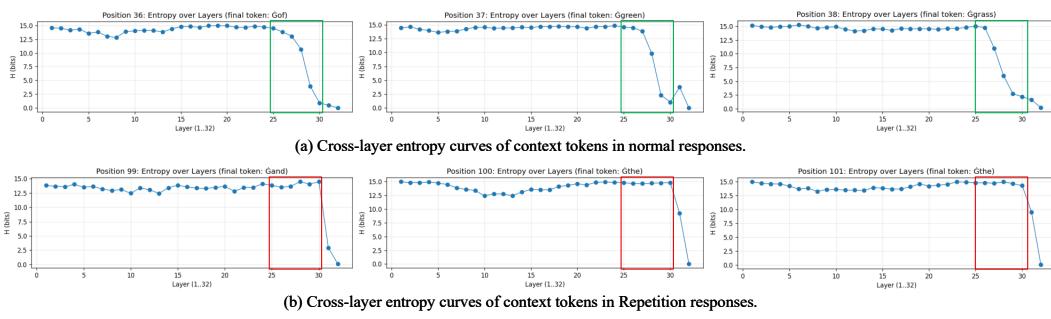


Figure 4: (a) and (b) correspond to context tokens from normal decoding and from decoding with repeated tokens, respectively. We define the set of context tokens as the target tokens together with their two nearest neighboring tokens in relative position. Context tokens with repetition tend to exhibit high entropy in deeper layers.

Here, `Recompute()` denotes the recomputation of attention. \mathcal{E}_p and \mathcal{E}_s indicate the predefined update periods for prefix and suffix tokens, respectively. $\arg \min_{\alpha}$ selects the bottom α proportion of elements from the sequence, and `Sim()` refers to the cosine similarity function.³

3.2 REPEAT CURSE

Repetition Quantitative Metrics. As illustrated in Figure 1, we define the redundant repetition of tokens in model responses as the Repeat Curse. To quantitatively evaluate this phenomenon, we introduce the Adjacent Repetition Rate (ARR), which measures the proportion of repeated tokens within a response sequence $\{y_i\}_{i=1}^M$ of lengths M :

$$\text{ARR} = \frac{1}{M-1} \sum_{i=1}^M \mathbf{1}(y_i = y_{i-1}), \quad (4)$$

where $\mathbf{1}()$ is an indicator function that takes the value 1 when the condition is satisfied and 0 otherwise. In addition, we introduce sample repetition rate (SRR), maximum repetition length (MRL), average repetition length (ARL), and 95th-percentile repetition length (95pRL) to evaluate the severity of the Repeat Curse. (The detailed computation procedures are presented in Appendix J.)

Quantitative Experimental Results. Figure 2(a) summarizes the quantitative results of the Repeat Curse under both long- and short-response settings. The experiments are performed on the image captioning task with 500 randomly sampled MSCOCO images Lin et al. (2014). We observe that the baseline model suffers from severe token repetition when the cache is applied.

3.3 INFORMATION FLOW ANALYSIS

Motivated by the need to understand the underlying cause of the Repeat Curse, we analyze the information flow to contrast model behaviors with and without cache, and provide a mechanistic interpretation of the phenomenon. To this end, we visualize the model’s attention matrices to analyze the information flow among tokens. As shown in Figure 3, we observe that context tokens consistently receive high attention throughout the decoding process. Furthermore, attention progressively converges toward the context tokens from shallow to deeper layers. This phenomenon is reminiscent of the ‘attention sink’ observed in autoregressive models Chen et al. (2024a); Wang et al. (2023); Zhang et al. (2024), where certain special tokens act as anchors that aggregate information and absorb attention. The information flow pattern in Figure 3 highlights the role of context tokens as anchors in dMLLMs.

Finding 1: In dMLLMs, context tokens serve as anchors that aggregate information across layers and guide the final prediction.

³We adopt dLLM-Cache Liu et al. (2025) as the baseline cache method, keeping all relevant settings strictly consistent to ensure experimental fairness. Hyperparameters are fixed as $\alpha = 25\%$, $\mathcal{E}_p = 25$, and $\mathcal{E}_s = 7$.

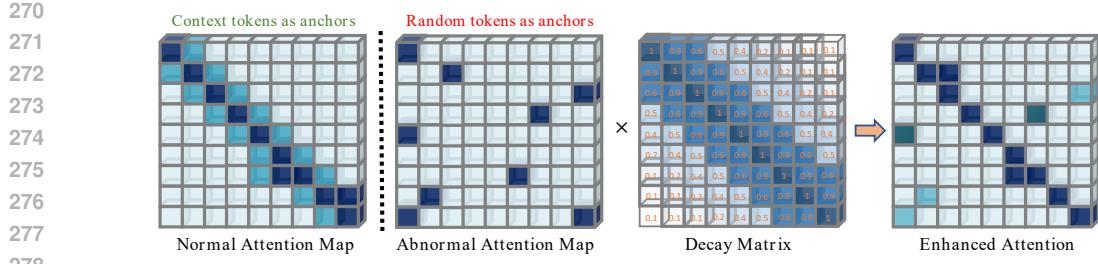


Figure 5: **Illustration of context tokens attention enhancement.** Example values are annotated on the decay matrix for clarity, while actual values are computed using [Equation 5 and 6](#).

Subsequently, we plot the cross-layer entropy curves of context tokens, as shown in Figure 4. We find that the entropy of context tokens remains high in the shallow layers but gradually converges in the deeper layers, reflecting that as information accumulates layer by layer, the model’s predictions become increasingly stable and certain.

Finding 2: For context tokens under normal decoding, the information entropy gradually converges in the deeper layers.

Figure 2.b shows that after applying cache, the model exhibits a randomized attention distribution, disrupting the original information flow from context tokens and weakening output stability. Figure 4.b further presents the cross-layer entropy curves of context tokens under repetition, revealing that repetition is accompanied by a failure of entropy convergence in the deeper layers.

Finding 3: Repetition is typically linked to disruptions in the information flow of context tokens and to the inability of their entropy to converge in deeper layers.

4 METHOD

Building on the observations in Section 3, we propose CoTA, a training-free method to mitigate the Repeat Curse, which has two key components: (1) Context Tokens Attention Enhancement, which preserves the intrinsic information flow pattern of context tokens, and (2) Context Tokens Entropy-Guided Voting, which prevents outputs driven by uncertain context tokens during decoding.

4.1 CONTEXT TOKENS ATTENTION ENHANCEMENT (CATE)

As analyzed in Section 3, context tokens in dMLMs typically serve as anchors to aggregate information and absorb attention, but the use of cache disrupts this information flow pattern. We conjecture that tokens with shorter relative distances exhibit stronger semantic correlations, and thus the model’s increased attention to context tokens facilitates local semantic coherence. Therefore, we propose Context Tokens Attention Enhancement (CTAE), a simple yet effective attention intervention. We formalized the complete algorithmic procedure in Algorithm 1. As illustrated in the figure 5, the core idea is to introduce a decay term and apply an element-wise multiplication with the attention matrix. Given a query token q_i at position i and a key token k_j at position j , the decay term $\mathcal{G}_{i,j}$ for each query-key pair is computed as follows:

$$\mathcal{G}_{i,j} = \gamma_{\min} + (1 - \gamma_{\min})g_{i,j}, \quad \gamma_{\min} \in (0, 1], \quad (5)$$

$$g_{i,j} = \exp\left(-\left(\frac{|i-j|}{\tau}\right)^2\right). \quad (6)$$

Here, $g_{i,j}$ denotes the Gaussian decay term computed using the exponential function $\exp()$ and the relative positional distance $|i - j|$ between query and key tokens. τ denotes the temperature factor, which is fixed to 5 in the experiments. We then introduce a lower-bound constant γ_{\min} for stabilization, yielding the final decay term $\mathcal{G}_{i,j}$.

Assume the attention between a query token q_i and a key token k_j is denoted as $Attn_{i,j}$. We enhance the attention to context tokens by applying $Attn_{i,j} * \mathcal{G}_{i,j}$, thereby preserving the native information flow pattern in dMLMs.

324

325

326

327

Algorithm 1 Context Tokens Attention Enhancement (CTAE)

328

Require: Attention weights $A \in \mathbb{R}^{L \times H \times T \times T}$, temperature $\tau > 0$, lower bound $\gamma_{\min} \in (0, 1]$

330

Ensure: Enhanced attention $\tilde{A} \in \mathbb{R}^{L \times H \times T \times T}$

331

1: $\tilde{A} \leftarrow A$

332

2: **for** $\ell \leftarrow 1$ to L **do** ▷ layer index

333

3: **for** $h \leftarrow 1$ to H **do** ▷ head index

334

4: $D_{i,j} \leftarrow |i - j| \quad \forall i, j \in \{1, \dots, T\}$

335

5: $g_{i,j} \leftarrow \exp(-(D_{i,j}/\tau)^2)$

336

6: $\mathcal{G}_{i,j} \leftarrow \gamma_{\min} + (1 - \gamma_{\min}) \cdot g_{i,j}$

337

7: $\tilde{A}_{\ell,h} \leftarrow A_{\ell,h} \odot \mathcal{G}$

338

8: **end for**

339

9: **end for**

340

10: **return** \tilde{A}

341

342

343

344

Synergistic Workflow. CTAE applies a decay term to attention values based on relative distance, enhancing the attention to context tokens. CTEV introduces deep-layer context token entropy as a penalty to the voting scores. Together, they jointly alleviate the repeat curse.

348

4.2 CONTEXT TOKENS ENTROPY-GUIDED VOTING (CTEV)

349

As observed in Section 3, context tokens with repetition typically exhibit persistently high entropy in deeper layers, reflecting the model’s uncertainty about context tokens during decoding. Yet baseline dMLLMs rely solely on confidence scores to vote for candidate decoding tokens, ignoring this uncertainty. To address this, we propose Context Tokens Entropy-Guided Voting (CTEV), which incorporates the aggregated deep-layer entropy of context tokens as a penalty term on the confidence score to prevent decoding under uncertain context tokens. The complete algorithm is formalized in Algorithm 2. First, we compute the entropy of each candidate token based on its softmax probability distribution p_v as follows:

350

351

352

353

354

355

356

357

358

$$E = \frac{-\sum_{v=1}^V p_v \log p_v}{\log V}, \quad p_v = \frac{\exp(z_v)}{\sum_{u=1}^V \exp(z_u)}, \quad (7)$$

359

360

361

where z_v denotes the logits of the v -th word in the vocabulary, and V is the vocabulary size. On this basis, the entropy of tokens in deeper layers⁴ is accumulated layer by layer as follows:

362

363

364

365

366

$$E_{\text{sum}} = \sum_{l=26}^{30} E^{(l)} = \sum_{l=26}^{30} \frac{-\sum_{v=1}^V p_v^{(l)} \log p_v^{(l)}}{\log V}. \quad (8)$$

367

368

369

Let $E_{\text{sum}}(i)$ denote the E_{sum} of token x_i at position i in a sequence of length M . The accumulated deep-layer entropy of the context tokens, $E_{\text{sum}}^{ctx}(i)$, is then computed as follows:

370

371

372

373

374

375

376

$$E_{\text{sum}}^{ctx}(i) = \sum_{j \in \mathcal{C}(i)} E_{\text{sum}}(i), \quad \mathcal{C}(i) = \{x_i\} \cup \left\{x_j \mid j \in \arg \min_{j \in [M] \setminus \{i\}} |j - i|\right\}. \quad (9)$$

377

Finally, the weighted $E_{\text{sum}}^{ctx}(i)$ with coefficient α is incorporated into the confidence score $c_{(i)}$ from Equation 1, resulting in the new voting score $\text{Score}(i)$ defined as follows:

378

379

380

381

$$\text{Score}(i) = c_{(i)} + \alpha E_{\text{sum}}^{ctx}(i). \quad (10)$$

⁴Here, we define layers 26–30 as the deep layers, and target tokens together with their two nearest tokens in relative position are defined as the context tokens.

Algorithm 2 Context Tokens Entropy-Guided Voting (CTEV)

1: **Input:** Deep-layer logits $z_{i,:}^{(l)}$, base confidences $c_{(i)}$, coefficient α

2: **for** $i \leftarrow 1$ to M **do**

3: $E_{\text{sum}}(i) \leftarrow 0$

4: **for** $l \in \{26, \dots, 30\}$ **do**

5: $p_v^{(l)} = \exp(z_{i,v}^{(l)}) / \sum_{u=1}^V \exp(z_{i,u}^{(l)})$

6: $E_{\text{sum}}(i) \leftarrow E_{\text{sum}}(i) - \frac{1}{\log V} \sum_{v=1}^V p_v^{(l)} \log p_v^{(l)}$

7: **end for**

8: **end for**

9: Build $\mathcal{C}(t) = \{t\} \cup \{\text{two nearest tokens of } t\}$

10: **for** $i \in \mathcal{C}(t)$ **do**

11: $E_{\text{sum}}^{ctx}(i) \leftarrow \sum_{j \in \mathcal{C}(i)} E_{\text{sum}}(j)$

12: $\text{Score}(i) \leftarrow c_{(i)} + \alpha \cdot E_{\text{sum}}^{ctx}(i)$

13: **end for**

Method	512				64			
	ARR \downarrow	MRL \downarrow	ARL \downarrow	SRR \downarrow	ARR \downarrow	MRL \downarrow	ARL \downarrow	SRR \downarrow
LLaDA-V	0.2	2.0	2.0	6.9	0.1	2.0	2.0	3.3
+ dllm-cache	14.3	11.0	3.8	82.3	7.1	6.1	2.7	65.6
+ dllm-cache + CTEV	3.2	2.2	2.0	10.6	2.5	2.3	2.1	5.6
+ dllm-cache + CTAE	2.9	1.9	1.4	8.0	1.8	1.6	1.4	4.6
+ dllm-cache + CTEV +CTAE	1.2	1.3	1.2	6.3	1.0	1.1	1.1	3.0

Table 1: “Repeat Curse” Evaluation Results. 512 and 64 denote the maximum generation length.

Model	Type	LLM Tower	DocVQA	ChartQA	MMStar	MME ^p	Seed ^I	MMBench
LLaVA1.5	AR	Vicuna-7B	-	-	-	1510	66.1	64.3
Qwen2-VL	AR	Qwen2-7B	-	83.0	60.7	-	-	-
DeepSeek-VL	AR	DeepSeek-7B	-	-	-	-	70.4	73.2
LLaVA-OV	AR	Qwen2-7B	-	80.0	61.7	1580	75.4	80.8
MetaMorph	AR+Diff.	LLaMA3.1-8B	-	37.1	-	-	71.8	75.2
JanusFlow	AR+Diff.	DeepSeek-1.3B	-	64.6	-	1333	70.5	74.9
LLaMA3-V	Diff.	LLaMA3-8B	86.2	77.8	56.5	1581	76.6	79.8
LLaDA-V	Diff.	LLaDA-8B	83.9	78.3	60.1	1507	74.8	82.9
LLaDA-V w/dllm-cache	Diff.	LLaDA-8B	82.1	78.1	58.3	1410	72.1	83.0
Ours	Diff.	LLaDA-8B	84.1	78.4	59.3	1523	73.9	83.1

Table 2: Benchmark results of different MLLMs on multiple multimodal evaluation datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP DETAILS

Model. Following the baseline dMLLM LLaDA-V You et al. (2025), the language tower adopts LLaDA-8B-Instruct Nie et al. (2025), the vision tower employs siglip2-so400m-patch14-384 Tschannen et al. (2025), and the projector is a two-layer MLP.

Evaluation. We evaluate the effectiveness of our method on eight multimodal benchmarks: DocVQA Mathew et al. (2020), ChartQA Masry et al. (2022), MMStar Chen et al. (2024b), MME Fu et al. (2023), Seed Li et al. (2023a), LLaVA^w Liu et al. (2023a), MathVista Lu et al. (2023), and MMBench Liu et al. (2023c). The Appendix I reports more details about settings.

5.2 RESULTS ON “REPEAT CURSE” EVALUATION

We randomly select 500 samples from COCO2014 Lin et al. (2014) for the caption VQA task. The generated captions are then evaluated for mitigating the “Repeat Curse.” The evaluation metrics include Adjacent Repetition Rate (ARR), Maximum Repetition Length (MRL), Average Repetition Length (ARL), and Sample Repetition Rate (SRR). Table 1 presents the quantitative results of our method in mitigating repetition, evaluated under both long-text and short-text response settings. Experimental results are obtained by aggregating all samples and taking the average. The baseline model shows only minimal repetition, with the maximum repetition length being 2. In contrast, applying cache causes a rapid degradation of the outputs. Moreover, longer responses are more susceptible to repetition; for instance, with an output length of 512, ARR rises by 14.1 and SRR by 75.4. Our method demonstrates effective repetition mitigation, yielding ARR improvements of 13.1 and 6.1 under the long-response and short-response settings, respectively. We further perform ablation studies on two key components of our method, CTEV and CTAE. The results indicate that each component alone can also effectively mitigate repetition, highlighting the flexibility and complementarity of the method.

5.3 COMPARISON WITH OTHER MLLMs

Table 2 presents a performance comparison with other paradigm MLLMs. Our goal is not absolute performance maximization, but rather to mitigate the output degradation of baseline models when using cache. Results across six benchmarks demonstrate the effectiveness of our method.

Method	LLaVA ^w				MathVista			
	Score↑	ARR↓	TPS↑	FLOPs↓	Score ↑	ARR ↓	TPS ↑	FLOPs ↓
LLaDA-V	70.1	1.3	7.3	16.1	59.7	0	8.3	14.1
Ours	70.5	1.1	5.1	17.8	59.8	0	7.5	15.3
LLaDA-V w/dllm-cache	63.2	7.3	23.1	3.2	54.9	6.9	31.0	3.9
Ours w/dllm-cache	69.9	1.4	20.3	5.1	59.7	1.3	28.7	5.0

Table 3: **Generalization evaluation results of the method.** TPS stands for Tokens Per Second, and FLOPs stands for Floating Point Operations.

5.4 GENERALITY STUDY

We present the generalization evaluation of our method in Table 3. Our approach consistently lowers response repetition across both open-domain natural and mathematical tasks, highlighting its generalizability. While caching reduces computational cost, it inevitably causes performance degradation, which our method successfully alleviates. Concretely, it yields gains of +6.7 in Score and +5.9 in ARR on MathVerse, and +1.8 in ACC and +5.6 in ARR on MathVista.

Our method can be flexibly applied as a complement to caching. We further evaluate its computational overhead, with experiments on LLaVAW demonstrating that it incurs only a 2.8 TPS reduction and a 1.9 FLOPs increase.

5.5 ABLATION STUDY

We conduct an ablation study on the hyperparameters involved in our method, including the weighting factor α in Equation 10, the minimum gain γ_{\min} in Equation 5, and the number of context tokens. We report the results in Table 4: the best hyperparameter configuration is $\alpha = 0.75$, $\gamma_{\min} = 0.5$, and the number of context tokens set to 3, achieving an ARR of 1.2% and an ACC of 23.1. When the length of context tokens is set to 1, only the current target token is considered while surrounding tokens are ignored. We find that using longer context tokens (e.g., 5) does not lead to better results.

γ_{\min}	α	ARR↓	ACC↑	γ_{\min}	α	ARR↓	ACC↑	γ_{\min}	α	ARR↓	ACC↑
1	0.25	2.8	21.4	1	0.25	2.1	22.1	1	0.25	3.5	19.6
	0.5	2.2	21.9		0.5	2.0	22.5		0.5	3.8	19.2
	0.75	2.3	22.1		0.75	1.7	22.3		0.75	3.1	19.2
0.5	0.25	2.9	20.0	0.5	0.25	1.6	22.2	0.5	0.25	3.9	19.0
	0.5	2.5	20.2		0.5	1.4	22.0		0.5	3.4	18.2
	0.75	2.1	20.1		0.75	1.2	23.1		0.75	3.3	19.1

(a) Context tokens number = 1

(b) Context tokens number = 3

(c) Context tokens number = 5

Table 4: Ablation results on hyperparameters evaluated on the MathVerse benchmark.

6 CONCLUSION AND LIMITATIONS

This paper investigates the phenomenon of repeated text generation in dMLLMs when using cache, which we term the ‘‘Repeat Curse.’’ Through information flow analysis, we reveal that in baseline dMLLMs, context tokens act as anchors to aggregate information and guide predictions. Applying cache disrupts this pattern, leading to repetition. Moreover, repetitive context tokens exhibit persistently high entropy in deeper layers. Building on these insights, we propose CoTA, a plug-and-play approach to mitigate the Repeat Curse. Extensive experiments demonstrate the effectiveness of the CoTA design. Due to the limited research on baseline dMLLMs, CoTA has not yet been validated for generalizability across more open-source dMLLMs and base models of different scales. Moreover, as cache methods for dMLLMs are still scarce, CoTA cannot be tested on a wider range of cache approaches. Future work will address these limitations.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
492 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
493 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
494 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
495 *preprint arXiv:2502.13923*, 2025.

496 Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang
497 Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In
498 *Proceedings of the 40th International Conference on Machine Learning*, volume 202, pp. 1692–
499 1717. PMLR, 23–29 Jul 2023.

500 Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
501 Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan,
502 Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang,
503 Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, Alex X. Liu,
504 Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong
505 Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
506 Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun,
507 Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
508 Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
509 Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
510 Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
511 Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm:
512 Scaling open-source language models with longtermism. *CoRR*, abs/2401.02954, 2024.

513 Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
514 Arnaud Doucet. A continuous time framework for discrete denoising models. In *Advances in*
515 *Neural Information Processing Systems*, 2022.

516 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
517 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
518 language models. In *European Conference on Computer Vision*, 2024a.

519 Lin Chen, Jinsong Li, Xiao wen Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
520 Jiaqi Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large
521 vision-language models? *ArXiv*, abs/2403.20330, 2024b.

522 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
523 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
524 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
525 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.

526 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
527 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
528 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
529 2023), 2(3):6, 2023.

530 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
531 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

532 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
533 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
534 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
535 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
536 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
537 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,

540 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
 541 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
 542 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
 543 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson,
 544 Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
 545 Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra,
 546 Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
 547 Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
 548 Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
 549 Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Kartikeya
 550 Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of
 551 models. *CoRR*, abs/2407.21783, 2024.

552 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 553 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
 554 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
 555 *Forty-first International Conference on Machine Learning*, 2024.

556 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 557 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive
 558 evaluation benchmark for multimodal large language models. *ArXiv*, abs/2306.13394, 2023.

559

560 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 561 and Yaron Lipman. Discrete flow matching. In *The Thirty-eighth Annual Conference on Neural
 562 Information Processing Systems*, 2024.

563 Antonio A. Ginart, Naveen Kodali, Jason Lee, Caiming Xiong, Silvio Savarese, and John R. Em-
 564 mons. Lz penalty: An information-theoretic repetition penalty for autoregressive language
 565 models, 2025.

566

567 Shanshan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 568 Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
 569 models via adaptation from autoregressive models. In *The Thirteenth International Conference
 570 on Learning Representations*, 2025.

571 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
 572 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
 573 Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
 574 Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. *CoRR*, abs/2306.11644, 2023.

575

576 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 577 degeneration. In *International Conference on Learning Representations*, 2020.

578

579 Qidong Huang, Xiao wen Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weim-
 580 ing Zhang, and Neng H. Yu. Opera: Alleviating hallucination in multi-modal large language mod-
 581 els via over-trust penalty and retrospection-allocation. *2024 IEEE/CVF Conference on Computer
 582 Vision and Pattern Recognition (CVPR)*, pp. 13418–13427, 2023.

583

584 Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, and
 585 Yongfeng Zhang. Massive values in self-attention modules are the key to contextual knowledge
 586 understanding. *ArXiv*, abs/2502.01563, 2025.

587

588 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 589 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 590 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 591 Systems Principles*, 2023.

592

593 Evgeny Lagutin, Daniil Gavrilov, and Pavel Kalaidin. Implicit unlikelihood training: Improving
 594 neural text generation with reinforcement learning. In *Proceedings of the 16th Conference of the
 595 European Chapter of the Association for Computational Linguistics: Main Volume*, pp. 1432–
 596 1441, 2021.

594 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 595 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer.
 596 *Transactions on Machine Learning Research*, 2025a. ISSN 2835-8856.

597

598 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 599 marking multimodal LLMs with generative comprehension. *ArXiv*, abs/2307.16125, 2023a.

600 Huayang Li, Tian Lan, Zihao Fu, Deng Cai, Lemao Liu, Nigel Collier, Taro Watanabe, and Yixuan
 601 Su. Repetition in repetition out: Towards understanding neural text degeneration from the data
 602 perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b.

603 Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 604 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 605 model for multimodal understanding, 2025b.

606

607 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
 608 LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 609 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.

610 Zijie Li, Henry Li, Yichun Shi, Amir Barati Farimani, Yuval Kluger, Linjie Yang, and Peng Wang.
 611 Dual diffusion for unified image generation and understanding, 2025c.

612

613 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 614 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 615 Conference on Computer Vision*, 2014.

616 Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
 617 Chen. Text generation with diffusion language models: A pre-training approach with continuous
 618 paragraph denoise. In *ICML*, pp. 21051–21064, 2023.

619

620 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 621 tuning. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 622 26286–26296, 2023a.

623

624 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Thirty-
 625 seventh Conference on Neural Information Processing Systems*, 2023b.

626

627 Yuanzhan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 628 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
 629 model an all-around player? *ArXiv*, abs/2307.06281, 2023c.

630

631 Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
 632 and Linfeng Zhang. dilm-cache: Accelerating diffusion large language models with adaptive
 633 caching. *ArXiv*, abs/2506.06295, 2025.

634

635 Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q. Weinberger. Latent
 636 diffusion for language generation. In *NeurIPS*, 2023.

637

638 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun yue Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 639 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating math reasoning in visual
 640 contexts with gpt-4v, bard, and other large multimodal models. *ArXiv*, abs/2310.02255, 2023.

641

642 Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan,
 643 Zhenda Xie, Haowei Zhang, Xingkai Yu, Liang Zhao, Yisong Wang, Jiaying Liu, and Chong
 644 Ruan. Janusflow: Harmonizing autoregression and rectified flow for unified multimodal under-
 645 standing and generation. *CoRR*, abs/2411.07975, 2024.

646

647 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa:
 648 A benchmark for question answering about charts with visual and logical reasoning. *ArXiv*,
 649 abs/2203.10244, 2022.

650

651 Minesh Mathew, Dimosthenis Karatzas, R. Manmatha, and C. V. Jawahar. Docvqa: A dataset for
 652 vqa on document images. *2021 IEEE Winter Conference on Applications of Computer Vision
 653 (WACV)*, pp. 2199–2208, 2020.

648 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 649 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *CoRR*, abs/2502.09992,
 650 February 2025.

651 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 652 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 653 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.

654 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 655 resolution image synthesis with latent diffusion models. In *2022 IEEE/CVF Conference on Com-
 656 puter Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, 2022.

657 Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Anchored diffusion language model. In
 658 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025.

659 Alexander Swerdlow, Mihir Prabhudesai, Siddharth Gandhi, Deepak Pathak, and Katerina Fragki-
 660 adaki. Unified multimodal discrete diffusion. *arXiv preprint arXiv:2503.20853*, 2025. doi:
 661 10.48550/arXiv.2503.20853.

662 Feilong Tang, Zile Huang, Chengzhi Liu, Qiang Sun, Harry Yang, and Ser-Nam Lim. Intervening
 663 anchor token: Decoding strategy in alleviating hallucinations for MLLMs. In *The Thirteenth
 664 International Conference on Learning Representations*, 2025a.

665 Feilong Tang, Chengzhi Liu, Zhongxing Xu, Ming Hu, Zile Huang, Haochen Xue, Ziyang Chen,
 666 Zelin Peng, Zhiwei Yang, Sijin Zhou, Wenzhe Li, Yulong Li, Wenxuan Song, Shiyan Su, Wei
 667 Feng, Jionglong Su, Mingquan Lin, Yifan Peng, Xuelian Cheng, Imran Razzak, and Zongyuan
 668 Ge. Seeing far and clearly: Mitigating hallucinations in mllms with attention causal decoding. In
 669 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 670 pp. 26147–26159, June 2025b.

671 Feilong Tang, Chengzhi Liu, Zhongxing Xu, Ming Hu, Zelin Peng, Zhiwei Yang, Jionglong Su,
 672 Minquan Lin, Yifan Peng, Xuelian Cheng, Imran Razzak, and Zongyuan Ge. Seeing far and
 673 clearly: Mitigating hallucinations in mllms with attention causal decoding. *2025 IEEE/CVF
 674 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26147–26159, 2025c.

675 Bingkui Tong, Jiaer Xia, and Kaiyang Zhou. Mitigating hallucination in multimodal llms with layer
 676 contrastive decoding, 2025.

677 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 678 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
 679 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 680 language models. *CoRR*, abs/2302.13971, 2023a.

681 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 682 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 683 Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 684 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 685 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 686 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 687 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 688 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 689 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Bin
 690 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 691 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
 692 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 693 *CoRR*, abs/2307.09288, 2023b.

694 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim M. Al-
 695 abdulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier
 696 H'enaff, Jeremiah Harmsen, Andreas Steiner, and Xiao-Qi Zhai. Siglip 2: Multilingual vision-
 697 language encoders with improved semantic understanding, localization, and dense features.
 698 *ArXiv*, abs/2502.14786, 2025.

702 Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
 703 words are anchors: An information flow perspective for understanding in-context learning. *ArXiv*,
 704 abs/2305.14160, 2023.

705

706 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 707 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 708 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 709 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

710

711 Weichuan Wang, Zhaoyi Li, Defu Lian, Chen Ma, Linqi Song, and Ying Wei. Mitigating the lan-
 712 guage mismatch and repetition issues in llm-based machine translation via model editing. In
 713 *EMNLP*, pp. 15681–15700, 2024b.

714

715 Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
 716 Neural text generation with unlikelihood training. In *International Conference on Learning Rep-
 717 resentations*, 2020.

718

719 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 720 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 721 and parallel decoding. *ArXiv*, abs/2505.22618, 2025.

722

723 Guangxuan Xiao and et al. Efficient streaming language models with attention sinks. In *Inter-
 724 national Conference on Learning Representations (ICLR)*, 2024.

725

726 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 727 language models with attention sinks. *ArXiv*, abs/2309.17453, 2023.

728

729 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 730 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 731 to unify multimodal understanding and generation. In *The Thirteenth International Conference
 732 on Learning Representations*, 2025.

733

734 Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang Li, and Jian Li. Learning to break the loop:
 735 Analyzing and mitigating repetitions for neural text generation. In *NeurIPS*, 2022.

736

737 Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, JUN ZHOU, and Chongxuan Li.
 738 Unifying bayesian flow networks and diffusion models through stochastic differential equations.
 739 In *Forty-first International Conference on Machine Learning*, 2024.

740

741 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 742 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 743 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 744 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 745 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 746 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 747 2024a.

748

749 Haoran Yang, Deng Cai, Huayang Li, Wei Bi, Wai Lam, and Shuming Shi. A frustratingly simple
 750 decoding method for neural text generation. In *LREC/COLING*, pp. 536–557, 2024b.

751

752 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 753 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

754

755 Junchi Yao, Shu Yang, Jianhua Xu, Lijie Hu, Mengdi Li, and Di Wang. Understanding the repeat
 756 curse in large language models from a feature perspective. In *Annual Meeting of the Association
 757 for Computational Linguistics*, 2025.

758

759 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 760 Kong. Dream 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream>.

761

762 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
 763 can perform many tasks with scaling and instruction-finetuning. *ArXiv*, abs/2308.12219, 2023.

756 Itay Yona, Ilia Shumailov, Jamie Hayes, Federico Barbero, and Yossi Gandelsman. Interpreting the
 757 repeated token phenomenon in large language models. *ArXiv*, abs/2503.08908, 2025.
 758

759 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 760 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint*
 761 *arXiv:2505.16933*, 2025.

762 Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
 763 model with parallel decoding, 2025.

764

765 Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin. Un-
 766 veiling and harnessing hidden attention sinks: Enhancing large language models without training
 767 through attention calibration. *ArXiv*, abs/2406.15765, 2024.

768 Ruixiang ZHANG, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua M. Susskind,
 769 and Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion.
 770 In *Forty-second International Conference on Machine Learning*, 2025.

771

772 Xiaofeng Zhang, Yihao Quan, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao
 773 Wang, Chaochen Gu, Hao Tang, and Jieping Ye. From redundancy to relevance: Information
 774 flow in lylms across reasoning tasks. In *North American Chapter of the Association for Compu-
 775 tational Linguistics*, 2024.

776 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 777 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 778 sampling. In *The Thirteenth International Conference on Learning Representations*, 2025.

779 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
 780 for text generation. *ArXiv*, abs/2302.05737, 2023.

781

782 Chunting Zhou, LILI YU, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Ja-
 783 cob Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token
 784 and diffuse images with one multi-modal model. In *The Thirteenth International Conference on
 785 Learning Representations*, 2025.

786 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
 787 Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
 788 optimization for large language diffusion models, 2025a.

789

790 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 791 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 792 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
 793 Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
 794 Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
 795 Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
 796 Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. In-
 797 ternvl3: Exploring advanced training and test-time recipes for open-source multimodal models,
 798 2025b.

799 Wenhong Zhu, Hongkun Hao, and Rui Wang. Penalty decoding: Well suppress the self-
 800 reinforcement effect in open-ended text generation. In *The 2023 Conference on Empirical Meth-
 801 ods in Natural Language Processing*, 2023.

802

803

804

805

806

807

808

809

(a) Effect of prompt token recompute interval.					
Interval	1	5	15	25	
SRR \downarrow	0	0	0	0	

(c) Effect of similarity thresholds.					
Threshold	0	0.25	0.5	0.75	1
SRR \downarrow	89.7	75.0	69.8	29.7	0

(b) Effect of output token recompute interval.					
Interval	1	3	5	7	
SRR \downarrow	0	79.9	87.4	89.7	

(d) Comparison of reuse policies.					
Policy	prefix KV cache	dllms-cache			
SRR \downarrow	0		75.0		

Table 5: Ablation study on cache mechanism design components and their effects on repetition.

Method	ARR \downarrow	SRR \downarrow
MMaDA	0.7	6.0
+dllm-cache	4.4	55.0
+dllm-cache+CTAE	2.4	29.0
+dllm-cache+CTEV	0.8	35.0
+dllm-cache+CoTA	0.6	30.0

Method	ARR \downarrow	SRR \downarrow
LLaDA-V	0	0
+dllm-cache	9.3	75.0
+prefix KV cache	0	0
LaViDa	0	0
+prefix KV cache	0	0

(a) Repetition curse across different dMLLMs.

(b) Repetition curse under different cache methods.

Table 6: Generalization experiments.

A ANALYSIS OF CACHE MECHANISM AND REPETITION CURSE

We conduct a series of ablation studies on LLaDA-V to analyze how different components of the cache mechanism influence repetition curse.

(a) We begin by examining the prompt token recomputation interval, while fixing the output token recomputation interval to 1 and setting the similarity threshold to 0. As shown in Table 5a, periodic caching of prompt tokens has negligible impact on repetition.

(b) We then fix the prompt token recomputation interval to 25 and set the similarity threshold to 0, varying only the output token recomputation interval. As reported in Table 5b, we observe that periodic caching of output tokens induces repetition, and longer recomputation intervals lead to higher repetition rates.

(c) In the dLLM-Cache framework, a subset of output tokens is adaptively recomputed at each step based on a similarity threshold. To analyze this further, we fix the prompt token recomputation interval to 25 and the output token recomputation interval to 7, while varying the similarity threshold. As shown in Table 5c, the threshold plays a critical role: lower thresholds correspond to higher repetition rates.

(d) Finally, we compare dLLM-Cache with prefix KV cache Kwon et al. (2023); Li et al. (2025b) to analyze the effect of different reuse policies. We fix the prompt token recomputation interval to 25, the output token recomputation interval to 7, and the similarity threshold to 0.25. As shown in Table 5d, prefix KV cache, which only reuses cached states for prefix tokens, does not trigger repetition.

These four experiments reveal that the prompt recomputation interval has little effect on repetition behavior, while the output token recomputation interval, similarity threshold, and caching policy exert a substantial influence. In general, the fewer output tokens that are recomputed at each decoding step, the more likely the model is to fall into repetition.

We hypothesize that this is because the token states within the prompt sequence remain relatively static, so caching them has minimal impact on future predictions. In contrast, output tokens evolve across decoding steps. Caching these dynamic tokens forces the model to rely on outdated states, reducing uncertainty during prediction—ultimately contributing to the non-convergence of context-token entropy in deeper layers.

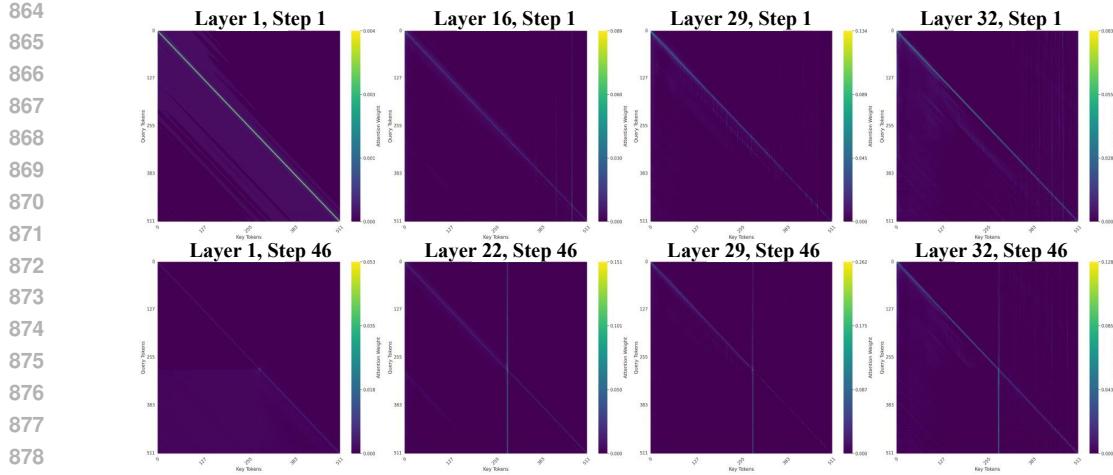


Figure 6: Information flow visualization for MMaDA-8B without using cache.

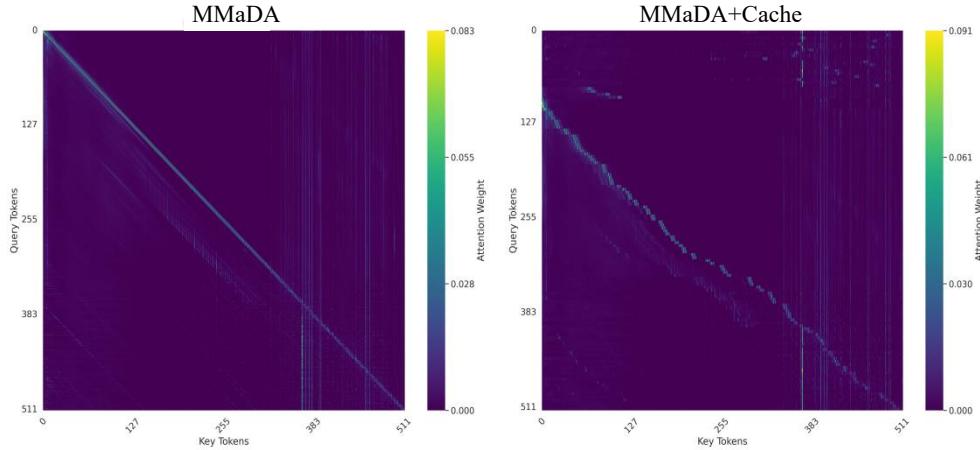


Figure 7: Comparison of MMaDA's information flow patterns with and without cache.

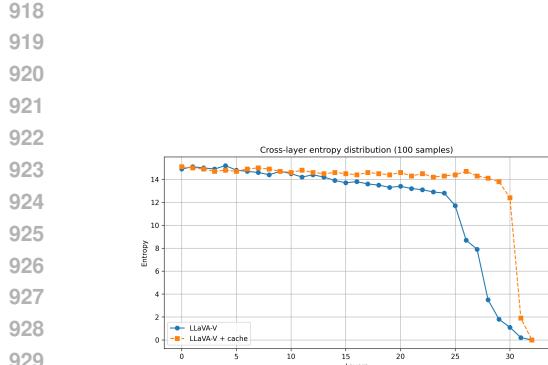
B MORE RESULTS

B.1 REPETITION CURSE ACROSS DIFFERENT DMLLMs

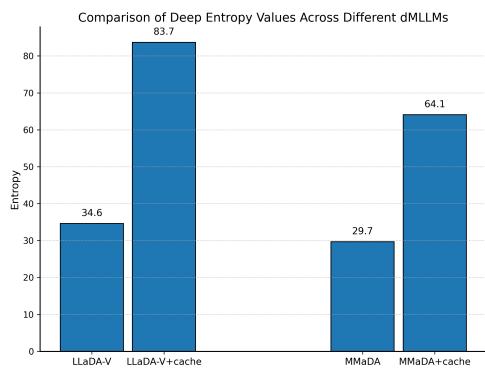
We present the repetition analysis of applying the cache mechanism to MMaDA in Table 6a. Notably, we find that MMaDA also suffers from the repetition curse when dLLM-Cache is enabled. Specifically, the adjacent repetition rate increases by +3.7%, and the sample repetition rate increases by +49%. These findings highlight that the repetition curse is not limited to a single architecture, but is a pervasive issue across dMLLMs.

B.2 INFORMATION FLOW ACROSS DIFFERENT DMLLMs

As illustrated in Figure 6, we visualize the attention maps of MMaDA to analyze the flow of information between tokens. We observe a similar pattern to LLaDA-V, where context tokens function as anchors, continually attracting attention across layers. Interestingly, we also detect vertical bands of concentrated attention in Layer 22 at Step 46, resembling the “attention sink” Huang et al. (2023) phenomenon commonly seen in autoregressive MLLMs. However, after introducing the cache, the original attention pattern of MMaDA is also disrupted (as shown in Figure 7).



(a) Cross-layer entropy distribution across 100 samples.



(b) Comparison of total deep-layer entropy across different dMLLMs.

Figure 8: Deep-layer entropy analysis experiment.

B.3 GENERALIZATION EXPERIMENTS OF CoTA

We apply CoTA to the MMaDA model, which exhibits repetition after enabling cache, and present the results in Table 6a. The results show that CoTA and its components (CTAE and CTEV) effectively suppress repetitive text generation in MMaDA as well, demonstrating the generalizability of our approach.

B.4 REPETITION CURSE UNDER DIFFERENT CACHE METHODS

As shown in Table 6b, we further assess the repetition behavior when applying the prefix-KV cache method Kwon et al. (2023) to both LLaDA-V and LaViDa Li et al. (2025b). Notably, the prefix-KV cache does not trigger repetition in either model. We speculate that this is because prefix-KV cache only reuses the cached states of prefix tokens (prompt and image tokens), without affecting suffix tokens (output text tokens). This finding is consistent with the conclusions presented in Section A.

C MORE EXPERIMENTAL DETAILS OF CTEV

In CTEV, a central design choice is the selection of layers 26–30 for entropy estimation. This choice is informed by both multi-sample statistics and detailed single-sample analyses. Concretely, we compute per-layer entropy over 100 samples, and then aggregate and average the entropy values for each layer across samples. The resulting entropy distribution across layers is shown in Figure 8a. A comparison of the entropy trajectories before and after enabling the cache reveals a clear pattern: cache usage induces pronounced entropy deviations specifically in layers 26–30. As discussed in Section 3.3, these layers consistently exhibit the strongest sensitivity to cache-induced shifts, which directly motivates their adoption in CTEV.

To further validate this choice, we examine the cumulative entropy over layers 26–30 across different dMLLM architectures. As shown in Figure 8b, all models display a consistent trend: caching systematically disrupts entropy convergence in deep layers. This cross-model agreement provides strong empirical support for focusing on layers 26–30 within the CTEV framework.

Methods	16	32	64	128
LLaDA-V	2%	1%	1%	1%
LLaDA-V+cache	88%	85%	79%	75%
LLaDA-V+CoTA	17%	14%	10%	8%

Table 7: Repeat curse comparison under different block lengths. The evaluation metric is the sample repetition rate.

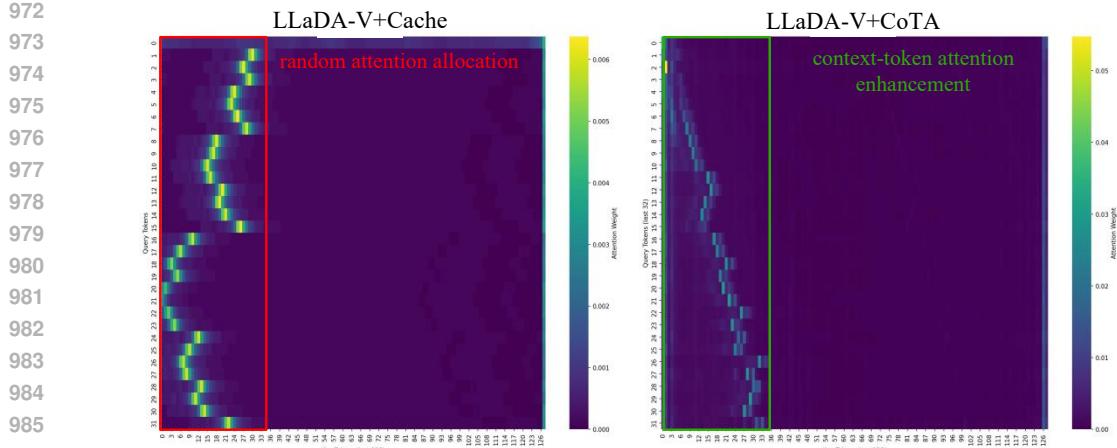


Figure 9: Attention map visualizations of LLaDA-V+Cache and LLaDA-V+CoTA.

We further analyze the sensitivity of CTEV through additional experiments. As shown in Table 7, we evaluate the CoTA performance under different block lengths during decoding. We observe that our method consistently reduces the repetition rate across all tested block configurations, demonstrating its robustness to different window sizes.

Layer range	512		128	
	ARR \downarrow	SRR \downarrow	ARR \downarrow	SRR \downarrow
LLaDA-V+cache	13.9%	85%	9.3%	75%
1–10	12.1%	81%	8.4%	73%
11–20	12.4%	83%	9.1%	74%
21–25	11.3%	73%	7.9%	65%
25–30	5.6%	23%	4.3%	19%
26–30	2.9%	10%	1.8%	8%
26–31	3.2%	12%	2.1%	10%
26–32	3.3%	12%	2.1%	9%

Table 8: Performance comparison under different layer ranges.

We further present results across different layer ranges in Table 8. We find that computing the cumulative entropy using layers 26–30 yields the best performance. We speculate that this is because the entropy values in this depth range exhibit the largest separation between normal and abnormal modes, while incorporating additional layers introduces unnecessary noise, leading to diminished performance.

D ADDITIONAL ANALYSES OF CoTA

As shown in Figure 9, we visualize the attention maps to analyze the changes in the model’s internal information-flow patterns. After applying Cache, the model exhibits a more random attention distribution, whereas CoTA restores the “context tokens as anchors” information-flow pattern by strengthening attention toward contextual tokens.

E LINGUISTIC ATTRIBUTE ANALYSIS OF REPEATED TOKENS

In this section, we analyze the linguistic attributes of repeated tokens by computing their frequency statistics over 200 samples that exhibit repetition. As shown in Table 9, the top-3 most frequently repeated words are “the,” “of,” and “a.” We observe that repeated tokens are predominantly function

LLaDA-V+cache		
Repeated word	the	of
Repetition ratio	98%	76%
		56%

Table 9: Statistics of repeated words generated by LLaDA-V with cache.

Methods	ACC↑	ARR↓	Methods	ARR↓	SRR↓
LLaDA-V+cache	54.9	6.9	Decay Matrix	1.8%	8%
n-gram (n=2)	54.0	2.4	Alibi Bias Matrix	3.9%	10%
n-gram (n=3)	54.3	3.2			
CoTA	59.7	1.3			

(a) Comparison between CoTA and n-gram penalties.

(b) Comparison of different attention biasing methods.

Table 10: Experimental results of CoTA and related techniques.

words carrying low semantic content, which is also consistent with the case study presented in Figure 1. This indicates a common tendency of the model when generating uncertain or repetitive text.

F DISCUSSION OF CoTA AND RELATED TECHNIQUES

N-gram penalties Holtzman et al. (2020), as a simple and widely used decoding-time technique, are commonly applied to control repetition. We further compare the performance of CoTA and n-gram penalties in Table 10a. We find that although n-gram penalties can reduce repetition, their effectiveness is inferior to that of CoTA. Moreover, applying n-gram penalties often leads to a degradation in model accuracy, likely due to forced token substitution, which disrupts semantic coherence and lowers output quality. In addition, we replace the decay matrix used in CTAE’s attention biasing design with an Alibi bias penalty matrix Tang et al. (2025b) to evaluate its effect. As shown in Table 10b, the results confirm that using the Decay Matrix for attention intervention in CTAE is more effective.

G MORE EFFICIENCY ANALYSIS

We further perform a comprehensive efficiency analysis on DocVQA, covering prefix-KV, dLLM-cache, CoTA, and its two components (CTAE and CTEV). As shown in Table F, integrating CoTA introduces only a modest and acceptable increase in latency, along with a slight reduction in throughput, yet it still delivers substantial improvements over the baseline. Moreover, to provide a more holistic assessment of efficiency, we additionally report latency and throughput results on both LLaDA-V and MMAADA.

H RELATED WORK

Diffusion-based Multimodal Large Language Models (dMLLMs). The latest diffusion-based large language models (dMLLMs) Nie et al. (2025); Zhu et al. (2025a); Ye et al. (2025); Gong et al. (2025) have been successfully scaled to 8B parameters, achieving performance comparable to state-of-the-art autoregressive large language models Touvron et al. (2023a,b); Devlin et al. (2018); Dubey et al. (2024); Bi et al. (2024); Yang et al. (2024a); Gunasekar et al. (2023); Chiang et al. (2023). Furthermore, by integrating visual instruction tuning and architectural extensions, dMLLMs have recently been extended to dMLLMs Nie et al. (2025); Zhu et al. (2025a); Ye et al. (2025); Gong et al. (2025), demonstrating promising multimodal capabilities.

Diffusion Language Models. Motivated by the remarkable success of diffusion models in image generation Rombach et al. (2022); Podell et al. (2024); Esser et al. (2024), recent studies have introduced the diffusion process into language modeling, including both continuous diffusion mod-

Method	throughput (tok/s) \uparrow	latency (s/sample) \downarrow
LLaDA-V	1.8	17.4
+prefix KV cache	2.7	13.3
+dllum-cache	4.9	6.1
+dllum-cache+CTEV	4.1	7.2
+dllum-cache+CTAE	4.6	6.4
+dllum-cache+CoTA	3.8	7.7
MMaDA	0.5	32.1
+dllum-cache	2.0	19.6
+dllum-cache+CTEV	1.5	22.0
+dllum-cache+CTAE	1.7	21.4
+dllum-cache+CoTA	1.3	24.0

Table 11: Throughput and latency comparison on DocVQA.

els Lovelace et al. (2023); Li et al. (2022); ZHANG et al. (2025); Xue et al. (2024); Lin et al. (2023) and discrete diffusion models Campbell et al. (2022); Zheng et al. (2025); Gat et al. (2024); Ye et al. (2023); Zheng et al. (2023). The latest masked diffusion models Nie et al. (2025); Zhu et al. (2025a); Ye et al. (2025); Gong et al. (2025) have successfully scaled dLLMs to 8B parameters and demonstrated performance comparable to autoregressive large language models Yang et al. (2024a).

Multimodal Large Language Models (MLLMs). Building upon the unprecedented generative capabilities of large language models (LLMs) Touvron et al. (2023a;b); Devlin et al. (2018); Dubey et al. (2024); Bi et al. (2024); Yang et al. (2024a); Gunasekar et al. (2023); Chiang et al. (2023), MLLMs have emerged as powerful systems that extend LLM architectures to process over multimodal inputs. Probabilistic modeling approaches for MLLMs generally fall into three paradigms: (i) autoregressive Liu et al. (2023b;a); Bai et al. (2025); Wang et al. (2024a); Zhu et al. (2025b); Chen et al. (2024c); Achiam et al. (2023); Li et al. (2025a), (ii) autoregressive–diffusion hybrid Bao et al. (2023); Xie et al. (2025); Zhou et al. (2025); Ma et al. (2024); Yu et al. (2025), and (iii) pure diffusion Swerdlow et al. (2025); Li et al. (2025c). Building on the recent breakthroughs in dLLMs, the latest dMLLMs You et al. (2025); Yang et al. (2025); Li et al. (2025b) exploit the language modeling capabilities of dLLMs, coupled with effective training pipelines, to deliver performance on par with leading autoregressive and hybrid counterparts.

Repeated Token Generation. Early research on text repetition and degeneration in model predictions primarily focused on improving sampling strategies for language models Holtzman et al. (2020), such as nucleus sampling and top-k sampling. Several studies treat repetition control as a training objective and introduce various training-time strategies to mitigate repetitive generation Welleck et al. (2020); Lagutin et al. (2021); Xu et al. (2022). Other methods focus on incorporating repetition-aware penalties during the sampling stage Zhu et al. (2023).

In recent years, research on repetitive text generation has expanded from conventional language generation models to modern LLMs. Yang et al. (2024b) estimates the likelihood of future repetition using an n-gram LM constructed from the generated prefix and imposes penalties based on this estimate. Ginart et al. (2025) introduces a repetition penalty from a compression-based perspective, while Li et al. (2023b) highlights how repeated tokens in training corpora can exacerbate repetition during inference.

Some recent work further investigates the underlying mechanisms behind repetition. DUC Yao et al. (2025) employs Sparse Autoencoders (SAEs) to identify latent features that become highly activated when a model produces repeated tokens, referred to as repetition features. They attribute repetition to the activation of these features at specific layers and mitigate repetition by suppressing them. Wang et al. (2024b) employs model-editing techniques to locate FFN neurons strongly associated with repetition, as well as neurons strongly related to the main task. By intersecting these neuron sets, they filter out neurons purely tied to repetition and perform targeted edits.

Distinct from the above approaches, our work examines repetition from an information-flow perspective. By comparing the information-flow patterns that emerge during repetitive generation with those observed under normal conditions, we identify the underlying mechanisms that lead to repetition. Our analysis shows that in dMLLMs, context tokens act as anchors that aggregate and

Evaluation data	DocVQA	ChartQA	MMStar	MME	SEED
Max generation length	32	16	2	2	2
Block length	32	16	2	2	2
Decode steps	16	16	2	2	2
Batchsize	1	1	1	1	1

Table 12: Evaluation configuration details of different datasets.

propagate information. However, the introduction of cache disrupts this aggregation pattern and consequently triggers repetitive outputs. In addition, our layer-wise entropy analysis reveals that context tokens involved in local repetition exhibit a failure of entropy convergence in deeper layers. It is important to note that existing research on repetitive outputs in MLLMs and dMLLMs remains limited. Prior studies on MLLMs discuss repetition primarily in the context of hallucination and demonstrate that certain decoding strategies can reduce this effect Tong et al. (2025); Huang et al. (2023). Recent dMLLM work has reported the presence of repetition but has not conducted deeper investigation into its causes Yu et al. (2025).

I EVALUATION CONFIGURATION DETAILS OF DIFFERENT DATASETS

We report detailed information about the evaluation setup in Table 12, including the maximum generation length, block length, decoding steps, and batch size for different benchmarks.

J MAXIMUM REPETITION LENGTH, AVERAGE REPETITION LENGTH, 95TH-PERCENTILE REPETITION LENGTH, AND SAMPLE REPETITION RATE

Given an input sequence of length M , $\{\mathcal{T}_i\}_{i=1}^M$, we record the length of each consecutive identical segment r_k as follows:

$$r_k = |\{ \mathcal{T}_i \mid \mathcal{T}_i = \mathcal{T}_{i+1} = \dots = \mathcal{T}_{i+r_k-1} \}|, \quad k = 1, 2, \dots, K, \quad (11)$$

where K denotes the total number of segments. Furthermore, we obtain all token repetition segments *rep_runs* as follows:

$$\text{rep_runs} = \{ r_k \mid r_k \geq 2, k = 1, 2, \dots, K \}. \quad (12)$$

Based on *rep_runs*, the maximum repetition length (MRL), average repetition length (ARL), and 95th-percentile repetition length (95pRL) can be obtained from Equations 13, 14, and 15, respectively.

$$\text{MRL} = \max(\text{rep_runs}). \quad (13)$$

$$\text{ARL} = \frac{1}{|\text{rep_runs}|} \sum_{r \in \text{rep_runs}} r. \quad (14)$$

$$\text{95pRL} = \text{Quantile}_{0.95}(\text{rep_runs}). \quad (15)$$

Let the total number of generated results be N , among which the number of results containing repetition is N_{dup} . The Sample Repetition Rate is defined as:

$$\text{SRR} = \frac{N_{\text{dup}}}{N} \quad (16)$$

K CASE STUDY

As illustrated in the Figure 1, incorporating dilm-cache into LLaDA-V leading to generated responses with excessive repetition of words (e.g., “the”) and punctuation marks (e.g., “,”). In contrast, our mitigation strategy substantially reduces such repetition. Notably, it also encourages the model to attend more effectively to the information contained in surrounding tokens, enabling the generation of image descriptions that are both more detailed and more coherent.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Instruction: What preparations should be made before cooking?

LLaDA-8B-Instruct:

Before cooking, it is important to gather all the **ingredients** **ingredients** needed for the recipe and it is also important to have all the necessary tools and equipment ready. It is also helpful to idea the cooking methods and time required before cooking.

Figure 10: Repetition phenomena in dLLMs.

L REPETITION PHENOMENA IN DLLMs

As illustrated in Figure 10, we find that diffusion-based large language models likewise suffer from repetition in generated text. This finding motivates future research into the internal mechanisms of both dLLMs and dMLLMs. Furthermore, our study reveals that the repeated words are predominantly low-semantic terms (e.g., “the,” “is”), while the example in the Figure 10 suggests that repetitions in dLLMs may involve a broader variety of words.

M DECLARATION OF THE USE OF GENERATIVE AI (LARGE LANGUAGE MODELS)

Generative AI tools, including Grammarly and ChatGPT, were used solely for grammar checking and language polishing. All technical content, experimental design, data analysis, and conclusions were generated and verified exclusively by the human authors. The use of AI tools does not affect the originality or authorship of this work.

N ETHICS STATEMENT

This work seeks to uncover the underlying causes of the Repeat Curse in dMLLMs with cache from an information-flow perspective and to propose mitigation strategies that enhance the output performance of diffusion-based multimodal large language models (dMLLMs). The proposed methods, CoTA, is developed using only publicly available dMLLMs (LLaDA-V), caching approaches (dLLM-Cache), and benchmark datasets (e.g., MME, MMBench, SEED), without relying on any private, sensitive, or human-subject data. These techniques do not introduce biases beyond those inherent to the base models, and are designed to supplement rather than replace human supervision in critical applications. Nevertheless, while our methods can effectively mitigate response repetition, they cannot guarantee the elimination of errors or misleading outputs. Hence, caution is advised in practical deployments.

O REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the following resources: (1) Code: The complete implementation of CoTA, including Context Tokens Attention Enhancement (CTAE) and Context Tokens Entropy-Guided Voting (CTEV), will be publicly released on GitHub upon publication. (2) Hyperparameters: For dLLM-Cache, all experiments fix the hyperparameters at $\alpha = 25\%$, $\mathcal{E}_p = 25$, and $\mathcal{E}_s = 7$. The parameter details for CoTA are described in Section 5.5, while those for the evaluation setup are provided in Section I. (3) Evaluation: We use standard, publicly available benchmarks (e.g., MME, MMBench, SEED) along with their official evaluation scripts. (4) Compute: Experiments are conducted on NVIDIA A800 80GB GPUs. Inference latency is reported using TPS and FLOPs (Table 3). (5) Models and Cache Methods: We evaluate open-source dMLLMs, specifically LLaDA-V (8B). The cache method is based on the official implementation of dLLM-Cache for LLaDA-V. No proprietary data or models are used in this work.