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Abstract

This study tackles literal to metaphorical sen-001
tence generation, presenting a framework that002
can potentially lead to the production of an infi-003
nite number of new metaphors. To achieve004
this goal, we propose a complete workflow005
that tackles metaphorical sentence classifica-006
tion and metaphor reconstruction. Unlike simi-007
lar research works regarding metaphor genera-008
tion, our approach does not require any custom009
or closed-source model, hence with this work010
we introduce a complete literal to metaphorical011
open-source model. The obtained results show012
that 24%, 31% and 56% of the (originally lit-013
eral) sentences are turned to metaphorical by014
changing a single noun, adjective or verb of015
the sentence, respectively. Human evaluation016
shows that our constructed metaphors are con-017
sidered more fluent, creative and metaphorical018
than figurative statements created by a real per-019
son. Furthermore, by using our artificial data020
to increase the training size of a metaphorical021
sentence classification dataset, we register an022
improvement of 3% over the baseline.023

1 Introduction024

Figurative language is an ambiguous language that025

often contains mapping of concepts from one do-026

main to another. In order to better understand027

metaphors and their complexity, as well as the chal-028

lenges that they can bring to natural language pro-029

cessing tasks, it is important to look at practical030

examples and at the related core literature works.031

Consider, for instance, the following metaphorical032

sentence: The wheels of Stalin’s regime were well-033

oiled and already turning, where a political sys-034

tem is viewed in terms of a mechanism which can035

function, break, have wheels, etc. This association036

allows us to transfer knowledge from the domain037

of mechanisms to that of political systems. There-038

fore, political systems are thought about in terms039

of mechanisms, and discussed through the mecha-040

nism terminology, leading to multiple metaphorical041

expressions. This particular view of metaphors is 042

known as Conceptual Metaphor Theory, and it was 043

first introduced by Lakoff and Johnson (1980) in 044

1980. There are different types of metaphors, such 045

as the is-a type (e.g., That lawyer is a shark), the 046

of type (e.g., Child of evil), or verb-based (e.g., He 047

cut me off, yet still I carried his name). 048

Some computational approaches among the ones 049

that have been presented in literature have focused 050

on metaphor detection and generation. Detection 051

comprises metaphor identification (Steen et al., 052

2010), where approaches identify metaphor-related 053

words in the text (Fass, 1997; Birke and Sarkar, 054

2006; Shutova et al., 2010), and interpretation, 055

which employs paraphrasing (Tong et al., 2021). 056

Metaphor generation concerns the task of creating 057

novel metaphorical sentences, for example by tak- 058

ing literal ones and transforming them in a way 059

that makes them acquire a figurative meaning. This 060

task is useful for poetry generation (Van de Cruys, 061

2020) or even as a new source to augment datasets 062

used to train metaphor detectors and interpreters. 063

To the best of the authors’ knowledge, there are 064

no studies in literature that try to simultaneously ad- 065

dress metaphor detection and generation in an end- 066

to-end setting. Furthermore, all existing metaphor 067

generators (Chakrabarty et al., 2021; Yu and Wan, 068

2019; Tong et al., 2021; Brooks and Youssef, 2020; 069

Stowe et al., 2021) depend on external and some- 070

times publicly unavailable systems that go beyond 071

standard fine-tuning procedures. By contrast, we 072

present the first literal-to-metaphorical text-to-text 073

framework, called MDG, that is able to generate 074

novel metaphorical sentences by replacing differ- 075

ent types of part-of-speech tokens, not only verbs 076

(Stowe et al., 2021; Chakrabarty et al., 2021; Yu 077

and Wan, 2019), but also nouns and adjectives (ex- 078

amples shown in Fig. 1). Human evaluation showed 079

that metaphors created by MDG were found to be 080

more fluent, creative and metaphorical than figura- 081

tive statements created by a native speaker. 082

1



Figure 1: Depiction of literal sentences turned to metaphorical by our framework

083

2 Related Work084

The majority of neural models treat metaphor085

identification as a sequence labelling task, cre-086

ating an output that consists of a sequence of la-087

bels (metaphorical or not) for a sentence or a se-088

quence of input words (Bizzoni and Ghanimifard,089

2018; Chen et al., 2020; Dankers et al., 2020; Gao090

et al., 2018; Gong et al., 2020; Mao et al., 2019;091

Mykowiecka et al., 2018; Pramanick et al., 2018;092

Su et al., 2020; Wu et al., 2018). The first sequence093

labelling approaches usually represented an input094

sentence as a concatenation of pre-trained word em-095

beddings and generated a context-specific sentence096

embedding exploiting bidirectional long short-term097

memory, or BiLSTM (Dankers et al., 2020; Gao098

et al., 2018; Mykowiecka et al., 2018; Pramanick099

et al., 2018; Bizzoni and Ghanimifard, 2018).100

Numerous BiLSTM systems take advantage of101

both contextualised and pre-trained embeddings in102

the classification layer (Mao et al., 2019; Swarnkar103

and Singh, 2018). In particular, the Di-LSTM Con-104

trast system (Swarnkar and Singh, 2018) encodes105

the left and right side context of a target word106

through forward and backward LSTMs. The clas-107

sification is based on a concatenation of the tar-108

get word representation and its difference with the109

encoded context (Tong et al., 2021). Mao et al.110

(2019) combined GloVe (Pennington et al., 2014)111

and BiLSTM hidden states for sequence labelling.112

Static embeddings like GloVe (Pennington et al.,113

2014) do not change with the context once been114

learned. Despite their efficiency, the static nature115

of these embeddings makes it difficult to cope with116

the polysemy problem (crucial when dealing with117

metaphors), since the meaning of a polysemous118

word depends on its context (Wang et al., 2020).119

To deal with the problem of polysemy, a num-120

ber of approaches have been recently proposed121

to learn the representation of words among their122

context. For example, in the following two sen-123

tences: “Apple sells phones” and “I eat an apple”,124

dynamic embeddings (Wang et al., 2020) will rep-125

resent “apple” differently according to the context, 126

while static embeddings can not distinguish the 127

semantic difference between the two references 128

of “apple”. Dynamic embeddings extracted from 129

pre-trained language models (Devlin et al., 2019; 130

McCann et al., 2018; Peters et al., 2018; Radford 131

and Sutskever, 2018) have demonstrated dramatic 132

superiority over their static predecessors in vari- 133

ous NLP tasks, and also in metaphor detection and 134

generation approaches. 135

Recent related work (Chen et al., 2020; Dankers 136

et al., 2020; Gong et al., 2020) adopts a fine-tuning 137

approach, employing pre-trained contextual lan- 138

guage models such as Bidirectional Encoder Repre- 139

sentations from Transformers (Devlin et al., 2019) 140

(BERT (Devlin et al., 2019) and RoBERTa (Zhuang 141

et al., 2021)), and taking advantage of the aforemen- 142

tioned dynamic embeddings (Wang et al., 2020). 143

For example, Dankers et al. (2020) fine-tuned a 144

BERT (Devlin et al., 2019) model, which gets a 145

discourse fragment as input. Hierarchical atten- 146

tion computes both token and sentence level at- 147

tention (Kobayashi et al., 2020) after the encoded 148

layers, leading to better results compared to those 149

obtained by applying general attention to all tokens. 150

Metaphor generation methods used in litera- 151

ture are usually based on obtaining novel figurative 152

sentences either by replacing verbs contained in 153

literal phrases (Chakrabarty et al., 2021; Yu and 154

Wan, 2019; Stowe et al., 2021), or exploiting syn- 155

tactic patterns that discriminate between creative 156

metaphorical expressions and non-metaphorical 157

ones (Brooks and Youssef, 2020). Table 1 presents 158

these works, but we also describe them in de- 159

tail below. Chakrabarty et al. (2021) generated 160

novel metaphoric sentences by taking literal ex- 161

pressions and replacing relevant verbs. Further- 162

more, new metaphors are obtained by transform- 163

ing metaphorical sentences from the Gutenberg 164

Poetry corpus (Jacobs, 2018) into their literal ver- 165

sion, through masked language modeling (Song 166

et al., 2019), and then using a sequence to se- 167

quence model finetuned on this parallel data to 168

generate new figurative expressions. Yu and Wan 169
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Table 1: Comparisons between MDG for metaphor generation and related works’ frameworks. Each column
indicates whether the related approach provides methods respectively for masked language modeling, metaphor
reconstruction, and/or extraction. The Self-sufficiency column indicates whether the related works’ approaches can
function relying only on public architectures, or whether they need customized models’ implementations. As it is
possible to see, MDG is the only one that addresses each one of the different topics highlighted in the columns
simultaneously, and which is also totally self-sufficient, relying only on Transformers models and architectures.

Related Work MLM Reconstruction Extraction Self-sufficiency
Chakrabarty et al. (2021) ✓ ✓

Yu and Wan (2019) ✓ ✓
Brooks and Youssef (2020) ✓

Stowe et al. (2021) ✓

MDG ✓ ✓ ✓ ✓

(2019) employed a neural approach to extract the170

metaphorical verbs from the sentences along with171

their metaphorical senses in an unsupervised way.172

Then, the same neural approach is exploited to train173

a neural language model from Wikipedia corpus.174

The novel metaphors are obtained by conveying175

the assigned metaphorical senses through a decod-176

ing algorithm. Stowe et al. (2021) obtained new177

metaphorical sentences by replacing relevant verbs178

in literal expressions and encoding conceptual map-179

pings (FrameNetbased embeddings - CM-LEX, and180

a custom seq-to-seq model - CM-BART) between181

cognitive domains. Brooks and Youssef (2020)182

trained an unsupervised LSTM model and used an183

inherent inference engine to create new metaphors.184

The novelty of these new metaphors is ensured185

by checking that none of the generated sentences186

match the training data, and that the identified syn-187

tactic patterns of metaphors were not present in the188

non-metaphorical data.189

MDG does not focus only on verbs nor does em-190

ploy language-specific syntactic patterns. It does191

not depend on models that need to be trained with192

pairs of metaphorical and literal sentences and it193

does not need any external system, such as COMET194

in Chakrabarty et al. (2021). Furthermore, it fully195

relies on publicly available Transformers-based lan-196

guage models, that do not require particular cus-197

tomizations, other than being fine-tuned on the198

right data. The similarities of MDG with the above199

mentioned studies comprise masked language mod-200

eling (Song et al., 2019), which is also employed201

by Chakrabarty et al. (2021), and reconstruction,202

used to identify specific words inside the sentences203

and to replace them with alternative ones, turning204

them into metaphors.205

Further information regarding recent advances206

and approaches in metaphor detection, processing207

and generation, can be found in Tong et al. (2021).208

3 The MDG Framework 209

210

MDG consists of different steps, from metaphor 211

detection to metaphor generation. Figure 2 depicts 212

the proposed workflow. Metaphorical sentence 213

classification is the task of classifying a sentence 214

as metaphorical or literal. We train text classi- 215

fiers on datasets comprising metaphorical and lit- 216

eral sentences. The classifier yields a probability 217

from 0 (literal) to 1 (metaphorical) and only the 218

correctly-predicted metaphorical sentences (true 219

positives) are passed to the next step of the frame- 220

work. Reconstruction, which follows, comprises 221

two procedures: extraction, for the detection of 222

the location of the metaphor within a metaphorical 223

sentence, and masked metaphor modeling for the 224

prediction of masked metaphors within metaphori- 225

cal sentences. After fine-tuning a masked language 226

model for the task, by masking metaphors, we can 227

then apply it on literal, instead of metaphorical 228

sentences, in order to turn a literal sentence into a 229

metaphorical one. 230

4 Empirical Evaluation 231

4.1 Metaphor Datasets 232

The three most common datasets used for tasks 233

related to metaphoricity are MOH-X, TroFi, and 234

TroFi-X (Table 2). We describe each one below. 235

MOH-X (Mohammad et al., 2016) is derived from 236

the subset of the MOH dataset that was used by 237

Shutova et al. (2016). Mohammad et al. (2016) an- 238

notated different verbs for metaphoricity. They ex- 239

tracted verbs that had between three and ten senses 240

in WordNet (Mao et al., 2018) along with their 241

glosses. The verbs were annotated for metaphoric- 242

ity with the help of crowd-sourcing. Ten annota- 243

tors were recruited to assess each sentence, and 244

only those verbs that were annotated as positive 245
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Figure 2: Visual representation of MDG. The input consists of a set of unlabelled sentences (IL) and a set of
sentences that are labelled as metaphorical or literal (IM/L). The latter is used to train a classifier (CLFM/L),
which, after being fine-tuned on masked metaphorical-token modeling (MMM), is used to substitute randomly
masked tokens of the IL sentences in order to turn them into metaphorical. CLFM/L filters out any sentences that
failed to become metaphorical and the remaining ones are returned by the system.

for metaphoricity by at least 70% of the annotators246

were selected in the end. The final dataset consisted247

of 647 verb-noun pairs: 316 metaphorical, and 331248

literal.249

TroFi contains feature lists consisting of the250

stemmed nouns and verbs in a sentence, with251

target or seed words. It is named after TroFi252

(Trope Finder), a nearly unsupervised clustering253

method for separating literal and non-literal usages254

of verbs (Birke and Sarkar, 2006). For example,255

given the target verb pour, TroFi is able to clus-256

ter the sentence Custom demands that cognac be257

poured from a freshly opened bottle as literal, and258

the sentence Salsavand rap music pour out of the259

windows as nonliteral. The target set is built using260

the ‘88-‘89 Wall Street Journal Corpus 1 tagged261

using the Ratnaparkhi (2002) tagger and the Ban-262

galore and Joshi (1999) SuperTagger . The final263

dataset consisted of 3,737 sentences.264

TroFi-X is an alternative version of TroFi. It265

contains 1,444 sentences annotated not only with266

metaphorical verbs, but also with metaphorical267

nouns, pronouns and adjectives.268

5 Evaluation measures269

For the classification task, we employed Accuracy270

(i.e. the fraction of instances that were correctly271

classified), Precision (i.e., the number of instances272

that were correctly predicted as metaphorical to273

the number of instances that were predicted as274

metaphorical), Recall (i.e., the number of instances275

1https://catalog.ldc.upenn.edu/LDC2000T43

Table 2: Statistics of all the datasets employed in this
work. All datasets comprise English sentences. Size
is measured in sentences and POS shows the part of
speech of the metaphor.

Name Size POS
MOH-X 646 Noun/Verb
TROFI 3,737 Verb

TROFI-X 1,444 Noun/Verb/Adjective

correctly predicted as metaphorical to the number 276

of instances that should have been predicted as 277

metaphorical) and F1 (i.e., the harmonic mean of 278

Precision and Recall). For the reconstruction task, 279

we employed Accuracy (i.e., the ratio of sentences 280

that are correctly reconstructed/generated). 281

5.1 Methods 282

For the task of metaphorical sentence classification, 283

we employed Naive Bayes (Rish, 2001), Random 284

Forests (Fratello and Tagliaferri, 2019), KNN (Guo 285

et al., 2003), SVM (Evgeniou and Pontil, 2001), 286

Logistic Regression (Peng et al., 2002), MLP (Mar- 287

ius et al., 2009), BERT (Devlin et al., 2019), and 288

XLM-R (Conneau et al., 2020) models. 289

For the task of metaphor reconstruction, we used 290

data where the location of the metaphor in the sen- 291

tence is known. We then employed BART and T5 292

by removing the metaphorical token (known) and 293

asking the models to reconstruct the original sen- 294

tence. Also, we employed BERT and XLM-R, by 295

masking the metaphorical token and then perform- 296

ing in effect masked metaphor modeling (MMM) 297
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MOH-X TROFI TROFI-X
P R F1 Ac P R F1 Ac P R F1 Ac

BERT 73.91 80.55 79.45 76.92 39.82 91.21 55.44 41.98 66.50 63.08 65.58 69.17
BERT(FT) 88.11 94.07 91.86 91.74 72.00 64.24 67.77 72.08 70.18 69.85 70.53 74.91

XLM-R 63.53 72.22 69.33 64.62 58.58 59.46 64.94 74.60 58.98 60.00 63.93 69.66
XLM-R(FT) 88.57 86.11 87.32 86.15 95.86 93.92 94.88 95.99 92.42 93.85 93.13 93.79

NB 73.00 12.33 17.64 65.22 72.73 11.27 19.51 64.71 77.11 80.23 78.54 78.17
RF 61.90 81.25 70.27 65.62 67.50 38.03 48.65 69.52 71.22 87.31 78.66 79.43

KNN 65.00 81.25 72.22 68.75 63.29 70.42 66.67 73.26 78.58 81.26 80.09 80.19
SVM 66.67 37.50 48.00 59.38 69.11 76.26 72.43 74.32 77.15 65.38 70.62 77.39
LR 87.50 87.50 87.50 87.50 84.51 84.51 84.51 88.24 77.00 81.00 79.00 79.00

MLP 67.00 71.00 69.00 69.00 55.00 44.00 49.00 58.00 71.00 63.00 67.00 73.00

Table 3: All tested Classifiers and their respective results for the three metaphorical data sources. P, R, F1 and
Ac stand respectively for Precision, Recall, F1 Score and Accuracy. Along with BERT and XLM-R (base and
fine-tuned), we have, in order: NB - Naive Bayes; RF - Random Forest; KNN - K-nearest Neighbours; SVM -
Support Vector Machine; LR - Logistic Regression; MLP - Multi-Layer Perceptron Neural Network.

to reconstruct the sentence.298

5.2 Experimental Results299

Table 3 provides the results of the metaphorical300

sentence classifiers (see Section 5.1) on the three301

metaphorical data sources (see Section 4.1). XLM-302

R (fine-tuned) has the best Precision in all datasets.303

BERT (fine-tuned) achieves the best Recall on304

MOH-X, leading also to the best Accuracy and F1.305

Overall, BERT and XLM-R (fine-tuned) yield the306

best results. Naive Bayes, Random Forests, KNN,307

SVM and MLP performed much lower. However,308

it is worth noting that Logistic Regression, despite309

its simple nature, performed surprisingly well.310

Table 4 presents the accuracy in metaphor recon-311

struction on the metaphorical sentences that have312

been correctly classified as metaphorical (the green313

box in the middle, in Fig. 2) by the best-performing314

fine-tuned BERT and XLM-R (see Table 3). We315

employed T5 and BART, as well as two masked316

language models, BERT and XLM-R (Alfaro et al.,317

2019; Goyal et al., 2021), which have been fine-318

tuned by masking (known) metaphorical tokens of319

the metaphorical sentences. We refer to this pro-320

cess as Masked Metaphor Modeling (MMM; the321

red box on the right of Fig. 2). MMM with BERT322

was applied only on sentences correctly classified323

as metaphorical by BERT while MMM with XLM-324

R was applied on sentences correctly classified by325

XLM-R. T5 and BART were applied on both and326

results are shown in respective columns 4. In MOH-327

X, the accuracy scores for nouns and verbs show328

the percentage of correctly reconstructed metaphor-329

ical tokens (respectively nouns or verbs) inside330

the sentences, by the different reconstruction mod-331

els. TroFi sentences comprise only verb metaphors332

while TroFi-X sentences comprise three metaphori-333

cal tokens each; the first two, T1 and T2, can be any 334

part-of-speech tokens, while V can only be verb 335

metaphors.2 336

MMM with XLM-R is consistently better than 337

that with BERT. This is true also for MOH-X, 338

where BERT outperforms XLM-R for metaphorical 339

sentence classification (see Table 3), which means 340

that XLM-R is better in reconstruction. BART and 341

T5 are also overall better when metaphorical sen- 342

tence classification has been performed with XLM- 343

R. When focusing on results obtained using XLM- 344

R as the metaphorical sentence classifier, nouns are 345

more accurately reconstructed by BART on MOH- 346

X and TroFi-X (for T2). T5, which achieves a high 347

accuracy in all datasets in verb reconstruction, is 348

better than BART in TroFi and TroFi-X and only 349

slightly worse in MOH-X. When comparing MMM 350

with T5 and BART, the latter two seem to work bet- 351

ter across MOH-X and TroFi sentences. MMM 352

models, however, perform better on the first tokens 353

(T1) of TroFi-X sentences. 354

6 Discussion 355

In the classification step of MDG, we classified 356

sentences as metaphorical or literal. Metaphori- 357

cal sentences which were correctly classified, then, 358

were used in a reconstruction step. Here, metaphor- 359

ical tokens (known in the datasets) were masked 360

and recovered through extraction (T5, BART) and 361

Masked Metaphor Modeling (BERT, XLM-R). In a 362

final experiment, which we describe here, we used 363

2The following sentence taken from TroFi-X is given as an
example: Beyond that, conditions on board were so vile that “
the sailor was at greater risk eating his meals aboard than
fighting. ”. Here, risk is “token 1” (in this case, it is a noun),
meals is “token 2” (in this case, also a noun), and eating is
the verb token of the sentence (one of the three metaphorical
tokens in each TroFi-X sentence is always a verb).
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MOH-X TROFI TROFI-X
BERT XLM-R BERT XLM-R BERT XLM-R

N V N V V V T1 T2 V T1 T2 V
T5 80.65 93.55 83.87 96.77 95.38 96.92 77.14 82.86 88.57 68.57 85.71 97.14

BART 64.67 90.32 84.62 96.92 95.38 95.38 64.62 83.08 93.85 69.73 87.69 95.38
MMM(ft) 71.43 48.57 77.42 45.16 74.29 83.87 85.71 77.78 58.33 94.44 86.11 66.67

Table 4: Accuracy of T5, BART, and two MMMs (BERT, XLM-R) used to reconstruct metaphorical tokens on three
datasets. Only sentences classified correctly as metaphorical (by BERT and XLM-R sentence classifiers) are used.
Noun (N) and verb (V) accuracy scores indicate the percentage of correctly reconstructed metaphorical nouns and
verbs, respectively. TroFi-X sentences comprise three metaphorical tokens each. The first two, T1 and T2, can be of
any part-of-speech while V is always a verb. The best per column is shown in bold.

MDG to generate new metaphorical sentences, by364

altering literal sentences. The hypothesis is that if365

we mask a token from a literal sentence, the pre-366

diction of a MMM will be effectively turning the367

sentence to metaphorical.368

As literal sentences we used 2,000 sentences369

scraped from Wikipedia, related respectively to370

music (1,000 sentences) and technology (1,000 sen-371

tences) topics; and 1,000 sentences scraped from372

the Gutenberg Poetry Corpus (Jacobs, 2018), which373

comprises 3,085,117 lines of poetry extracted from374

hundreds of books. We applied the fine-tuned375

XLM-R classifier (Table 3) on these sentences and376

we applied the XLM-R-based MMM (Table 4) only377

on the sentences that were classified as literal by the378

aforementioned classifier. The resulted sentences379

are hypothesised to be metaphorical, hence we re-380

apply the same XLM-R classifier and we keep only381

sentences that were classified as metaphorical.382

Table 5 presents the ratio of originally literal sen-383

tences that have been (automatically) classified as384

metaphorical, after replacing a randomly selected385

(literal) noun, verb or adjective with a metaphorical386

token. Higher ratios are preferred, because they in-387

dicate a successful transfer based on the employed388

classifier. When the token to be replaced by the389

MMM was a verb, more than 50% of the literal sen-390

tences from the Gutenberg Poetry Corpus and 43%391

of the Wikpedia sentences related to music were392

turned into metaphorical ones. When the token was393

an adjective, the ratios dropped to 27% and 31%394

respectively. The lowest ratios were obtained for395

nouns, where 24% of the Gutenberg and 22% of396

the Wikipedia (related to music) sentences were397

transferred. Wikipedia sentences related to technol-398

ogy had the lowest ratios of all, achieving 29% for399

verbs but 8% for nouns and 7% for adjectives.3400

3We note that in principle, any number of new metaphori-
cal sentences can be generated given any positive ratio. For
example, MDG can be applied on more literal sentences to
counter-balance a low ratio.

Table 5: Ratio of literal sentences that were classified
as metaphorical, after applying MMM on a verb, noun,
or adjective per sentence. XLM-R used in both tasks.

Nouns Verbs Adj.
Wikipedia - Music 0.22 0.43 0.31

Wikipedia - technology 0.08 0.29 0.07
Gutenberg Poetry Corpus 0.24 0.56 0.27

To perform a human evaluation of the newly 401

constructed metaphorical sentences, we followed 402

the work of Chakrabarty et al. (2021). In order 403

to assess the quality of any new metaphorical sen- 404

tences that are created by MDG, we compared 405

them against human-generated ones. First, two 406

hundred metaphorical sentences were selected: 100 407

were constructed with MDG, starting from sen- 408

tences that originally came from both Wikipedia 409

and Gutenberg Poetry Corpus data sources, while 410

the other 100 were selected manually by metaphor- 411

ical datasets. We then asked a linguist to evaluate 412

each sentence. Tokens that were supposedly being 413

used in a figurative way inside the sentences were 414

highlighted (in bold) and sentences were shuffled 415

before the evaluation. For each sentence, four dif- 416

ferent dimensions were evaluated: fluency, mean- 417

ing, creativity, and metaphoricity. For each one 418

of these dimensions, a score ranging from 1 (very 419

low) to 5 (very high) had to be assigned based on 420

her personal judgement. Example sentences that 421

were taken from Chakrabarty et al. (2021) were 422

provided to the annotator, in order to clarify the 423

assignment further. Two are shown below: 424

1. The scream pierced the night. Fluency: 4, 425

Meaning: 5, Creativity: 4, Metaphoricity: 4; 426

2. The wildfire swept through the forest at an 427

amazing speed. Fluency: 4, Meaning: 3, Cre- 428

ativity: 5, Metaphoricity: 4 429

Table 6 shows the human-assigned average 430

scores for both system and human -generated 431
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Table 6: Human evaluation average result scores for system and human generated new metaphorical sentences.

Source Avg. Fluency Avg. Meaning Avg. Creativity Avg. Metaphoricity
System 4.00 3.65 3.11 3.41
Human 3.96 4.27 2.82 3.21

metaphorical sentences, for each one of the four432

analysed dimensions. MDG received higher scores433

in three out of four dimensions, namely fluency, cre-434

ativity and metaphoricity. Since human-generated435

metaphors are not obtained from prior (e.g., literal)436

statements, it is reasonable that they are perceived437

as more meaningful than those constructed through438

MMM. Therefore, these results are promising and439

they show the overall effectiveness of our metaphor440

generation pipeline.441

Table 7 shows the three system-generated sen-442

tences that obtained the highest-score and the443

respective three highest-scored human-generated444

ones, along with their four assigned scores. Al-445

though all the six sentences, human and system446

-generated, got an excellent score in fluency and447

meaning, MDG creates better metaphors with re-448

gards to creativity and metaphoricity. Two MDG-449

generated sentences out of three got an excellent450

creativity score with the third one obtaining a score451

equal to 4, while all human-generated sentences got452

a creativity score of 4. All three system-generated453

sentences got a metaphoricity score of 5, while only454

one of the top human-generated sentences reached455

this score.4456

Improving Metaphorical Text Classification457

A random sample of the new artificial metaphor-458

ical data, which have been produced by MDG459

starting from literal sentences, have been attached460

to the TroFiX training set that we used to train461

the metaphorical sentence XLM-R classifier.5 We462

also attached the same number of randomly sam-463

pled literal sentences, leading to 428 more train-464

ing sentences in total (an increase of 37%). Both465

the artificial metaphorical sentences and the lit-466

eral ones have been extracted from Wikipedia and467

the Gutenberg Poetry Corpus. By fine-tuning the468

XLM-R metaphorical/literal sentence classifier on469

4The similarity between the initial literal and the new
metaphorical sentences that are constructed was computed
with BERTScore (Zhang et al., 2020) and was found to be
very high (0.99) for all topics, probably due to the fact that
only a single word had to change per sentence.

5We employed TroFiX for this experiment, since this
dataset comprises nouns, verbs and adjectives, similarly to the
new artificial data.

the increased training set, a percentage increase of 470

all four classification metrics has been registered 471

across TroFiX over the respective scores of Table 3: 472

3% up in F1 (96.12%), Precision (96.88%) and 473

Recall (95.38%); 2.8% in Accuracy (96.55%). 474

Metaphor Location Detection 475

BERT and XLM-R can be used to successfully 476

classify metaphorical sentences (Table 3) and to 477

reconstruct a metaphor through Masked Metaphor 478

Modeling (MMM), with XLM-R achieving even 479

the best reconstruction accuracy in one case (see T1 480

of TroFi-X in Table 4). As discussed in Section 5.1, 481

however, reconstruction is based on the fact that 482

the information of the location of the metaphor is 483

already known. This is true for the datasets that 484

we used, but we also wanted to assess the ability 485

of the BERT and XLM-R metaphorical sentence 486

classifiers regarding their ability to detect the exact 487

location of the metaphor. 488

We filtered the metaphorical sentences that were 489

correctly classified (true positives) respectively by 490

the fine-tuned BERT and XLM-R sentence classi- 491

fiers. Then, we used the attention of the CLS token, 492

in order to detect the location of the metaphor. In 493

this study, we employed the fifth attention layer 494

and the second to last (eleventh) head, since this 495

combination yielded the best results in preliminary 496

experiments, but we note that there are 144 possible 497

layer-head combinations that could have also been 498

investigated (Clark et al., 2019; Voita et al., 2019; 499

Rogers et al., 2020). The location of the metaphor, 500

then, is simply considered to be the token of the sen- 501

tence that received the maximum attention. Table 8 502

provides the accuracy for this metaphor location de- 503

tection task, which is the fraction of metaphorical 504

sentences whose metaphor location was correctly 505

detected. XLM-R is consistently better than BERT, 506

while both models perform best in MOH-X and 507

worse in TroFi. Three example MOH-X sentences 508

are shown below with metaphorical tokens in bold 509

and italics, and with XLM-R’s attention heatmap in 510

gray shade. In the first sentence, most of the atten- 511

tion was focused on the gold metaphorical verb. In 512

the second, attention was on part of the gold verb 513

7



Table 7: The three highest-scored human (H) and system (S) -generated metaphors. The latter outperform human-
generated ones on average. We show the scores in a 1-5 scale, with 1 denoting the worst and 5 the best, that were
assigned to each sentence for Fluency (Fl), Meaning (Mn), Creativity (Cr) and Metaphoricity (Mt). The tokens
highlighted in bold are the words that are supposedly being used in a figurative way inside the sentences.

Metaphorical sentence (metaphor in bold) Fl Mn Cr Mt
S Day by day his heart within him grew more saturated with love and

longing
5 5 5 5

S Through the green lanes of the country, where the tangled barberry-
bushes fluttered their tufts of crimson berries

5 5 5 5

S Love the wind among the branches, and the rain-shower and the snow-
storm, and the roaring of great rivers

5 5 4 5

H Headlines scream of pollution and dwindling natural resources 5 5 4 5
H Musical creativity really flowed inside that family 5 5 4 4
H This one scandal could very well sink his candidacy 5 5 4 4

Table 8: Accuracy of BERT and XLM-R for metaphor
location detection across the datasets

MOH-X TROFI TROFI-X

BERT 70.97 47.62 56.67
XLM-R 77.42 57.41 63.33

while in the third it was on the gold noun (‘soup’)514

and the (not gold) adjective on the left (‘hot’).515

1. He marched into the classroom and an-516

nounced the exam.517

2. I wrest led with this decision for years.518

3. A hot soup will revive me.519

Ethical Considerations520

Our models are fine-tuned on sentence level data521

obtained from Wikipedia. These do not contain522

any explicit detail leaking information about any523

individuals’ name, health, negative financial sta-524

tus, racial or ethnic origin, religious or philosoph-525

ical affiliation or beliefs, sexual orientation, trade526

union membership, alleged or actual commission527

of crime. Furthermore, although we use language528

models trained on data collected from the Web,529

which have been shown to have issues with bias530

and abusive language (Sheng et al., 2019; Wal-531

lace et al., 2019), the inductive bias of our models532

should limit inadvertent negative impacts. BART533

is a conditional language model, which provides534

more control of the generated output. MDG can535

help with the generation of metaphorical text, pro-536

viding resources, for example, to creative writing537

practitioners. We can not imagine of any dual-use538

of MDG that could cause ethical problems. Our ar- 539

tificial data and source code are publicly released.6 540

7 Conclusion 541

We show that transforming literal to metaphorical 542

sentences by using only open-source models is fea- 543

sible. We propose a complete end-to-end pipeline 544

and a framework (MDG) that tackles several appli- 545

cations related to figurative language, ranging from 546

metaphorical sentence classification, to metaphor 547

location detection, to metaphor reconstruction and 548

generation. The obtained results show that 24%, 549

31% and 56% of the originally literal sentences 550

get classified as metaphorical after masking and 551

then reconstructing a noun, an adjective or a verb, 552

respectively. What this means is that, potentially, 553

MDG can be used to reach an infinite number of 554

newly reconstructed metaphors. Most importantly, 555

human evaluation performed on a mixed test set 556

of system and human-generated metaphorical sen- 557

tences shows that we are able to generate metaphors 558

that are considered on average as more fluent, cre- 559

ative and metaphorical than figurative statements 560

created by a real person. Finally, by using our ar- 561

tificial metaphors to increase the training size of 562

a metaphorical sentence classification dataset, we 563

show that the F1 score of an XLM-R metaphori- 564

cal sentence classifier, fine-tuned on the increased 565

dataset, is improved by 3%. The potential bene- 566

fit of using a larger-scale version of our artificial 567

dataset, in order to improve metaphorical sentence 568

classification further, will be studied in future work. 569

6link.hidden.for.anonymity
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