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Abstract

This study tackles literal to metaphorical sen-
tence generation, presenting a framework that
can potentially lead to the production of an infi-
nite number of new metaphors. To achieve
this goal, we propose a complete workflow
that tackles metaphorical sentence classifica-
tion and metaphor reconstruction. Unlike simi-
lar research works regarding metaphor genera-
tion, our approach does not require any custom
or closed-source model, hence with this work
we introduce a complete literal to metaphorical
open-source model. The obtained results show
that 24%, 31% and 56% of the (originally lit-
eral) sentences are turned to metaphorical by
changing a single noun, adjective or verb of
the sentence, respectively. Human evaluation
shows that our constructed metaphors are con-
sidered more fluent, creative and metaphorical
than figurative statements created by a real per-
son. Furthermore, by using our artificial data
to increase the training size of a metaphorical
sentence classification dataset, we register an
improvement of 3% over the baseline.

1 Introduction

Figurative language is an ambiguous language that
often contains mapping of concepts from one do-
main to another. In order to better understand
metaphors and their complexity, as well as the chal-
lenges that they can bring to natural language pro-
cessing tasks, it is important to look at practical
examples and at the related core literature works.
Consider, for instance, the following metaphorical
sentence: The wheels of Stalin’s regime were well-
oiled and already turning, where a political sys-
tem is viewed in terms of a mechanism which can
function, break, have wheels, etc. This association
allows us to transfer knowledge from the domain
of mechanisms to that of political systems. There-
fore, political systems are thought about in terms
of mechanisms, and discussed through the mecha-
nism terminology, leading to multiple metaphorical

expressions. This particular view of metaphors is
known as Conceptual Metaphor Theory, and it was
first introduced by Lakoff and Johnson (1980) in
1980. There are different types of metaphors, such
as the is-a type (e.g., That lawyer is a shark), the
of type (e.g., Child of evil), or verb-based (e.g., He
cut me off, yet still I carried his name).

Some computational approaches among the ones
that have been presented in literature have focused
on metaphor detection and generation. Detection
comprises metaphor identification (Steen et al.,
2010), where approaches identify metaphor-related
words in the text (Fass, 1997; Birke and Sarkar,
2006; Shutova et al., 2010), and interpretation,
which employs paraphrasing (Tong et al., 2021).
Metaphor generation concerns the task of creating
novel metaphorical sentences, for example by tak-
ing literal ones and transforming them in a way
that makes them acquire a figurative meaning. This
task is useful for poetry generation (Van de Cruys,
2020) or even as a new source to augment datasets
used to train metaphor detectors and interpreters.

To the best of the authors’ knowledge, there are
no studies in literature that try to simultaneously ad-
dress metaphor detection and generation in an end-
to-end setting. Furthermore, all existing metaphor
generators (Chakrabarty et al., 2021; Yu and Wan,
2019; Tong et al., 2021; Brooks and Youssef, 2020;
Stowe et al., 2021) depend on external and some-
times publicly unavailable systems that go beyond
standard fine-tuning procedures. By contrast, we
present the first literal-to-metaphorical text-to-text
framework, called MDG, that is able to generate
novel metaphorical sentences by replacing differ-
ent types of part-of-speech tokens, not only verbs
(Stowe et al., 2021; Chakrabarty et al., 2021; Yu
and Wan, 2019), but also nouns and adjectives (ex-
amples shown in Fig. 1). Human evaluation showed
that metaphors created by MDG were found to be
more fluent, creative and metaphorical than figura-
tive statements created by a native speaker.



Original Literal Sentences
Bury your war-clubs and your weapons
Drops of sweat fell fast and heavy

New Metaphorical Sentences
Bury your conscience and your weapons
Drops of sweat flew fast and heavy

Figure 1: Depiction of literal sentences turned to metaphorical by our framework

2 Related Work

The majority of neural models treat metaphor
identification as a sequence labelling task, cre-
ating an output that consists of a sequence of la-
bels (metaphorical or not) for a sentence or a se-
quence of input words (Bizzoni and Ghanimifard,
2018; Chen et al., 2020; Dankers et al., 2020; Gao
et al., 2018; Gong et al., 2020; Mao et al., 2019;
Mykowiecka et al., 2018; Pramanick et al., 2018;
Su et al., 2020; Wu et al., 2018). The first sequence
labelling approaches usually represented an input
sentence as a concatenation of pre-trained word em-
beddings and generated a context-specific sentence
embedding exploiting bidirectional long short-term
memory, or BiLSTM (Dankers et al., 2020; Gao
et al., 2018; Mykowiecka et al., 2018; Pramanick
et al., 2018; Bizzoni and Ghanimifard, 2018).
Numerous BiLSTM systems take advantage of
both contextualised and pre-trained embeddings in
the classification layer (Mao et al., 2019; Swarnkar
and Singh, 2018). In particular, the Di-LSTM Con-
trast system (Swarnkar and Singh, 2018) encodes
the left and right side context of a target word
through forward and backward LSTMs. The clas-
sification is based on a concatenation of the tar-
get word representation and its difference with the
encoded context (Tong et al., 2021). Mao et al.
(2019) combined GloVe (Pennington et al., 2014)
and BiLSTM hidden states for sequence labelling.
Static embeddings like GloVe (Pennington et al.,
2014) do not change with the context once been
learned. Despite their efficiency, the static nature
of these embeddings makes it difficult to cope with
the polysemy problem (crucial when dealing with
metaphors), since the meaning of a polysemous
word depends on its context (Wang et al., 2020).
To deal with the problem of polysemy, a num-
ber of approaches have been recently proposed
to learn the representation of words among their
context. For example, in the following two sen-
tences: “Apple sells phones” and “I eat an apple”,
dynamic embeddings (Wang et al., 2020) will rep-

resent “apple” differently according to the context,
while static embeddings can not distinguish the
semantic difference between the two references
of “apple”. Dynamic embeddings extracted from
pre-trained language models (Devlin et al., 2019;
McCann et al., 2018; Peters et al., 2018; Radford
and Sutskever, 2018) have demonstrated dramatic
superiority over their static predecessors in vari-
ous NLP tasks, and also in metaphor detection and
generation approaches.

Recent related work (Chen et al., 2020; Dankers
et al., 2020; Gong et al., 2020) adopts a fine-tuning
approach, employing pre-trained contextual lan-
guage models such as Bidirectional Encoder Repre-
sentations from Transformers (Devlin et al., 2019)
(BERT (Devlin et al., 2019) and RoBERTa (Zhuang
etal., 2021)), and taking advantage of the aforemen-
tioned dynamic embeddings (Wang et al., 2020).
For example, Dankers et al. (2020) fine-tuned a
BERT (Devlin et al., 2019) model, which gets a
discourse fragment as input. Hierarchical atten-
tion computes both token and sentence level at-
tention (Kobayashi et al., 2020) after the encoded
layers, leading to better results compared to those
obtained by applying general attention to all tokens.

Metaphor generation methods used in litera-
ture are usually based on obtaining novel figurative
sentences either by replacing verbs contained in
literal phrases (Chakrabarty et al., 2021; Yu and
Wan, 2019; Stowe et al., 2021), or exploiting syn-
tactic patterns that discriminate between creative
metaphorical expressions and non-metaphorical
ones (Brooks and Youssef, 2020). Table 1 presents
these works, but we also describe them in de-
tail below. Chakrabarty et al. (2021) generated
novel metaphoric sentences by taking literal ex-
pressions and replacing relevant verbs. Further-
more, new metaphors are obtained by transform-
ing metaphorical sentences from the Gutenberg
Poetry corpus (Jacobs, 2018) into their literal ver-
sion, through masked language modeling (Song
et al., 2019), and then using a sequence to se-
quence model finetuned on this parallel data to
generate new figurative expressions. Yu and Wan



Table 1: Comparisons between MDG for metaphor generation and related works’ frameworks. Each column
indicates whether the related approach provides methods respectively for masked language modeling, metaphor
reconstruction, and/or extraction. The Self-sufficiency column indicates whether the related works’ approaches can
function relying only on public architectures, or whether they need customized models’ implementations. As it is
possible to see, MDG is the only one that addresses each one of the different topics highlighted in the columns
simultaneously, and which is also totally self-sufficient, relying only on Transformers models and architectures.

Related Work MLM | Reconstruction | Extraction | Self-sufficiency
Chakrabarty et al. (2021) v N
Yu and Wan (2019) v v
Brooks and Youssef (2020) v
Stowe et al. (2021) Ve
| MDG [ v 7 7] v ]

(2019) employed a neural approach to extract the
metaphorical verbs from the sentences along with
their metaphorical senses in an unsupervised way.
Then, the same neural approach is exploited to train
a neural language model from Wikipedia corpus.
The novel metaphors are obtained by conveying
the assigned metaphorical senses through a decod-
ing algorithm. Stowe et al. (2021) obtained new
metaphorical sentences by replacing relevant verbs
in literal expressions and encoding conceptual map-
pings (FrameNetbased embeddings - CM-LEX, and
a custom seq-to-seq model - CM-BART) between
cognitive domains. Brooks and Youssef (2020)
trained an unsupervised LSTM model and used an
inherent inference engine to create new metaphors.
The novelty of these new metaphors is ensured
by checking that none of the generated sentences
match the training data, and that the identified syn-
tactic patterns of metaphors were not present in the
non-metaphorical data.

MDG does not focus only on verbs nor does em-
ploy language-specific syntactic patterns. It does
not depend on models that need to be trained with
pairs of metaphorical and literal sentences and it
does not need any external system, such as COMET
in Chakrabarty et al. (2021). Furthermore, it fully
relies on publicly available Transformers-based lan-
guage models, that do not require particular cus-
tomizations, other than being fine-tuned on the
right data. The similarities of MDG with the above
mentioned studies comprise masked language mod-
eling (Song et al., 2019), which is also employed
by Chakrabarty et al. (2021), and reconstruction,
used to identify specific words inside the sentences
and to replace them with alternative ones, turning
them into metaphors.

Further information regarding recent advances
and approaches in metaphor detection, processing
and generation, can be found in Tong et al. (2021).

3 The MDG Framework

MDG consists of different steps, from metaphor
detection to metaphor generation. Figure 2 depicts
the proposed workflow. Metaphorical sentence
classification is the task of classifying a sentence
as metaphorical or literal. We train text classi-
fiers on datasets comprising metaphorical and lit-
eral sentences. The classifier yields a probability
from O (literal) to 1 (metaphorical) and only the
correctly-predicted metaphorical sentences (true
positives) are passed to the next step of the frame-
work. Reconstruction, which follows, comprises
two procedures: extraction, for the detection of
the location of the metaphor within a metaphorical
sentence, and masked metaphor modeling for the
prediction of masked metaphors within metaphori-
cal sentences. After fine-tuning a masked language
model for the task, by masking metaphors, we can
then apply it on literal, instead of metaphorical
sentences, in order to turn a literal sentence into a
metaphorical one.

4 Empirical Evaluation

4.1 Metaphor Datasets

The three most common datasets used for tasks
related to metaphoricity are MOH-X, TroFi, and
TroFi-X (Table 2). We describe each one below.

MOH-X (Mohammad et al., 2016) is derived from
the subset of the MOH dataset that was used by
Shutova et al. (2016). Mohammad et al. (2016) an-
notated different verbs for metaphoricity. They ex-
tracted verbs that had between three and ten senses
in WordNet (Mao et al., 2018) along with their
glosses. The verbs were annotated for metaphoric-
ity with the help of crowd-sourcing. Ten annota-
tors were recruited to assess each sentence, and
only those verbs that were annotated as positive
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Figure 2: Visual representation of MDG. The input consists of a set of unlabelled sentences (I*) and a set of
sentences that are labelled as metaphorical or literal (1 M/L ). The latter is used to train a classifier (CLEFM / Ly,
which, after being fine-tuned on masked metaphorical-token modeling (MMM)), is used to substitute randomly
masked tokens of the I sentences in order to turn them into metaphorical. C'LF™/” filters out any sentences that
failed to become metaphorical and the remaining ones are returned by the system.

for metaphoricity by at least 70% of the annotators
were selected in the end. The final dataset consisted
of 647 verb-noun pairs: 316 metaphorical, and 331
literal.

TroFi contains feature lists consisting of the
stemmed nouns and verbs in a sentence, with
target or seed words. It is named after TroFi
(Trope Finder), a nearly unsupervised clustering
method for separating literal and non-literal usages
of verbs (Birke and Sarkar, 2006). For example,
given the target verb pour, TroFi is able to clus-
ter the sentence Custom demands that cognac be
poured from a freshly opened bottle as literal, and
the sentence Salsavand rap music pour out of the
windows as nonliteral. The target set is built using
the ‘88-‘89 Wall Street Journal Corpus ! tagged
using the Ratnaparkhi (2002) tagger and the Ban-
galore and Joshi (1999) SuperTagger . The final
dataset consisted of 3,737 sentences.

TroFi-X is an alternative version of TroFi. It
contains 1,444 sentences annotated not only with
metaphorical verbs, but also with metaphorical
nouns, pronouns and adjectives.

5 Evaluation measures

For the classification task, we employed Accuracy
(i.e. the fraction of instances that were correctly
classified), Precision (i.e., the number of instances
that were correctly predicted as metaphorical to
the number of instances that were predicted as
metaphorical), Recall (i.e., the number of instances

"https://catalog.ldc.upenn.edu/LDC2000T43

Table 2: Statistics of all the datasets employed in this
work. All datasets comprise English sentences. Size
is measured in sentences and POS shows the part of
speech of the metaphor.

Name Size POS
MOH-X 646 Noun/Verb
TROF1 3,737 Verb
TROFI1-X | 1,444 | Noun/Verb/Adjective

correctly predicted as metaphorical to the number
of instances that should have been predicted as
metaphorical) and F1 (i.e., the harmonic mean of
Precision and Recall). For the reconstruction task,
we employed Accuracy (i.e., the ratio of sentences
that are correctly reconstructed/generated).

5.1 Methods

For the task of metaphorical sentence classification,
we employed Naive Bayes (Rish, 2001), Random
Forests (Fratello and Tagliaferri, 2019), KNN (Guo
et al., 2003), SVM (Evgeniou and Pontil, 2001),
Logistic Regression (Peng et al., 2002), MLP (Mar-
ius et al., 2009), BERT (Devlin et al., 2019), and
XLM-R (Conneau et al., 2020) models.

For the task of metaphor reconstruction, we used
data where the location of the metaphor in the sen-
tence is known. We then employed BART and T5
by removing the metaphorical token (known) and
asking the models to reconstruct the original sen-
tence. Also, we employed BERT and XLM-R, by
masking the metaphorical token and then perform-
ing in effect masked metaphor modeling (MMM)



MOH-X TROFI TROFI-X
P R F1 Ac P R F1 Ac P R F1 Ac

BERT 7391 | 80.55 | 79.45 | 76.92 || 39.82 | 91.21 | 55.44 | 41.98 || 66.50 | 63.08 | 65.58 | 69.17
BERT(FT) | 88.11 | 94.07 | 91.86 | 91.74 || 72.00 | 64.24 | 67.77 | 72.08 || 70.18 | 69.85 | 70.53 | 74.91
XLM-R 63.53 | 72.22 | 69.33 | 64.62 || 58.58 | 59.46 | 64.94 | 74.60 || 58.98 | 60.00 | 63.93 | 69.66
XLM-R(FT) | 88.57 | 86.11 | 87.32 | 86.15 || 95.86 | 93.92 | 94.88 | 95.99 || 92.42 | 93.85 | 93.13 | 93.79
NB 73.00 | 1233 | 17.64 | 65.22 || 72.73 | 11.27 | 19.51 | 64.71 || 77.11 | 80.23 | 78.54 | 78.17
RF 61.90 | 81.25 | 70.27 | 65.62 || 67.50 | 38.03 | 48.65 | 69.52 || 71.22 | 87.31 | 78.66 | 79.43
KNN 65.00 | 81.25 | 7222 | 68.75 || 63.29 | 7042 | 66.67 | 73.26 || 78.58 | 81.26 | 80.09 | 80.19
SVM 66.67 | 37.50 | 48.00 | 59.38 || 69.11 | 76.26 | 72.43 | 7432 || 77.15 | 65.38 | 70.62 | 77.39
LR 87.50 | 87.50 | 87.50 | 87.50 || 84.51 | 84.51 | 84.51 | 88.24 || 77.00 | 81.00 | 79.00 | 79.00
MLP 67.00 | 71.00 | 69.00 | 69.00 || 55.00 | 44.00 | 49.00 | 58.00 || 71.00 | 63.00 | 67.00 | 73.00

Table 3: All tested Classifiers and their respective results for the three metaphorical data sources. P, R, FI and
Ac stand respectively for Precision, Recall, F1 Score and Accuracy. Along with BERT and XLM-R (base and
fine-tuned), we have, in order: NB - Naive Bayes; RF - Random Forest; KNN - K-nearest Neighbours; SVM -
Support Vector Machine; LR - Logistic Regression; MLP - Multi-Layer Perceptron Neural Network.

to reconstruct the sentence.

5.2 Experimental Results

Table 3 provides the results of the metaphorical
sentence classifiers (see Section 5.1) on the three
metaphorical data sources (see Section 4.1). XLM-
R (fine-tuned) has the best Precision in all datasets.
BERT (fine-tuned) achieves the best Recall on
MOH-X, leading also to the best Accuracy and F1.
Overall, BERT and XLM-R (fine-tuned) yield the
best results. Naive Bayes, Random Forests, KNN,
SVM and MLP performed much lower. However,
it is worth noting that Logistic Regression, despite
its simple nature, performed surprisingly well.
Table 4 presents the accuracy in metaphor recon-
struction on the metaphorical sentences that have
been correctly classified as metaphorical (the green
box in the middle, in Fig. 2) by the best-performing
fine-tuned BERT and XLM-R (see Table 3). We
employed TS5 and BART, as well as two masked
language models, BERT and XLM-R (Alfaro et al.,
2019; Goyal et al., 2021), which have been fine-
tuned by masking (known) metaphorical tokens of
the metaphorical sentences. We refer to this pro-
cess as Masked Metaphor Modeling (MMM; the
red box on the right of Fig. 2). MMM with BERT
was applied only on sentences correctly classified
as metaphorical by BERT while MMM with XILLM-
R was applied on sentences correctly classified by
XLM-R. T5 and BART were applied on both and
results are shown in respective columns 4. In MOH-
X, the accuracy scores for nouns and verbs show
the percentage of correctly reconstructed metaphor-
ical tokens (respectively nouns or verbs) inside
the sentences, by the different reconstruction mod-
els. TroFi sentences comprise only verb metaphors
while TroFi-X sentences comprise three metaphori-

cal tokens each; the first two, T/ and 72, can be any
part-of-speech tokens, while V can only be verb
metaphors.”

MMM with XILM-R is consistently better than
that with BERT. This is true also for MOH-X,
where BERT outperforms XLM-R for metaphorical
sentence classification (see Table 3), which means
that XLM-R is better in reconstruction. BART and
T5 are also overall better when metaphorical sen-
tence classification has been performed with XLM-
R. When focusing on results obtained using XLM-
R as the metaphorical sentence classifier, nouns are
more accurately reconstructed by BART on MOH-
X and TroFi-X (for T2). TS, which achieves a high
accuracy in all datasets in verb reconstruction, is
better than BART in TroFi and TroFi-X and only
slightly worse in MOH-X. When comparing MMM
with T5 and BART, the latter two seem to work bet-
ter across MOH-X and TroFi sentences. MMM
models, however, perform better on the first tokens
(T1) of TroFi-X sentences.

6 Discussion

In the classification step of MDG, we classified
sentences as metaphorical or literal. Metaphori-
cal sentences which were correctly classified, then,
were used in a reconstruction step. Here, metaphor-
ical tokens (known in the datasets) were masked
and recovered through extraction (TS5, BART) and
Masked Metaphor Modeling (BERT, XLM-R). In a
final experiment, which we describe here, we used

The following sentence taken from TroFi-X is given as an
example: Beyond that, conditions on board were so vile that
the sailor was at greater risk eating his meals aboard than
fighting. ”. Here, risk is “token 1” (in this case, it is a noun),
meals is “token 2” (in this case, also a noun), and eating is
the verb token of the sentence (one of the three metaphorical
tokens in each TroFi-X sentence is always a verb).



MOH-X TROFI TROFI-X
BERT XLM-R BERT XLM-R BERT XLM-R
N \Y N \Y \Y \Y T1 T2 \Y T1 T2 \Y
T5 80.65 | 93.55 || 83.87 | 96.77 || 95.38 | 96.92 || 77.14 | 82.86 | 88.57 || 68.57 | 85.71 | 97.14
BART 64.67 | 90.32 || 84.62 | 96.92 || 95.38 | 95.38 64.62 | 83.08 | 93.85 || 69.73 | 87.69 | 95.38
MMM(ft) | 71.43 | 48.57 || 77.42 | 45.16 || 74.29 | 83.87 || 85.71 | 77.78 | 58.33 || 94.44 | 86.11 | 66.67

Table 4: Accuracy of TS5, BART, and two MMMs (BERT, XLM-R) used to reconstruct metaphorical tokens on three
datasets. Only sentences classified correctly as metaphorical (by BERT and XLLM-R sentence classifiers) are used.
Noun (N) and verb (V) accuracy scores indicate the percentage of correctly reconstructed metaphorical nouns and
verbs, respectively. TroFi-X sentences comprise three metaphorical tokens each. The first two, 71 and T2, can be of

any part-of-speech while V is always a verb. The best per column is shown in bold.

MDG to generate new metaphorical sentences, by
altering literal sentences. The hypothesis is that if
we mask a token from a literal sentence, the pre-
diction of a MMM will be effectively turning the
sentence to metaphorical.

As literal sentences we used 2,000 sentences
scraped from Wikipedia, related respectively to
music (1,000 sentences) and technology (1,000 sen-
tences) topics; and 1,000 sentences scraped from
the Gutenberg Poetry Corpus (Jacobs, 2018), which
comprises 3,085,117 lines of poetry extracted from
hundreds of books. We applied the fine-tuned
XLM-R classifier (Table 3) on these sentences and
we applied the XLLM-R-based MMM (Table 4) only
on the sentences that were classified as literal by the
aforementioned classifier. The resulted sentences
are hypothesised to be metaphorical, hence we re-
apply the same XLM-R classifier and we keep only
sentences that were classified as metaphorical.

Table 5 presents the ratio of originally literal sen-
tences that have been (automatically) classified as
metaphorical, after replacing a randomly selected
(literal) noun, verb or adjective with a metaphorical
token. Higher ratios are preferred, because they in-
dicate a successful transfer based on the employed
classifier. When the token to be replaced by the
MMM was a verb, more than 50% of the literal sen-
tences from the Gutenberg Poetry Corpus and 43%
of the Wikpedia sentences related to music were
turned into metaphorical ones. When the token was
an adjective, the ratios dropped to 27% and 31%
respectively. The lowest ratios were obtained for
nouns, where 24% of the Gutenberg and 22% of
the Wikipedia (related to music) sentences were
transferred. Wikipedia sentences related to technol-
ogy had the lowest ratios of all, achieving 29% for
verbs but 8% for nouns and 7% for adjectives.’

3We note that in principle, any number of new metaphori-
cal sentences can be generated given any positive ratio. For
example, MDG can be applied on more literal sentences to
counter-balance a low ratio.

Table 5: Ratio of literal sentences that were classified
as metaphorical, after applying MMM on a verb, noun,
or adjective per sentence. XLM-R used in both tasks.

Nouns Verbs Adj.

Wikipedia - Music 0.22 043 031
Wikipedia - technology 0.08 0.29  0.07
Gutenberg Poetry Corpus  0.24 0.56 0.27

To perform a human evaluation of the newly
constructed metaphorical sentences, we followed
the work of Chakrabarty et al. (2021). In order
to assess the quality of any new metaphorical sen-
tences that are created by MDG, we compared
them against human-generated ones. First, two
hundred metaphorical sentences were selected: 100
were constructed with MDG, starting from sen-
tences that originally came from both Wikipedia
and Gutenberg Poetry Corpus data sources, while
the other 100 were selected manually by metaphor-
ical datasets. We then asked a linguist to evaluate
each sentence. Tokens that were supposedly being
used in a figurative way inside the sentences were
highlighted (in bold) and sentences were shuffled
before the evaluation. For each sentence, four dif-
ferent dimensions were evaluated: fluency, mean-
ing, creativity, and metaphoricity. For each one
of these dimensions, a score ranging from 1 (very
low) to 5 (very high) had to be assigned based on
her personal judgement. Example sentences that
were taken from Chakrabarty et al. (2021) were
provided to the annotator, in order to clarify the
assignment further. Two are shown below:

1. The scream pierced the night. Fluency: 4,
Meaning: 5, Creativity: 4, Metaphoricity: 4;

2. The wildfire swept through the forest at an
amazing speed. Fluency: 4, Meaning: 3, Cre-
ativity: 5, Metaphoricity: 4

Table 6 shows the human-assigned average
scores for both system and human -generated



Table 6: Human evaluation average result scores for system and human generated new metaphorical sentences.

Source Avg. Fluency Avg. Meaning Avg. Creativity Avg. Metaphoricity
System 4.00 3.65 3.11 3.41
Human 3.96 4.27 2.82 3.21

metaphorical sentences, for each one of the four
analysed dimensions. MDG received higher scores
in three out of four dimensions, namely fluency, cre-
ativity and metaphoricity. Since human-generated
metaphors are not obtained from prior (e.g., literal)
statements, it is reasonable that they are perceived
as more meaningful than those constructed through
MMM. Therefore, these results are promising and
they show the overall effectiveness of our metaphor
generation pipeline.

Table 7 shows the three system-generated sen-
tences that obtained the highest-score and the
respective three highest-scored human-generated
ones, along with their four assigned scores. Al-
though all the six sentences, human and system
-generated, got an excellent score in fluency and
meaning, MDG creates better metaphors with re-
gards to creativity and metaphoricity. Two MDG-
generated sentences out of three got an excellent
creativity score with the third one obtaining a score
equal to 4, while all human-generated sentences got
a creativity score of 4. All three system-generated
sentences got a metaphoricity score of 5, while only
one of the top human-generated sentences reached
this score.*

Improving Metaphorical Text Classification

A random sample of the new artificial metaphor-
ical data, which have been produced by MDG
starting from literal sentences, have been attached
to the TroFiX training set that we used to train
the metaphorical sentence XLM-R classifier.” We
also attached the same number of randomly sam-
pled literal sentences, leading to 428 more train-
ing sentences in total (an increase of 37%). Both
the artificial metaphorical sentences and the lit-
eral ones have been extracted from Wikipedia and
the Gutenberg Poetry Corpus. By fine-tuning the
XLM-R metaphorical/literal sentence classifier on

“The similarity between the initial literal and the new
metaphorical sentences that are constructed was computed
with BERTScore (Zhang et al., 2020) and was found to be
very high (0.99) for all topics, probably due to the fact that
only a single word had to change per sentence.

SWe employed TroFiX for this experiment, since this
dataset comprises nouns, verbs and adjectives, similarly to the
new artificial data.

the increased training set, a percentage increase of
all four classification metrics has been registered
across TroFiX over the respective scores of Table 3:
3% up in F1 (96.12%), Precision (96.88%) and
Recall (95.38%); 2.8% in Accuracy (96.55%).

Metaphor Location Detection

BERT and XLLM-R can be used to successfully
classify metaphorical sentences (Table 3) and to
reconstruct a metaphor through Masked Metaphor
Modeling (MMM), with XLM-R achieving even
the best reconstruction accuracy in one case (see T1
of TroFi-X in Table 4). As discussed in Section 5.1,
however, reconstruction is based on the fact that
the information of the location of the metaphor is
already known. This is true for the datasets that
we used, but we also wanted to assess the ability
of the BERT and XLM-R metaphorical sentence
classifiers regarding their ability to detect the exact
location of the metaphor.

We filtered the metaphorical sentences that were
correctly classified (true positives) respectively by
the fine-tuned BERT and XLM-R sentence classi-
fiers. Then, we used the attention of the CLS token,
in order to detect the location of the metaphor. In
this study, we employed the fifth attention layer
and the second to last (eleventh) head, since this
combination yielded the best results in preliminary
experiments, but we note that there are 144 possible
layer-head combinations that could have also been
investigated (Clark et al., 2019; Voita et al., 2019;
Rogers et al., 2020). The location of the metaphor,
then, is simply considered to be the token of the sen-
tence that received the maximum attention. Table 8
provides the accuracy for this metaphor location de-
tection task, which is the fraction of metaphorical
sentences whose metaphor location was correctly
detected. XLM-R is consistently better than BERT,
while both models perform best in MOH-X and
worse in TroFi. Three example MOH-X sentences
are shown below with metaphorical tokens in bold
and italics, and with XLM-R’s attention heatmap in
gray shade. In the first sentence, most of the atten-
tion was focused on the gold metaphorical verb. In
the second, attention was on part of the gold verb



Table 7: The three highest-scored human (H) and system (S) -generated metaphors. The latter outperform human-
generated ones on average. We show the scores in a 1-5 scale, with 1 denoting the worst and 5 the best, that were
assigned to each sentence for Fluency (Fl), Meaning (Mn), Creativity (Cr) and Metaphoricity (Mt). The tokens
highlighted in bold are the words that are supposedly being used in a figurative way inside the sentences.

Metaphorical sentence (metaphor in bold)

Fl1 | Mn | Cr | Mt

S | Day by day his heart within him grew more saturated with love and || 5 5 5 5

longing

S | Through the green lanes of the country, where the tangled barberry- || 5 5 5 5

bushes fluttered their tufts of crimson berries

S | Love the wind among the branches, and the rain-shower and the snow- || 5 5 4 5

storm, and the roaring of great rivers

H | Headlines scream of pollution and dwindling natural resources 5 5 4 5

H | Musical creativity really flowed inside that family

W
W
N
N

H | This one scandal could very well sink his candidacy 5

Table 8: Accuracy of BERT and XLM-R for metaphor
location detection across the datasets

MOH-X TROFI TROFI-X
BERT 70.97 47.62 56.67
XLM-R | 7742 | 5741 63.33

while in the third it was on the gold noun (‘soup’)
and the (not gold) adjective on the left (‘hot’).

1. He marched into the classroom and an-
nounced the exam.

2. 1 wrest led with this decision for years.
3. A hot soup will revive me.

Ethical Considerations

Our models are fine-tuned on sentence level data
obtained from Wikipedia. These do not contain
any explicit detail leaking information about any
individuals’ name, health, negative financial sta-
tus, racial or ethnic origin, religious or philosoph-
ical affiliation or beliefs, sexual orientation, trade
union membership, alleged or actual commission
of crime. Furthermore, although we use language
models trained on data collected from the Web,
which have been shown to have issues with bias
and abusive language (Sheng et al., 2019; Wal-
lace et al., 2019), the inductive bias of our models
should limit inadvertent negative impacts. BART
is a conditional language model, which provides
more control of the generated output. MDG can
help with the generation of metaphorical text, pro-
viding resources, for example, to creative writing
practitioners. We can not imagine of any dual-use

of MDG that could cause ethical problems. Our ar-
tificial data and source code are publicly released.®

7 Conclusion

We show that transforming literal to metaphorical
sentences by using only open-source models is fea-
sible. We propose a complete end-to-end pipeline
and a framework (MDG) that tackles several appli-
cations related to figurative language, ranging from
metaphorical sentence classification, to metaphor
location detection, to metaphor reconstruction and
generation. The obtained results show that 24%,
31% and 56% of the originally literal sentences
get classified as metaphorical after masking and
then reconstructing a noun, an adjective or a verb,
respectively. What this means is that, potentially,
MDG can be used to reach an infinite number of
newly reconstructed metaphors. Most importantly,
human evaluation performed on a mixed test set
of system and human-generated metaphorical sen-
tences shows that we are able to generate metaphors
that are considered on average as more fluent, cre-
ative and metaphorical than figurative statements
created by a real person. Finally, by using our ar-
tificial metaphors to increase the training size of
a metaphorical sentence classification dataset, we
show that the F1 score of an XLLM-R metaphori-
cal sentence classifier, fine-tuned on the increased
dataset, is improved by 3%. The potential bene-
fit of using a larger-scale version of our artificial
dataset, in order to improve metaphorical sentence
classification further, will be studied in future work.
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