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ABSTRACT

Recent diffusion-based Multimodal Large Language Models (AMLLMs) suffer
from high inference latency and therefore rely on caching techniques to accel-
erate decoding. However, the application of cache mechanisms often introduces
undesirable repetitive text generation, a phenomenon we term the Repeat Curse.
To better investigate underlying mechanism behind this issue, we analyze repeti-
tion generation through the lens of information flow. Our work reveals three key
findings: (1) context tokens aggregate semantic information as anchors and guide
the final predictions; (2) as information propagates across layers, the entropy of
context tokens converges in deeper layers, reflecting the model’s growing predic-
tion certainty; (3) Repetition is typically linked to disruptions in the information
flow of context tokens and to the inability of their entropy to converge in deeper
layers. Based on these insights, we present CoTA, a plug-and-play method for
mitigating repetition. CoTA enhances the attention of context tokens to preserve
intrinsic information flow patterns, while introducing a penalty term to the confi-
dence score during decoding to avoid outputs driven by uncertain context tokens.
With extensive experiments, CoTA demonstrates significant effectiveness in alle-
viating repetition and achieves consistent performance improvements on general
tasks. Code will be made available.

1 INTRODUCTION

Recent advances in diffusion-based large language models (dLLMs) [Nie et al.| (2025); [Zhu et al.
(2025a); |Ye et al.| (2025); |Gong et al.[(2025) have demonstrated impressive reasoning and parallel
decoding capabilities. Unlike autoregressive large language models [Touvron et al.| (2023a); [Yang
et al.[(20244a)); |Chiang et al.| (2023), which generate text by sequentially predicting the next token,
dLLMs produce tokens in parallel by framing response generation as an iterative denoising process
over a fully masked discrete token sequence. Building on this foundation, diffusion-based Multi-
modal Large Language Models (dAMLLMs) |You et al.[ (2025); |[Yang et al.| (2025)); L1 et al.| (2025b))
have emerged as powerful multimodal systems that integrate vision instruction tuning with dLLMs,
and have achieved performance comparable to leading autoregressive architectures across multiple
benchmarks [Liu et al.| (2023c); Chen et al.| (2024Db); Fu et al.| (2023).

Current efforts to accelerate dMLLMs [Liu et al.| (2025); Wu et al.| (2025) primarily exploit cus-
tomized caching strategies for both prefix and suffix tokens. While these approaches effectively
reduce inference latency, our experiments demonstrate that they often introduce a severe side effect:
the generated text exhibits substantial repetition, as shown in Figure[I] This repetition significantly
reduces the performance and readability of the model outputs. We refer to this phenomenon as “Re-
peat Curse”. We propose four complementary metrics to quantitatively evaluate the “Repeat Curse”
phenomenon. As illustrated in Figure [2a, our empirical analysis shows that this issue consistently
emerges in dMLLMs when cache techniques are employed.

However, the inherent black-box nature of dAMLLMs presents a major obstacle to uncovering the in-
ternal mechanisms responsible for Repeat Curse. Recent advances in information flow analysis |Yu
et al.| (2024); [Wang et al.| (2023)); |(Chen et al.|(2024a) have introduced an interpretable approach for
understanding the relationship between model outputs and internal mechanisms, which has moti-
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Kl'he image captures a serene rnrah

landscape. Dominating the scene is
a wooden barn, its weathered
exterior a testament to the passage
of time. The barn is nestled in a field
of green grass, which stretches out
to meet the horizon. In the distance,
a range of mountains rises, their
peaks shrouded in a blanket of
clouds. The sky above is a soft pink,
suggesting either dawn or dusk. The
perspective of the image is from a
low angle, making the barn appear
grand and imposing. The overall
composition of the image creates a
sense of depth and tranquility,
inviting the viewer to imagine

themselves in this peaceful rural

.

The image captures a serene rural
landscape. Dominating the scene is
a wooden barn, its rustic charm
enhanced by the weathered texture
of its walls. The barn is nestled in a
field of tall grass, which stretches
out towards the the horizon. The the
sky is is a soft blue,, dotted with a
few clouds. In the distance, a
majestic range of mountains rises,
their peaks covered in snow, adding
to the overall tranquility of the the
scene. The barn's position of the
barn and the the placement of the

ins create a i

composition, leading the the eye
from the barn to the the center of of

Y

~

The image captures a serene rural
landscape. Dominating the scene is
a rustic wooden barn, its weathered
exterior a testament to years of use.
The barn is nestled in a field of tall
grass, which stretches out towards
the horizon. In the distance. Beyond

the grassy field, a range of
mountains riseestically against the
sky, their slopes cloaked in shades
of green, brown, and white. The sky
above is a soft pink of dawn, dusk,
or early morning, casting a warm
glow over the scene. The
perspective of the image is taken
from a low angle, adding the barn's
prominence in the frame.

. setting. \\ the image. / \\ /
Please describe the |_ )
image in detail. .\ LLaDA-V LLaDA-V+Cache LLaDA-V+Cache+CoTA

Figure 1: Motivation. When cache is applied to accelerate IMLLMs, the generated responses
often exhibit excessive token repetition—a phenomenon we term the Repeat Curse.

vated the development of numerous methods for mitigating abnormal output patterns (e.g., halluci-
nation Tang et al.| (2025c) and degeneration |Yona et al.| (2025))). Inspired by these successes, this
work conducts an in-depth analysis from the perspective of information flow to reveal the connection
between the internal mechanisms of dMLLMs and the “Repeat Curse.”

By visualizing the attention interaction patterns among tokens (as shown in Figure [3), we observe
that in IMLLMs, the bidirectional attention mechanism enables context tokens adjacent to the query
to act as anchors that progressively aggregate semantic information across layers, causing attention
to gradually concentrate on these context tokens. We further introduce information entropy to
analyze the impact of context tokens on decoding, as illustrated in Figure fla. We find that the en-
tropy of context tokens converges in deeper layers, reflecting that as information is progressively
aggregated across layers, the model’s predictive certainty consistently increases. When repetition
arises after applying the cache, the model exhibits random attention allocation (Figure 2]b). In ad-
dition, context tokens corresponding to repeated outputs sustain abnormally high entropy in deeper
layers (Figure ]b). Together, these findings suggest that caching disrupts the inherent mechanisms
of dMLLMEs, thereby triggering the Repeat Curse. We attribute this phenomenon to two key factors:
1. The introduction of caching disrupts the attention distribution and the inherent information flow
patterns of context tokens; 2. Some context tokens whose entropy fails to converge in deeper layers
induce the model to generate uncertain tokens, which are often accompanied by repetition.

Building on these insights, we propose COTAEL a plug-and-play approach that addresses the abnor-
mal patterns underlying the Repeat Curse and mitigates repetition. CoTA is built on two key com-
ponents: (1) Context-token Attention Enhancement (CTAE): a distance-aware attention intervention
that strengthens attention to context tokens, thereby preserving the intended information flow during
token interactions; (2) Context-token Entropy-guided Voting (CTEV): a mechanism that leverages
the aggregated deep-layer entropy of context tokens as a penalty term in the confidence score, dis-
couraging the model from generating uncertain and repetitive outputs. CoTA can be seamlessly
integrated with baseline IMLLMs and existing caching strategies in a training-free manner, while
incurring only modest computational overhead. Experimental results show that CoTA is highly ef-
fective in mitigating repetition, reducing the adjacent repetition rate by up to 92%. Furthermore,
across several multimodal benchmarks, CoTA consistently surpasses the baseline, demonstrating
substantial improvements in overall robustness and generalization.

Our contributions are three-fold.

* First, we identify the Repeat Curse phenomenon that emerges when caching is applied in dM-
LLMs and uncover its underlying causes through information flow analysis.

* Second, we introduce CoTA, a plug-and-play approach specifically designed to alleviate repeti-
tion.

* Third, we validate the effectiveness of CoTA through extensive experiments, demonstrating con-
sistent performance improvements across multiple general multimodal tasks.

'The name CoTA is derived from our key finding: COntext Tokens are Anchors.
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Figure 2: (a) presents the quantitative results of the “Repeat Curse”. L and S indicate evaluations on
long-text responses (512 tokens) and short-text responses (64 tokens). The evaluation metrics ARR,
MRL, ARL, and 95pRL are introduced in Section [3.2]and Appendix [J] (b) visualizes the attention
maps of LLaDA-V and LLaDA-V+Cache.

2 RELATED WORK

Diffusion-based Multimodal Large Language Models. The latest diffusion-based large language
models (dLLMs) Nie et al.| (2025); Zhu et al.| (2025a); [Ye et al.| (2025); |Gong et al.| (2025) have
been successfully scaled to 8B parameters, achieving performance comparable to state-of-the-art
autoregressive large language models |[Dubey et al.| (2024)); B1 et al.| (2024); Yang et al.|(2024a)). By
combining visual instruction tuning [Liu et al.| (2023a) with dLLMs, |You et al.| (2025)); |Yang et al.
(2025)); IL1 et al.[(2025b)) successfully develops diffusion-based multimodal large language models.

Information Flow. Recent studies have underscored the importance of information flow as an in-
tuitive means of representing the internal mechanisms of black-box models. Common approaches
for analyzing information flow mainly include saliency scores Yu et al.| (2024); |Wang et al.| (2023)),
attention maps [Xiao et al.|(2023);\Huang et al.| (2023), Grad-CAM [Zhang et al.|(2024), and massive
values Jin et al.|(2025), among others. Prior studies|Yu et al.|(2024); |Chen et al.|(2024a)); |Tang et al.
(2025a) have demonstrated the existence of certain anchor tokens in autoregressive models, which
aggregate information and play a crucial role in cross-layer information flow. Additionally, ADLM
Rout et al.| (2025) discusses the role of anchors in semantic guidance within diffusion language
models. These findings inspire our exploration of information flow in dAMLLM:s.

3  MOTIVATION AND ANALYSIS

In this section, we begin with a brief overview of baseline AIMLLMs and the cache mechanisrrﬂ We
then investigate the ‘Repeat Curse’ through both quantitative and qualitative analyses. Finally, we
compare the information flow in dIMLLMs with and without cache, shedding light on the underlying
cause of the Repeat Curse.

3.1 PRELIMINARY

Diffusion-based Multimodal Large Language Models (AMLLMs). Typically, a dIMLLM F con-
sists of three main components: a pretrained vision encoder F,,, a dLLM F;, and a projector f that
maps visual features into the text embedding space. Given an image input [, and an instruction
prompt I, (e.g., “Please describe the image in detail”), the model converts them into tokens and
concatenates them into a multimodal sequence: {S,,S;}, where S, = f(F,(I,)) = {w;}}_, and
Si = Fi(I,) = {w;}£ | represent visual and instruction tokens of lengths V and T, respectively.
Subsequently, a fully masked token sequence S,,, = {w;}}, of lengths M is initialized as the re-
sponse sequence and concatenated with {S,, S;} to form the final input sequence S = {S,, S¢, Sin }-
In such sequence, different tokens share the same dimension.

2This paper adopts LLaDA-V You et al.[(2025) and dLLM-Cache Liu et al.[(2025) as the baseline dMLLMs
and cache method.
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Figure 3: Attention Maps Visualization of LLaDA-V. Based on LLaDA-V 8B with a genera-
tion length of 128 and 32 decoding steps, we visualize the attention matrices corresponding to the
masked (response) tokens, with the x-axis denoting key tokens and the y-axis denoting query to-
kens. Brighter colors indicate higher attention values. Context tokens act as anchors to aggregate
information across layers and absorb attention.

Inference and Sampling in dJMLLMs. Let S* = {S!, S/, S!,} denote the input sequence state at
decoding step t. Starting from S°, where the response sequence S, is fully masked, the IMLLM
performs an iterative unmasking process over T discrete steps to generate the final text response. At
each step ¢, the model computes a probability distribution pg(St | St=1) for every masked token.
From these distributions, the most likely token predictions S( ) and their corresponding confidence
scores c(;) are determined:

t o t o t—1 L — t o At‘ t—1 . M 1
S(z) argr&a&pg(‘?(l) v|S7T7) and ¢ pg(S(Z) 5(2) | S*77), i€ My, (1)

where M, _; represents the index set of masked token positions at step (¢t — 1) and V' is the vocab-
ulary. Finally, the model selects the k positions in M;_; with the highest confidence scores c(;) and
obtains the set of indices to update U;. The k selected tokens are unmasked at this step, producing
the updated sequence:

St ifiel;
Sto={" ’ 2
@) {Sa)l, otherwise. 2

The indices of the masked tokens at step ¢ are updated by M; = M;_; — U,.

Cache Mechanism for dMLLMs. During the iterative unmasking process of dMLLMs, attention
needs to be computed over all tokens in the sequence S at each step, which leads to significant
inference latency. Since dMLLMSs adopt a bidirectional attention mechanism, the conventional K'V-
cache technique Xiao & et al.[(2024) is not applicable. To address this, several caching methods|Liu
et al.{(2025));[Wu et al|(2025) leverage a similar observation: prefix tokens {S,,, S;} and parts of the
suffix tokens S,,, exhibit minimal changes in their attention values during inference, which enables
the design of token state caching and reuse. For example, in |Liu et al.| (2025), the core caching
mechanism is defined as follows:

Recompute({S},Sf}), ift mod £ =
Recompute(SY,), if t mod gl =0, 3)

Recompute(S(ti) )s if S(ti) € argmin,, ( Sim(S?,, an—l)) )
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(b) Cross-layer entropy curves of context tokens in Repetition responses.

Figure 4: (a) and (b) correspond to context tokens from normal decoding and from decoding with
repeated tokens, respectively. We define the set of context tokens as the target tokens together with
their two nearest neighboring tokens in relative position. Context tokens with repetition tend to
exhibit high entropy in deeper layers.

Here, Recompute() denotes the recomputation of attention. &, and &, indicate the predefined up-
date periods for prefix and suffix tokens, respectively. argmin,, selects the bottom « proportion of
elements from the sequence, and Sim() refers to the cosine similarity functionE]

3.2 REPEAT CURSE

Repetition Quantitative Metrics. As illustrated in Figure [T} we define the redundant repetition of
tokens in model responses as the Repeat Curse. To quantitatively evaluate this phenomenon, we
introduce the Adjacent Repetition Rate (ARR), which measures the proportion of repeated tokens
within a response sequence {y; }£, of lengths M:

M

1
Milzl(yi:yifl% “4)

i=1

ARR =

where 1() is an indicator function that takes the value 1 when the condition is satisfied and 0 oth-
erwise. In addition, we introduce sample repetition rate (SRR), maximum repetition length (MRL),
average repetition length (ARL), and 95th-percentile repetition length (95pRL) to evaluate the sever-
ity of the Repeat Curse. (The detailed computation procedures are presented in Appendix [J})

Quantitative Experimental Results. Figure 2{a) summarizes the quantitative results of the Repeat
Curse under both long- and short-response settings. The experiments are performed on the image
captioning task with 500 randomly sampled MSCOCO images [Lin et al.| (2014)). We observe that
the baseline model suffers from severe token repetition when the cache is applied.

3.3 INFORMATION FLOW ANALYSIS

Motivated by the need to understand the underlying cause of the Repeat Curse, we analyze the
information flow to contrast model behaviors with and without cache, and provide a mechanistic in-
terpretation of the phenomenon. To this end, we visualize the model’s attention matrices to analyze
the information flow among tokens. As shown in Figure [3] we observe that context tokens consis-
tently receive high attention throughout the decoding process. Furthermore, attention progressively
converges toward the context tokens from shallow to deeper layers. This phenomenon is reminiscent
of the ‘attention sink’ observed in autoregressive models |Chen et al| (2024a); Wang et al.| (2023);
Zhang et al.| (2024])), where certain special tokens act as anchors that aggregate information and ab-
sorb attention. The information flow pattern in Figure [3| highlights the role of context tokens as
anchors in dAMLLMs.

Finding 1: In dMLLMs, context tokens serve as anchors that aggregate information across
layers and guide the final prediction.

3We adopt dLLM-Cache Liu et al.[(2025) as the baseline cache method, keeping all relevant settings strictly
consistent to ensure experimental fairness. Hyperparameters are fixed as o = 25%, £, = 25,and & = 7.
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Figure 5: Illustration of context tokens attention enhancement. Example values are annotated on
the decay matrix for clarity, while actual values are computed using EquationE] and |§|

Subsequently, we plot the cross-layer entropy curves of context tokens, as shown in Figure @] We
find that the entropy of context tokens remains high in the shallow layers but gradually converges in
the deeper layers, reflecting that as information accumulates layer by layer, the model’s predictions
become increasingly stable and certain.

Finding 2: For context tokens under normal decoding, the information entropy gradually con-
verges in the deeper layers.

Figure 2|b shows that after applying cache, the model exhibits a randomized attention distribution,
disrupting the original information flow from context tokens and weakening output stability. Fig-
ure []b further presents the cross-layer entropy curves of context tokens under repetition, revealing
that repetition is accompanied by a failure of entropy convergence in the deeper layers.

Finding 3: Repetition is typically linked to disruptions in the information flow of context tokens
and to the inability of their entropy to converge in deeper layers.

4 METHOD

Building on the observations in Section 3} we propose CoTA, a training-free method to mitigate the
Repeat Curse, which has two key components: (1) Context Tokens Attention Enhancement, which
preserves the intrinsic information flow pattern of context tokens, and (2) Context Tokens Entropy-
Guided Voting, which prevents outputs driven by uncertain context tokens during decoding.

4.1 CONTEXT TOKENS ATTENTION ENHANCEMENT (CATE)

As analyzed in Section [3] context tokens in dMLLMs typically serve as anchors to aggregate in-
formation and absorb attention, but the use of cache disrupts this information flow pattern. We
conjecture that tokens with shorter relative distances exhibit stronger semantic correlations, and
thus the model’s increased attention to context tokens facilitates local semantic coherence. There-
fore, we propose Context Tokens Attention Enhancement (CTAE), a simple yet effective attention
intervention. We formalized the complete algorithmic procedure in Algorithm|[I] As illustrated in
the figure[5] the core idea is to introduce a decay term and apply an element-wise multiplication with
the attention matrix. Given a query token g; at position ¢ and a key token k; at position j, the decay
term G; ; for each query—key pair is computed as follows:

gi,j = Ymin + (1 - 'Ymin)gi,ja Ymin € (Oa 1]7 (5)

9is = exp(— (”)2) . ©)

Here, g; ; denotes the Gaussian decay term computed using the exponential function exp() and
the relative positional distance |¢ — j| between query and key tokens. 7 denotes the temperature
factor, which is fixed to 5 in the experiments. We then introduce a lower-bound constant vy,;, for
stabilization, yielding the final decay term G, ;.

Assume the attention between a query token ¢; and a key token k; is denoted as Attn; ;. We enhance
the attention to context tokens by applying Attn; ; * G, ;, thereby preserving the native information
flow pattern in dAMLLMs.
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Algorithm 1 Context Tokens Attention En-  Algorithm 2 Context Tokens Entropy-Guided

hancement (CTAE) Voting (CTEV)
Require: Attention weights A € REXHAXTXT 1: Input: Deep-layer logits zfl.), base confi-
temperature 7 > 0, lower bound 7y, € dences c(;), coefficient o "
(0, 1] ) 2: fori < 1to M do
Ensure: Enhanced attention A € REXHXTXT 3. g (3) « 0
1. A« A 4 for ! € {26,...,30} do
2: for ¢ <~ 1to L do > layer index 5. 0 _ O] v ®
3 forh ¢ 1to H do >head index po = exp(zi)/ 2um OXP(210)
S . 6: Equm(7) +— Egym(i) -
4: D;;«+|i—j| Vi,je{l,...,T} . V0 1
5: gi.j  exp(—(Di;/7)?) log V 2wv=1Pv 108 Pv
6: gz’,j — Ymin + (1 - ’Ymin) : gi,j 7: end fOI‘
7- Apn — Apn &G 8: end for
: &R &R 9: Build  C(¢) = {t} U
8: end for {two nearest tokens of ¢}
9: end for _

10: for i € C(t) do

1 EGh() < Y jecq) Eam(d)
12: Score(i) < ¢y + a - B (i)
13: end for

10: return A

Synergistic Workflow. CTAE applies a decay term to attention values based on relative distance,
enhancing the attention to context tokens. CTEV introduces deep-layer context token entropy as a
penalty to the voting scores. Together, they jointly alleviate the repeat curse.

4.2 CONTEXT TOKENS ENTROPY-GUIDED VOTING (CTEV)

As observed in Section 3] context tokens with repetition typically exhibit persistently high entropy
in deeper layers, reflecting the model’s uncertainty about context tokens during decoding. Yet base-
line dMLLMs rely solely on confidence scores to vote for candidate decoding tokens, ignoring this
uncertainty. To address this, we propose Context Tokens Entropy-Guided Voting (CTEV), which in-
corporates the aggregated deep-layer entropy of context tokens as a penalty term on the confidence
score to prevent decoding under uncertain context tokens. The complete algorithm is formalized in
Algorithm 2] First, we compute the entropy of each candidate token based on its softmax probability
distribution p,, as follows:

1%
- Zv:l yZs IOg Pv Dy = eXP(Zv)
b) v T )
logV S exp(u)

where 2, denotes the logits of the v-th word in the vocabulary, and V' is the vocabulary size. On this
basis, the entropy of tokens in deeper layersE]is accumulated layer by layer as follows:

E= (7

30 80 V(D) 1o
Eun =Y BV = 2Py logpy 8
CHET T e ©

Let Fqm(7) denote the Eg,y, of token x; at position 4 in a sequence of length M. The accumulated
deep-layer entropy of the context tokens, £ (i), is then computed as follows:

sum

Baa() = > Ban(),  C() = {@:}u{a; | j € argming|j —il}. ©)
ject) JEMING)

sum

Equation resulting in the new voting score Score(7) defined as follows:

Score(i) = c(;y + aBgn(i). (10)

sum

Finally, the weighted E<t2(7) with coefficient « is incorporated into the confidence score ¢(s) from

“Here, we define layers 26-30 as the deep layers, and target tokens together with their two nearest tokens in
relative position are defined as the context tokens.
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Method 512 64

ARR| MRL| ARL| SRR/ ARR|/ MRL| ARL| SRR|
LLaDA-V 02 20 20 69 0.1 20 20 33
+ dllm-cache 143 110 38 83 7.1 6.1 27 656
+ dllm-cache + CTEV 32 22 20 106 25 23 21 56
+ dllm-cache + CTAE 2.9 1.9 14 80 18 1.6 14 46

+ dllm-cache + CTEV +CTAE 1.2 1.3 1.2 6.3 1.0 1.1 1.1 3.0

Table 1: “Repeat Curse’” Evaluation Results. 512 and 64 denote the maximum generation length.

Model Type LLM Tower \ DocVQA  ChartQA  MMStar MME?  Seed! MMBench
LLaVALl.5 AR Vicuna-7B - - - 1510 66.1 64.3
Qwen2-VL AR Qwen2-7B - 83.0 60.7 - - -
DeepSeek-VL AR DeepSeek-7B - - - - 70.4 73.2
LLaVA-OV AR Qwen2-7B - 80.0 61.7 1580 754 80.8
MetaMorph AR+Diff. LLaMA3.1-8B - 37.1 - - 71.8 75.2
JanusFlow AR+Diff. DeepSeek-1.3B - 64.6 - 1333 70.5 74.9
LLaMA3-V Diff. LLaMA3-8B 86.2 77.8 56.5 1581 76.6 79.8
LLaDA-V Diff. LLaDA-8B 83.9 78.3 60.1 1507 74.8 82.9
LLaDA-V w/dllm-cache Diff. LLaDA-8B 82.1 78.1 58.3 1410 72.1 83.0
Ours Diff. LLaDA-8B 84.1 78.4 59.3 1523 73.9 83.1

Table 2: Benchmark results of different MLLMs on multiple multimodal evaluation datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP DETAILS

Model. Following the baseline dMLLM LLaDA-V [You et al| (2025), the language tower
adopts LLaDA-8B-Instruct |[Nie et al.| (2025), the vision tower employs siglip2-so400m-patch14-
384 T'schannen et al.[(2025)), and the projector is a two-layer MLP.

Evaluation. We evaluate the effectiveness of our method on eight multimodal benchmarks:
DocVQA Mathew et al.| (2020), ChartQA |[Masry et al.|(2022), MMStar|Chen et al.|(2024b)), MME |Fu
et al.| (2023)), Seed |Li et al.| (2023al), LLaVA™ [Liu et al. (2023a), MathVista [Lu et al.| (2023), and
MMBench Liu et al.|(2023c). The Appendix [[| reports more details about settings.

5.2 RESULTS ON “REPEAT CURSE” EVALUATION

We randomly select 500 samples from COCO2014 |[Lin et al.[(2014)) for the caption VQA task. The
generated captions are then evaluated for mitigating the “Repeat Curse.” The evaluation metrics
include Adjacent Repetition Rate (ARR), Maximum Repetition Length (MRL), Average Repetition
Length (ARL), and Sample Repetition Rate (SRR). Table [I] presents the quantitative results of our
method in mitigating repetition, evaluated under both long-text and short-text response settings.
Experimental results are obtained by aggregating all samples and taking the average. The baseline
model shows only minimal repetition, with the maximum repetition length being 2. In contrast,
applying cache causes a rapid degradation of the outputs. Moreover, longer responses are more
susceptible to repetition; for instance, with an output length of 512, ARR rises by 14.1 and SRR
by 75.4. Our method demonstrates effective repetition mitigation, yielding ARR improvements of
13.1 and 6.1 under the long-response and short-response settings, respectively. We further perform
ablation studies on two key components of our method, CTEV and CTAE. The results indicate
that each component alone can also effectively mitigate repetition, highlighting the flexibility and
complementarity of the method.

5.3 COMPARISON WITH OTHER MLLMs

Table 2] presents a performance comparison with other paradigm MLLMs. Our goal is not absolute
performance maximization, but rather to mitigate the output degradation of baseline models when
using cache. Results across six benchmarks demonstrate the effectiveness of our method.
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Method LLaVA¥ MathVista

Scoret ARR| TPSt FLOPs| Scoret ARRJ| TPS1 FLOPs |
LLaDA-V 70.1 13 73 16.1 59.7 0 8.3 14.1
Ours 705 1.1 5.1 17.8 59.8 0 75 15.3
LLaDA-V w/dllm-cache 632 7.3  23.1 32 54.9 6.9  31.0 3.9
Ours w/dllm-cache 69.9 14 203 5.1 59.7 13 287 5.0

Table 3: Generalization evaluation results of the method. TPS stands for Tokens Per Second, and
FLOPs stands for Floating Point Operations.

5.4 GENERALITY STUDY

We present the generalization evaluation of our method in Table[3] Our approach consistently lowers
response repetition across both open-domain natural and mathematical tasks, highlighting its gener-
alizability. While caching reduces computational cost, it inevitably causes performance degradation,
which our method successfully alleviates. Concretely, it yields gains of +6.7 in Score and +5.9 in
ARR on MathVerse, and +1.8 in ACC and +5.6 in ARR on MathVista.

Our method can be flexibly applied as a complement to caching. We further evaluate its computa-
tional overhead, with experiments on LLaVAW demonstrating that it incurs only a 2.8 TPS reduction
and a 1.9 FLOPs increase.

5.5 ABLATION STUDY

We conduct an ablation study on the hyperparameters involved in our method, including the weight-
ing factor «v in Equation[I0] the minimum gain 7,,;, in Equation[5} and the number of context tokens.
We report the results in Table @} the best hyperparameter configuration is & = 0.75, Ymin = 0.5,
and the number of context tokens set to 3, achieving an ARR of 1.2% and an ACC of 23.1. When
the length of context tokens is set to 1, only the current target token is considered while surrounding
tokens are ignored. We find that using longer context tokens (e.g., 5) does not lead to better results.

Ymin @ ARRL ACCt ~mm o« ARRl ACCt ~Ymm o ARR| ACCt

0.25 2.8 214 0.25 2.1 22.1 0.25 3.5 19.6
1 0.5 2.2 21.9 1 0.5 2.0 22.5 1 0.5 3.8 19.2
0.75 2.3 22.1 0.75 1.7 22.3 0.75 3.1 19.2
0.25 2.9 20.0 0.25 1.6 22.2 0.25 3.9 19.0
0.5 0.5 2.5 20.2 0.5 0.5 1.4 22.0 0.5 0.5 34 18.2
0.75 2.1 20.1 0.75 1.2 23.1 0.75 3.3 19.1

(a) Context tokens number = 1 (b) Context tokens number = 3 (c) Context tokens number = 5

Table 4: Ablation results on hyperparameters evaluated on the MathVerse benchmark.

6 CONCLUSION AND LIMITATIONS

This paper investigates the phenomenon of repeated text generation in dMLLMSs when using cache,
which we term the “Repeat Curse.” Through information flow analysis, we reveal that in baseline
dMLLMs, context tokens act as anchors to aggregate information and guide predictions. Applying
cache disrupts this pattern, leading to repetition. Moreover, repetitive context tokens exhibit persis-
tently high entropy in deeper layers. Building on these insights, we propose CoTA, a plug-and-play
approach to mitigate the Repeat Curse. Extensive experiments demonstrate the effectiveness of the
CoTA design. Due to the limited research on baseline dIMLLMs, CoTA has not yet been validated
for generalizability across more open-source AMLLMs and base models of different scales. More-
over, as cache methods for AIMLLMs are still scarce, CoTA cannot be tested on a wider range of
cache approaches. Future work will address these limitations.
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(a) Effect of prompt token recompute interval. (b) Effect of output token recompute interval.
Interval 1 5 15 25 Interval 1 3 5 7
SRR| 0 0 O 0 SRR| 0 799 874 89.7
(c) Effect of similarity thresholds. (d) Comparison of reuse policies.
Threshold 0 025 05 075 1 Policy prefix KV cache dllms-cache
SRR | 89.7 750 69.8 297 O SRR| 0 75.0

Table 5: Ablation study on cache mechanism design components and their effects on repetition.

Method ARR] SRR} Method ARR] SRR]
MMaDA 0.7 6.0 LLaDA-V 0 0
+dllm-cache 44 55.0 +dllm-cache 9.3 75.0
+dllm-cache+CTAE 2.4 29.0 +prefix KV cache 0 0
+dllm-cache+CTEV 0.8 35.0 LaViDa 0 0
+dllm-cache+CoTA 0.6 30.0 +prefix KV cache 0 0

(a) Repetition curse across different AMLLMs. (b) Repetition curse under different cache methods.

Table 6: Generalization experiments.

A ANALYSIS OF CACHE MECHANISM AND REPETITION CURSE

We conduct a series of ablation studies on LLaDA-V to analyze how different components of the
cache mechanism influence repetition curse.

(a) We begin by examining the prompt token recomputation interval, while fixing the output token
recomputation interval to 1 and setting the similarity threshold to 0. As shown in Table [5a] periodic
caching of prompt tokens has negligible impact on repetition.

(b) We then fix the prompt token recomputation interval to 25 and set the similarity threshold to
0, varying only the output token recomputation interval. As reported in Table [5b} we observe that
periodic caching of output tokens induces repetition, and longer recomputation intervals lead to
higher repetition rates.

(c) In the dLLM-Cache framework, a subset of output tokens is adaptively recomputed at each
step based on a similarity threshold. To analyze this further, we fix the prompt token recomputation
interval to 25 and the output token recomputation interval to 7, while varying the similarity threshold.
As shown in Table the threshold plays a critical role: lower thresholds correspond to higher
repetition rates.

(d) Finally, we compare dLLM-Cache with prefix KV cache[Kwon et al.|(2023));|Li et al.| (2025b)) to
analyze the effect of different reuse policies. We fix the prompt token recomputation interval to 25,
the output token recomputation interval to 7, and the similarity threshold to 0.25. As shown in Table
[5d} prefix KV cache, which only reuses cached states for prefix tokens, does not trigger repetition.

These four experiments reveal that the prompt recomputation interval has little effect on repetition
behavior, while the output token recomputation interval, similarity threshold, and caching policy ex-
ert a substantial influence. In general, the fewer output tokens that are recomputed at each decoding
step, the more likely the model is to fall into repetition.

We hypothesize that this is because the token states within the prompt sequence remain relatively
static, so caching them has minimal impact on future predictions. In contrast, output tokens evolve
across decoding steps. Caching these dynamic tokens forces the model to rely on outdated states,
reducing uncertainty during prediction—ultimately contributing to the non-convergence of context-
token entropy in deeper layers.
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Figure 6: Information flow visualization for MMaDA-8B without using cache.
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Figure 7: Comparison of MMaDA'’s information flow patterns with and without cache.

B MORE RESULTS

B.1 REPETITION CURSE ACROSS DIFFERENT DMLLMS

We present the repetition analysis of applying the cache mechanism to MMaDA in Table [6a} No-
tably, we find that MMaDA also suffers from the repetition curse when dLLM-Cache is enabled.
Specifically, the adjacent repetition rate increases by +3.7%, and the sample repetition rate increases
by +49%. These findings highlight that the repetition curse is not limited to a single architecture,
but is a pervasive issue across AMLLMs.

B.2 INFORMATION FLOW ACROSS DIFFERENT DMLLMS

As illustrated in Figure[f] we visualize the attention maps of MMaDA to analyze the flow of infor-
mation between tokens. We observe a similar pattern to LLaDA-V, where context tokens function
as anchors, continually attracting attention across layers. Interestingly, we also detect vertical bands
of concentrated attention in Layer 22 at Step 46, resembling the “attention sink” |Huang et al.| (2023])
phenomenon commonly seen in autoregressive MLLMs. However, after introducing the cache, the
original attention pattern of MMaDA is also disrupted (as shown in Figure[J).
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Comparison of Deep Entropy Values Across Different dMLLMs
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(a) Cross-layer entropy distribution across 100 sam- (b) Comparison of total deep-layer entropy across
ples. different dAMLLMs.

Figure 8: Deep-layer entropy analysis experiment.

B.3 GENERALIZATION EXPERIMENTS OF COTA

We apply CoTA to the MMaDA model, which exhibits repetition after enabling cache, and present
the results in Table @ The results show that CoTA and its components (CTAE and CTEV) effec-
tively suppress repetitive text generation in MMaDA as well, demonstrating the generalizability of
our approach.

B.4 REPETITION CURSE UNDER DIFFERENT CACHE METHODS

As shown in Table[6b] we further assess the repetition behavior when applying the prefix-KV cache
method [Kwon et al.|(2023) to both LLaDA-V and LaViDa|Li et al| (2025b). Notably, the prefix-KV
cache does not trigger repetition in either model. We speculate that this is because prefix-KV cache
only reuses the cached states of prefix tokens (prompt and image tokens), without affecting suffix
tokens (output text tokens). This finding is consistent with the conclusions presented in Section [A]

C MORE EXPERIMENTAL DETAILS OF CTEV

In CTEV, a central design choice is the selection of layers 26-30 for entropy estimation. This choice
is informed by both multi-sample statistics and detailed single-sample analyses. Concretely, we
compute per-layer entropy over 100 samples, and then aggregate and average the entropy values for
each layer across samples. The resulting entropy distribution across layers is shown in Figure [8d]
A comparison of the entropy trajectories before and after enabling the cache reveals a clear pattern:
cache usage induces pronounced entropy deviations specifically in layers 26-30. As discussed in
Section[3:3] these layers consistently exhibit the strongest sensitivity to cache-induced shifts, which
directly motivates their adoption in CTEV.

To further validate this choice, we examine the cumulative entropy over layers 26-30 across differ-
ent AMLLM architectures. As shown in Figure all models display a consistent trend: caching
systematically disrupts entropy convergence in deep layers. This cross-model agreement provides
strong empirical support for focusing on layers 26-30 within the CTEV framework.

Methods 16 32 64 128

LLaDA-V 2% 1% 1% 1%
LLaDA-V+cache 88% 85% 79% 75%
LLaDA-V+CoTA 17% 14% 10% 8%

Table 7: Repeat curse comparison under different block lengths. The evaluation metric is the sample
repetition rate.

18



Under review as a conference paper at ICLR 2026

LLaDA-V+Cache LLaDA-V+CoTA

Figure 9: Attention map visualizations of LLaDA-V+Cache and LLaDA-V+CoTA.

We further analyze the sensitivity of CTEV through additional experiments. As shown in Table[7] we
evaluate the CoTA performance under different block lengths during decoding. We observe that our
method consistently reduces the repetition rate across all tested block configurations, demonstrating
its robustness to different window sizes.

512 128
ARR| SRR, ARR| SRR/
LLaDA-V+cache 13.9% 85%  93%  75%

Layer range

1-10 12.1%  81% 8.4% 73%
11-20 124%  83% 9.1% 74%
21-25 11.3%  73% 7.9% 65%
25-30 5.6% 23% 4.3% 19%
26-30 2.9% 10% 1.8% 8%
26-31 3.2% 12% 2.1% 10%
26-32 3.3% 12% 2.1% 9%

Table 8: Performance comparison under different layer ranges.

We further present results across different layer ranges in Table [§] We find that computing the
cumulative entropy using layers 2630 yields the best performance. We speculate that this is because
the entropy values in this depth range exhibit the largest separation between normal and abnormal
modes, while incorporating additional layers introduces unnecessary noise, leading to diminished
performance.

D ADDITIONAL ANALYSES OF COTA

As shown in Figure P we visualize the attention maps to analyze the changes in the model’s inter-
nal information-flow patterns. After applying Cache, the model exhibits a more random attention
distribution, whereas CoTA restores the “context tokens as anchors” information-flow pattern by
strengthening attention toward contextual tokens.

E LINGUISTIC ATTRIBUTE ANALYSIS OF REPEATED TOKENS

In this section, we analyze the linguistic attributes of repeated tokens by computing their frequency
statistics over 200 samples that exhibit repetition. As shown in Table[§} the top-3 most frequently
repeated words are “the,” “of,” and “a.” We observe that repeated tokens are predominantly function
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LLaDA-V+cache

Repeated word  the of a
Repetition ratio  98% 76% 56%

Table 9: Statistics of repeated words generated by LLaDA-V with cache.

Methods ACCtT ARR|

LLaDA-V+cache  54.9 6.9

n-gram (n=2) 540 24 Methods ARR| SRR|

n-gram (n=3) 54.3 32 Decay Matrix 1.8% 8%

CoTA 59.7 1.3 AliBI Bias Matrix 3.9% 10%
(a) Comparison between CoTA and n-gram penal- (b) Comparison of different attention biasing meth-
ties. ods.

Table 10: Experimental results of CoTA and related techniques.

words carrying low semantic content, which is also consistent with the case study presented in Figure
[} This indicates a common tendency of the model when generating uncertain or repetitive text.

F DiscussION OF COTA AND RELATED TECHNIQUES

N-gram penalties |Holtzman et al.| (2020), as a simple and widely used decoding-time technique, are
commonly applied to control repetition. We further compare the performance of CoTA and n-gram
penalties in Table[T0a] We find that although n-gram penalties can reduce repetition, their effective-
ness is inferior to that of CoTA. Moreover, applying n-gram penalties often leads to a degradation
in model accuracy, likely due to forced token substitution, which disrupts semantic coherence and
lowers output quality. In addition, we replace the decay matrix used in CTAE’s attention biasing
design with an Alibi bias penalty matrix [Tang et al] (2025b)to evaluate its effect. As shown in Table
[TOB} the results confirm that using the Decay Matrix for attention intervention in CTAE is more
effective.

G MORE EFFICIENCY ANALYSIS

We further perform a comprehensive efficiency analysis on DocVQA, covering prefix-KV, dLLM-
cache, CoTA, and its two components (CTAE and CTEV). As shown in Table [ integrating CoTA
introduces only a modest and acceptable increase in latency, along with a slight reduction in through-
put, yet it still delivers substantial improvements over the baseline. Moreover, to provide a more
holistic assessment of efficiency, we additionally report latency and throughput results on both
LLaDA-V and MMaDA.

H RELATED WORK

Diffusion-based Multimodal Large Language Models (AMLLMs). The latest diffusion-based
large language models (dLLMs) [Nie et al|(2025)); Zhu et al.| (2025a)); [Ye et al.| (2025)); |Gong et al.
have been successfully scaled to 8B parameters, achieving performance comparable to state-
of-the-art autoregressive large language modelsTouvron et al.| (2023aib); Devlin et al.|(2018)); Dubey]|
let al.| (2024); Bi et al.|(2024); [Yang et al|(2024a)); (Gunasekar et al.|(2023));/Chiang et al.|(2023). Fur-

thermore, by integrating visual instruction tuning and architectural extensions, dLLMs have recently
been extended to IMLLMs Nie et al.|(2025); Zhu et al| (2025a);|Ye et al.| (2025)); [Gong et al | (2025)),
demonstrating promising multimodal capabilities.

Diffusion Language Models. Motivated by the remarkable success of diffusion models in im-

age generation Rombach et al.| (2022)); [Podell et al.| (2024)); [Esser et al.| (2024)), recent studies have

introduced the diffusion process into language modeling, including both continuous diffusion mod-
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Method throughput (tok/s) T latency (s/sample) |
LLaDA-V 1.8 17.4
+prefix KV cache 2.7 13.3
+dllm-cache 4.9 6.1
+dllm-cache+CTEV 4.1 7.2
+dllm-cache+CTAE 4.6 6.4
+dllm-cache+CoTA 3.8 7.7
MMaDA 0.5 32.1
+dllm-cache 2.0 19.6
+dllm-cache+CTEV 1.5 22.0
+dllm-cache+CTAE 1.7 214
+dllm-cache+CoTA 1.3 24.0

Table 11: Throughput and latency comparison on DocVQA.

els[Covelace et al.| (2023)); |Li et al.| (2022); ZHANG et al|(2025)); Xue et al. (2024); [Lin et al.| (2023)
and discrete diffusion models [Campbell et al.| (2022); [Zheng et al.| (2025); [Gat et al.| (2024); |Ye

(2023); [Zheng et al (2023). The latest masked diffusion models Nie et al (2025); Zhu et al.
(2025a); | Ye et al.| (2025)); [Gong et al.| (2025) have successfully scaled dLLMs to 8B parameters and

demonstrated performance comparable to autoregressive large language models|Yang et al| (2024a).

Multimodal Large Language Models (MLLMs). Building upon the unprecedented generative

capabilities of large language models (LLMs)Touvron et al.| (2023alb); Devlin et al.| (2018); [Dubey

et al.| (2024); Bi et al| (2024); [Yang et al.| (20244a); |Gunasekar et al.| (2023)); |Chiang et al.| (2023),
MLLMs have emerged as powerful systems that extend LLM architectures to process over multi-

modal inputs. Probabilistic modeling approaches for MLLMs generally fall into three paradigms: (i)

autoregressivelLiu et al.| (2023blfa); Bai et al.| (2025)); [Wang et al.| (2024a)); [Zhu et al.| (2025b); [Chenl
(2024c)); /Achiam et al.| (2023); L1 et al.| (2025a)), (ii) autoregressive—diffusion hybrid Bao et al.

(2023); Xie et al.| (2025)); Zhou et al.|(2025); Ma et al.| (2024); [Yu et al.| (2025), and (iii) pure diffu-
sion [Swerdlow et al|(2025); [Li et al.|(2025c). Building on the recent breakthroughs in dLLMs, the

latest IMLLMs |You et al.[(2025)); |Yang et al.| (2025); i et al.| (2025b) exploit the language modeling
capabilities of dLLMs, coupled with effective training pipelines, to deliver performance on par with
leading autoregressive and hybrid counterparts.

Repeated Token Generation. Early research on text repetition and degeneration in model pre-
dictions primarily focused on improving sampling strategies for language models
(2020), such as nucleus sampling and top-k sampling. Several studies treat repetition control as
a training objective and introduce various training-time strategies to mitigate repetitive generation
Welleck et al.| (2020)); [Cagutin et al| (202T)); [Xu et al.| (2022)). Other methods focus on incorporating
repetition-aware penalties during the sampling stage [Zhu et al| (2023).

In recent years, research on repetitive text generation has expanded from conventional language
generation models to modern LLMs. |Yang et al.[(2024b)) estimates the likelihood of future repetition
using an n-gram LM constructed from the generated prefix and imposes penalties based on this
estimate. [Ginart et al| (2023) introduces a repetition penalty from a compression-based perspective,
while |L1 et al.| (2023b)) highlights how repeated tokens in training corpora can exacerbate repetition
during inference.

Some recent work further investigates the underlying mechanisms behind repetition. DUC
employs Sparse Autoencoders (SAEs) to identify latent features that become highly activated
when a model produces repeated tokens, referred to as repetition features. They attribute repetition
to the activation of these features at specific layers and mitigate repetition by suppressing them.
Wang et al.[(2024b) employs model-editing techniques to locate FFN neurons strongly associated
with repetition, as well as neurons strongly related to the main task. By intersecting these neuron
sets, they filter out neurons purely tied to repetition and perform targeted edits.

Distinct from the above approaches, our work examines repetition from an information-flow per-
spective. By comparing the information-flow patterns that emerge during repetitive generation with
those observed under normal conditions, we identify the underlying mechanisms that lead to rep-
etition. Our analysis shows that in dMLLMSs, context tokens act as anchors that aggregate and
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Evaluation data DocVQA ChartQA MMStar MME SEED
Max generation length 32 16 2 2 2
Block length 32 16 2 2 2
Decode steps 16 16 2 2 2
Batchsize 1 1 1 1 1

Table 12: Evaluation configuration details of different datasets.

propagate information. However, the introduction of cache disrupts this aggregation pattern and
consequently triggers repetitive outputs. In addition, our layer-wise entropy analysis reveals that
context tokens involved in local repetition exhibit a failure of entropy convergence in deeper layers.
It is important to note that existing research on repetitive outputs in MLLMs and dMLLMs remains
limited. Prior studies on MLLMs discuss repetition primarily in the context of hallucination and
demonstrate that certain decoding strategies can reduce this effect [Tong et al|(2025); |Huang et al.|
(2023). Recent dMLLM work has reported the presence of repetition but has not conducted deeper

investigation into its causes (2025).

I EVALUATION CONFIGURATION DETAILS OF DIFFERENT DATASETS

We report detailed information about the evaluation setup in Table [I2} including the maximum
generation length, block length, decoding steps, and batch size for different benchmarks.

J  MAXIMUM REPETITION LENGTH, AVERAGE REPETITION LENGTH,
95TH-PERCENTILE REPETITION LENGTH, AND SAMPLE REPETITION RATE

Given an input sequence of length M, {7;},, we record the length of each consecutive identical
segment r, as follows:

re=WTi | Ti=Tipx = =Tigr1 }l, k=12,... K, (11)
where K denotes the total number of segments. Furthermore, we obtain all token repetition segments
rep,uns as follows:

repruns ={rp | re >2, k=1,2,..., K }. (12)
Based on rep_runs, the maximum repetition length (MRL), average repetition length (ARL), and
95th-percentile repetition length (95pRL) can be obtained from Equations|T3] [T4} and [T3] respec-
tively.

MRL = max(rep_runs). (13)
1
ARL= ———— > (14)
|rep_runs|
TErepruns
95pRL = Quantile g5 (rep_runs). (15)

Let the total number of generated results be N, among which the number of results containing
repetition is Ngup. The Sample Repetition Rate is defined as:

N, dup
N

SRR = (16)

K CASE STUDY

As illustrated in the Figure [I] incorporating dllm-cache into LLaDA-V leading to generated re-
sponses with excessive repetition of words (e.g., “the””) and punctuation marks (e.g., ““,”). In con-
trast, our mitigation strategy substantially reduces such repetition. Notably, it also encourages the
model to attend more effectively to the information contained in surrounding tokens, enabling the

generation of image descriptions that are both more detailed and more coherent.
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Instruction: What preparations should be made before cooking?
LLaDA-8B-Instruct:

Before cooking, it is important to gather all the ingredients ingredients
needed for the recipe and it is also important to have all the necessary
tools and equipment ready. It is also helpful to idea the cooking methods
and time required before cooking.

Figure 10: Repetition phenomena in dLLMs.

L REPETITION PHENOMENA IN DLLMS

As illustrated in Figure [I0] we find that diffusion-based large language models likewise suffer from
repetition in generated text. This finding motivates future research into the internal mechanisms
of both dLLMs and dMLLMs. Furthermore, our study reveals that the repeated words are pre-
dominantly low-semantic terms (e.g., “the,” “is”), while the example in the Figure [I0] suggests that
repetitions in dLLMs may involve a broader variety of words.

M DECLARATION OF THE USE OF GENERATIVE Al (LARGE LANGUAGE
MODELS)

Generative Al tools, including Grammarly and ChatGPT, were used solely for grammar checking
and language polishing. All technical content, experimental design, data analysis, and conclusions
were generated and verified exclusively by the human authors. The use of Al tools does not affect
the originality or authorship of this work.

N ETHICS STATEMENT

This work seeks to uncover the underlying causes of the Repeat Curse in dMLLMs with cache
from an information-flow perspective and to propose mitigation strategies that enhance the output
performance of diffusion-based multimodal large language models (IMLLMs). The proposed meth-
ods, CoTA, is developed using only publicly available IMLLMs (LLaDA-V), caching approaches
(dLLM-Cache), and benchmark datasets (e.g., MME, MMBench, SEED), without relying on any
private, sensitive, or human-subject data. These techniques do not introduce biases beyond those in-
herent to the base models, and are designed to supplement rather than replace human supervision in
critical applications. Nevertheless, while our methods can effectively mitigate response repetition,
they cannot guarantee the elimination of errors or misleading outputs. Hence, caution is advised in
practical deployments.

O REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the following resources: (1) Code: The complete imple-
mentation of CoTA, including Context Tokens Attention Enhancement (CTAE) and Context Tokens
Entropy-Guided Voting (CTEV), will be publicly released on GitHub upon publication. (2) Hyper-
parameters: For dLLM-Cache, all experiments fix the hyperparameters at o« = 25%, &, = 25, and
Es = 7. The parameter details for CoTA are described in Section@ while those for the evaluation
setup are provided in Section[l] (3) Evaluation: We use standard, publicly available benchmarks
(e.g., MME, MMBench, SEED) along with their official evaluation scripts. (4) Compute: Experi-
ments are conducted on NVIDIA A800 80GB GPUs. Inference latency is reported using TPS and
FLOPs (Table E]) (5) Models and Cache Methods: We evaluate open-source dMLLMs, specifi-
cally LLaDA-V (8B). The cache method is based on the official implementation of dLLM-Cache
for LLaDA-V. No proprietary data or models are used in this work.
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