
LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and
General Noise for Global Causal Discovery

Sujai Hiremath1 Promit Ghosal2 Kyra Gan1

1Cornell Tech, New York, NY
2University of Chicago, Chicago, Illinois

Abstract

Inferring causal relationships from observational
data is crucial when experiments are costly or in-
feasible. Additive noise models (ANMs) enable
unique directed acyclic graph (DAG) identifica-
tion, but existing sample-efficient ANM meth-
ods often rely on restrictive assumptions on the
data generating process, limiting their applicabil-
ity to real-world settings. We propose local search
in additive noise models, LoSAM, a topological
ordering method for learning a unique DAG in
ANMs with mixed causal mechanisms and gen-
eral noise distributions. We introduce new causal
substructures and criteria for identifying roots and
leaves, enabling efficient top-down learning. We
prove asymptotic consistency and polynomial run-
time, ensuring scalability and sample efficiency.
We test LoSAM on synthetic and real-world data,
demonstrating state-of-the-art performance across
all mixed mechanism settings.

1 INTRODUCTION

Inferring causal relationships from observational data is cru-
cial for answering interventional questions [Pearl, 2009],
especially when experiments are costly or infeasible [Faller
et al., 2024b]. Functional causal model (FCM) methods
address this challenge by restricting the functional form of
causal relationships, ensuring a well-posed structure learn-
ing problem that enables the identification of a unique DAG
[Zhang and Hyvarinen, 2009]. FCM methods usually decom-
pose graph learning into two phases: 1) inferring a causal
ordering of the variables (topological ordering), and 2) iden-
tifying edges consistent with the ordering (edge pruning).

Among FCM approaches, those based on the ANM have
gained significant traction [Hoyer et al., 2008, Peters et al.,
2014, Rolland et al., 2022]. The ANM assumes that each

child variable in the DAG is a (potentially nonlinear) func-
tion of its parent variables plus an independent noise term.
This framework is sample-efficient, and worst-case poly-
nomial algorithms exist for structural identification (under
additional assumptions) [Peters et al., 2014]. These proper-
ties make ANM-based methods theoretically appealing, and
they have been applied in domains such as science, health-
care, and economics [Runge et al., 2019, Lee et al., 2022,
Addo et al., 2021].

However, their practical utility is often constrained by re-
strictive assumptions on functional forms and noise distri-
butions (see Table 1). For example, most existing methods
require all causal mechanisms to be either fully linear or
nonlinear, limiting their applicability to real-world settings
where mixed mechanisms might present. In biological net-
works, for instance, single-gene effects are assumed to be
additive, while gene-gene interactions (epistasis) introduce
nonlinear interactions [Kontio et al., 2020, Manicka et al.,
2023, Faure et al., 2024].

While sample-efficient polynomial-time algorithms have
been proposed under these restrictive assumptions for iden-
tifying a unique DAG (Table 1), their existence remains
unknown for the general mixed-mechanism setting, where
some relationships are linear and others are nonlinear.
Achieving stable performance across diverse ANM settings
is particularly challenging, as existing methods often lever-
age special statistical properties of causal substructures, like
leaves and roots, that hold only under specific functional
or distributional constraints. Recently, Xu et al. [2024] in-
troduce CaPS, an efficient leaf-based topological ordering
method that accommodates mixed causal mechanisms. How-
ever, it assumes Gaussian noise and imposes unverifiable
assumptions on noise variances (see Appendix C.5), high-
lighting the need for more flexible solutions.

Contributions. In this paper, we propose LoSAM, a novel
topological ordering method for ANMs that efficiently re-
covers the unique DAG without requiring additional assump-
tions. Our contributions are threefold:

mailto:<sh2583@cornell.edu>?Subject=Your UAI 2025 paper

Algorithm ANM Type Ordering
Approach

Uses Leaf
Properties

Uses Root
Properties

DirectLiNGAM [Shimizu et al., 2011] Linear Non-Gaussian ANM Top-Down ✗ ✓
LISTEN [Ghoshal and Honorio, 2018] Linear ANM† Bottom-Up ✓ ✗
CAM [Bühlmann et al., 2014] Nonlinear Additive Gaussian ANM – – –
SCORE [Rolland et al., 2022] Nonlinear Gaussian ANM Bottom-Up ✓ ✗
DAS [Montagna et al., 2023c] Nonlinear Gaussian ANM Bottom-Up ✓ ✗
DiffAN [Sanchez et al., 2023] Nonlinear Gaussian ANM Bottom-Up ✓ ✗
RESIT [Peters et al., 2014] ANM Bottom-Up ✓ ✗
NoGAM [Montagna et al., 2023b] Nonlinear ANM Bottom-Up ✓ ✗
NHTS [Hiremath et al., 2024] Nonlinear ANM Top-Down ✗ ✓
CaPS [Xu et al., 2024] Gaussian ANM†† Bottom-Up ✓ ✗
Adascore [Montagna et al., 2025] ANM –††† ✓ –
LoSAM (ours) ANM Top-Down ✓ ✓

† LISTEN requires an additional condition on the inverse of the covariance matrix for identifiability.
†† CaPS requires additional conditions on marginal variances and the score function for identifiability.
††† Unlike other methods, Adascore directly returns a DAG rather than a topological ordering.

Table 1: Comparison of FCM methods based on identifiability assumptions, search strategy (top-down or bottom-up), and
whether specific substructures (leaf or root nodes) are leveraged.

• Root and Leaf Identification: We introduce new lo-
cal causal substructures: single root descendants, multi-
root descendants, v-patterns (Section 3), valid leaf can-
didates, nonlinear descendants, and linear descendants
(Section 4). We characterize their statistical properties
in ANMs with mixed mechanisms, without relying on
distributional constraints. Leveraging these structures, we
establish novel criteria for identifying roots (Lemma 3.3)
and leaves (Lemma 4.1). Building on these, we introduce
LoSAM (Algorithm 3), a topological sorting algorithm
that learns a DAG in a top-down manner by first identi-
fying the roots, then using them to recursively identify
leaves.

• Theoretical Guarantees: We prove that LoSAM is
asymptotically consistent under identifiable ANMs (The-
orem 4.5), ensuring correct discovery in the limit. Fur-
ther, we establish the worst-case polynomial runtime of
LoSAM (Theorem 4.6), enabling scaling to larger graphs.
We show that LoSAM achieves theoretical gains in sample
efficiency when compared to prior methods, in both the
root-finding stage (Theorem 3.6) and overall procedure
(Theorem 4.7).

• Comprehensive Evaluation: We extensively evaluate
LoSAM on synthetic data, achieving state-of-the-art per-
formance in linear and nonlinear settings, while outper-
forming baselines in mixed mechanism settings. We val-
idate the real-world applicability of LoSAM on a popu-
lar biological dataset (Section 5). The source code for
LoSAM is publicly available at https://github.
com/Sujai1/local-search-discovery.

1.1 RELATED WORKS

Causal discovery methods mostly fall into three categories:
constraint-based [Spirtes et al., 2000, Spirtes, 2001], scoring-

based [Chickering, 2013, Lam et al., 2022], and FCM-based
[Glymour et al., 2019]. The first two categories of methods
return an equivalence class of models with the same con-
ditional independence structure [Pearl, 2009], rather than
a unique DAG [Montagna et al., 2023a]. Moreover, these
methods can exhibit poor sample efficiency [Maasch et al.,
2024], and generally suffer exponential worst-case time
complexity in the number of variables unless sparsity con-
straints are imposed [Chickering et al., 2004, Ganian et al.,
2024, Colombo et al., 2012, Claassen et al., 2013].

In contrast, existing FCM methods return a unique DAG
in polynomial time, enabling point estimates for down-
stream causal effects (rather than bounds, e.g., Malinsky and
Spirtes 2016). The topological ordering step in FCM meth-
ods mostly falls into two categories: score-matching-based
methods and regression-based methods. As shown in Table
1, FCM methods typically leverage statistical properties of
roots or leaves unique to different parametric models to re-
cursively construct a topological ordering. Score-matching-
based methods (LISTEN, SCORE, DAS, DiffAN, NoGAM,
CaPS, Adascore1) typically rely on large conditioning sets
or Gaussianity assumptions to estimate the score-function,
leading to low sample efficiency [Hiremath et al., 2024,
Montagna et al., 2023b].

Regression-based methods exploit the independence of the
noise term to identify causal relationships. RESIT regresses
leaves onto unsorted vertices, yielding an independent resid-
ual in both linear and nonlinear ANMs. However, it relies
on high-dimensional nonparametric regression, suffering in
sample complexity [Peters et al., 2014]. DirectLiNGAM

1Adascore leverages score-matching in mixed mechanism
ANMs without explicitly constructing an ordering, but has em-
pirical performance similar to NoGAM [Montagna et al., 2025].

https://github.com/Sujai1/local-search-discovery
https://github.com/Sujai1/local-search-discovery

takes a top-down approach but heavily relies on the linear-
ity assumption. Closest to our approach is NHTS, which
first identifies roots in nonlinear models, and then leverages
them to reduce the size of conditioning sets in subsequent
steps. However, NHTS fundamentally fails at handling lin-
ear mechanisms, and can face sample efficiency issues when
there are many roots, as illustrated in Appendix I.1. In con-
trast, LoSAM extends beyond prior topological ordering
algorithms by handling mixed mechanisms, without impos-
ing additional assumptions on the noise distribution.

CAM does not fall into either category. It leverages MLE
in nonlinear additive Gaussian models, rather than causal
substructures, to construct a topological ordering. In our
experiments, we include CAM as one of our benchmarks.

Once a topological ordering is obtained from an FCM
method, it is straightforward to prune spurious edges via
sparse regression (Lasso regression [Marra and Wood,
2018]) additive hypothesis testing with generalized addi-
tive models (CAM-pruning [Bühlmann et al., 2014]), or
conditional independence tests (Edge Discovery [Hiremath
et al., 2024]).

2 PROBLEM SETUP

An structural causal model (SCM) is represented by a DAG,
denoted as G = (V,E) on |V | = d vertices, where E
represents directed edges. An edge xi → xj ∈ E iff (if and
only if) xi has a direct causal influence on xj . We define four
pairwise relationships between vertices: 1) Ch(xi) denotes
the children of xi such that xj ∈ Ch(xi) iff xi → xj , 2)
Pa(xi) denotes the parents of xi such that xj ∈ Pa(xi) iff
xj → xi, 3) An(xi) denotes the ancestors of xi such that
xj ∈ An(xi) iff there exists a directed path xj 99K xi, 4)
De(xi) denotes the descendants of xi such that xj ∈ De(xi)
iff there exists a directed path xi 99K xj . We consider
four vertex categories based on the totality of their pairwise
relationships: 1) xi is a root iff Pa(xi) = ∅, 2) a leaf iff
Ch(xi) = ∅, 3) an isolated vertex iff xi is both a root and a
leaf, and 4) an intermediate vertex otherwise.

We also classify vertices in terms of their triadic relation-
ships: xi is a confounder of xj and xk if xi ∈ An(xj) ∩
An(xk), or a mediator of xj to xk if xi ∈ De(xj)∩An(xk).

Definition 2.1 (Topological Ordering). Consider a DAG
denoted as G = (V,E). We say that a mapping π : V →
{0, 1, . . . , |V |} is a linear topological sort iff ∀xj ∈ V ,
whenever xi ∈ Pa(xj), xi appears before xj in the sort π,
i.e., π(xi) < π(xj).

Definition 2.2 (ANMs, Hoyer and Hyttinen 2009). Additive
noise models are a specific class of SCMs with

xi = fi(Pa(xi)) + εi (1)

∀xi ∈ V , where fi’s are arbitrary functions and εi’s are
independent arbitrary noise distributions.

Assumptions. Definition 2.2 implies the Causal Markov
condition due to the joint independence of noise terms εi;
we further assume that all variables are observed, acyclic-
ity, faithfulness [Spirtes and Zhang, 2016], as well as the
unique identifiability of the ANM. Intuitively, the identifi-
ability condition rules out specific combinations of causal
mechanisms and noise distributions, such as linear fi and
Gaussian εi, but allows for a broad mix of linear and nonlin-
ear functions with general noise distributions (see Appendix
C for details).

Outline. LoSAM is a topological ordering algorithm that
follows a two-step procedure: 1) identifying the root ver-
tices (Algorithm 1, Section 3), and 2) leveraging the roots to
recursively identify leaf vertices of the sorted nodes, yield-
ing the rest of the topological sort (Algorithm 2, Section 4).
In Section 4.1, we build upon the above subroutines and
introduce the full procedure of LoSAM (Algorithm 3).

3 ROOT FINDING

To develop a subroutine for identifying roots in ANMs with
both linear and nonlinear causal mechanisms, we identify
properties unique to roots. We will establish a novel set of
local causal structures where roots behave distinctly from
non-roots (Lemmas 3.1, 3.2, and 3.3), regardless of their
functional relationships. Starting with the entire vertex set
V , we iteratively prune away non-roots by leveraging these
asymmetric properties, yielding only the roots.

We first note that non-roots can be partitioned into two
distinct categories: those descending from a single root and
those descending from multiple roots.

Definition 3.1 (Single Root Descendant). A vertex xi ∈ V
is a single root descendant (SRD) iff ∃ only one root xj , such
that xj ∈ An(xi).

Definition 3.2 (Multi-Root Descendant). A vertex xi ∈ V
is a multi-root descendant (MRD) iff ∃ at least two roots
xj , xk such that xj , xk ∈ An(xi).

Visually, we see this division of non-root vertices into SRDs
and MRDs in Figure 1. For any MRD xi ∈ V , we observe
that xi forms a ‘v’ with any two of its root ancestors. We
define this ancestor-descendant local substructure as a v-
pattern (VP),2 and give a characterization based on marginal
dependence constraints:

Definition 3.3 (VP). We say that a vertex xi induces a v-
pattern iff there exist two vertices xj , xk ∈ V such that
xi ⊥̸⊥ xj , xi ⊥̸⊥ xk, xj ⊥⊥ xk.

Definition 3.3 is distinct from but related to the statistical
constraints required by the notion of ‘v-structures’ [Spirtes

2Note that an MRD xi will form additional VPs with any pair
of independent ancestors.

Figure 1: Example DAG where xi, xj , xk are roots, xm is an
SRD, and xn, xh are MRDs, inducing VPs between xi, xj .

et al., 2000], a triplet of vertices where one vertex is a child
of two parents that do not share a direct edge between them
(see Appendix I.2 for details).

Prune MRDs. Our root-finding procedure starts by pruning
MRDs, leveraging VPs as described in Lemma 3.1.

Lemma 3.1 (MRD Induces VP). A vertex xi induces a VP
iff xi is an MRD.

The proof of Lemma 3.1 (Appendix D.1) relies on the fact
that all vertices in V are partitioned into roots, SRDs, and
MRDs. We further observe that 1) an MRD induces a VP
because roots are all independent of each other, and 2) an
SRD or a root does not induce VP.

Lemma 3.1 implies that by checking whether a vertex in-
duces a VP between any two vertices in V , we can identify
and prune MRDs from V , leaving a V ′ ⊂ V containing
only SRDs and roots. It remains to prune SRDs from V ′

and identify roots.

Identify Isolated Roots. Next, in Lemma 3.2 (proof in
Appendix D.2), we show that a root with no SRDs can
be identified by testing for independence from the other
variables in V ′:

Lemma 3.2 (Root with No SRDs). For any xi ∈ V ′, iff
xi ⊥⊥ xj ∀xj ∈ V ′ \ {xi}, xi is a root with no SRDs.

Prune SRDs. Let V ′′ be the remaining vertices after iden-
tifying roots with no SRDs using Lemma 3.2. This set con-
sists of roots with at least one SRD, along with the SRDs
themselves. To recover the roots, we follow a two-step pro-
cedure: first, we use pairwise nonparametric regression to
recover a subset of V ′′ containing all roots, then we prune
away the remaining non-roots using bivariate nonparametric
regression.

We first formally state the outcome of a nonparametric re-
gression residual test below, considering both linear and
nonlinear mechanisms.

Definition 3.4 (Regression-Identification Test). Let xi, xj ∈
V ′′, and let rij be the residual of xj nonparametrically
regressed on xi. Then, xi is identified as ∈ An(xj) iff: 1)
xi ⊥⊥ rij , and 2) xj ⊥̸⊥ rji.

Definition 3.4 defines the relation of "is identified as" be-
tween xi and xj as when the residuals from the regressions

can be leveraged to identify that xi ∈ An(xj). Note that
nonparametric regression yields an independent residual
whenever the dependent variable is an additive function of
the regressor. Therefore, roots are always identified as ances-
tors of SRDs that are their children. However, it is possible
that some SRDs will pass the Regression-Identification Test;
one such subcase occurs when an SRD has a child, and is
its only parent.

The Regression-Identification Test parallels a similar idea
in Hiremath et al. 2024 (Lemma 4.3), where their local-
search approach leverages the result of regression and in-
dependence tests to find potential roots. However, their
framework exploits local parent-child substructures (PP1,
PP2, PP3, PP4) intrinsic to nonlinear models, while the
Regression-Identification test captures general ancestor-
descendant relationships that may occur in linear, nonlinear,
and mixed mechanism models. Additionally, the Regression-
Identifiation test is a univariate regression, rather than the
multivariate regression employed in Lemma 4.3 of Hiremath
et al. 2024.

Using the above Regression-Identification test, Lemma 3.3
establishes a subset W of V ′′ that contains all the roots,
and further shows that the roots can be distinguished from
non-roots within W :

Lemma 3.3 (Root ID). Let W be a subset of V ′′ such that
∀xi ∈ W , 1) ∃xj ∈ V such that xi is identified as ∈ An(xj),
and 2) ∄xk ∈ V such that xk is identified as ∈ An(xi). Then
W contains all roots in V ′′.

For xi, xj , xk ∈ V , let rkij be the residual of xk nonparamet-
rically regressed onto both xi and xj . Then, vertex xi ∈ W
is a root vertex if and only if for every other vertex xj ∈ W
such that xi ⊥̸⊥ xj , ∀xk such that xj is identified ∈ An(xk),
we have xj ⊥⊥ rkij .

To distinguish roots from SRDs that pass the Regression-
Identification test, the proof of Lemma 3.3 relies on the
intuition that if xi ∈ W is a root (a nondescendant of any
vertex in W), then adding it as a covariate should not change
the independence results of any pairwise regression. How-
ever, the reverse does not hold for any non-root SRD: the
inclusion of these variables in the bivariate regression would
yield at least one dependent residual when the regression
involves its ancestor. We formally state this intuition mathe-
matically in Appendix D.3.

Root Finder. Algorithm 1 outlines our root-finding pro-
cedure. In Stage 1, we run marginal independence tests be-
tween all vertices, leveraging Lemmas 3.1 and 3.2 to prune
MRDs and roots with no SRDs, leaving SRDs and their root
ancestors. In Stage 2, we run pairwise nonparametric regres-
sions and independence tests on regressors and residuals to
obtain the root superset W . We then apply Lemma 3.3, us-
ing conditional independence tests to identify the remaining

Algorithm 1 Root Finder
1: Input: vertices x1, . . . , xd ∈ V .
2: Initialize: root set RT , root superset W .
3: Stage 1: Prune MRDs, Obtain Some Roots
4: Run pairwise ⊥⊥ tests between each pair of vertices

xi, xj ∈ V and remove all vertices that induce a VP
(MRDs) from V to obtain V ′.

5: Add any vertex xi ∈ V ′ to RT if xi ⊥⊥ xj∀xj ∈
V ′ \ {xi}, and remove all xi from V ′ to obtain V ′′.

6: Stage 2: Prune SRDs, Obtain Leftover Roots
7: Run pairwise nonparametric regression between

xi, xj ∈ V ′′; if ∃xl such that xk ∈ V ′′ is identified
as ∈ An(xj), and there does not exist xh such that xh

is identified ∈ An(xk), add xk to W .
8: For xi ∈ W , if ∀xj ∈ W \ {xi} such that xj ⊥̸⊥ xi,

∃xk ∈ V ′′ such that xi is identified as ∈ An(xk) and
xk ⊥̸⊥ xj |xi, add xi to RT .

9: For each xi, xj ∈ W such that xi ⊥̸⊥ xj , for all xk

such that xj is identified ∈ An(xk) regress xk onto
xi, xj and collect the residual; add any xi that is always
independent of the residual to RT .

10: return RT .

roots. We show the asymptotic correctness of Algorithm 1
in Proposition 3.5 (proof in Appendix E.1):

Proposition 3.5. Given the vertices of a DAG G generated
by an ANM, infinite data, a consistent nonparametric regres-
sion method, and a perfect independence test, Algorithm 1
returns the correct set of root vertices.

We note that, under the assumption of linear mechanisms,
root-based methods such as DirectLiNGAM are able to
identify roots with only univariate regressions; in contrast,
root-based nonlinear methods such as NHTS and leaf-based
methods such as RESIT and NoGAM require multivariate
nonparametric regression with potentially many covariates.
Large covariate set size is a major bottleneck for sample
and computational efficiency that limits many FCM-based
methods from recovering the true sort from finite samples,
despite asymptotic guarantees [Peters et al., 2014]. To our
knowledge, our approach is the first to correctly identify root
vertices in ANMs with mixed mechanisms and general noise
with a bounded maximum covariate set size. In Theorem 3.6
(proof in Appendix F.1), we formally show the reduction in
the size of the conditioning sets used in Alg 1:

Theorem 3.6. Given a DAG G = (V,E) under an ANM,
let M ⊆ V and R ⊆ V be the sets of MRDs and
roots in G, respectively. Let cAlg1

max be the max covari-
ate set size in nonparametric regressions in Algorithm 1
required to recover roots, and similarly cDirectLiNGAM

max ,
cNHTS
max , cNoGAM

max , cRESIT
max . If the ANM is linear, then cAlg1

max =
cDirectLiNGAM
max = 1. If the ANM is nonlinear, Then, cAlg1

max =
2, cNHTS

max = maxxi∈M (An(xi) ∩ R, 0), and cRESIT
max =

cNoGAM
max = d− 2.

Figure 2: Exemplary DAG, where xi has been sorted into π,
xj is a VLC, xk is a LD, xh is a ND.

This implies that cAlg1
max < cRESIT

max = cNoGAM
max , and when

M ̸= ∅, cAlg1
max ≤ cNHTS

max .

Note, the results of Theorem 3.6 hold under the assumptions
that all independence tests and regression outcomes are cor-
rect. By leveraging the existence of VPs to prune MRDs, we
limit the size of covariate sets used in nonparametric regres-
sions in Algorithm 1 to a maximum size of two. Although
Algorithm 1 may run potentially more pairwise regressions,
avoiding multivariate regressions likely leads to improved
sample complexity in many settings, which is confirmed by
our experimental results in Section 5.

4 SORT-FINDING

After obtaining the set of roots, we develop Algorithm 2,
which sorts the remaining non-roots into a topological or-
dering π. We start by adding roots to π in any order (as they
share no edges), leaving the unsorted vertices U = V \ π.
We follow an iterative procedure by removing one vertex at
a time from U and adding it to π.

To ensure the resulting π is valid (Definition 2.1), this vertex
must be a leaf of the subgraph induced by the sorted ver-
tices. Therefore, in each iteration, we identify a valid leaf
candidate (VLC) as illustrated in Figure 2:

Definition 4.1 (VLC). A vertex xi ∈ U is a valid leaf
candidate iff Pa(xi) ∩ U = ∅.

We proceed by first partitioning non-VLC vertices in U into
different categories, relying on novel local causal substruc-
tures (Definitions 4.2 and 4.3). We then leverage asymmetric
properties to prune non-VLCs from U , allowing the identifi-
cation of a VLC at each iteration.

We first consider a non-VLC xi ∈ U , such that there exists
a mediator xj ∈ An(xi) ∩ U between vertices in π to xi,
and xi is a nonlinear function of xj . In Definition 4.2, we
characterize such vertices as nonlinear descendants (ND),
illustrated in Figure 2:

Definition 4.2 (ND). A vertex xi ∈ U is a ND iff xi is a
nonlinear function of at least one xj ∈ U .

We observe that if any mediator xj ∈ U between vertices
in π and an ND xi ∈ U is not included in the regression of

xi onto vertices in π, it will introduce omitted variable bias
[Pearl et al., 2016], resulting in a dependent residual ei. In
other words, if xi is nonparametrically regressed onto the
sorted vertices in π, producing a residual ei, then ei will not
be independent of at least one vertex in π. Accordingly, we
identify NDs in Lemma 4.1 (proof in Appendix D.4).

Lemma 4.1 (ND Test). Vertex xi is an ND iff ei is dependent
on at least one sorted vertex in π.

Let UE be the set of residuals where ei ∈ UE corresponds
to the residual from regressing xi ∈ U onto all vertices in π.
Lemma 4.1 implies that if xi ∈ U is a VLC, then ei ∈ UE

is independent of all sorted vertices in π.

When all causal mechanisms are nonlinear, all non-VLCs in
U are NDs. However, when linear mechanisms are allowed,
there may exist additional vertices ∈ U that are neither
VLCs nor NDs. These are the linear descendants (LD), as
illustrated in Figure 2.

Definition 4.3 (LD). A vertex xi is a linear descendant iff
xi is a linear function of all ancestors in U , and xi is either
a linear or nonlinear function of ancestors in π.

We say that "xi is a linear function of all ancestors in
U, and xi is either a linear or nonlinear function of an-
cestors in π" to mean that, if we decompose the ances-
tors of xi, An(xi), into two disjoint subsets: 1) the an-
cestors in U (xu ∈ An(xi) ∩ U), and 2) the ancestors
in π (xp ∈ An(xi) ∩ π), then for any representation
of xi as a function of xu and other ancestors or noise
(xi = fi(xu, An(xi) \ xu) + εi), fi cannot be nonlinear in
xu.

Next, in Lemma 4.2, we show that LDs and VLCs share the
same independence conditions:

Lemma 4.2 (LD independence). If xi ∈ U is an LD, ei ∈
UE is independent of all sorted vertices in π.

Lemma 4.2 (proof in Appendix D.5) explains why
prior regression-based methods that leverage roots (Di-
rectLiNGAM, NHTS) fail when both linear and nonlin-
ear mechanisms are present: LDs cannot be distinguished
from VLCs via residual independence tests alone. When
both mechanisms are present, to identify VLCs, it remains
to prune LDs from U , obtaining a subset of vertices U ′.
Then, to improve the stability of the algorithm under a fi-
nite sample,3 we select a vertex from U ′ that minimizes
a test statistic, rather than checking directly for residual
independence.

Pruning LDs. Lemma 4.3 establishes a subset Q of U that
distinguishes LDs from VLCs, leveraging nonparametric
regression:

3If finite sample errors lead to even one false test result when
checking the independence of a VLC’s residual, the VLC would
not be identified.

Lemma 4.3. For ei, ej ∈ UE , let qij be the residual of
ej linearly regressed onto ei, and qji be the residual of
ei linearly regressed onto ej . Let Q be the set of all xi ∈
U such that there exists xj ∈ U such that the following
conditions hold: 1) ej ⊥⊥ qji, 2) ei ⊥̸⊥ qij .

Then Q ⊆ U contains all LDs ∈ U and no VLCs.

To distinguish LDs from NDs and VLCs, the proof of
Lemma 4.3 relies on the intuition that, for any LD xi ∈ U ,
there exists a VLC xj such that xj is an ancestor of xi, and
xi is a linear function of xj . This allows us to decompose
the residual of xi, ei, into a linear function of the residual of
xj , ej , yielding an independent residual when ei is linearly
regressed onto ej , but a dependent residual in the reverse
direction. This intuition is formalized mathematically in
Appendix D.6. Lemma 4.3 enables us to prune LDs from U ,
leaving the subset U ′ containing only VLCs and NDs.

Improved Stability for ND Pruning. To determine
whether a residual ei from regression is independent of its
regressors, prior work [Peters et al., 2014, Hiremath et al.,
2024] requires the independence of each residual from each
regressor. Accordingly, to prune NDs from U ′, we might
rely on testing the independence of each residual ei ∈ UE

to all sorted vertices. While this procedure is asymptoti-
cally unbiased, in practice it requires selecting a cutoff for
the independence test given the finite samples. If not done
carefully, this can lead to erroneous VLC identification.4

To improve the numerical stability of our procedure, we
propose the following test statistic, which captures the de-
pendence between the residual ei and all sorted vertices in
π in a continuous manner:

t∗(ei, π) =
∑
xj∈π

M̂I(xj , ei), (2)

where M̂I(·, ·) is a nonparametric estimator of the mu-
tual information [Kraskov et al., 2004]. Instead of se-
lecting a single cutoff to decide independence between
the residual ei and all vertices in π, at each iteration,
we choose the vertex in U ′ with the lowest test statistic,
xi = argminxj∈U ′ t∗(ej , π), to be a VLC, making our pro-
cedure more robust under finite samples.

Lemma 4.4 (proof in Appendix D.7) shows that the test
statistics t∗(ei, π) equals zero asymptotically only for xi

that are VLCs:

Lemma 4.4 (Consistency). Given a consistent estimator
M̂I(·, ·), a fixed xi ∈ U ′ and corresponding residual ei,
t∗(ei, π) asymptotically approaches 0 as n → ∞ iff ei is
independent of all vertices in π, i.e., xi is a VLC.

4Bootstrap procedures may be used to compute an optimal
cutoff for any given set of samples, but become computationally
expensive when n is large.

Algorithm 2 Sort Finder
1: Input: vertices x1, . . . , xd ∈ V , roots RT
2: Initialize: add roots in RT to π, unsorted vertices U =

V \ π.
3: while U ̸= ∅ do:
4: Stage 1: Prune U
5: Run a nonparametric regression of each vertex

in U onto all vertices in π, and collect the re-
sulting residuals in the set UE .

6: Run pairwise linear regression between each pair
of residuals ei, ej ∈ UE and collect residuals
qij , qji; remove all xi ∈ U such that ej ⊥⊥
qji, ei ⊥̸⊥ qij from U to obtain U ′.

7: Stage 2: Identify VLC
8: Identify x∗ = argminxj∈U ′ t∗(ej , π) as a VLC,

add x∗ to π, remove x∗ from U .
9: return π.

Algorithm 3 LoSAM
1: Input: vertices x1, . . . , xd ∈ V
2: Run Root Finder (Alg 1), obtain RT .
3: Run Sort Finder (Alg 2) using RT , obtain sort π.
4: return π.

Sort Finder. Leveraging Lemma 4.4, we propose Algo-
rithm 2, Sort Finder, which iteratively builds the topological
sort π in a two-stage procedure: Stage 1 runs nonparametric
regressions of each vertex in U onto all vertices in π to
obtain the residual set UE ; we prune all LDs in U using
Lemma 4.3, obtaining the subset U ′. In Stage 2, we identify
a VLC by finding the vertex xi ∈ U ′ that minimizes the test
statistic t∗(ei, π), according to Lemma 4.4. We repeat this
procedure until all vertices are sorted. We provide asymp-
totic correctness of Algorithm 2 in Proposition 4.4 (proof in
Appendix E.2).

Proposition 4.4 (Correctness of Sort Finder). Given the
vertices of a DAG G generated by an ANM, the roots in G,
infinite data, a consistent nonparametric regression method,
and a perfect independence test, Algorithm 2 returns a valid
sort π.

4.1 THEORETICAL GUARANTEES

By combining Algorithms 1 and 2, we describe our overall
topological sort algorithm, local search in additive noise
models, LoSAM, in Algorithm 3. LoSAM extends prior top-
down regression-based FCM methods to ANMs with both
linear and nonlinear mechanisms. It reduces the maximum
size of conditioning sets in the root identification phase to
two and improves algorithm stability under finite samples
by selecting the vertex with the smallest test statistic at each
iteration of the sorting procedure.

We provide the correctness of Algorithm 3 in Theorem 4.5
(proof in Appendix F.2), and a step-by-step walk-through of
the method in Appendix H.1.

Theorem 4.5 (LoSAM Correctness). Given the vertices of
a DAG G generated by an ANM, infinite data, a consistent
nonparametric regression method, and a perfect indepen-
dence test, Algorithm 3 returns a valid topological sort π.

Next, we establish the worst-case time complexity in Theo-
rem 4.6 (proof in Appendix F.2),

Theorem 4.6 (LoSAM Runtime). Given n samples gen-
erated from a d-dimensional DAG G under an ANM, the
worst-case time complexity of Algorithm 3 is O(d3n2).

The worst case runtime of LoSAM in dimensionality O(d3)
is slightly higher than the O(d2) complexity of methods that
learn the ordering from the leaves to the roots (bottom-up)
and do not require Gaussianity, such as RESIT and NoGAM.
However, it matches the complexity of NHTS (O(d3)), a top-
down algorithm that also learns the ordering from the roots
to the leaves. Correspondingly, LoSAM enjoys improve-
ments in sample efficiency common to root-based methods.

Efficiency. The number of multivariate nonparametric re-
gressions run in each step of LoSAM is actually inversely
related to the size of the covariate sets (similar to the root-
based method NHTS), while the number of regressions in
each step of leaf-based methods such as RESIT and NoGAM
are directly proportionate to the covariate set size. Therefore,
LoSAM preserves the reduction in covariate set size inher-
ent to root-based methods over leaf-based methods, which
leads to better sample efficiency when estimating nonlinear
relationships. We provide a formal analysis of the reduction
in complexity for the worst case (i.e., in a fully connected
DAG) in Theorem 4.7 (proof in Appendix F.4):

Theorem 4.7 (LoSAM Efficiency). Consider a fully con-
nected DAG G = (V,E) with ANM. Let d := |V |. Let
nLoSAM
k be the number of multivariate nonparametric re-

gressions with covariate set size k ∈ [d− 2] run by LoSAM
when sorting V ; we similarly define nNHTS

k , nRESIT
k and

nNoGAM
k respectively. Then, nLoSAM

k = nNHTS
k = d − k,

and nRESIT
k = nNoGAM

k = k + 1. This implies that for all
k > d

2 , nLoSAM
k = nNHTS

k < nRESIT
k = nNoGAM

k .

5 EXPERIMENTAL RESULTS

We evaluate LoSAM on synthetic datasets with mixed,
purely linear, and purely nonlinear mechanisms, as well as
a real-world protein expression dataset.5 LoSAM achieves
state-of-the-art performance, outperforming existing algo-
rithms in mixed mechanism settings.

5https://github.com/Sujai1/
local-search-discovery.

https://github.com/Sujai1/local-search-discovery
https://github.com/Sujai1/local-search-discovery

Figure 3: LoSAM performance on sparse graphs by linear
mechanism proportion. Top row: uniform noise. Bottom
row: Laplace noise.

Synthetic Dataset Generation. We produce synthetic
data with varying graph sparsity, exogenous error distri-
bution, dimensionality, and causal mechanisms. DAGs are
randomly generated with the Erdos-Renyi model [Erdos
and Renyi, 1960]; the average number of edges in each d-
dimensional DAG is either d (ER1) for sparse DAGs, or 2d
(ER2) for dense DAGs. Uniform, Laplace or Gaussian noise
is used as the exogenous error. We randomly sample the
data (d = 10, n = 1000) according to causal mechanisms
with a different average proportion of linear mechanisms
(0%, 25%, 50%, 75%, 100%). We standardize and process
the data to ensure that the simulated data is sufficiently chal-
lenging; methods are evaluated on 30 randomly generated
seeds in each experimental setting. Further details can be
found in Appendix G.

Real-World Data. To confirm the real-world applicability
of our approach, we test LoSAM on the Sachs dataset [Sachs
et al., 2005], a widely used real-world biological benchmark
for causal discovery (see Appendix G.2 for details). The
Sachs data captures the expression levels of various pro-
teins in human cells, with a ground-truth causal network
established by genetic experiments. Notably, prior work [Xu
et al., 2024] has estimated that the causal relationships in
the Sach’s network have mixed mechanisms, making it a
promising test case for assessing LoSAM.

Baselines. We benchmark LoSAM against a mix of classical
and SOTA topological ordering baselines: DirectLiNGAM,
CAM, RESIT, SCORE, NoGAM, NHTS, and CaPS. We in-
clude the heuristic algorithm Var-Sort [Reisach et al., 2021]
and a randomly generated sort (Rand-Sort) to measure game-
ability, as some FCM methods are prone to exploiting arti-

Figure 4: Performance of LoSAM on ER1 synthetic data
with 50% proportion of linear mechanisms. Top row: uni-
form noise. Bottom row: Laplace noise.

facts common to simulated ANMs [Reisach et al., 2021].

Evaluation and Metrics. We first directly evaluate the
topological orderings via the average topological divergence
Atop (higher Atop is better), which is equal to the percentage
of edges that can be recovered by the returned topological
ordering (an edge cannot be recovered if a child is sorted
before a parent) [Hiremath et al., 2024]. We note that Atop is
a normalized version of the topological ordering divergence
Dtop defined in Rolland et al. [2022] (see Appendix G.3 for
details). To produce a predicted causal graph, we apply a
standard edge pruning method (CAM-pruning, Bühlmann
et al. 2014) to the fully dense graph corresponding to each
topological ordering. We adopt the Structural Hamming
Distance (SHD) [Tsamardinos et al., 2006] and F1 score
for evaluation; the SHD is the sum of false positive, false
negative and reversed edges (lower SHD is better), whereas
the F1 score measures the balance between precision and
recall of predicted edges (higher F1 is better).

Results on Synthetic Data. Figure 3 demonstrates the
robustness of LoSAM as the proportion of linear and nonlin-
ear mechanisms changes in sparse graphs (ER1). LoSAM
achieves similar performance to SOTA methods in both the
linear and nonlinear settings, under both noise distributions.
In the mixed mechanism setting, LoSAM significantly over-
performs all baselines in the uniform noise setting, and all
baselines except DirectLiNGAM (which performs poorly
in nonlinear ANM) in the laplacian setting; the degrada-
tion in baseline performance when assumptions are violated

Figure 5: LoSAM performance on ER1 synthetic data with
Uniform noise and 50% proportion of linear mechanisms,
with increasing sample size n = 300, 400 . . . , 1000.

highlights the limited applicability of current FCM methods.

Figure 4 demonstrates the overall performance of LoSAM
in sparse graphs (ER1) where the proportion of linear mech-
anisms is fixed to 50%. LoSAM outperformed all baselines
across all three metrics, especially for uniform noise, demon-
strating the enhanced sample-efficiency of our root and leaf
based procedure. We note that, as expected from Theorem
3.6 and Theorem 4.7, LoSAM had higher sample compu-
tational efficiency than nonlinear methods NHTS, RESIT
and NoGAM (SCORE and CAM as well), with up to 2-5×
faster runtime (see Appendix G.6).

Figure 5 shows how the performance of LoSAM changes
as the sample size increases from n = 300 to n = 1000 (in
sparse ER1 graphs with d = 10, Uniform noise, 50% linear
mechanisms). The results demonstrate LoSAM’s superior
sample efficiency, as its performance improves fastest with
increasing sample size and it consistently outperforms base-
lines. This aligns with Theorems 3.6 and 4.7, and shows that
reduced conditioning set sizes do indeed enhance statistical
efficiency.

Additional Synthetic Experiments. To confirm the ro-
bustness of LoSAM, we present results in dense, high-
dimensional, and Gaussian noise settings. Additionally, we
test the sensitivity of LoSAM to estimation error.

In Appendix G.5.1, we examine the performance of LoSAM
on denser graphs (d = 10, n = 1000). We find that LoSAM
still maintains a performance gap over baselines, likely due
to the reduced covariate set size shown in Theorem 4.7.

To understand the scalability of LoSAM we fix the propor-
tion of linear mechanisms to 0.5, sample size n = 2000,
noise to be uniform, and evaluate over increasing dimen-
sionality (d = 10, 20, . . . , 50) in Appendix G.5.2. We find
that LoSAM maintains performance gains over baselines,
demonstrating its efficacy in higher-dimensional settings.

We test the performance of LoSAM under the nonlinear
Gaussian setting in Appendix G.5.3 (d = 10, n = 1000),

Metrics Atop↑ F1↑ SHD↓

DirectLiNGAM 0.56±0.13 0.32±0.10 29.90±4.13
CAM 0.61±0.12 0.30±0.07 38.60±4.87
RESIT 0.41±0.09 0.21±0.08 35.07±4.23
SCORE 0.28±0.02 0.17±0.03 37.67±3.10
NoGAM 0.28±0.03 0.17±0.03 38.50±4.05
NHTS 0.59±0.12 0.28±0.08 35.97±5.41
CaPS 0.29±0.03 0.18±0.02 37.03±2.52
VarSort 0.46±0.03 0.25±0.03 35.33±2.47
RandSort 0.47±0.13 0.24±0.08 38.33±5.54
LoSAM 0.62±0.09 0.33±0.05 34.97±4.74

Table 2: Results on real-world Sachs protein dataset.

a setting that is considered in prior benchmarks. We find
that LoSAM achieves similar performance to CAM, which
is designed to exploit Gaussian noise in its procedure, and
significantly outperforms all other baselines (including other
Gaussian-specific methods, e.g., SCORE and CaPS).

Finally, in Appendix G.5.4, we investigate LoSAM’s sensi-
tivity to estimation error (d = 10, n = 300, Uniform noise)
by evaluating LoSAM variants that use different regression
estimators (Random Forest, Kernel Ridge Regression with
various kernels, etc.). LoSAM maintains consistent accuracy
across estimators, confirming its robustness—an essential
property for finite-sample settings where regression effi-
ciency may vary.

Results on Real-World Data. The results of the Sachs
dataset are presented in Table 2: LoSAM achieves the best
Atop and F1 score, with SHD coming in second to Di-
rectLiNGAM. We note that the SHD metric favors the pre-
diction of sparse causal graphs [Xu et al., 2024], as it double
counts errors when edges are reversed, whereas F1 and Atop

penalize all errors equally. Therefore, taking all three met-
rics into account, we conclude that LoSAM outperforms
baselines.

Discussion. Future work includes extending LoSAM to
handle latent confounding, and applying the local search
approach to a time series setting. Additionally, we aim to
build upon our theoretical guarantees and develop statistical
sample complexity bounds for LoSAM, extending previ-
ously derived results [Zhu et al., 2023] for FCM methods in
nonlinear Gaussian ANMs.

Acknowledgments
This paper is supported by an AWS Credits Grant from
The Center for Data Science for Enterprise and Society at
Cornell University.

References

Peter Martey Addo, Christelle Manibialoa, and Florent
McIsaac. Exploring nonlinearity on the co2 emissions,
economic production and energy use nexus: a causal dis-
covery approach. Energy Reports, 7:6196–6204, 2021.

Kevin Bello, Bryon Aragam, and Pradeep Ravikumar.
DAGMA: Learning DAGs via M-matrices and a Log-
Determinant Acyclicity Characterization. In Advances in
Neural Information Processing Systems, 2022.

Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal
additive models, high-dimensional order search and penal-
ized regression. The Annals of Statistics, 42(6), Decem-
ber 2014. ISSN 0090-5364. doi: 10.1214/14-AOS1260.
arXiv:1310.1533 [cs, stat].

David Maxwell Chickering. Learning Equivalence Classes
of Bayesian Network Structures. Journal of Machine
Learning Research, 2013.

David Maxwell Chickering, Christopher Meek, and David
Heckerman. Large-sample learning of bayesian networks
is np-hard. Journal of Machine Learning Research, 5:
1287–1330, 2004.

Tom Claassen, Joris M Mooij, and Tom Heskes. Learning
Sparse Causal Models is not NP-hard. Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence (UAI2013), 2013.

Diego Colombo, Marloes H. Maathuis, Markus Kalisch,
and Thomas S. Richardson. Learning high-dimensional
directed acyclic graphs with latent and selection variables.
The Annals of Statistics, 40(1):294–321, 2012.

Paul Erdos and Alfred Renyi. On the evolution of random
graphs. Publication of the Mathematical Institute of the
Hungarian Academy of Sciences, 1960.

Philipp Faller, Leena Vankadara, Atalanti Mastakouri,
Francesco Locatello, and Dominik Janzing. Self-
compatibility: Evaluating causal discovery without
ground truth. International Conference on Artifical Intell-
gience and Statistics, 2024a.

Philipp Faller, Leena Vankadara, Atalanti Mastakouri,
Francesco Locatello, and Dominik Janzing. Self-
compatibility: Evaluating causal discovery without
ground truth. International Conference on Artifical Intell-
gience and Statistics, 2024b.

Andre J Faure, Ben Lehner, Verónica Miró Pina, Claudia
Serrano Colome, and Donate Weghorn. An extension
of the walsh-hadamard transform to calculate and model
epistasis in genetic landscapes of arbitrary shape and com-
plexity. PLOS Computational Biology, 20(5):e1012132,
2024.

Robert Ganian, Viktoriia Korchemna, and Stefan Szeider.
Revisiting causal discovery from a complexity-theoretic
perspective. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
24), pages 3377–3385. International Joint Conferences
on Artificial Intelligence Organization, 2024.

Asish Ghoshal and Jean Honorio. Learning linear structural
equation models in polynomial time and sample complex-
ity. In International Conference on Artificial Intelligence
and Statistics, pages 1466–1475. PMLR, 2018.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of
Causal Discovery Methods Based on Graphical Models.
Frontiers in Genetics, 10:524, June 2019. ISSN 1664-
8021. doi: 10.3389/fgene.2019.00524.

Sujai Hiremath, Jacqueline Maasch, Mengxiao Gao, Promit
Ghosal, and Kyra Gan. Hybrid top-down global causal
discovery with local search for linear and nonlinear addi-
tive noise models. Proceedings of the 38th Conference on
Neural Information Processing Systems (NeurIPS), 2024.
https://arxiv.org/abs/2405.14496.

Patrik O Hoyer and Antti Hyttinen. Bayesian discovery
of linear acyclic causal models. In Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence,
2009.

Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas
Peters, and Bernhard Schölkopf. Nonlinear causal discov-
ery with additive noise models. In Advances in Neural
Information Processing Systems 21 (NIPS 2008), 2008.

Nan Ke, Silvia Chiappa, Jane Wang, Jorg Bornschein,
Anirudh Goyal, Melanie Rey, Theophane Weber, Matthew
Botvinick, Michael Mozer, and Danilo Rezende. Learn-
ing to induce causal structure. International Conference
on Learning Representations, 2023.

Juho A. J. Kontio, Marko J. Rinta-aho, and Mikko J. Sil-
lanpää. Estimating linear and nonlinear gene coex-
pression networks by semiparametric neighborhood se-
lection. Genetics, 215(3):597–607, July 2020. doi:
10.1534/genetics.120.303186.

Alexander Kraskov, Harald Stögbauer, and Peter Grass-
berger. Estimating mutual information. Physical Review
E, 69(6):066138, June 2004. ISSN 1539-3755, 1550-
2376. doi: 10.1103/PhysRevE.69.066138.

Wai-Yin Lam, Bryan Andrews, and Joseph Ramsey. Greedy
Relaxations of the Sparsest Permutation Algorithm, 2022.

Jaron J.R. Lee, Ranjani Srinivasan, Chin Siang Ong, Di-
ane Alejo, Stefano Schena, Ilya Shpitser, Marc Sussman,
Glenn J.R. Whitman, and Daniel Malinsky. Causal deter-
minants of postoperative length of stay in cardiac surgery
using causal graphical learning. The Journal of Thoracic

and Cardiovascular Surgery, page S002252232200900X,
August 2022. ISSN 00225223. doi: 10.1016/j.jtcvs.2022.
08.012.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient
neural causal discovery without acyclicity constraints.
International Conference on Learning Representations,
2022.

Jacqueline Maasch, Weishen Pan, Shantanu Gupta,
Volodymyr Kuleshov, Kyra Gan, and Fei Wang. Local
discovery by partitioning: Polynomial-time causal discov-
ery around exposure-outcome pairs. In Proceedings of the
40th Conference on Uncertainy in Artificial Intelligence,
2024. doi: https://doi.org/10.48550/arXiv.2310.17816.

Daniel Malinsky and Peter Spirtes. Estimating causal effects
with ancestral graph markov models. In Proceedings
of the Conference on Probabilistic Graphical Models
(PGM), pages 319–330. PMLR, 2016.

Santosh Manicka, Karl Johnson, Michael Levin, and Guy
Karlebach. The nonlinearity of regulation in biological
networks. npj Systems Biology and Applications, 9(10),
April 2023. doi: 10.1038/s41540-023-00273-w.

Giampiero Marra and Simon Wood. Regression Shrinkage
and Selection via the Lasso., 2018.

Francesco Montagna, Atalanti A. Mastakouri, Elias Eulig,
Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing,
Bryon Aragam, and Francesco Locatello. Assumption
violations in causal discovery and the robustness of score
matching. In 37th Conference on Neural Information
Processing Systems, October 2023a.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco,
Kun Zhang, and Francesco Locatello. Causal Discov-
ery with Score Matching on Additive Models with Ar-
bitrary Noise. In Proceedings of the 2nd Conference
on Causal Learning and Reasoning. arXiv, April 2023b.
arXiv:2304.03265 [cs, stat].

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco,
Kun Zhang, and Francesco Locatello. Scalable Causal
Discovery with Score Matching. In Proceedings of the
2nd Conference on Causal Learning and Reasoning.
arXiv, April 2023c. arXiv:2304.03382 [cs, stat].

Francesco Montagna, Philipp M Faller, Patrick Bloebaum,
Elke Kirschbaum, and Francesco Locatello. Score match-
ing through the roof: linear, nonlinear, and latent vari-
ables causal discovery. Causal Learning and Reasoning
(CLeaR), PMLR., 2025.

Gunwoong Park. Identifiability of additive noise models
using conditional variances. Journal of Machine Learning
Research, 21(75):1–34, 2020.

Gunwoong Park and Youngwhan Kim. Identifiability of
gaussian linear structural equation models with homo-
geneous and heterogeneous error variances. Journal of
the Korean Statistical Society, 49:276–292, 2020. doi:
10.1007/s42952-020-00018-7.

Judea Pearl. Causal inference in statistics: An overview.
Statistics Surveys, 3, January 2009. ISSN 1935-7516. doi:
10.1214/09-SS057.

Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell.
Causal inference in statistics: a primer. Wiley, Chichester,
West Sussex, 2016. ISBN 978-1-119-18684-7.

J. Peters and P. Bühlmann. Identifiability of gaussian
structural equation models with equal error variances.
Biometrika, 101(1):219–228, March 2014. doi: 10.1093/
biomet/ast043.

Jonas Peters, Joris Mooij, Dominik Janzing, and Bernhard
Schölkopf. Causal Discovery with Continuous Additive
Noise Models, April 2014. arXiv:1309.6779 [stat].

Alexander Reisach, Christof Seiler, and Sebastian Weich-
wald. Beware of the simulated dag! causal discovery
benchmarks may be easy to game. Advances in Neural
Information Processing Systems, 34:27772–27784, 2021.

Alexander G. Reisach, Myriam Tami, Christof Seiler, An-
toine Chambaz, and Sebastian Weichwald. A Scale-
Invariant Sorting Criterion to Find a Causal Order in
Additive Noise Models. In 37th Conference on Neural
Information Processing Systems. arXiv, October 2023.
arXiv:2303.18211 [cs, stat].

Paul Rolland, Volkan Cevher, Matthaus Kleindessner, Chris
Russel, Bernhard Scholkopf, Dominik Janzing, and
Francesco Locatello. Score Matching Enables Causal
Discovery of Nonlinear Additive Noise Models. In Pro-
ceedings of the 39 th International Conference on Ma-
chine Learning, 2022.

Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-
Valls, Dim Coumou, Ethan Deyle, Clark Glymour, Mar-
lene Kretschmer, Miguel D. Mahecha, Jordi Muñoz-Marí,
Egbert H. van Nes, Jonas Peters, Rick Quax, Markus
Reichstein, Marten Scheffer, Bernhard Schölkopf, Pe-
ter Spirtes, George Sugihara, Jie Sun, Kun Zhang, and
Jakob Zscheischler. Inferring causation from time se-
ries in Earth system sciences. Nature Communications,
10(1):2553, December 2019. ISSN 2041-1723. doi:
10.1038/s41467-019-10105-3.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauf-
fenburger, and Garry P Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data.
Science, 308(5721):523–529, 2005.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A
Tsaftaris. Diffusion models for causal discovery via topo-
logical ordering. The Eleventh International Conference
on Learning Representations (ICLR 2023), 2023. URL
https://arxiv.org/abs/2210.06201.

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo
Hyvarinen, Yoshinobu Kawahara, Takashi Washio, Pa-
trik O Hoyer, Kenneth Bollen, and Patrik Hoyer. Di-
rectlingam: A direct method for learning a linear non-
gaussian structural equation model. Journal of Machine
Learning Research-JMLR, 12(Apr):1225–1248, 2011.

Peter Spirtes. An Anytime Algorithm for Causal Inference.
In Proceedings of the Eighth International Workshop on
Artificial Intelligence and Statistics, volume R3, pages
278–285. PMLR, 2001.

Peter Spirtes and Richard Scheines. Causal inference of
ambiguous manipulations. Philosophy of Science, 2004.

Peter Spirtes and Kun Zhang. Causal discovery and in-
ference: concepts and recent methodological advances.
Applied Informatics, 3(1):3, December 2016. ISSN 2196-
0089. doi: 10.1186/s40535-016-0018-x.

Peter Spirtes, Clark Glymour, and Richard Scheines. Cau-
sation, Prediction, and Search, volume 81 of Lecture
Notes in Statistics. Springer New York, New York, NY,
2000. ISBN 978-1-4612-7650-0 978-1-4612-2748-9. doi:
10.1007/978-1-4612-2748-9.

Ioannis Tsamardinos, Laura E. Brown, and Constantin F.
Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1):
31–78, October 2006. ISSN 0885-6125, 1573-0565. doi:
10.1007/s10994-006-6889-7.

Zhuopeng Xu, Yujie Li, Cheng Liu, and Ning Gui. Ordering-
based causal discovery for linear and nonlinear relations.
In Proceedings of the 37th Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2024.

Kun Zhang and Aapo Hyvarinen. On the Identifiability of
the Post-Nonlinear Causal Model. Uncertainty in Artifi-
cial Intelligence, 2009.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard
Scholkopf. Kernel-based Conditional Independence Test
and Application in Causal Discovery. Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, 2011.

Zhenyu Zhu, Francesco Locatello, and Volkan Cevher. Sam-
ple Complexity Bounds for Score-Matching: Causal Dis-
covery and Generative Modeling, 2023. URL https:
//arxiv.org/abs/2310.18123.

https://arxiv.org/abs/2210.06201
https://arxiv.org/abs/2310.18123
https://arxiv.org/abs/2310.18123

APPENDIX

A NOTATION

G = (V,E) A DAG G with |V | = d vertices, where E represents the set of directed edges between vertices.
Ch(xi) The set of child vertices of xi.
Pa(xi) The set of parent vertices of xi.
De(xi) The set of vertices that are descendants of xi.
An(xi) The set of vertices that are ancestors of xi.
π A topological ordering of vertices, i.e. a mapping π : V → {0, 1, . . . , d}.
fi An arbitrary function, used to generate vertex xi.
εi An independent noise term sampled from an arbitrary distribution, used to generate vertex xi.
SRD A single root descendant, a vertex with only one root ancestor.
MRD A multi root descendant, a vertex with at least two root ancestors.
VP A v-pattern, a causal substructure between three vertices.
V ′ A subset of V that contains only and all roots and SRDs.
V ′′ A subset of V ′ that contains only and all SRDs and roots with at least one SRD.
rij The residual of the vertex xj nonparametrically regressed on the vertex xi.
W A subset of V ′′ that contains only and all vertices identified by the Regression-Identification Test.
M The set of MRDs in V .
R The set of roots in V .
cAlg1
max The maximum size of conditioning sets used in Algorithm 1.
cDirectLiNGAM
max The maximum size of conditioning sets used in the root identification for DirectLiNGAM.
cNHTS
max The maximum size of conditioning sets used in the root identification step of NHTS.
cRESIT
max The maximum size of conditioning sets used to identify roots in RESIT.
cNoGAM
max The maximum size of conditioning sets used to identify roots in NoGAM.
U The set of vertices left unsorted, i.e., not yet added to π.
VLC A valid leaf candidate; a vertex in U with no parents in U .
UE The set of residuals produced from regressing each xi ∈ U onto vertices in π.
ei A residual in UE corresponding to xi ∈ U .
ND A nonlinear descendant; a vertex in U that is a nonlinear function of at least one vertex in U .
LD A linear descendant; a vertex in U that is a linear function of all vertices in U .
qij The residual produced by linearly regressing ej onto ei.
Q A subset of U that contains all LDs, but no VLCs.
U ′ A subset of U that contains all VLCs and some NDs.
M̂I(x, y) A nonparametric estimator of mutual information between x, y.
t∗(ei, π) A test statistic corresponding to xi ∈ U ′.
rkij The residual produced by nonparametrically regressing xk onto xi, xj .

B GRAPH TERMINOLOGY

In this section we clarify the term ‘d-separation’, a foundational concept for analyzing causal graphical models [Spirtes
et al., 2000]. First, we classify the types of paths that exist between vertices, then define d-separation in terms of those paths.

We first note that a path between xi, xk can either start and end with an edge out of xj , xk (xk 99K · · · L99 xk), start with
an edge of out of xj and end with an edge into xk (xj 99K · · · 99K xk) or start with an edge into xj and edge with an edge
into xk (xj L99 · · · 99K xk). Paths such as xk (xk 99K · · · L99 xk) do not transmit causal information between xj , xk.
Undirected paths that transmit causal information between two vertices xj , xk can be differentiated into frontdoor and
backdoor paths [Spirtes et al., 2000]. A frontdoor path is a directed path xj 99K · · · 99K xk, while a backdoor path is a path
xj L99 · · · 99K xk.

Paths between two vertices are further classified, relative to a vertex set Z, as either active or inactive [Spirtes et al., 2000].
A path between vertices xj , xk is active relative to Z if every node on the path is active relative to Z. Vertex xi ∈ V is
active on path relative to Z if one of the following holds: 1) xi ∈ Z and xi is a collider 2) xi ̸∈ Z and xi is not a collider 3)
xi ̸∈ Z, xi is a collider, but De(xi) ∩ Z ̸= ∅. An inactive path is simply a path that is not active. Causally paths are typically
described active or inactive with respect to Z = ∅ unless otherwise specified.

Vertices xi, xj are said to be d-separated by a set Z iff there is no active path between xi, xj relative to Z.

C ASSUMPTIONS

C.1 CAUSAL MARKOV

The Causal Markov condition implies that a variable xi is independent of all non-descendants xj , given its parents Pa(xi)
[Spirtes, 2001]. Equivalently, we say that an ANM G = (V,E) satisfies the Causal Markov Condition if the joint distribution
pV (V) over all xi ∈ V admits the following factorization:

pV (V) =

d∏
i

pi(xi|Pa(xi)). (3)

C.2 ACYCLICITY

We say that a causal graph G is acyclic if there does not exist any directed cycles in G [Spirtes, 2001].

C.3 FAITHFULNESS

Note that by assuming that a causal graph G satisfies the Causal Markov assumption, we assume that data produced by
the DGP of G satisfies all independence relations implied by G [Spirtes, 2001]. However, this does not necessarily imply
that all independence relations observed in the data are implied by G. Under the additional assumption of faithfulness, the
independence relations implied by G are the only independence relations found in the data generated by G’s DGP [Spirtes,
2001].

C.4 IDENTIFIABILITY OF ANM

Following the style of [Montagna et al., 2023a], we first observe that the following condition guarantees that the observed
distribution of a pair of variables xi, xj can only be generated by a unique ANM:

Condition C.1 (Hoyer and Hyttinen 2009). Given a bivariate model xi = εi, xj = fj(xi) + εj generated according
to (1), we call the SEM an identifiable bivariate ANM if the triple (fi, pεi , pεj) does not solve the differential equation

k′′′ = k′′(− g′′′f ′

g′′ + f ′′

f ′) − 2g′′f ′′f ′ + g′f ′′′ + g′g′′′f ′′f ′

g′′ − g′(f ′′)2

f ′ for all xi, xj such that f ′(xi)g
′′(xj − fj(xi)) ̸= 0,

where pεi , pεj are the density of εi, εj , f = fj , k = log pεi , g = pεj . The arguments xj − fj(xi), xi and xi of g, k and f
respectively, are removed for readability.

There is a generalization of this condition to the multivariate ANM proved by [Peters et al., 2014]:

Theorem C.2. (Peters et al. 2014). An ANM corresponding to DAG G is identifiable if ∀xj ∈ V, xi ∈ Pa(xj) and
all sets S ⊆ V with Pa(xj) \ {i} ⊆ S ⊆ De(j) \ {xi, xj}, ∃ XS with positive joint density such that the triple(
fj(Pa(j) \ {xi}, xi), pxi|Xs

, pεj

)
satisfies Condition C.1, and fj are non-constant in all arguments.

In this paper, we assume that all DAGs are generated by identifiable ANMs, as defined in Theorem C.2.

Our work builds on the classical ANM identifiability assumptions from [Peters et al., 2014] (Theorem C.2). Intuitively, these
ensure each ANM generates a unique joint distribution, enabling unique identification. This identifiability condition rules
out specific mechanisms-noise pairs such as linear fi and Gaussian ϵi. Formally, for any xi = fi(Pa(xi)) + εi where fi is
linear in at least one of the parents in Pai, then εi must be non-gaussian. Thus, LoSAM does not cover linear Gaussian
ANMs (LiGAM) but applies to any linear, nonlinear, or mixed-mechanism setting satisfying Theorem C.2.

While LiGAMs are generally non-identifiable, additional assumptions can enable identification: equal/known error variance
[Peters and Bühlmann, 2014], heteroscedastic errors via variance/edge-weight conditions [Ghoshal and Honorio, 2018, Park
and Kim, 2020], conditional variance constraints [Park, 2020], Varsortability/R2-sortability [Reisach et al., 2021, 2023],
and score function restrictions [Xu et al., 2024]. While extending LoSAM to LiGAM is an interesting research direction,
the focus of this work is on providing a polynomial-time discovery algorithm for general ANMs with mixed mechanisms,
without relying on strong functional, variance, or distributional assumptions. We leave extensions to LiGAM for future
work.

C.5 ASSUMPTIONS OF CAPS ON NOISE DISTRIBUTION

The causal discovery method CaPS [Xu et al., 2024] requires that the noise terms be Gaussian, and that at least one of the
following conditions holds (see section 3.1 and 4.1 of their paper):

CaPS Assumptions (Sufficient conditions for identifiability).

1. Non-decreasing variance of noises. For any two noises ϵi and ϵj , σj ≥ σi if π(i) < π(j).

2. Non-weak causal effect. For any non-leaf nodes xj ,

∑
i∈Ch(j)

1

σ2
i

E

[(
∂fi
∂xj

(pai(x))

)2
]
≥ 1

σ2
min

− 1

σ2
j

,

where σmin is the minimum variance for all noises. They comment that condition 1 is an extension of the equal variance
assumption Peters and Bühlmann [2014], while condition 2 is a new sufficient condition that quantifies a lower bound of
identifiable causal effects.

We note that, in contrast, LoSAM does not require or leverage either of the above conditions to recover a correct
topological ordering, and allows for general noise distributions (beyond Gaussian noise).

D LEMMA PROOFS

D.1 PROOF OF LEMMA 3.1

Lemma 3.1 (MRD Induces VP). A vertex xi induces a VP iff xi is an MRD.

Proof. Suppose xi is an MRD. Then, ∃xj , xk such that xj , xk ∈ An(xi), and xj , xk are roots. Note that this implies that
xj ⊥⊥ xk, xi ⊥̸⊥ xj , xi ⊥̸⊥ xk, which is a VP between xj , xk induced by xi.

Suppose xi is not an MRD. We prove by contradiction that xi cannot induces a VP.

Suppose xi is an SRD. Let xp be any vertex such that xp ⊥̸⊥ xi, which implies that there must exist an active causal path
between xi, xp. Note, as xi is an SRD, there exists only one root vertex xj such that xj ∈ An(xi). Suppose for contradiction
that xp ̸∈ De(xj). Suppose there is a frontdoor path from xi to xp: then xp ∈ De(xi) =⇒ xp ∈ De(xj), which contradicts
our assumption that xp ̸∈ De(xj). Suppose there is a frontdoor path from xp to xi: as xp ̸∈ De(xj), WLOG ∃ a root

xm ̸= xj such that xp ∈ De(xm). This implies that xi ∈ De(xm) which contradicts the assumption that xi is an SRD.
Suppose for contradiction that there exists a backdoor path between xp, xi: this implies that ∃ xc that is a confounder between
xp, xi. Again, this implies that WLOG ∃ a root xm ̸= xj such that xc ∈ De(xm) =⇒ xi ∈ De(xm), which contradicts
the assumption that xi is an SRD. Therefore, it must be that, for any vertex xp ⊥̸⊥ xi, xi, xp ∈ De(xj), where xj is a root.
Note, the above implies that for any vertices xj , xk such that xj ⊥̸⊥ xi, xk ⊥̸⊥ xi, we have xj , xk ∈ De(xj) =⇒ xj ⊥̸⊥ xk.
This implies that xi cannot induce a VP between any two vertices xj , xk.

Suppose xi is a root. Let xj , xk be any two vertices such that xj ⊥̸⊥ xi, xk ⊥̸⊥ xi. Note that as xi is a root, there can only
exist frontdoor paths between xi and other vertices, so the dependence relations imply that xj , xk ∈ De(xi). This means
that xi is a confounder of xj , xk =⇒ xj ⊥̸⊥ xk. Therefore, xi cannot induce a VP between xj , xk.

D.2 PROOF OF LEMMA 3.2

Lemma 3.2 (Root with No SRDs). For any xi ∈ V ′, iff xi ⊥⊥ xj ∀xj ∈ V ′ \ {xi}, xi is a root with no SRDs.

Proof. Note that V ′ is the union of vertices that are either SRDs or root vertices. We prove this by contradiction. Suppose
that xi is an SRD: then ∃xk ∈ V ′ such that xk is a root and xi ∈ De(xk) which implies xi ⊥̸⊥ xk. However, this contradicts
our assumption that xi ⊥⊥ xj ,∀xj ∈ V ′. Now we show that xi cannot a root vertex with SRDs. Suppose that xi is a root
vertex with SRDs: then ∃xk ∈ De(xi) =⇒ xi ⊥̸⊥ xk. However, this contradicts our assumption that xi ⊥⊥ xj ,∀xj ∈ V ′.
Additionally, note that a root vertex xi with no SRDs satisfies xi ⊥⊥ xj ,∀xj ∈ V ′. Therefore, xi must be a root vertex with
no SRDs.

Suppose xi is a root with no SRDs. Note that V ′ contains only SRDs and roots. Then, as xi has no SRDs, it has no
descendants. As xi is a root, it has no ancestors; therefore, xi ⊥⊥ xj ∀xj ∈ V ′ \ {xi}.

D.3 PROOF OF LEMMA 3.3

Lemma 3.3 (Root ID). Let W be a subset of V ′′ such that ∀xi ∈ W , 1) ∃xj ∈ V such that xi is identified as ∈ An(xj),
and 2) ∄xk ∈ V such that xk is identified as ∈ An(xi). Then W contains all roots in V ′′.

For xi, xj , xk ∈ V , let rkij be the residual of xk nonparametrically regressed onto both xi and xj . Then, vertex xi ∈ W is a
root vertex if and only if for every other vertex xj ∈ W such that xi ⊥̸⊥ xj , ∀xk such that xj is identified ∈ An(xk), we have
xj ⊥⊥ rkij .

Proof. In this proof, we say that xi is in ’AD relation’ to xk iff xi is identified as ∈ An(xk) by the Regression-Identification
Test (Definition 3.4)

By definition, any root vertex xi ∈ V ′′ has at least one SRD xj , such that xj ∈ Ch(xi). Note that as xj = fij(xi) + εj ,
xi is in AD relation to xj . Note that as xi is a root vertex, all xj ∈ V ′′ are not ancestors of xi. If xj ⊥⊥ xi, then xj will
not be in AD relation to xi as xi ⊥⊥ rij , violating condition 2) in the AD definition. If xj ⊥̸⊥ xi, then xj ̸∈ An(xi), and
therefore by assumption of the restricted ANM C.2 we have that xj ⊥̸⊥ rji, implying that xj is not in AD relation to xi. This
implies that all root vertices in V ′′ satisfy condition 1) and 2) of the root superset W , implying that all root vertices in V ′′

are contained in W .

Let xi ∈ W be a root. Consider xj such that xj ⊥̸⊥ xi. Consider any xk such that xj is in AD relation to xk. Note that
xj ⊥̸⊥ xi and xi being a root implies that xi is not a descendant of either xj or xk. Additionally, as xj is in AD relation to
xk, xi cannot be a confounder of xj , xk. This implies that xi ⊥⊥ xk|xj , which implies that rkij ⊥⊥ xi.

Let xi ∈ W be a nonroot. Then, ∃xj ⊥̸⊥ xi such that xj is the root ancestor of xi. Note that xi is in AD relation to all of its
children, Ch(xi). Note that ∃xk ∈ Ch(xi) such that xk is an ancestor of xi. As xi is a descendant of xk, this implies that
xi ⊥̸⊥ rkij .

More intuitively: if xj is identified as ∈ An(xk), implying that xj is independent of residual of xk regressed onto xj , xj

should remain independent of residual produced by the bivariate regression of xk onto xi, xj . In contrast, for any non-root
SRD xp included in W and identified as in An(xh), there exists a root ancestor xl ∈ W ; therefore, if xh is regressed onto
xl, xp the resulting residual will be dependent on xp.

D.4 PROOF OF LEMMA 4.1

Proposition D.1. Given the vertices of a DAG G generated by an ANM, infinite data, a consistent nonparametric regression
method, and a perfect independence test, Algorithm 1 returns the correct set of root vertices.

Proof. Suppose xi ∈ U is a ND. Then, by definition ∃xj ∈ U such that xj is a nonlinear function of its parents in U
(Pa(xj) ∩ U), and xj is an ancestor of ND (xj ∈ An(xi)). Note that this implies that the regression of xi onto sorted
vertices π leads to omitted variable bias [Pearl et al., 2016], which leads to ei being dependent on any sorted vertex xk ∈ π
such that xk is an ancestor of xj (xk ∈ An(xj)). Therefore, ei is dependent on at least one sorted vertex in π.

Suppose ei is dependent on at least on sorted vertex in π. Note that by assumption there are only nonlinear functions, xi is
not an LD. Suppose for contradiction that xi is a VLC. Then, xi = fi(Pa(xi)) + εi. Note that as π is a valid topological
sort, it follows that Pa(xi) ⊆ π and De(xi)∩ π = ∅. Therefore, ei = εi, which implies ei ⊥⊥ xj ,∀xj ∈ π. This implies that
ei is independent of all vertices in π, contradicting our above assumption.

D.5 PROOF OF LEMMA 4.2

Lemma 4.2 (LD independence). If xi ∈ U is an LD, ei ∈ UE is independent of all sorted vertices in π.

Proof. Let xi ∈ U be a LD. This implies that we can decompose xi into a potentially nonlinear function of its parents in π
and its the error terms of its ancestors in U :

xi = fi(Pa(xi) ∩ π) +
∑

xj∈An(xi)∩U

αijεj + εi. (4)

This implies that the residual of xi nonparametrically regressed onto π equals

ei =
∑

xj∈An(xi)∩U

αijεj + εi. (5)

As ε are mutually marginally independent, we have that ei ⊥⊥ xj ,∀xj ∈ π.

D.6 PROOF OF LEMMA 4.3

Lemma 4.3. For ei, ej ∈ UE , let qij be the residual of ej linearly regressed onto ei, and qji be the residual of ei linearly
regressed onto ej . Let Q be the set of all xi ∈ U such that there exists xj ∈ U such that the following conditions hold: 1)
ej ⊥⊥ qji, 2) ei ⊥̸⊥ qij .

Then Q ⊆ U contains all LDs ∈ U and no VLCs.

Proof. Suppose xi ∈ U is an LD. Let xj ∈ U be an ancestor of xi such that xj has no parents in U , i.e. Pa(xj) ∩ U = ∅.
Such a vertex must always exist, as other xi would be a VLC. We can decompose xj into a function of parents in π, and an
independent error term:

xj = fj(Pa(xj) ∩ π) + εj . (6)

We can decompose xi into a function of parents in π, a sum of linear functions of parents in U , and the independent error
term εi:

xi = fi(Pa(xi) ∩ π) +
∑

xj∈Pa(xi)∩U

αijxj + εi. (7)

Note that as xi is a LD, all of its ancestors in U are linear functions of their parents in U . Therefore, we can further
decompose the sum of ancestors in U as a linear sum of error terms:

xi = fi(An(xi) ∩ S) +
∑

xj∈An(xi)∩U

βijεj + εi. (8)

Now, we consider the residuals ei, ej ∈ UE , which we can write as:

ej = εj (9)

and
ei =

∑
xj∈An(xi)∩U

βijεj + εi. (10)

As ei is a linear function of ej , we have that ej ⊥⊥ qji, ei ⊥̸⊥ qij , implying that xi ∈ Q. Therefore, Q contains all LDs.

Let xi ∈ U be a VLC. Then, we can write xi as the sum of a function of parents (which are all contained in π) and
independent error term:

xi = fi(Pa(xi)) + εi. (11)

Note that ei ∈ UE is then just the independent error term:

ei = εi. (12)

Note that ei has no parents in UE : therefore, for any vertex xj with associated residual ej ∈ UE , either ei ⊥⊥ ej =⇒ ej ⊥
⊥ qji, ei ⊥⊥ qij , or ei ⊥̸⊥ ej =⇒ ej ⊥̸⊥ qji, ei ⊥̸⊥ qij . The last statement follows from the fact that if ei ⊥̸⊥ ej , as ei is an
independent error term, ej must be a function of ei; then, the conclusion follows by assumption of ANM C.2. Therefore,
xi ̸∈ Q, and therefore no VLCs are included in Q.

D.7 PROOF OF LEMMA 4.4

Lemma 4.4 (Consistency). Given a consistent estimator M̂I(·, ·), a fixed xi ∈ U ′ and corresponding residual ei, t∗(ei, π)
asymptotically approaches 0 as n → ∞ iff ei is independent of all vertices in π, i.e., xi is a VLC.

Proof. Note, U ′ contains only ND and VLC vertices.

Suppose test stastistic t∗(ei, S) asymptotically aproaches 0 as n → ∞. Suppose for contradiction that ei is not independent
of xj ∈ π. Note that this implies that the mutual information M̂I(xj , ei) ̸= 0, which contradicts our assumption that
t∗(ei, S) → 0.

Suppose ei is independent of all vertices in S. This implies that, for each xj ∈ π the mutual information approaches 0:
M̂I(xj , ei) → 0. This implies that the sum also approaches 0: t∗(ei, S) =

∑
xj∈π M̂I(xj , ei) → 0.

E PROPOSITION PROOFS

E.1 PROOF OF PROPOSITION 3.5

Proposition E.1. Given the vertices of a DAG G generated by an ANM, infinite data, a consistent nonparametric regression
method, and a perfect independence test, Algorithm 1 returns the correct set of root vertices.

Proof. By Definition 3.1, Definition 3.2, Definition 3.3, and Lemma 3.1, Lemma 3.2, we have Stage 1 of Algorithm 1,
correctly identifies all VPs in graph G, eliminates all MRDs to obtain V ′, then identifies all roots with no SRDs to obtain
V ′′, a set that contains only SRDs and roots. By the Regression-Identification test (Definition 3.4), a superset of roots
W ⊆ V ′′ is identified, and by Lemma 3.3 Stage 2 identifies all roots ∈ V ′′ by pruning nonroots from W . Therefore, Root
ID (Algorithm 1) correctly returns all roots in G.

E.2 PROOF OF PROPOSITION 4.4

Proposition E.2 (Correctness of Sort Finder). Given the vertices of a DAG G generated by an ANM, the roots in G, infinite
data, a consistent nonparametric regression method, and a perfect independence test, Algorithm 2 returns a valid sort π.

Proof. Note that the roots of graph G are provided as input to Sort ID. Therefore, π is initialized with the roots.

We now induct on the length of π to show that Sort ID recovers a correct topological sort of vertices in G.

Base Iterations (1, 2)

1. Suppose there are m roots identified by Root ID. Then, m out of d vertices have been correctly sorted into π.

2. Note that in Stage 1, Sort Finder uses Lemma to prune the unsorted vertices U to obtain U ′, which contains only NDs
and VLCs. Then, by Lemma 4.4, a VLC x∗ is selected using the test statistic t∗. Therefore, when x∗ is added to π, π is
still a correct topological sort.

Iteration k − 1, Inductive Assumption We have correctly sorted k − 1 vertices of G into π.

1. Note that in Stage 1, Sort Finder uses Lemma to prune the unsorted vertices U to obtain U ′, which contains only NDs
and VLCs. Then, by Lemma 4.4, a VLC x∗ is selected using the test statistic t∗. Therefore, when x∗ is added to π, π is
still a correct topological sort.

Iteration k−1 Inductive Assumption is satisfied for iteration k, therefore we recover a valid topological sort π from |π| = m
to k. Thus, for a DAG with d vertices, Sort ID correctly recovers the full topological sort when provided the roots.

F THEOREM PROOFS

F.1 PROOF OF THEOREM 3.6

Theorem 3.6. Given a DAG G = (V,E) under an ANM, let M ⊆ V and R ⊆ V be the sets of MRDs and roots in G,
respectively. Let cAlg1

max be the max covariate set size in nonparametric regressions in Algorithm 1 required to recover roots,
and similarly cDirectLiNGAM

max , cNHTS
max , cNoGAM

max , cRESIT
max . If the ANM is linear, then cAlg1

max = cDirectLiNGAM
max = 1. If the ANM

is nonlinear, Then, cAlg1
max = 2, cNHTS

max = maxxi∈M (An(xi) ∩R, 0), and cRESIT
max = cNoGAM

max = d− 2.

This implies that cAlg1
max < cRESIT

max = cNoGAM
max , and when M ̸= ∅, cAlg1

max ≤ cNHTS
max .

Proof. Suppose the ANM is linear. Then, in Stage 2 of Root ID, after running pairwise univariate regression, roots are found
to be in An() relation to all vertices they are dependent on, and are immediately identified. No bivariate regressions take
place. For DirectLiNGAM, only univariate regressions are used at any stage in the method, so the maximum conditioning
set size is 1.

In Root ID, nonparametric regression is used in Stage 2 to identify the root superset W . These regressions are either pairwise
or bivariate; thus, the upper bound on the covariate set size is 2.

Suppose the ANM is nonlinear. Then in Stage 2 of Root ID, bivariate regressions may be used, rendering the max covariate
set size 2. In Stage 2 of the root-finding procedure of NHTS, regressions are run where xj is regressed on xi and all
xk ∈ Pij = {xk ∈ V : xk ⊥⊥ xi, xk ̸⊥⊥ xj}. We note that for xj that is an MRD, Pij is nonempty when xi is a root
ancestor of xj : in particular, Pij contains all other root ancestors of xj . Therefore, NHTS requires multivariate regression
whenever the graph contains MRDs; additionally, the size the largest multivariate regression is Pij , which is bounded below
by maxxi∈M (An(xi) ∩R, 0).

The results for RESIT and NoGAM follow from Theorem 4.7.

F.2 PROOF OF THEOREM 4.5

Theorem 4.5 (LoSAM Correctness). Given the vertices of a DAG G generated by an ANM, infinite data, a consistent
nonparametric regression method, and a perfect independence test, Algorithm 3 returns a valid topological sort π.

Proof. The correctness of Algorithm 1 follows from Proposition 3.5, so the correct set of roots is returned. Then, it follows
from Proposition 4.4 that when Algorithm 2 is given the roots it correctly returns a valid topological ordering π.

F.3 PROOF OF THEOREM 4.6

Theorem 4.6 (LoSAM Runtime). Given n samples generated from a d-dimensional DAG G under an ANM, the worst-case
time complexity of Algorithm 3 is O(d3n2).

Proof. We first find the runtime of Algorithm 1, then find the runtime of Algorithm 2.
Part 1: Root Finder
In Stage 1, Root ID first runs at most O(d2) marginal independence tests that each have O(n2) complexity. Then, to
identify all VPs and prune MRDs, every triplet of vertices is checked, which has worst case O(d3) complexity. In Stage 2,
at most, O(d2) pairwise nonparametric regressions are run, each with O(dn log(n)) complexity. Therefore, Root ID has
O(d3n log(n) + d2n2) time complexity.
Part 2: Sort Finder
In the worst case of a fully connected graph, there are O(d) iterations of the Sort ID algorithm. In each iteration LoSAM
runs at most O(d2) nonparametric mutual information tests, each of which has O(n2) time complexity. Therefore, Sort ID
has worst case O(d3n2) time complexity.
Overall Time Complexity
LoSAM (Algorithm 3) has an overall time complexity of O(d3n2), due mainly to the time complexity of Sort ID.

F.4 PROOF OF THEOREM 4.7

Theorem 4.7 (LoSAM Efficiency). Consider a fully connected DAG G = (V,E) with ANM. Let d := |V |. Let nLoSAM
k be

the number of multivariate nonparametric regressions with covariate set size k ∈ [d− 2] run by LoSAM when sorting V ; we
similarly define nNHTS

k , nRESIT
k and nNoGAM

k respectively. Then, nLoSAM
k = nNHTS

k = d− k, and nRESIT
k = nNoGAM

k =
k + 1. This implies that for all k > d

2 , nLoSAM
k = nNHTS

k < nRESIT
k = nNoGAM

k .

Proof. Results regarding NHTS, RESIT and NoGAM follow from Theorem 4.7 in Hiremath et al. [2024]. In the case of
a fully directed graph, the Root Finder stage in LoSAM runs no multivariate regressions, as only the true root vertex is
identified as a potential root. In the Sort Finder stage, LoSAM regresses each unsorted vertex onto all sorted vertices, finding
vertices with independent residuals. Therefore, the number of regressions run is equal to d minus the size of the covruate set.
THerefore, when the covariate set is k > d

2 , there are d− k regressions run.

G EXPERIMENTS

G.1 SYNTHETIC DATA GENERATION

Details on the synthetic DGP:

• We first generate a d-dimensional DAG according to a Erdos-Renyi model, with the average number of edges is either
d or 2d.

• Each variable xi in the DAG is generated according to an ANM, i.e. xi = fi(Pa(xi))+εi. Each mechanism fi is picked
independently. Function fi is linear with probability p and nonlinear with probability 1− p (p = 0, 0.25, 0.5, 0.75, 1).

• If fi is linear, then the coefficients of each variable in Pa(xi) are drawn from Uniform[−1.5,−0.5] with probability
1/2 or drawn from Uniform[0.5, 1.5] with probability 1/2.

• If fi is nonlinear, we follow recent related literature [Lippe et al., 2022, Ke et al., 2023] and parameterize fi as a
single-hidden-layer feedforward neural network with tanh activation. Specifically, for a variable xi with d parents, the
neural network takes the parent data xPa(i) ∈ Rd as input, applies a linear transformation with weights sampled from
Uniform[−5, 5] followed by a tanh nonlinearity, and outputs a scalar value using a second linear transformation with
weights also sampled from Uniform[−5, 5]. The number of hidden units is fixed to 10. The neural network weights are
initialized independently for each variable.

• Each εi is independently drawn from either a Uniform, Laplacian, or Gaussian distribution with mean zero and variance
1/12.

• We then process the data to ensure it is challenging enough (see Appendix G.2 for more details). We first standardize
the data to mean 0 and variance 1. We then check to see if the R2-sortability is not too high - if the R2-sortability is
above 0.75, we resample the data.

G.2 DATA PROCESSING

Synthetic Data Recent work have pointed out that simulated ANM often have statistical artifacts missing from real-world
data [Reisach et al., 2021, 2023], leaving their real-world applicability open to question; for example, Reisach et al. [2021]
develop Var-Sort, which sorts variables according to increasing variance and is performant on synthetic data that is not
standardized. Additionally, Reisach et al. [2023] develop a scale-invariant heuristic method R2-Sort by sorting variables
according to increasing coefficient of determination R2; they find that when synthetic data is naively generated it tends to
have high R2-sortability, while the prevalence of high R2-sortability in real data is unknown.

To alleviate concern that our data is gameable by Var-Sort, we standardize all data to zero mean and unit variance. However,
processing data to be challenging for R2-sort is more difficult: Reisach et al. [2023] explain how the R2 coefficients depend
on the graph structure, noise variances, and edge weights of the underlying DAG in a complex manner, concluding that "one
cannot isolate the effect of individual parameter choices on R2-sortability, nor easily obtain the expected R2-sortability
when sampling ANMs given some parameter distributions, because the R2 values are determined by a complex interplay
between the different parameters." Therefore, we are unable to directly generate data with low R2; instead, to generate each
instance of data we randomly sample DAGs up to 100 times until a DAG with R2-sortability less than 0.75 is generated. We
were able to achieve lowered R2-sortability in all experiments except linear ANMs on dense graphs. These processing steps
prevent the heuristic algorithms Var-Sort [Reisach et al., 2021] and R2-Sort [Reisach et al., 2023] from leveraging arbitrary
features of simulated data to accurately recover a topological sort, and ensure that the data is sufficiently challenging for our
discovery algorithm and the baselines.

Sachs Data To generate the results in Table 2, we ran the methods on 30 different random samples from the Sachs Dataset
of size n = 300.

G.3 ATOP METRIC

Montagna et al. [2023c] introduce topological order divergence as a measure of the discrepancy between the estimated
topological ordering π and the adjacency matrix of the true causal graph A, expressed as:

Dtop(π,A) =

d∑
i=1

∑
j:πi>πj

Ai,j . (13)

They note that "if π is a correct topological order for A, then Dtop(π,A) = 0. Otherwise, Dtop(π,A) counts the number of
edges that cannot be recovered due to the choice of topological order."

Hiremath et al. [2024] introduce a normalized version of Dtop, Atop, expressed as:

Atop =
Dtop

|A|
, (14)

where |A| is the number of edges in graph A. If π is a correct topological order for A, then Atop(π,A) = 1. Otherwise,
Atop(π,A) equals the percentage of edges that cannot be recovered due to the choice of topological order.

G.4 DETAILS

Implementation details of LoSAM and all considered baselines.

• For regression tasks, LoSAM uses a RandomForestRegressor from the sklearn.ensemble package with the
following settings: n_estimators = 100, max_depth = 10, min_sample_split = 10, min_sample_leaf = 5, max_features =
"sqrt." LoSAM uses the kernel independence test (KCI) developed in [Zhang et al., 2011], with the estimator KCI from
the causal-learn package for independence tests, and the mutual information test developed in [Kraskov et al.,

2004], with the estimator from the npeet package (both with default settings). The cutoff for all independence tests is
0.01.

• All baselines were used with default hyperparameters encoded by the packages they were imported
from. CaPS and NHTS were imported from the github repositories associated with those papers
(https://github.com/E2real/CaPS/tree/main, https://github.com/Sujai1/hybrid-discovery). DirectLiNGAM and RESIT
were imported from the lingam package. SCORE, NoGAM, and CAM were imported from the DoDiscover
package. VarSort and Randsort were implemented by hand. The R2-sortability metric was imported from the
CausalDisco package. Please see the supplemental code to find the exact code used to run each baseline.

All experiments were conducted in python; experiments involving CaPS were conducted on an Apple M2 Pro Chip, 16 Gb
of RAM, with no parallelization, while experiments with all other methods were conducted on a r6a.metal EC2 instance
with 192vCPUs, 1536 GiB memory.

G.5 ADDITIONAL EXPERIMENTAL RESULTS

G.5.1 DENSE GRAPHS

Experimental results for dense graphs (ER2).

Figure 6: Performance of LoSAM across diff. proportion of linear mechanism on dense ER2 data; uniform (top) and
laplacian noise (bottom).

Figure 7: Performance of LoSAM on dense ER2 synthetic data with 50% proportion of linear mechanisms. Top row: uniform
noise. Bottom row: Laplace noise.

G.5.2 HIGH-DIMENSIONAL GRAPHS

We evaluate how LoSAM’s performance metrics evolve in high-dimensional settings (we omit other baselines due to
computational cost). Results show LoSAM remains effective as the complexity of the data increases, though performance
declines as d increases with fixed n – an expected consequence of fixed n in high dimensions. This degradation occurs
because the same n = 2000 samples become increasingly sparse as d grows, which will reduce estimation accuracy for any
method.

Figure 8: Performance of LoSAM on ER1 graph with uniform noise and linear proportion = 0.5, across diff. dimensionalities.

G.5.3 NONLINEAR GAUSSIAN

Figure 9: Performance of LoSAM across all DGMs; uniform noise (left) and laplacian noise (right).

Experimental results for nonlinear gaussian ANMs.

G.5.4 SENSITIVITY TO ESTIMATION ERROR

Figure 10: Performance of LoSAM on ER1 graph with uniform noise, d = 10, n = 300 across all DGMs, with different
regression estimators.

We evaluate LoSAM variants with different regression estimators (all taken from the Sklearn package):

1. LoSAM: RandomForestRegressor.

2. LoSAM_KRR_Poly4: Kernel Ridge Regression (polynomial kernel, degree 4).

3. LoSAM_KRR_Poly8: Kernel Ridge Regression (polynomial kernel, degree 8).

4. LoSAM_KRR_RBF: Kernel Ridge Regression (RBF kernel).

Hyperparameters for each estimator:

1. LoSAM: n_estimators = 100, max_depth = 10, min_sample_split = 10, min_sample_leaf = 5, max_features = "sqrt".

2. LoSAM_KRR_Poly4: kernel = "poly", degree = 4, alpha =0.1, coef0=1.

3. LoSAM_KRR_Poly8: kernel = "poly", degree = 8, alpha =0.1, coef0=1.

4. LoSAM_KRR_RBF: kernel = "rbf", alpha =0.1, gamma = 0.01.

G.5.5 COMAPARISON TO OPTIMIZATION-BASED ANM METHOD

Figure 11: Performance of LoSAM and DagmaLinear on ER1 graph with uniform noise, d = 10, n = 300 across all DGMs.

We evaluate LoSAM against a linear optimization-based method (implementation from DAGMA package, hyperparameters
taken from Appendix C.1.1. of Bello et al. 2022). Results show that LoSAM’s performance is superior to this optimization-
based ANM method.

G.6 RUNTIME RESULTS

G.6.1 SPARSE

The runtime results for Figure 3

Linear Proportion

Methods 0 0.25 0.5 0.75 1

LoSAM 8.495± 1.998 8.853± 2.022 9.606± 2.034 9.818± 2.214 8.634± 1.529

CAPS 8.753± 0.228 8.589± 0.295 8.849± 0.281 8.877± 0.486 9.273± 0.414

NHTS 38.962± 12.904 42.804± 15.097 45.760± 19.363 57.838± 12.157 39.070± 11.562

DLiNGAM 3.301± 0.983 3.251± 1.095 3.737± 1.160 4.004± 1.592 4.152± 1.432

RESIT 36.666± 1.848 35.099± 1.676 37.113± 2.322 35.920± 2.623 33.576± 2.350

SCORE 9.717± 8.122 7.766± 26.275 11.759± 16.300 13.039± 27.730 17.037± 33.070

NoGAM 14.205± 12.660 14.176± 9.061 21.131± 14.918 34.412± 35.567 42.827± 49.857

CAM 37.760± 5.892 39.825± 5.133 39.192± 6.005 43.425± 6.491 38.608± 9.230

RandSort 2.503± 0.812 2.556± 1.103 2.499± 0.896 3.150± 1.360 3.102± 1.373

VarSort 2.923± 0.806 2.528± 0.961 2.254± 0.695 2.455± 1.077 2.841± 1.116

Table 3: Runtime results for ER1 graphs and Uniform noise.

Linear Proportion

Methods 0 0.25 0.5 0.75 1

LoSAM 9.049± 1.802 9.564± 2.945 9.963± 1.965 9.708± 2.601 10.650± 2.108

CAPS 8.851± 0.275 8.915± 0.534 9.434± 0.363 9.522± 0.682 9.290± 0.408

NHTS 31.039± 6.179 29.860± 9.266 39.188± 12.381 38.780± 13.329 44.217± 16.933

DLiNGAM 2.910± 0.880 3.263± 1.177 3.320± 1.106 4.450± 1.212 4.673± 1.320

RESIT 36.100± 1.195 36.212± 2.022 34.985± 1.477 36.036± 2.705 36.697± 2.106

SCORE 9.117± 25.930 10.183± 19.615 8.483± 30.603 12.368± 18.493 34.701± 24.086

NoGAM 16.238± 24.006 9.448± 14.069 12.992± 27.836 13.347± 13.847 26.202± 19.485

CAM 41.502± 13.920 40.390± 9.508 38.531± 11.565 37.154± 4.340 39.573± 13.534

RandSort 2.632± 2.123 2.535± 1.557 2.306± 1.526 2.649± 0.796 2.757± 1.124

VarSort 2.777± 1.965 2.859± 1.317 2.225± 0.643 2.593± 0.689 2.532± 1.167

Table 4: Runtime results for ER1 graphs and Laplace noise.

G.6.2 DENSE

The runtime results for Figure 6.

Linear Proportion

Methods 0 0.25 0.5 0.75 1

LoSAM 12.203± 2.274 13.083± 8.218 12.951± 5.856 14.761± 4.445 14.646± 6.186

CAPS 8.345± 0.195 8.551± 0.256 8.714± 0.244 8.177± 0.145 8.196± 0.260

NHTS 68.842± 10.248 72.542± 8.703 88.527± 10.292 84.519± 10.007 67.167± 6.453

DLiNGAM 4.461± 1.220 4.080± 1.903 5.185± 1.172 5.599± 1.518 4.602± 1.371

RESIT 35.534± 3.293 35.021± 7.270 36.113± 4.412 36.214± 5.124 35.061± 5.673

SCORE 103.090± 66.855 138.517± 45.652 113.100± 64.391 115.136± 61.357 151.977± 15.391

NoGAM 83.755± 25.638 93.860± 18.106 57.771± 24.034 60.016± 35.062 108.342± 14.460

CAM 38.067± 37.486 36.290± 26.036 36.541± 32.798 37.179± 39.518 40.331± 6.242

RandSort 3.012± 1.442 2.831± 0.785 3.410± 3.181 2.618± 3.355 3.579± 0.945

VarSort 2.524± 1.168 2.644± 0.904 2.996± 3.431 2.495± 2.434 3.163± 1.066

Table 5: Results for ER1 graphs and Uniform noise.

Linear Proportion

Methods 0 0.25 0.5 0.75 1

LoSAM 19.513± 10.874 15.102± 7.256 17.479± 11.748 15.625± 10.218 17.261± 3.968

CAPS 8.554± 0.212 8.281± 0.263 8.137± 0.254 8.392± 0.224 8.296± 0.187

NHTS 41.759± 4.190 54.444± 11.174 67.633± 14.289 75.535± 11.840 94.058± 12.138

DLiNGAM 4.238± 1.499 4.866± 1.486 5.100± 1.208 4.828± 1.667 5.094± 1.194

RESIT 36.790± 2.213 36.638± 6.152 39.732± 2.838 36.152± 4.840 39.040± 4.453

SCORE 136.591± 66.444 142.725± 63.160 23.886± 42.393 41.719± 56.895 82.003± 67.079

NoGAM 85.983± 30.039 70.836± 28.574 31.275± 17.726 62.495± 32.673 68.000± 45.448

CAM 34.128± 38.388 37.716± 24.377 50.529± 30.624 48.106± 32.871 35.543± 22.036

RandSort 3.241± 2.999 3.687± 1.932 3.160± 3.058 2.868± 3.216 3.082± 1.783

VarSort 2.849± 2.216 3.393± 1.501 2.393± 3.510 2.910± 1.249 2.836± 1.105

Table 6: Runtime results for ER1 graphs and Laplace noise.

G.6.3 HIGH DIMENSIONAL

The runtime results for Figure 8.

d Value

Methods 10 15 20 25

LoSAM 9.606± 2.034 34.217± 12.832 70.256± 28.749 94.054± 25.865

DLiNGAM 3.737± 1.160 19.336± 4.231 48.557± 24.781 55.616± 7.221

RandSort 2.499± 0.896 18.547± 2.984 39.321± 11.026 53.576± 3.136

VarSort 2.254± 0.695 17.907± 4.758 32.088± 12.803 52.063± 7.968

Table 7: Runtime results for different d values.

G.6.4 NONLINEAR GAUSSIAN

The runtime results for Figure 9.

Methods 0

LoSAM 8.228± 2.200

CAPS 9.149± 0.337

NHTS 44.242± 13.680

DLiNGAM 3.526± 0.923

RESIT 35.377± 1.334

SCORE 16.902± 30.607

NoGAM 12.432± 12.605

CAM 39.349± 10.694

RandSort 3.330± 2.406

VarSort 3.085± 2.322

Table 8: Results for ER1 graphs and Gaussian noise with linear proportion 0.

H ALGORITHM WALKTHROUGH

In this section we walk-through LoSAM on two different examplary DAGs.

H.1 LOSAM

Example 1:

Figure 12: LoSAM walkthrough on example DAG.

Subfigure 1 of Figure 12 illustrates the example causal graph from which data is generated. Now, we walk through how
LoSAM would obtain a topological sort of this DAG. In Stage 1 Root Finder, xn, xh are identified as MRDs and are pruned
(subfigure 2). Then, xi, xj are recovered as roots, as they are independent of xk, xm, xp. Then, in Stage 2, xm, xp are pruned
as they are not identified as ancestors of any vertices, while xk is (subfigure 3). We therefore recover xi, xj , xk as roots.
Subfigure 4 illustrates the decomposition of the graph into roots (xi, xj , xk), VLCs (xn, xm), a ND xh and an LD (xp). In
Stage 1 of Sort Finder, xp is pruned from U = {xn, xm, xp, xh} as it as an LD. Then, xn is determined as a VLC, as a
minimizer of the test statistic t∗ (subfigure 5), and is sorted. This is again repeated 3 more times to sort all of U (subfigure
6); therefore, LoSAM correctly obtains a valid sort π.

Example 2:
Consider a DAG G with five vertices x1, x2, x3, x4, x5, where x1 → x3, x2 → x3, x1 → x4, x4 → x5. Suppose the
functional relationships are given by x1 = ε1, x2 = ε2, x3 = f3(x1, x2) + ε3, x4 = f4(x1) + ε4, x5 = f5(x4) + ε5, where
all fi are nonlinear.

In stage 1 of the root-finding subroutine of LoSAM (Algorithm 1), we run pairwise independence tests between all vertices.
We find that x3 induces a VP between x1, x2; this means that x3 is an MRD and so we prune it. We then note that x2 is
independent of all non-pruned vertices, and so we classify it as a root. In stage 2, we run pairwise nonparametric regression
between the remaining vertices x1, x4, x5. We note that regressing x4 onto x1 yields an independent residual, and regressing
x5 onto x4 yields an independent residual. Therefore, by Definition 3.4, x1 is identified ∈ An(x4), and x4 is identified
∈ An(x5). As x5 is not identified as the ancestor of any variable, it cannot be a root and is pruned. Note that, although x4 is
identified ∈ An(x5), it is identified as a descendant of x1 – therefore, x4 cannot be a root and is pruned. We are left with x1

being the other root in this DAG.

I CLARIFYING EXPLANATIONS

I.1 NHTS FAILURE MODE

LoSAM shares some similiarities with NHTS, as they both utilize a local search approach and regression-based tests in their
topological ordering procedure. However, LoSAM differs fundamentally from NHTS on a conceptual basis.

NHTS defines a set of local substructures (PP1, PP2, PP3, PP4 relations) that characterize the space of possible parent-child
relationships. In particular it finds that, under nonlinear relationships, only the roots (+ a small class of nonroots) satisfy
PP2 relations and can be identified through regression.To find the rest of the ordering, NHTS exploits the fact that, under
nonlinear relationships, only vertices in the next unknown topological layer (which are only a children of the sorted vertices)
will yield an independent residual after regression onto the sorted vertices.

In contrast, LoSAM defines a set of local causal substructures (SRDs, MRDs, VP, VLC, ND, LD) that are defined in terms

of ancestor-descendant relationships. This difference results in LoSAM being able to handle mixed mechanism ANM with
fewer high dimensional regressions.

Identifiability Issues NHTS’s reliance on local structures that are defined in terms of parent-child relations limits the method
in terms of identifiability: as shown by Shimizu et al. 2011, linear mechanisms can mean that even ancestor-descendant
relationships can yield independent residuals. We provide Example 1 below to demonstrate that the residual independence
relations differ between the same ancestor-descendant pairs when the underlying functions are linear or nonlinear, and
thus NHTS fails to accurately recover the correct topological sort. In contrast, it follows from Theorem 4.7 that LoSAM
accurately recovers the topological sort in Example 1.

Sample Efficiency Issues NHTS’s reliance on the PP2 framework limits the method in terms of sample efficiency - by
leveraging parent-child relations, this requires that all parents are included as covariates in a regression to recover an
independent residual. This can lead to high-dimensional regressions in the root finding stage. We provide Example 2 below
to demonstrate that, even when the underlying mechanism is nonlinear, the PP2-framework approach of NHTS requires
high-dimensional regressions to recover root vertics. In contrast, it follows from Theorem 3.6 that LoSAM recovers the
roots with no high-dimensional regressions.

Example 1 Consider a DAG G with three vertices x1, x2, x3, where x1 → x2, x2 → x3. Suppose NHTS has correctly
identified the root vertex x1.

Suppose the functional causal relationships are nonlinear, given by x1 = ε1, x2 = x2
1 + ε2, x3 = x1x2 + ε3. Then, when

NHTS tries to determine the next variable in the sort, it will regress both x3 and x2 onto x1, and find that x1 is independent
of the residual only in one regression; thus, NHTS can distinguish between the two and will accurately sort x2 before x3.

Suppose the functional causal relationships are linear, given by x1 = ε1, x2 = x1 + ε2, x3 = x2 + ε3, where the εis are
mutually independent noise variables. Then, when NHTS tries to determine the next variable in the sort, it will regress
both x3 and x2 onto x1, and find that x1 is independent of the residual in both regressions. Thus, NHTS cannot distinguish
between the two, and will fail to accurately sort them. Residual independence from naively running regressions is insufficient
to handle both linear and nonlinear mechanisms.

Example 2 Consider a DAG G with 100 vertices x1, x2, . . . , x99, x100, where x1, . . . , x99 are all roots, and are all parents
of x100 (x1 → x100, x2 → x100, . . . , x99 → x100).

Suppose the functional causal relationships are nonlinear, given by x1 = ε1, x2 = ε2, . . . , x99 = ε99, x100 = tanh(x1 ×
x2 . . . × x99) + ε100. Then, when NHTS tries to determine that x100 is in PP2 relation any of other vertices, to obtain
an independent residual it will need to regress x100 onto all 99 other vertices! Therefore, the PP2 framework approach is
incredibly sample inefficient, tending towards using high-dimensional regressions as the number of roots grows large.

I.2 COMPARISON OF V-PATTERNS AND V-STRUCTURES

We note that v-structures do not always correspond to the statistical constraints required to be a VP, in the sense that xi, xj

may be conditionally independent, rather than marginally independent as required in our definition of VP. For example,
in a DAG where xi → xj , xi → xk, xj → xp, xk → xp, xp → xm, xj , xk, xp form a v-structure but not a VP. However,
v-structures are also not always more general than VPs, as in a DAG where xj → xp, xk → xp, xp → xm, xj , xk, xm form
a VP but not a v-structure. Therefore, it is accurate to characterize the statistical constraints of v-structures and VPs as
distinct but related concepts that overlap when either a v-structure has marginally independent parent vertices or when a
triplet pair is a VP and has only parent-child relations.

J LIMITATIONS

We note that the standard approach in the causal discovery literature to assess a method’s finite sample performance is to
evaluate the method on synthetically generated data [Reisach et al., 2021]. This is because causal ground truth is incredibly
rare, as it requires real-world experiments [Faller et al., 2024a]; these experiments can expensive, potentially unethical,
but most importantly are often infeasible or ill defined [Spirtes and Scheines, 2004]. This lack of substantial real-world
benchmark datasets is important because key assumptions that are used to generate synthetic data, which discovery methods
rely on (such as additive noise, faithfulness, and causal sufficiency), may be violated in practice [Faller et al., 2024a].
Therefore we caution that experimental results on synthetic data should be interpreted as a demonstration of a method’s
theoretical performance on somewhat idealized data, which may not reflect measurements from real-world settings where

assumptions critical to the method are not met.

K ASSET INFORMATION

DirectLiNGAM and RESIT were imported from the lingam package. R2−sort was imported from the CausalDisco
package. NHTS and LoSAM were implemented using the kernel ridge regression function from the Sklearn package,
used kernel-based independence tests from the causal-learn package, and a mutual information estimator from the
npeet package. All assets used have a CC-BY 4.0 license.

	Introduction
	Related Works

	Problem Setup
	Root Finding
	Sort-Finding
	Theoretical Guarantees

	Experimental Results
	NOTATION
	GRAPH TERMINOLOGY
	ASSUMPTIONS
	Causal Markov
	Acyclicity
	Faithfulness
	Identifiability of ANM
	ASSUMPTIONS OF CAPS ON NOISE DISTRIBUTION

	LEMMA PROOFS
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4

	PROPOSITION PROOFS
	Proof of Proposition 3.5
	Proof of Proposition 4.4

	THEOREM PROOFS
	Proof of Theorem 3.6
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	EXPERIMENTS
	SYNTHETIC DATA GENERATION
	DATA PROCESSING
	ATOP METRIC
	DETAILS
	ADDITIONAL EXPERIMENTAL RESULTS
	DENSE GRAPHS
	HIGH-DIMENSIONAL GRAPHS
	NONLINEAR GAUSSIAN
	SENSITIVITY TO ESTIMATION ERROR
	COMAPARISON TO OPTIMIZATION-BASED ANM METHOD

	RUNTIME RESULTS
	SPARSE
	DENSE
	HIGH DIMENSIONAL
	NONLINEAR GAUSSIAN

	ALGORITHM WALKTHROUGH
	LoSAM

	CLARIFYING EXPLANATIONS
	NHTS FAILURE MODE
	COMPARISON OF V-PATTERNS AND V-STRUCTURES

	LIMITATIONS
	ASSET INFORMATION

