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ABSTRACT
Adaptive experimental design (AED) methods are increasingly be-

ing used in industry as a tool to boost testing throughput or reduce

experimentation cost relative to traditional A/B/N testing methods.

However, the behavior and guarantees of such methods are not

well-understood beyond idealized stationary settings. This paper

shares lessons learned regarding the challenges of naively using

AED systems in industrial settings where non-stationarity is preva-

lent, while also providing perspectives on the proper objectives

and system specifications in such settings. We developed an AED

framework for counterfactual inference based on these experiences,

and tested it in a commercial environment.
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1 INTRODUCTION
A/B/N testing is a classic and ubiquitous form of experimentation

that has a proven track record of driving key performance indica-

tors within industry [14]. Yet, experimenters are steadily shifting

toward Adaptive Experimental Design (AED) methods with the goal

of increasing testing throughput or reducing the cost of experi-

mentation. AED promises to use a fraction of the impressions that

traditional A/B/N tests require to yield precise and correct inference

or to directly drive business impact. However, the behavior and

guarantees of these approaches are not well-understood theoreti-

cally nor empirically in commercial environments where idealized

stationary feedback assumptions fail to hold. This paper aims to

show real-world experiment data, bring attention to the unique chal-

lenges of using AED systems in production, and present a system

designed to satisfy curated objectives with theoretical guarantees

and proven empirical performance in production.

Contributions. Through simple, yet illustrative experimentation

case studies, we bring to light key challenges to using AED systems

effectively in practical, industrial settings. We demonstrate that

existing estimation procedures and algorithmic methods can often
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fail in these settings. The case studies are generalized to provide

perspectives on the proper objectives and system specifications in

these settings. We present the approach we have taken based on the

lessons learned fromworking on AED systems in industrial settings

over time, which identifies the counterfactual optimal treatment

efficiently, mitigates opportunity cost, and is robust to the form

of time variation we regularly observe (the best of three worlds).
Our approach combines a cumulative gain estimator with always-

valid inference and an elimination-based algorithmic approach. The

experiments we present from our production system highlight how

regret-minimizing algorithms such as TS, which assume stochastic

environments, can fail spectacularly both for accruing a reward

metric and for making inferences. In addition to empirical evidence,

we also provide theoretical guarantees.

2 REAL-WORLD STUDIES AND LESSONS
We now present experimentation case studies and then generalize

to discuss lessons learned using AED systems in industrial settings,

along with their proper objectives and system specifications.

2.1 Case Study: Adaptive Designs & Inference
Imagine a setting where on a retailer web page, a marketer has

been running a message 𝐴 for the last year and now wants to test

whether message 𝐵 beats 𝐴. Fearful of incurring a large amount

of loss from A/B testing opportunity cost, the marketer chooses to

use an adaptive experimental method, namely TS. At the start of

the experiment, the messages are initialized with a default prior

distribution, and then at each round the bandit dynamically allo-

cates traffic to each treatment, playing each message according

to the posterior probability of its running empirical mean being

the highest [19]. After day 8, the algorithm directs most traffic to

message 𝐴 (see Figure 1). On day 14, the experimenter needs to

decide whether 𝐴 has actually beaten 𝐵. They conduct a paired

𝑡-test which, somewhat surprisingly, does not produce a significant

𝑝-value. As the bandit shifted all traffic to message 𝐴, not enough

traffic was directed to message 𝐵, diminishing the power of the test.

The experimenter is forced to conclude that they can not reject the

null hypothesis that there is no difference between the messages.

A few days later, the experimenter, who is still perplexed, looks at

the daily empirical means and is then shocked to see that on most

days, 𝐵 tends to have a higher daily empirical mean than 𝐴, which

disagrees with the bandit’s beliefs that led to the traffic allocation

it produced.

To understand this behavior, note that in Figure 1c the running

empirical mean of 𝐴 is exceeding that of 𝐵, leading the algorithm

to put all its traffic on 𝐴. This phenomenon where the running

empirical mean shows a different direction than daily comparisons

is known as Simpson’s Paradox, and occurs in settings where the

traffic is dynamically allocated to arms whose means change over

time [14]. Intuitively, the experimenter has made a Type I error by

1
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(a) Daily play probability (b) Daily mean (c) Running empirical mean (d) Cumulative gain

Figure 1: Case study of time-variation and adaptive allocations causing Simpson’s paradox.

(a) Real life data example 1 (b) Real life data example 2 (c) Real life data example 3

Figure 2: Daily empirical means from marketing experiments with uniformly collected data.

trusting the algorithm and choosing arm𝐴. Indeed, during the time

period from days 8 to 14, the algorithm decided to put more traffic

on arm 𝐴, exacerbating Simpson’s paradox. Convinced by its own

bad decision, the algorithm then chooses a bad traffic allocation

which further exacerbates the problem and leads to a vicious cycle.

2.2 Case Study: Real Life Time Variation
The approach we develop in this paper is motivated by the type of

data that is regularly observed in industrial settings. Typically, in-

dustrial data is not stationary, but it is also not fully adversarial. We

show that the underlying data processes lie somewhere in between

these extremes. Figure 2 shows the daily empirical means for each

treatment within several marketing experiments where the data

was collected uniformly at random between treatments. Clearly,

significant non-stationarity in the underlying performance of all

treatments in an experiment is the norm and not the exception. The

data shows both trends and cyclicity, yet the structure is inconsis-

tent within any given experiment as well as across experiments.

Consequently, it is challenging to adopt solutions that model la-

tent confounders a priori [16]. On the other hand, the variation in

the performance gaps between treatments is more well-behaved

as a function of time. Together, this case study reveals that the

objective of identifying the counterfactual optimal treatment in an

experiment is often well-defined.

2.3 Lessons Learned
We now dive deeper into the general challenges of using AED

methods in practice raised by the case studies and provide thoughts

on industrial objectives and specifications that guide our approach.

Regret Minimization Isn’t Enough. The fundamental goal of ex-

perimentation is to test hypothesis and deliver results that allow

for future iterations [14]. As a result, it is important that experi-

mentation procedures give the experimenter the ability to arrive at

valid andmeasurable inferences. In settings where the experimenter

wants to learn the best treatment, optimal regret minimization pro-

cedures take a significantly longer time to return the identity of

the best arm with high probability [2, 3] and lead to biased mean

estimates [20].

Be Wary of the Batch. Most experimental systems use batched

model updates (daily or weekly). In the example from Section 2, the

traffic was not constant daily (not shown), so an update on one day

can have an undue impact on the rest of the experiment time. In

experiments over short horizons, this implies that observations on

the first few days can have a disproportionate impact on the traffic

allocation and also the subsequent inferences that are made.

Stochastic Bandit Algorithms Often Fail.While it is common in

industrial systems to deploy regret-minimizing algorithms based

on underlying stationarity assumptions, these algorithms fail with

regularity in any given experiment even for the sole purpose of

2
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accruing an optimization metric. Often these failures go unnoticed

due to the absence of a suitable comparison to bring attention to

the problem (an appropriate A/A test). We highlight in our ex-

periments that stochastic bandit algorithms can fail to maximize

the accumulation of an optimization metric as a result of dynamic

traffic allocations in combination with an estimation based on the

observed adaptively collected data in time-varying environments.

Identify the Counterfactual Best. In settings where arm means are

shifting over time, it is challenging to define the notion of a “best-

arm” as the mean performance of an arm and the identity of the best

arm may change daily. To bridge this gap, our proposed objective

is to identify with high probability the treatment that would have
obtained the highest possible reward, if all traffic had been diverted
to it. This counterfactual metric is known as the cumulative gain.
Figure 1d demonstrates the cumulative gain over time for the case

study. With the exception of [1], we believe that this objective has

hardly been considered in the best-arm identification literature.

Always Valid Inference. In traditional A/B/N testing, the experi-

ment horizon is fixed ahead of time with a significance test at the

end of the experiment. Monitoring 𝑝-values computed during the

experiment is heavily frowned upon as it leads to Type 1 error

inflation [12]. Recent work in the experimental space has lead to

generalizations of the 𝑝-value known as always-valid p-values that
can safely be sequentially monitored [8, 9, 12, 17]. This capability is

critical in practice to allow for early stopping with valid inferences.

The Best of Three Worlds (BOTW). Though optimal regret

minimization procedures fail to provide valid inferences and tend

to identify the best arm more slowly, we still would like to mini-

mize the cost of experimentation. Thus experimentation systems

should try to provide the best of three worlds: identification of the

counterfactual best, mitigation of opportunity cost, and robustness

to arbitrary time variation. In completely adversarial settings we

can’t hope to have all three [1], but real life settings mostly live

somewhere between fully stochastic and fully adversarial.

3 OUR APPROACH
We now describe our approach for experimentation that provides

the best of three worlds. The method combines always-valid in-

ference on estimators which are robust to time variation with an

elimination-based algorithmic approach.

3.1 Experimentation Setting
Let us focus on the example of displaying ads on an online service.

To set notation for the time-varying or non-stochastic setting, we
assume an experiment consisting of 𝑘 arms running for a period

of 𝑇 days beginning on day 𝑡 = 1. On any day 𝑡 ∈ [𝑇 ], arm 𝑖 ∈ [𝑘]
receives 𝑛𝑖,𝑡 impressions and 𝑛𝑡 =

∑
𝑖∈[𝑘 ] 𝑛𝑖,𝑡 is the total amount of

traffic on that day.
1
The sample count 𝑛𝑖,𝑡 for each arm 𝑖 ∈ [𝑘] on

any day 𝑡 ∈ [𝑇 ] is a stochastic quantity based on the rewards and

samples given to the arms up to day 𝑡 ∈ [𝑇 ]. We assume that the

underlying behavior of an arm 𝑖 ∈ [𝑘] on day 𝑡 ∈ [𝑇 ] is fixed over

the period of a day and described by a Bernoulli distribution with

mean 𝜇𝑖,𝑡 ∈ (0, 1). Finally, we let 𝑟𝑖,𝑡 and 𝜇̂𝑖,𝑡 := 𝑟𝑖,𝑡/𝑛𝑖,𝑡 denote
the total reward and daily empirical mean on day 𝑡 ∈ [𝑇 ] for any

1
We adopt the standard set notation of [𝑛] = {1, 2, . . . , 𝑛} for any 𝑛 ∈ Z+ .

arm 𝑖 ∈ [𝑘], respectively. Thus, conditional on the allocation 𝑛𝑖,𝑡 ,

𝑟𝑖,𝑡 ∼ Binomial(𝑛𝑖,𝑡 , 𝜇𝑖,𝑡 ) for each arm 𝑖 ∈ [𝑘] on any day 𝑡 ∈ [𝑇 ].

3.2 Estimation with Time Variation
We now discuss estimation in the presence of time-variation.

3.2.1 Running Empirical Means. We begin by discussing the stan-

dard approach in the experimentation literature of using the run-

ning empirical mean estimator to assess performance given a set of

data that has been collected. The running empirical mean of arm

𝑖 ∈ [𝑘] after 𝑇 days of an experiment with the total traffic to the

arm denoted by 𝑛𝑖,𝑇 :=
∑𝑇
𝑡=1 𝑛𝑖,𝑡 is:

𝜇𝑖 := (
∑𝑇
𝑡=1 𝑟𝑖,𝑡 )/𝑛𝑖,𝑇 = (∑𝑇

𝑡=1 𝑛𝑖,𝑡 𝜇̂𝑖,𝑡 )/𝑛𝑖,𝑇 . (1)

Given the standard assumptions of fixed horizon A/B/N testing, in

which the performance of each arm 𝑖 ∈ [𝑘] is fixed (𝜇𝑖,𝑡 = 𝜇𝑖 ∀ 𝑡 ∈
[𝑇 ]) and where each arm receives a constant, pre-determined pro-

portion of the traffic each day, the running empirical mean is an

unbiased estimator of the underlying performance (E[𝜇𝑖,𝑇 ] = 𝜇𝑖 ).

However, when the underlying performance of an arm exhibits

daily time-variation, the running empirical mean can be a problem-

atic estimator. To begin, the estimate 𝜇𝑖,𝑇 is subject to Simpson’s
Paradox [14]. In the context of experimentation, Simpson’s paradox

refers to a circumstance in which the daily empirical mean of an

arm 𝑖 ∈ [𝑘] is higher than that of an arm 𝑗 ∈ [𝑘] on each given

day (𝜇̂𝑖,𝑡 > 𝜇̂ 𝑗,𝑡 ∀ 𝑡 ∈ [𝑇 ]), but the running empirical mean of

arm 𝑗 is higher than that of arm 𝑖 over the course of an experiment

(𝜇 𝑗,𝑇 > 𝜇𝑖,𝑇 ). As we saw in Case Study 1 (Figure 1c), in experimenta-

tion where the traffic allocation is changing over time, this paradox

regularly arises. Moreover, for argument, if we suppose that the

allocation of impressions is predetermined but not necessarily con-

stant, then for any 𝑖 ∈ [𝑘], E[𝜇𝑖,𝑇 ] =
∑𝑇
𝑡=1 (𝑛𝑖,𝑡/𝑛𝑖,𝑇 )𝜇𝑖,𝑡 . Thus, in

expectation, the running empirical mean estimator of Equation (1)

is estimating a rather arbitrarily weighted sum of the daily means

that depends on the allocation. Finally, even if the underlying means

are stationary, the running empirical mean is a biased estimator

when the traffic is being collected adaptively [4, 6, 20, 21]. These

estimator problems are empirically demonstrated in Section 4.

3.2.2 Cumulative Gain. As the above discussion implies, the run-

ning empirical mean estimator has many negative characteristics

that make it inappropriate for time-varying settings with adaptive

traffic allocation. Part of the challenge is that in time-varying set-

tings the notion of “the best performing arm” may be poorly defined

since the best-arm may change from day-to-day. To overcome this,

we instead try to answer the following counterfactual: “how much
reward would this arm have accrued if it had received all of
the traffic”. More precisely, for any arm 𝑖 ∈ [𝑘], the cumulative

gain (CG) after 𝑇 days is defined as

𝐺𝑖,𝑇 :=
∑𝑇
𝑡=1 𝑛𝑡 𝜇𝑖,𝑡 . (2)

Let total experiment traffic count after 𝑇 days be 𝑛𝑇 :=
∑𝑇
𝑡=1 𝑛𝑡 .

The corresponding cumulative gain rate variant is:

𝐺𝑖,𝑇 := 𝐺𝑖,𝑇 /𝑛𝑇 . (3)

In stationary settings, the cumulative gain rate reduces to the un-

derlying mean, that is, 𝐺𝑖,𝑇 = 𝜇𝑖 for arm 𝑖 ∈ [𝑘] when 𝜇𝑖,𝑡 = 𝜇𝑖 for

all days 𝑡 ∈ [𝑇 ]. In general, the cumulative gain rate reduces to

3
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a weighted average of the daily means. In particular, for any arm

𝑖 ∈ [𝑘], the cumulative gain rate after 𝑇 days can be written as

𝐺𝑖,𝑇 =
∑𝑇
𝑡=1𝑤𝑡 𝜇𝑖,𝑡 where the weight𝑤𝑡 := 𝑛𝑡/𝑛𝑇 is the proportion

of the total experiment traffic that came on day 𝑡 .

Cumulative Gain Estimator. In a general experimentation setting,

we can build an estimator for the cumulative gain metric with de-

sirable properties using inverse probability weighting [7]. Assume

that on each day 𝑡 ∈ [𝑇 ] of the experiment, a probability vector

𝑝𝑡 = (𝑝1,𝑡 , · · · , 𝑝𝑘,𝑡 ) ∈ Δ𝑘 is chosen according to the history up to

day 𝑡 .2 Then, each visitor 𝑠𝑡 ∈ [𝑛𝑡 ] on day 𝑡 ∈ [𝑇 ] is shown an arm

𝐼𝑠𝑡 ∈ [𝑘] that is selected with probability P(𝐼𝑠𝑡 = 𝑖) = 𝑝𝑖,𝑡 and a

corresponding reward 𝑟𝑠𝑡 is observed. A natural cumulative gain

estimator is given by inverse propensity weighing:

𝐺𝑖,𝑇 =
∑𝑇
𝑡=1 (𝑟𝑖,𝑡/𝑝𝑖,𝑡 ) . (4)

Proposition 1 establishes the estimator is unbiased (proof in App. A).

Proposition 1. For any arm 𝑖 ∈ [𝑘] and day horizon 𝑇 , the
estimator 𝐺𝑖,𝑇 =

∑𝑇
𝑡=1 (𝑟𝑖,𝑡/𝑝𝑖,𝑡 ) is unbiased for the cumulative gain.

That is, we have E[𝐺𝑖,𝑇 ] = 𝐺𝑖,𝑇 as defined in Equation (2).

The cumulative gain estimator will never suffer from Simpson’s

paradox, unlike the running empirical mean estimator which is

prone to this phenomenon. Indeed, if 𝜇̂𝑖,𝑡 > 𝜇̂ 𝑗,𝑡 for all 𝑡 ∈ [𝑇 ] for
some pair of arms 𝑖, 𝑗 ∈ [𝑘], then we necessarily have 𝐺𝑖,𝑇 ≥ 𝐺 𝑗,𝑇 .

As shown in the case study, Figures 1c and 1d, using the cumulative

gain would have prevented misleading inferences from Simpson’s

paradox. The cumulative gain metric and its corresponding esti-

mator can seamlessly be used for the purpose of assessing and

estimating the performance gap between arms by taking the differ-

ence between the quantities for a pair of arms. In particular, we have

thatE[𝐺𝑖,𝑇 −𝐺 𝑗,𝑇 ] = 𝐺𝑖,𝑇 −𝐺 𝑗,𝑇 for any pair of arms 𝑖, 𝑗 ∈ [𝑘].3 The
cumulative gain is a familiar quantity from the non-stochastic ban-

dit research field [1]. In particular, it is precisely the quantity that

is being measured when computing regret in non-stochastic bandit

problems and the basis of robust regret minimization algorithms.

3.2.3 Always-Valid Inference. Now that we have defined a per-

formance metric and analyzed the properties of a corresponding

estimator, we shift our focus to describing how the tools devel-

oped so far can enable robust inferences in experimentation. While

fixed horizon statistics and corresponding hypothesis tests are com-

monly used in production systems for experimentation, they are

subject to a high risk of abuse and error rate inflation through

repeated evaluation of the outcomes by practitioners and business

stakeholders [12]. This motivates adopting always-valid confidence
intervals [8, 10, 12], which allow experiments to be sequentially

monitored without inflation of the error rate.

We directly focus on the cumulative gain gap between a pair

of arms since we are interested in using always-valid intervals

for making inferences on the comparison of arms. In this context,

an always-valid confidence interval 𝐶 (𝑖, 𝑗, 𝑡, 𝛿) for a pair of arms

𝑖, 𝑗 ∈ [𝑘] with error tolerance 𝛿 ∈ (0, 1) guarantees

P(∃ 𝑡 ≥ 1, 𝑖, 𝑗 ∈ [𝑘] : |𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 | ≥ 𝐶 (𝑖, 𝑗, 𝑡, 𝛿)) ≤ 𝛿.

2
The notation Δ𝑘 is used to denote the 𝑘 − 1 dimensional simplex.

3
We adopt the notation𝐺𝑖,𝑗,𝑇 := 𝐺𝑖,𝑇 −𝐺 𝑗,𝑇 and𝐺𝑖,𝑗,𝑇 := 𝐺𝑖,𝑇 −𝐺 𝑗,𝑇 .

Algorithm 1 Cumulative Gain Successive Elimination (CGSE)

1: Input Arm set [𝑘], error tolerance 𝛿 ∈ (0, 1)
2: Initialize Active arm set A ← [𝑘], day 𝑡 ← 1

3: while |A| > 1 do
4: Set 𝑝𝑖,𝑡 = 1/|A| for all 𝑖 ∈ A and 𝑝𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑘] \A
5: For each arrival 𝑠𝑡 ∈ [𝑛𝑡 ] show arm 𝐼𝑠𝑡 ∼ 𝑝𝑡
6: Collect observations {𝑟𝑠𝑡 , 𝐼𝑠𝑡 , 𝑝𝑡 }

𝑛𝑡
𝑠=1

7: Eliminate suboptimal arms:
8: A ← A \ { 𝑗 ∈ A s.t. ∃ 𝑖 ∈ A : 𝐺𝑖, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) > 0}
9: 𝑡 ← 𝑡 + 1
10: Return A

There are several possibleways to derive an always-valid confidence

interval for this quantity. To obtain the always-valid confidence

interval, we now apply the MSPRT
4
using the plugin estimators

𝜇̂𝑖,𝑡 and 𝜇̂ 𝑗,𝑡 for the unknown daily arm means 𝜇𝑖,𝑡 and 𝜇 𝑗,𝑡 on each

day in an estimate of the variance. As a result, under the stated

assumptions, we have

P(∃ 𝑡 ≥ 1, 𝑖, 𝑗 ∈ [𝑘] : |𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 | ≥ 𝐶 (𝑖, 𝑗, 𝑡, 𝛿)) ≤ 𝛿,

with 𝐶 (𝑖, 𝑗, 𝑡, 𝛿) :=
√︃
(𝑉𝑖, 𝑗,𝑡 + 𝜌) log

(
(𝑉𝑖, 𝑗,𝑡 + 𝜌)/(𝜌𝛿2)

)
(5)

where 𝜌 > 0 is a fixed constant and

𝑉𝑖, 𝑗,𝑡 =
∑𝑡
𝜏=1 𝑛𝜏

(
𝜇̂𝑖,𝜏 (1 − 𝜇̂𝑖,𝜏 )/𝑝𝑖,𝜏 + 𝜇̂ 𝑗,𝜏 (1 − 𝜇̂ 𝑗,𝜏 )/𝑝 𝑗,𝜏

)
.

This characterization immediately allows for sequential monitor-

ing of cumulative gain gap estimates through upper and lower

bounds for high probability decision-making. For more details on

the confidence interval justification see Appendix C.2.

Finally, we make two remarks about the variance of the cumu-

lative gain estimator. First, in general since our cumulative gain

estimator is based on inverse propensityweighting, if any of the arm

allocation probabilities are very small, the estimator variance can

become very large. In Appendix C.1 we discuss the bias/variance

trade-off between the running empirical mean estimator and the

cumulative gain estimator. Second, [11] propose a similar estimator

to the cumulative gain estimator. However, they make the strong as-

sumption that 𝜇𝑖,𝑡 = 𝜇𝑖 +𝛾𝑡 for all 𝑖 ∈ [𝑘] where 𝛾𝑡 is an exogenous

shock. For this restricted setting, we demonstrate in Appendix B

the variance reduced cumulative gain (VRCG) estimator

𝐺∗𝑖, 𝑗,𝑇 =
∑𝑇
𝑡=1 (𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 , with𝑤𝑡 defined as

𝑤𝑡 =
( ∑𝑇

𝑡=1 (𝑛−1𝑖,𝑡
+ 𝑛−1

𝑗,𝑡
)−1

)−1 (𝑛−1
𝑖,𝑡
+ 𝑛−1

𝑗,𝑡
)−1 ∀ 𝑡 ∈ [𝑇 ],

is the minimal variance weighted estimator for the difference of

means 𝜇𝑖 − 𝜇 𝑗 . VRCG thus outperforms the cumulative gain esti-

mator or the estimator proposed in [11] in this restricted setting.

3.3 Adaptive Counterfactual Inference
We seek an AED method achieving the best of three worlds. That is

an algorithm giving confident, sample efficient identification of the

counterfactual optimal treatment, while simultaneously minimizing

regret in experiments where stationarity is not guaranteed.

4
For reference, see Eq. 14 in [8].
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Algorithm Description. For adaptive counterfactual inference, we
adopt the procedure of Algorithm 1 (CGSE), which is an elimination

based method on the cumulative gain. As input, CGSE takes a set

of arms [𝑘], and a confidence parameter 𝛿 (normally set to 0.1).

Then, on each day, an active set of arms A is maintained and

each is shown to users with equal probability 1/|A|. Finally, at the
conclusion of each day, any arms that can be concluded to not have

the maximum cumulative gain up through the current day among

the active set are removed and never sampled again.

Formally, motivated by the existence of the always-valid con-

fidence interval, CGSE eliminates an arm 𝑗 ∈ [𝑘] on some day

𝑡 ≥ 1 when there exists an arm 𝑖 ∈ [𝑘] such that 𝐺𝑖,𝑡 − 𝐺𝑖, 𝑗 −
𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) > 0. This implies that the cumulative gain gap 𝐺𝑖,𝑡 −
𝐺 𝑗,𝑡 > 0 is positive and thus arm 𝑗 ∈ [𝑘] is suboptimal as judged by

the cumulative gain metric with high probability. This procedure

controls the variance of the cumulative gain estimator by keeping

the sampling probabilities uniform across the set of active arms,

which in turn results in sample efficient identification. Moreover,

the elimination mechanism controls the regret by ceasing to give

any traffic to arms that are provably sub-optimal.

An immediate criticism of this method is the concern that under

non-stationarity, we may eliminate an arm early in the experiment

that may perform better later on. However, we developed this strat-

egy based on real-life data where even though the daily means

of arms may move significantly, the differences between arms is

relatively constant as described in Case Study 2 (Section 2.2). In

Section 4.3, we discuss our method’s strong theoretical guarantees.

4 EXPERIMENTS AND GUARANTEES
We now present an illustrative set of both offline and online pro-

duction experiments. In our offline experiments, we highlight the

benefits of our algorithm for identification and regret on a realistic

example versus alternatives. The online experiments show that our

algorithm has been deployed in production and delivered promising

outcomes in comparison to standard regret minimization.

4.1 Offline Experiments
We consider a variation of a logged past online experiment and

compare ourmethod against several algorithmic baselines. Figure 3a

plots the armmeans on each day of the experiment. As arm 5 has the

highest mean among the arms on each day, it is as the counterfactual

optimal arm at any day. We run each of the candidate algorithms

100 times on this data using a daily batch size of 10000, and plot the

mean regret of the algorithms over the runs (Figure 3b), the mean

regret of the algorithms on the day the optimal arm is identified

with statistical significance
5
(Figure 3c), and the probability over the

runs of identifying the optimal arm with statistical significance by

each given day (Figure 3d). Specifically, we monitor each algorithm

using the always-valid confidence intervals from Section 3.2.3.

Comparison Algorithms. We consider CGSE and several compar-

isons. Thompson Sampling (TS) is an algorithm thatmaintains a pos-

terior distribution on the running empirical mean of each arm that

can be translated to a posterior probability 𝑝𝑖,𝑡 = 𝛼𝑖,𝑡 to play each

5
If algorithm did not meet termination criteria, we use the algorithm’s regret at the

end of the final day.

arm 𝑖 ∈ [𝑘] at day 𝑡 ≥ 1. Top Two TS (TTTS) [18] is a simple variant

of TS intended for best arm identification that plays arm 𝑖 ∈ [𝑘] at
day 𝑡 ≥ 1 with probability 𝑝𝑖,𝑡 = 𝛼𝑖,𝑡 (𝛽 + (1 − 𝛽)

∑
𝑗≠𝑖

𝛼 𝑗,𝑡

1−𝛼 𝑗,𝑡
) with

𝛽 = 1/2. The uniform sampling algorithm plays each arm 𝑖 ∈ [𝑘]
at day 𝑡 ≥ 1 with probability 𝑝𝑖,𝑡 = 1/𝑘 . Finally, the best of both
worlds (BOB) algorithm [1] sorts and ranks arms by decreasing

order of the cumulative gain estimates and then computes a prob-

ability distribution based on this ranking. The probability of arm

𝑖 ∈ [𝑘] being played at day 𝑡 ≥ 1 is given by 𝑝𝑖,𝑡 = 1/(⟨̃𝑖⟩𝑡 log𝑘)
where ⟨̃𝑖⟩𝑡 denotes the cumulative gain estimate rank among the

arms and log𝑘 =
∑𝑘
𝑘 ′=1 (1/𝑘

′).

Experiment Results. As expected, TS minimizes regret for this

problem, but with high probability it is never able to end the ex-

periment and identify the optimal arm. This is precisely because

regret minimizing algorithms do not allocate enough impressions to

suboptimal arms, compromising the statistical power. While TTTS

outperforms TS in terms of identification time, it suffers in terms of

regret since in the limit it only gives 𝛽 = 1/2 of the impressions to

the optimal arm. Moreover, in comparison to the other algorithms,

it fails to identify the optimal arm fast. This is primarily because

the probability of playing any arm not in the pair that appears

closest to being optimal quickly tends to zero, which inflates the

confidence intervals on these arms and hinders identification. The

uniform algorithm suffers the maximum regret both as a function

of the number of days and at experiment termination time. It is

also suboptimal for identification since it does not allocate more

impressions to arms that appear closer to being optimal. CGSE has

nearly equal regret to TS at termination time and at any day, as ex-

pected. Furthermore, of all algorithms, it identifies the optimal arm

the fastest. This experiment demonstrates the potential of CGSE

for obtaining the best of three worlds. Finally, BOB suffers nearly

double the regret at the termination time as CGSE, while also be-

ing slower to identify the optimal arm. This is due to BOB being

more conservative and not eliminating arms to guard against fully

adversarial problems, whereas our approach is more aggressive.

However, as we observe in this non-stationary experiment, CGSE

is robust enough to handle real-world data.

4.2 Online Experiments
We now present results from tests in a production environment.

Given a set of content (the arms), a control group C and a treatment

group T are dialed up with each receiving 50% of the traffic. In

each experiment group, identical sets of content are scheduled. A

TS implementation [15] allocates traffic among the content in the

control group C, while CGSE allocates traffic among the content

in the treatment group T. We dialed up dozens of experiments

with this setup, but highlight particularly interesting ones that

capture general outcomes and our learnings. In particular, we focus

on the themes of robustness to non-stationarity, along with the

practical benefits of using always-valid inference with adaptive

traffic allocations, together forming the best of three worlds. More

experiments are presented in Appendix E.

4.2.1 Theme 1: Robustness to Non-Stationarity. TS is ubiquitous

in production bandit and experimentation systems. Yet, it is based

on the running empirical mean estimator and the assumption of

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

The Web Conference ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a)
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Figure 3: Offline experiment 1. The daily arm means (a), regret as a function of the day (b), regret at the stopping time (c), and the probability
of identifying the optimal arm with statistical significance by a given day (d).

(a) Running empiricalmeans for TS (solid
lines) & CGSE (dashed lines)

(b) CGSE cumulative gain rates (c) TS daily probability allocation (d) Algorithm daily empirical means

Figure 4: Live experiment 1: TS catastrophically fails on production data and shifts all traffic to the worst arm.

(a) TS running empirical means (b) CGSE cumulative gain rates (c) TS daily probability allocation (d) Algorithm running empirical means

Figure 5: Live experiment 2: TS fails to obtain significantly higher reward relative to CGSE and gives misleading inferences.

a stochastic environment. Consequently, it lacks guarantees for

drawing proper inferences or even minimizing regret on live traffic.

Since CGSE acts akin to uniform sampling until arms are eliminated,

the online experiments we conducted allowed us to effectively

benchmark TS. The results show that TS fails to minimize regret

in practice and it inflates decision-making error rates when using

the collected data for inference. In contrast, our approach gives

satisfying results with respect to the best of three worlds’ objectives.

We illustrate these insights through the results of a pair of exper-

iments with significant time-variation. Figure 4 shows the results of

Experiment 1. After 2 weeks, CGSE eliminates Arm 1 (see Figure 4b),

while TS was allocating nearly 100% of the traffic to this arm at the

end of the experiment (see Figure 4c). This may appear to be an

example where the arm switched from being the worst performer

and became the best performer, but we can validate that this is not

the case. In Figure 4a the solid lines represent the running empirical

means of each arm as estimated from the TS algorithm, while the
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(a) CGSE cumulative gain rates (b) The CGSE minimum upper and lower confidence intervals on the cumulative gain of each arm.

Figure 6: Live experiment 3: CGSE progressively eliminates suboptimal arms toward identifying the counterfactual optimal.

(a) CGSE cumulative gain rates (b) CGSE cumulative probability allocation (c) Cumulative gain rate gap and bounds

Figure 7: Live experiment 4: CGSE quickly eliminates highly suboptimal arms to minimize cost and increase power.

dashed lines represent the running empirical means of each arm

as estimated from CGSE. We see that there is a huge bias down-

wards in the running empirical mean estimates of Arms 2-4 when

comparing the data from TS (solid lines) and CGSE (dashed lines).

This is due to the fact TS is giving little traffic to Arms 2-4 from day

30 onward as their underlying performance improves, while CGSE

uniformly allocates traffic among Arms 2-4 and captures this effect.

This suggests that TS’s confidence in giving all of its traffic to Arm

1 is misplaced and instead CGSE was wise to eliminate Arm 1 early.

Specifically, we see that the performance of all arms moves up as

TS begins to switch its allocation to Arm 1 and this reinforcing

feedback loop causes continued and exacerbated flawed allocations

by TS. This is a real-world example of Simpson’s paradox. As Fig-

ure 4d shows, this has an impact on the total reward obtained: the

daily algorithm empirical means demonstrate that CGSE minimizes

regret more effectively toward the end of the experiment.

Figure 5 shows the outcome of Experiment 2. The effects be-

tween arms in this experiment ended up being low relative to the

amount of traffic. Consequently, CGSE did not eliminate any of the

arms and simply produced a uniform traffic split over the course of

the experiment. In contrast, TS again produces a highly dynamic

traffic allocation and gives the vast majority of impressions to Arm

2 throughout much of the experiment (see Figure 5c). Yet, we ob-

serve that Arm 2 is in fact the arm with the lowest cumulative gain

estimate using the data collected by CGSE (see Figure 5b), indicating

that TS made a mistake in its allocation. This can also be observed

through Figure 5d, which shows that the running empirical means

for the algorithms are nearly identical and statistically indistinguish-

able based on asymptotic confidence intervals. Moreover, standard

hypothesis tests (t-test/z-test) on the running empirical mean using

the data from TS (see Figure 5a) would have claimed that Arm 2

was positive significant relative to other arms midway through

the experiment. This experiment highlights that TS is prone to

costly decision-making mistakes (this is a potential Type 1 error)

and fails to provide significant regret minimization benefits in pro-

duction systems, while our approach overcomes the significant

time-variation to provide valid inferences while minimizing the

cost of experimentation.

4.2.2 Theme 2: Efficient Always-Valid Inference and Finding the
Best. In most experiments, CGSE was able to identify the optimal

arm within the usual time frames that an experiment is allowed

to be active. We now discuss a pair of successful experiments that

demonstrate the benefits of early elimination and the utility of

always-valid confidence intervals for practical business uses.

In Experiment 3 (see Figure 6), the counterfactual optimal treat-

ment was identified after 3 weeks of experimentation. By early

elimination of suboptimal arms, CGSE was able to direct a higher

percentage of traffic to the best performing arms and accelerate

the comparison. We visualize the internal behavior of the algo-

rithm in Figure 6b by plotting min𝑗∈A𝑡
𝐺𝑖, 𝑗,𝑡 − 𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) and

min𝑗∈A𝑡
𝐺𝑖, 𝑗,𝑡 +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) (normalized to a rate) for each day 𝑡
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that an arm 𝑖 ∈ [𝑘] was active, where A𝑡 denotes the day’s set of

active arms. These quantities respectively correspond to the lower

and upper bounds of the minimum cumulative gain gap. They can

be interpreted as the maximum potential loss (and gain, respec-

tively) relative to the set of active arms, which holds with high

probability by the always-valid confidence intervals.

The algorithm eliminates an arm when the minimum upper

bound moves below zero, since this means that with high probabil-

ity there exists another arm with higher cumulative gain. Moreover,

the optimal arm has been identified when the lower bound moves

above zero, since this means that with high probability the arm

has the maximum cumulative gain among the active set. Beyond

providing interpretation of the algorithm’s behavior, these confi-

dence intervals have the practical utility of being able to quantify

the maximum potential loss or gain from making the decision to

select an arm from an experiment. This is useful when business

constraints necessitate early termination of an experiment.

Figure 7 shows the outcome of Experiment 4. In this experiment,

Arms 1 and 2 had extremely low cumulative gain rates as compared

to Arms 3 and 4. Consequently, CGSE eliminated them after just

3 days and split traffic evenly among Arms 3 and 4. By the end of

the experiment when Arm 3 was identified as the counterfactual

optimal, nearly 90% of the traffic had been allocated to Arms 3

and 4 (see Figure 7b where Arm 3 and 4 overlap). This experiment

highlights the importance of adaptive experimentation. A naive

uniform allocation would have been extremely costly as well as

required a longer experiment, whereas early elimination limits the

damage of introducing low-performing arms in an experiment and

maximizes the decision-making power for identifying the optimal

arm. This can be seen through the always-valid confidence intervals

𝐺𝑖, 𝑗,𝑡 ± 𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) (normalized to a rate) for each day 𝑡 on the

gap between arm 𝑖 = 3 and arm 𝑗 = 4 shown in Figure 7c. As more

data is collected by the algorithm, the confidence interval steadily

shrinks until the lower bound moves above zero, at which point it

concludes with high probability that Arm 3 is optimal.

4.3 Algorithmic Guarantees
This section shows that CGSE has theoretical guarantees for the

objective of identifying the counterfactual optimal arm in experi-

ments with daily time-variation, and that it seamlessly adapts to

easier, stochastic experimentation data. Proofs are in Appendix D.

4.3.1 Guarantees for Correct Inference. For this analysis, we restrict
the allowable form of time-variation to make the fixed-confidence

identification problem well-defined, but remark that it still captures

a number of meaningful real-world scenarios. Toward this goal, let

us define the cumulative gain rate gap relative to an arm 𝑖∗ ∈ [𝑘]
for any other arms 𝑗 ∈ [𝑘] at any day 𝑡 ≥ 1 as the following:

Δ 𝑗,𝑡 := (𝑛𝑡 )−1
∑𝑡
𝜏=1 𝑛𝜏 (𝜇𝑖∗,𝜏 − 𝜇 𝑗,𝜏 ) .

Assumption 1. There exists an arm 𝑖∗ such that for each arm
𝑗 ∈ [𝑘] \ {𝑖∗} the cumulative gain rate gap Δ 𝑗,𝑡 ≥ 0 for all 𝑡 ≥ 1.

Assumption 1 implies that the counterfactual optimal arm is time-

independent, which means 𝑖∗ ∈ argmax𝑖∈[𝑘 ] 𝐺𝑖,𝑡 for all 𝑡 ≥ 1. Yet,

this is a mild restriction given that it allows for daily-time variation

among all arms and does not require that the optimal counterfactual

arm has the highest mean on each given day. Under this assumption,

arm 𝑖∗ is not eliminated by CGSE with high probability.

Proposition 2. CGSE with 𝛿 ∈ (0, 1) does not eliminate the opti-
mal arm 𝑖∗ ∈ [𝑘] with probability at least 1 − 𝛿 under Assumption 1.

We prove this by showing the lower confidence bound on the

cumulative gain gap between any arm 𝑗 ≠ 𝑖∗ and 𝑖∗ cannot fall
below zero. The above does not guarantee that we necessarily find

the best arm. To do so, we need an additional assumption.

Assumption 2. For each arm 𝑗 ∈ [𝑘] \ {𝑖∗} there exists a day
𝑡0 > 0 and 𝜖 > 0 such that for 𝑡 > 𝑡0, Δ 𝑗,𝑡 ≥ 𝜖 .

Proposition 3. CGSE with 𝛿 ∈ (0, 1) eliminates each arm 𝑗 ∈
[𝑘] \ {𝑖∗} with probability at least 1 − 𝛿 under Assumptions 1–2.

We prove this by arguing that the lower confidence bound on

the cumulative gain rate gap between arm 𝑖∗ and any other arm

𝑗 ≠ 𝑖∗ must move above 𝜖 , since the normalized confidence intervals

necessarily shrink toward zero as a result of the allocation.

Put together, Propositions 2 and 3 allow us to conclude that, with

probability at least 1−𝛿 , the optimal arm is returned by CGSE under

Assumptions 1 and 2. This gives a strong guarantee in a general

time-varying setting for the correctness of CGSE.

4.3.2 Guarantees in Stochastic Environments & Comparison. In
the stochastic stationary setting, CGSE reduces to a closely re-

lated version of the classical successive elimination algorithm [5].

Thus, it obtains the known guarantees for the algorithm in this

situation. Specifically, if the environment is stationary, we have

a guarantee that the algorithm will return the optimal arm with

probability at least 1 − 𝛿 in a number of samples not exceeding

O(log(𝑘/𝛿)∑𝑘
𝑖=1 Δ

−2
𝑖
) with regret at most O(log(𝑘/𝛿)∑𝑘

𝑖=1 Δ
−1
𝑖
),

both of which are near-optimal [5, 13].

In the best-arm identification literature there is little work about

handling non-stochastic environments. Our work is perhaps most

closely linked to the Best-of-Both-Worlds setting [1]. The authors

propose a new sample complexity,𝐻𝐵𝑂𝐵 , which is necessarily larger

than

∑𝑘
𝑖=1 Δ

−2
𝑖

. They provide a conservative algorithm (see Sec-

tion 4.1) which in the stochastic case requires no more samples

than 𝐻𝐵𝑂𝐵 log
2 (𝑘) log(1/𝛿) while being optimal in the adversarial

case. We take a different, more aggressive approach that effectively

guarantees an optimal sample complexity in stochastic settings, but

give up on strong guarantees in fully adversarial settings.

5 CONCLUSION
This paper provides a rigorous discussion of experimentation objec-

tives and the trade-offs of algorithmic methods for optimizing them.

It demonstrates the shortfalls of the standard metric and estimator

for inference when traffic is dynamically allocated and performance

is time-varying. It proposes a metric, cumulative gain, that mea-

sures the counterfactual of the expected reward an arm could obtain

if it received all the traffic. We propose an unbiased estimator of

this metric, and empirically validate it. Finally, we combine cumu-

lative gain estimators, always-valid confidence intervals, and an

elimination algorithm to form a novel experimentation system that

provides a robust and flexible tool for sequentially monitoring of

experiments with fast identification guarantees at minimal cost.
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A PROOFS FOR SECTION 3 (OUR APPROACH)
Proposition 1. For any arm 𝑖 ∈ [𝑘] and day horizon 𝑇 , the estimator 𝐺𝑖,𝑇 =

∑𝑇
𝑡=1 (𝑟𝑖,𝑡/𝑝𝑖,𝑡 ) is unbiased for the cumulative gain. That is, we

have E[𝐺𝑖,𝑇 ] = 𝐺𝑖,𝑇 as defined in Equation (2).

Proof. Assume that on each day 𝑡 ∈ [𝑇 ] of the experiment, a probability vector 𝑝𝑡 = (𝑝1,𝑡 , · · · , 𝑝𝑘,𝑡 ) ∈ Δ𝑘 is chosen according to the

history up to day 𝑡 . Then, each visitor 𝑠𝑡 ∈ [𝑛𝑡 ] on day 𝑡 ∈ [𝑇 ] is shown an arm 𝐼𝑠𝑡 ∈ [𝑘] that is selected with probability P(𝐼𝑠𝑡 = 𝑖) = 𝑝𝑖,𝑡
and a corresponding reward 𝑟𝑠𝑡 is observed. Formally, define the history up to any day 𝑡 ∈ [𝑇 ] by the filtration

F𝑡−1 = {∪𝑡−1𝜏=1 ∪
𝑛𝜏
𝑠𝜏=1
(𝑟𝑠𝑡 , 𝐼𝑠𝜏 , 𝑝𝜏 )}. (6)

Now, to see that this is an unbiased estimator of the cumulative gain, observe that we have the following,

E[𝐺𝑖,𝑇 ] = E
[∑︁𝑇

𝑡=1

𝑟𝑖,𝑡

𝑝𝑖,𝑡

]
=
∑︁𝑇

𝑡=1
E
[
1

𝑝𝑖,𝑡

∑︁𝑛𝑡

𝑠𝑡=1
1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡

]
=
∑︁𝑇

𝑡=1
E
[
1

𝑝𝑖,𝑡
E
[∑︁𝑛𝑡

𝑠𝑡=1
1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡 |F𝑡−1

] ]
=
∑︁𝑇

𝑡=1
E
[
1

𝑝𝑖,𝑡

∑︁𝑛𝑡

𝑠𝑡=1
𝑝𝑖,𝑡 𝜇𝑖,𝑡

]
=
∑︁𝑇

𝑡=1
𝑛𝑡 𝜇𝑖,𝑡 .

This shows the estimator 𝐺𝑖,𝑇 is unbiased since E[𝐺𝑖,𝑇 ] = 𝐺𝑖,𝑇 . □

B FIXED EFFECT VARIANCE REDUCED ESTIMATION
We now provide details on the variance reducing cumulative gain (VCGR) estimator described in Section 3.2.3 for situations in which the

gap between any pair of arms is constant on each day. Specifically, we assume that there is a shift 𝛾𝑡 on each day 𝑡 ∈ [𝑇 ] of an experiment

so that the mean of any arm 𝑖 ∈ [𝑘] on day 𝑡 is given by 𝜇𝑖,𝑡 = 𝜇𝑖 + 𝛾𝑡 . Consequently, the gap between a pair of arms 𝑖, 𝑗 ∈ [𝑘] given by

Δ := (𝜇𝑖 +𝛾𝑡 ) − (𝜇 𝑗 +𝛾𝑡 ) = 𝜇𝑖 − 𝜇 𝑗 and is constant on each day. In this situation, we are interested in measuring the gap Δ, and our proposed
Variance Reduced Cumulative Gain (VRCG) estimator is given by:

𝐺∗𝑖, 𝑗,𝑇 =
∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 ,

where

𝑤𝑡 =
(∑︁𝑇

𝑡=1
(𝑛−1𝑖,𝑡 + 𝑛

−1
𝑗,𝑡 )
−1)−1 (𝑛−1𝑖,𝑡 + 𝑛

−1
𝑗,𝑡 )
−1 ∀ 𝑡 ∈ [𝑇 ] .

For the analysis to follow, we assume that the arm sample counts on day 𝑡 ∈ [𝑇 ] are non-zero and independent of the history up to day 𝑡

defined by the filtration in Equation (6). As a result of this independence, the variance reduced cumulative gain estimator is an unbiased

estimate of the difference of means for any arms 𝑖, 𝑗 ∈ [𝑘] after 𝑇 days of the experiment:

E
[∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡

]
=
∑︁𝑇

𝑡=1
E[(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )]𝑤𝑡 =

∑︁𝑇

𝑡=1
(𝜇𝑖 − 𝜇 𝑗 )𝑤𝑡 = 𝜇𝑖 − 𝜇 𝑗 .

In the following result and proof, we show that the variance reduced cumulative gain estimator minimizes the variance of the estimate.

Proposition 4. The variance of the estimator
∑𝑇
𝑡=1 (𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 is minimized with𝑤𝑡 = (1/𝑛𝑖,𝑡 + 1/𝑛 𝑗,𝑡 )−1

( ∑𝑇
𝜏=1 (1/𝑛𝑖,𝜏 + 1/𝑛 𝑗,𝜏 )−1

)−1
for all 𝑡 ∈ [𝑇 ] and the resulting variance of the estimator is

( ∑𝑇
𝜏=1 (1/𝑛𝑖,𝜏 + 1/𝑛 𝑗,𝜏 )−1

)−1.
Proof. We formulate the following optimization problem to select a vector of weights𝑤 ∈ R𝑇 constrained to the simplex that minimizes

the variance of the estimator as follows:

min

𝑤∈R𝑇
V[

∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 ]

such that 𝑤 ⪰ 0 and

∑︁𝑇

𝑡=1
𝑤𝑡 = 1.

This problem can be rewritten as follows after denoting the variance of 𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 as 𝜎2𝑡 for each 𝑡 ∈ [𝑇 ]:

min

𝑤∈R𝑇

∑︁𝑇

𝑡=1
𝑤2

𝑡 𝜎
2

𝑡

such that 𝑤 ⪰ 0 and

∑︁𝑇

𝑡=1
𝑤𝑡 = 1.
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To solve this optimization problem, we write out the Lagrangian and the associated KKT conditions. In particular, we have the following

Lagrangian:

L(𝑤, 𝜆,𝛾) =
∑︁𝑇

𝑡=1
𝑤2

𝑡 𝜎
2

𝑡 + 𝜆(
∑︁𝑇

𝑡=1
𝑤𝑡 − 1) +

∑︁𝑇

𝑡=1
𝛾𝑡 (−𝑤𝑡 ) .

The resulting KKT conditions are given by:

∀ 𝑡 = 1, 2, . . . ,𝑇 : 2𝑤𝑡𝜎
2

𝑡 + 𝜆 − 𝛾𝑡 = 0 (stationarity)
∀ 𝑡 = 1, 2, . . . ,𝑇 : 𝛾𝑡 (−𝑤𝑡 ) = 0 (complementary slackness)∑︁𝑇

𝑡=1
𝑤𝑡 = 1,𝑤 ⪰ 0 (primal feasibility)

𝛾 ⪰ 0 (dual feasibility) .

Observe that this simplifies to the following conditions by taking 𝛾 = 0 and absorbing constants into the multiplier 𝜆:

∀ 𝑡 = 1, 2, . . . ,𝑇 : 𝑤𝑡𝜎
2

𝑡 = 𝜆 (stationarity)∑︁𝑇

𝑡=1
𝑤𝑡 = 1,𝑤 ≥ 0 (primal feasibility).

Now, since we require𝑤𝑡𝜎
2

𝑡 = 𝑤𝑇𝜎
2

𝑇
= 𝜆 for each 𝑡 ∈ [𝑇 − 1], the conditions can equivalently be written as:

∀ 𝑡 = 1, 2, . . . ,𝑇 − 1 : 𝑤𝑡 = 𝑤𝑇𝜎
2

𝑇 /𝜎
2

𝑡 (stationarity)∑︁𝑇

𝑡=1
𝑤𝑡 = 1,𝑤 ⪰ 0 (primal feasibility).

To find the solution, we reformulate the conditions into the simplified set given below:∑︁𝑇

𝑡=1
𝑤𝑇𝜎

2

𝑇 /𝜎
2

𝑡︸     ︷︷     ︸
𝑤𝑡

= 1 and 𝑤 ⪰ 0.

It now becomes clear by solving for𝑤𝑇 in the equation above and applying the constraint𝑤𝑡 = 𝑤𝑇𝜎
2

𝑇
/𝜎2𝑡 for all 𝑡 ∈ [𝑇 − 1] the solution is

𝑤𝑇 =
1

𝜎2
𝑇

∑𝑇
𝑡=1 𝜎

−2
𝑡

and 𝑤𝑡 = 𝑤𝑇𝜎
2

𝑇 /𝜎
2

𝑡 ∀ 𝑡 ∈ [𝑇 − 1] .

The solution that satisfies these conditions is given by

𝑤𝑡 =
𝜎2
𝑇

𝜎2𝑡

1

𝜎2
𝑇

∑𝑇
𝜏=1 𝜎

−2
𝜏

=
1

𝜎2𝑡
∑𝑇
𝜏=1 𝜎

−2
𝜏

=
𝜎−2𝑡∑𝑇
𝜏=1 𝜎

−2
𝜏

.

It then follows from plugging this quantity into the variance definition for the estimator that for this choice of𝑤 we have

V[
∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 ] =

∑︁𝑇

𝑡=1
𝑤2

𝑡 𝜎
2

𝑡 =
∑︁𝑇

𝑡=1

𝜎−2𝑡( ∑𝑇
𝜏=1 𝜎

−2
𝜏

)
2
=

1∑𝑇
𝜏=1 𝜎

−2
𝜏

.

Thus, with 𝜎2𝑡 = (𝜇𝑖,𝑡 (1 − 𝜇𝑖,𝑡 )/𝑛𝑖,𝑡 + 𝜇 𝑗,𝑡 (1 − 𝜇 𝑗,𝑡 )/𝑛 𝑗,𝑡 ), we have

𝑤𝑡 =
(𝜇𝑖,𝑡 (1 − 𝜇𝑖,𝑡 )/𝑛𝑖,𝑡 + 𝜇 𝑗,𝑡 (1 − 𝜇 𝑗,𝑡 )/𝑛 𝑗,𝑡 )−1∑𝑇

𝜏=1 (𝜇𝑖,𝜏 (1 − 𝜇𝑖,𝜏 )/𝑛𝑖,𝜏 + 𝜇 𝑗,𝜏 (1 − 𝜇 𝑗,𝜏 )/𝑛 𝑗,𝜏 )−1
,

and

V[
∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 ] =

1∑𝑇
𝜏=1 (𝜇𝑖,𝜏 (1 − 𝜇𝑖,𝜏 )/𝑛𝑖,𝜏 + 𝜇 𝑗,𝜏 (1 − 𝜇 𝑗,𝜏 )/𝑛 𝑗,𝜏 )−1

.

In practice, the daily means would be unknown. Thus, we consider minimizing an upper bound on the variance of the estimator by defining

𝜎2𝑡 = (1/𝑛𝑖,𝑡 + 1/𝑛 𝑗,𝑡 )/4 using that 𝑥 (1 − 𝑥) ≤ 1/4 for 𝑥 ∈ (0, 1) and the analysis follows identically with

𝑤𝑡 =
(1/(4𝑛𝑖,𝑡 ) + 1/(4𝑛 𝑗,𝑡 ))−1∑𝑇
𝜏=1 (1/(4𝑛𝑖,𝜏 ) + 1/(4𝑛 𝑗,𝜏 ))−1

=
(1/𝑛𝑖,𝑡 + 1/𝑛 𝑗,𝑡 )−1∑𝑇
𝜏=1 (1/𝑛𝑖,𝜏 + 1/𝑛 𝑗,𝜏 )−1

.

This gives a variance upper bound for the estimator of

V[
∑︁𝑇

𝑡=1
(𝜇̂𝑖,𝑡 − 𝜇̂ 𝑗,𝑡 )𝑤𝑡 ] ≤

1∑𝑇
𝜏=1 (1/𝑛𝑖,𝜏 + 1/𝑛 𝑗,𝜏 )−1

.

□
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C VARIANCE ANALYSIS AND ALWAYS-VALID CONFIDENCE INTERVAL DERIVATION
We now provide an analysis comparing the variance of the running empirical mean estimator and the cumulative gain estimator and go into

more details describing the derivation of the always-valid confidence intervals adopted on cumulative gain differences.

C.1 Variance Analysis of Running Empirical Mean and Cumulative Gain Estimators
The purpose of this analysis is to compare how the variance of the running empirical mean and cumulative gain estimators behave in

stationary environments where they are both unbiased, as well as to gain insights into how the variance of the cumulative gain estimator

can be controlled through the allocation of samples among arms. In this analysis, we focus on a stochastic environment in which for an arm

𝑖 ∈ [𝑘] the underlying daily mean 𝜇𝑖,𝑡 = 𝜇𝑖 is fixed for all 𝑡 ∈ [𝑇 ]. Moreover, we work under the assumptions described when formulating

and analyzing the cumulative gain estimator in Section 3.2. For the sake of simplifying the discussion and avoiding issues around considering

conditional expectations, we also assume that the daily probability allocation 𝑝𝑖,𝑡 for the arm is fixed ahead of the experiment for all 𝑡 ∈ [𝑇 ].
In this analysis, we consider another version of the standard running empirical mean estimator since the definition from Equation (1) is

not necessarily unbiased under the assumptions as a result of randomness in the observed sample count, and so that the underlying metric

being estimated has equivalent units to the cumulative gain for the sake of comparison. In particular, let us define the estimator

𝜇′𝑖,𝑇 :=
∑︁𝑇

𝜏=1

∑𝑇
𝑡=1 𝑟𝑖,𝑡∑𝑇
𝑡=1 𝑝𝑖,𝑡

.

Following an argument analogous to the proof of Proposition 1, it can be shown that 𝜇′
𝑖,𝑇

is an unbiased estimate of the mean 𝜇𝑖 when

normalized by the total experiment sample count

∑𝑇
𝑡=1 𝑛𝑡 .

We now calculate the variance V(𝐺𝑖,𝑇 ) of the cumulative gain estimator and the variance V(𝜇′
𝑖,𝑇
) of the running empirical mean estimator.

To begin, observe that on any day 𝑡 ∈ [𝑇 ] and observation 𝑠𝑡 ∈ [𝑛𝑡 ], we have the following bound:

V(1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡 ) = E[V(1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡 |𝐼𝑠𝑡 )] + V(E[1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡 |𝐼𝑠𝑡 ])
= E[1{𝐼𝑠𝑡 = 𝑖}𝜇𝐼𝑠𝑡 (1 − 𝜇𝐼𝑠𝑡 )] + V(1{𝐼𝑠𝑡 = 𝑖}𝜇𝐼𝑠𝑡 )
= 𝑝𝑖,𝑡 𝜇𝑖 (1 − 𝜇𝑖 ) + 𝑝𝑖,𝑡 (1 − 𝑝𝑖,𝑡 )𝜇2𝑖
= 𝑝𝑖,𝑡 𝜇𝑖 − 𝑝2𝑖,𝑡 𝜇

2

𝑖

≤ 𝑝𝑖,𝑡 𝜇𝑖 .

Given this calculation, we obtain the variance of the running empirical mean estimator as follows:

V(𝜇′𝑖,𝑇 ) =
1

(∑𝑇
𝑡=1 𝑝𝑖,𝑡 )2

V
(∑︁𝑇

𝜏=1

∑︁𝑇

𝑡=1

∑︁𝑛𝑡

𝑠𝑡=1
1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡

)
≤ 𝑇 2

(∑𝑇
𝑡=1 𝑝𝑖,𝑡 )2

∑︁𝑇

𝑡=1
𝑛𝑡𝑝𝑖,𝑡 𝜇𝑖 .

Similarly, the variance of the cumulative gain estimator is obtained as follows:

V(𝐺𝑖,𝑇 ) = V
(∑︁𝑇

𝑡=1

1

𝑝𝑖,𝑡

∑︁𝑛𝑡

𝑠=1
1{𝐼𝑠𝑡 = 𝑖}𝑟𝑠𝑡

)
≤
∑︁𝑇

𝑡=1

𝑛𝑡 𝜇𝑖

𝑝𝑖,𝑡
.

To facilitate the discussion to follow, let us now assume that the daily experiment traffic 𝑛𝑡 = 𝑛 is fixed for each day 𝑡 ∈ [𝑇 ] of the experiment.

Then, summarizing, we have shown

V(𝜇′𝑖,𝑇 ) ≤ 𝑛𝜇𝑖
𝑇 2∑𝑇

𝑡=1 𝑝𝑖,𝑡
and V(𝐺𝑖,𝑇 ) ≤ 𝑛𝜇𝑖

∑︁𝑇

𝑡=1

1

𝑝𝑖,𝑡
. (7)

Implications. This analysis shows that in general, if the underlying environment is indeed stationary, the variance of the cumulative gain

estimator𝐺𝑖,𝑇 can be higher than that of the running empirical mean estimator 𝜇′
𝑖,𝑇

. This follows from the arithmetic-mean-harmonic-mean

inequality, which in this context implies

𝑇 2∑𝑇
𝑡=1 𝑝𝑖,𝑡

≤
∑︁𝑇

𝑡=1

1

𝑝𝑖,𝑡
so that V(𝜇′𝑖,𝑇 ) ≤ V(𝐺𝑖,𝑇 ).

Observe that given a static probability allocation across time as in standard A/B/N testing, we have V(𝜇′
𝑖,𝑇
) = V(𝐺𝑖,𝑇 ). In contrast, the

variance of the cumulative gain estimator can be much greater than the variance of the running empirical mean estimator if the probability

allocation is highly dynamic or tends toward zero on any given day. We remark that the variance analysis for the cumulative gain estimator

12
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follows similarly without the stationarity assumption used in this context. Consequently, Algorithm 1 presented in Section 3.3 for adaptive

counterfactual inference is motivated by controlling the variance of the estimator through the allocation.

C.2 Always-Valid Confidence Interval Justification
We construct an always-valid confidence interval based on normal approximations and an application of the mixture sequential probability

ratio test (MSPRT) [8, 12, 17]. Here, we walk through the derivation of the always-valid confidence interval we adopt. This begins by

examining the variance process of the cumulative gain gap estimator𝐺𝑖, 𝑗,𝑡 := 𝐺𝑖,𝑡 −𝐺 𝑗,𝑡 at any arbitrary day 𝑡 ∈ [𝑇 ]. In general, conditional

on F𝑡−1 (see Eq. 6),
𝑟𝑖,𝑡 ∼ Binomial(𝑛𝑖,𝑡 , 𝜇𝑖,𝑡 ) and 𝑟 𝑗,𝑡 ∼ Binomial(𝑛 𝑗,𝑡 , 𝜇 𝑗,𝑡 ).

Then, assuming the total daily sample count 𝑛𝑡 is sufficiently large, observing that E[𝑛𝑖,𝑡 ] = 𝑛𝑡𝑝𝑖,𝑡 and E[𝑛 𝑗,𝑡 ] = 𝑛𝑡𝑝 𝑗,𝑡 , and invoking the

central limit theorem, we have

𝑟𝑖,𝑡 ∼ N(𝑛𝑡𝑝𝑖,𝑡 𝜇𝑖,𝑡 , 𝑛𝑡𝑝𝑖,𝑡 𝜇𝑖,𝑡 (1 − 𝜇𝑖,𝑡 )) and 𝑟 𝑗,𝑡 ∼ N(𝑛𝑡𝑝 𝑗,𝑡 𝜇 𝑗,𝑡 , 𝑛𝑡𝑝 𝑗,𝑡 𝜇 𝑗,𝑡 (1 − 𝜇 𝑗,𝑡 )).

Thus, we see that conditionally,

𝑟𝑖,𝑡

𝑝𝑖,𝑡
−

𝑟 𝑗,𝑡

𝑝 𝑗,𝑡
∼ N

(
𝑛𝑡 (𝜇𝑖,𝑡 − 𝜇 𝑗,𝑡 ), 𝑛𝑡

( 𝜇𝑖,𝑡 (1 − 𝜇𝑖,𝑡 )
𝑝𝑖,𝑡

+
𝜇 𝑗,𝑡 (1 − 𝜇 𝑗,𝑡 )

𝑝 𝑗,𝑡

))
Now, using this approximation, we define 𝑆𝑡 = 𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 and the corresponding variance process

𝑉𝑡 =
∑︁𝑡

𝜏=1
𝑛𝜏

( 𝜇𝑖,𝜏 (1 − 𝜇𝑖,𝜏 )
𝑝𝑖,𝜏

+
𝜇 𝑗,𝜏 (1 − 𝜇 𝑗,𝜏 )

𝑝 𝑗,𝜏

)
.

Finally, under the distributional assumptions and applications of the central limit theorem, we see that {𝑆𝑡 }𝑡≥1 and the process {𝑉𝑡 }𝑡≥1 are
adapted to F𝑡 and satisfy the property that the process defined by {exp(𝑆𝑡 − 𝜆2/(2𝑉𝑡 ))}𝑡≥1 forms a supermartingale for any 𝜆 ≥ 0.

To obtain the always-valid confidence interval, we now apply the MSPRT (see Eq. 14 in [8]) using the plugin estimators 𝜇̂𝑖,𝑡 and 𝜇̂ 𝑗,𝑡 for

the unknown daily arm means 𝜇𝑖,𝑡 and 𝜇 𝑗,𝑡 on each day in an estimate of the variance. As a result, under the stated assumptions, we have

P(∃ 𝑡 ≥ 1, 𝑖, 𝑗 ∈ [𝑘] : |𝐺𝑖, 𝑗,𝑡 −𝐺𝑖, 𝑗,𝑡 | ≥ 𝐶 (𝑖, 𝑗, 𝑡, 𝛿)) ≤ 𝛿,

with

𝐶 (𝑖, 𝑗, 𝑡, 𝛿) :=
√︃
(𝑉𝑖, 𝑗,𝑡 + 𝜌) log

(
(𝑉𝑖, 𝑗,𝑡 + 𝜌)/(𝜌𝛿2)

)
where 𝜌 > 0 is a fixed constant and

𝑉𝑖, 𝑗,𝑡 =
∑︁𝑡

𝜏=1
𝑛𝜏

( 𝜇̂𝑖,𝜏 (1 − 𝜇̂𝑖,𝜏 )
𝑝𝑖,𝜏

+
𝜇̂ 𝑗,𝜏 (1 − 𝜇̂ 𝑗,𝜏 )

𝑝 𝑗,𝜏

)
.

D PROOFS FOR SECTION 4 (EXPERIMENTS AND GUARANTEES)
Proposition 2. CGSE with 𝛿 ∈ (0, 1) does not eliminate the optimal arm 𝑖∗ ∈ [𝑘] with probability at least 1 − 𝛿 under Assumption 1.

Proof. Let us begin by defining the ‘good event’, in which the always-valid confidence intervals on the cumulative gain gap relative to

the optimal arm hold simultaneously. That is,

E = {∀ 𝑡 ≥ 1,∀ 𝑗 ∈ [𝑘] :
��𝐺𝑖∗, 𝑗,𝑡 −𝐺𝑖∗, 𝑗,𝑡 ]

�� ≤ 𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘)}.

Note that this event holds with probability at least 1 − 𝛿 by the definition of the always-valid confidence interval and a union bound.

We claim that the optimal arm 𝑖∗ ∈ [𝑘] is not eliminated by CGSE on the event E holding. This will allow us to conclude that the optimal

arm 𝑖∗ ∈ [𝑘] is not eliminated by CGSE with probability at least 1−𝛿 . Define 𝑛𝑡 =
∑𝑡
𝜏=1 𝑛𝜏 for any day 𝑡 ≥ 1. Then, for any arm 𝑗 ∈ [𝑘] \ {𝑖∗}

on any day 𝑡 ≥ 1, on the event E, we have the following which is explained below:

𝑛−1𝑡

(
𝐺 𝑗,𝑖∗,𝑡 −𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘)

)
= 𝑛−1𝑡

(
E[𝐺 𝑗,𝑖∗,𝑡 ] +𝐺 𝑗,𝑖,𝑡 − E[𝐺 𝑗,𝑖∗,𝑡 ] −𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘)

)
(8)

= −Δ 𝑗,𝑡 + 𝑛−1𝑡

(
𝐺 𝑗,𝑖∗,𝑡 − E[𝐺 𝑗,𝑖∗,𝑡 ] −𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘)

)
(9)

≤ −Δ 𝑗,𝑡 + 𝑛−1𝑡

(
𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘) −𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘)

)
(10)

= −Δ 𝑗,𝑡 (11)

≤ 0. (12)

Observe that (8) is obtained by adding and subtracting E[𝐺 𝑗,𝑖∗,𝑡 ]. Equation (9) uses the unbiased estimator property of the cumulative gain

estimator from Proposition 1 so that E[𝐺 𝑗,𝑖∗,𝑡 ] = 𝐺 𝑗,𝑖∗,𝑡 and then applies the definition 𝑛−1𝑡 𝐺 𝑗,𝑖∗,𝑡 = −Δ 𝑗,𝑡 . Note that Equation (10) holds by

the confidence bounds on the event E. Moreover, Equation (11) is a direct simplification since 𝐶 ( 𝑗, 𝑖∗, 𝑡, 𝛿/𝑘) = 𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) by definition.
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Finally, Equation (12) holds by Assumption 1. Thus, by the elimination criterion of CGSE, the optimal arm 𝑖∗ ∈ [𝑘] is not eliminated on the

event E. Hence, with probability at least 1 − 𝛿 , the optimal arm is not eliminated. □

Proposition 3. CGSE with 𝛿 ∈ (0, 1) eliminates each arm 𝑗 ∈ [𝑘] \ {𝑖∗} with probability at least 1 − 𝛿 under Assumptions 1–2.

Proof. Let us begin by defining the ‘good event’, in which the always-valid confidence intervals on the cumulative gain gap relative to

the optimal arm hold simultaneously. That is,

E = {∀ 𝑡 ≥ 1,∀ 𝑗 ∈ [𝑘] :
��𝐺𝑖∗, 𝑗,𝑡 −𝐺𝑖∗, 𝑗,𝑡 ]

�� ≤ 𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘)}.
We claim that all suboptimal arms 𝑗 ∈ [𝑘] \ {𝑖∗} are eventually eliminated by CGSE on the event E holding. This will allow us to

conclude that all suboptimal arms 𝑗 ∈ [𝑘] \ {𝑖∗} are eventually eliminated by CGSE with probability at least 1 − 𝛿 . Define 𝑛𝑡 =
∑𝑡
𝜏=1 𝑛𝜏

for any day 𝑡 ≥ 1. Now, consider an arbitrary day 𝑡 ≥ 1 and consider some arm 𝑗 ∈ A𝑡 \ {𝑖∗} that has not been eliminated yet and let

𝑖 = argmax𝑖′∈A𝑡 \{ 𝑗 } 𝐺𝑖,𝑡 denote the active arm with the maximum cumulative gain estimate excluding arm 𝑗 . Recall that by Proposition 2

and its proof, the optimal arm 𝑖∗ ∈ [𝑘] always remains in the active set on the event E. Then, on the event E, we have the following that is

explained below:

𝑛−1𝑡

(
𝐺𝑖, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
≥ 𝑛−1𝑡

(
𝐺𝑖∗, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
(13)

= 𝑛−1𝑡

(
E[𝐺𝑖∗, 𝑗,𝑡 ] +𝐺𝑖∗, 𝑗,𝑡 − E[𝐺𝑖∗, 𝑗,𝑡 ] −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
(14)

≥ 𝑛−1𝑡

(
E[𝐺𝑖∗, 𝑗,𝑡 ] −𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
(15)

= Δ 𝑗,𝑡 − 𝑛−1𝑡

(
𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
. (16)

Observe that Equation (13) holds because 𝐺𝑖, 𝑗,𝑡 ≥ 𝐺𝑖∗, 𝑗,𝑡 since 𝑖 = argmax𝑖′∈A𝑡 \{ 𝑗 } 𝐺𝑖, 𝑗,𝑡 . Then, Equation (14) is obtained by adding and

subtracting E[𝐺𝑖∗, 𝑗,𝑡 ] and Equation (15) holds by the confidence bounds on the event E. Moreover, Equation (16) uses the unbiased estimator

property of the cumulative gain estimator from Proposition 1 so that E[𝐺𝑖∗, 𝑗,𝑡 ] = 𝐺𝑖∗, 𝑗,𝑡 and then applies the definition 𝑛−1𝑡 𝐺𝑖∗, 𝑗,𝑡 = Δ 𝑗,𝑡 .

Now, by Assumption 2, there exists a day 𝑡0 and constant 𝜖 > 0 such that for day 𝑡 > 𝑡0, Δ 𝑗,𝑡 ≥ 𝜖 . Thus, continuing on, and considering

𝑡 > 𝑡0, we get the following:

𝑛−1𝑡

(
𝐺𝑖, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
≥ Δ 𝑗,𝑡 − 𝑛−1𝑡

(
𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
≥ 𝜖 − 𝑛−1𝑡

(
𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
.

We can conclude that the arm 𝑗 is eventually eliminated by CGSE as a result of the elimination criterion given the event E since

𝑛−1𝑡

(
𝐶 (𝑖∗, 𝑗, 𝑡, 𝛿/𝑘) + 𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘)

)
→ 0 as 𝑡 → ∞. This follows from the observation that the confidence intervals grow asymptoti-

cally as O(
√︁
𝑛𝑡 log(𝑛𝑡 )) owing to the sampling allocation, so the confidence intervals normalized by 𝑛−1𝑡 tend to zero as 𝑡 →∞. Hence, with

probability at least 1 − 𝛿 , CGSE eliminates each arm 𝑗 ∈ [𝑘] \ {𝑖∗} under the stated assumptions. □

E SUPPLEMENTAL EXPERIMENTS
In this appendix, we present more online experiments. We begin with an experiment that illustrates many of the claims we have made in this

paper. Following this, we mirror the structure of the experiments section in the main paper and present examples highlighting robustness to

non-stationarity and efficient always-valid inference and finding the best. As described previously, in these experiments a control group C

and a treatment group T are dialed up with each receiving 50% of the traffic. In each experiment group, identical sets of content are scheduled.

TS allocates traffic among the content in the control group C, while CGSE allocates traffic among the content in the treatment group T.

E.1 Experiment Case Study
In this case study, we go through full detail of an online experiment from which a number of illuminating observations can be made.

Comparison of Allocations and Estimates. We begin by presenting the daily traffic allocations and the resulting arm performance estimates

to qualitatively compare the behaviors of the algorithms. In particular, the daily traffic allocations over the arm set are shown in Figures 8a–8b,

while the observed arm performance estimates are shown in Figures 8c–8d. Observe that the TS algorithm produces a highly dynamic traffic

allocation in an effort to maximize the accrued successes during the experiment (Figure 8a). In contrast, CGSE has a uniform traffic allocation

over the arm set to begin and then arm are eliminated over time as soon as they can be proven to be suboptimal (Figure 8b). Together with

the arm performance estimates resulting from the traffic allocations, a number of illuminating observations can be made from this data. Arm

2 and Arm 3 have the highest cumulative gain rates throughout the experiment in this data and nearly equal performance (see Figure 8d).

Yet, the running empirical means resulting from the TS data are such that Arm 2 has a significant gap to Arm 3 and it even falls behind Arm

1 for a period of the experiment (see Figure 8c). This highlights a key problem with using the running empirical mean in combination with

regret-minimizing algorithms for experimentation: performance estimates are biased and this can result in erroneous decision-making [20].
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(a) TS daily traffic allocation (b) CGSE daily traffic allocation (c) TS running empirical means (d) CGSE cumulative gain rates

Figure 8: Experiment case study traffic allocations and estimates.

Moreover, there are periods of the experiment in which the TS algorithm allocates the vast majority of traffic to suboptimal arms including

Arm 1 and Arm 5 (Figure 8a). This highlights that heuristic decision-making rules based around the traffic allocation or the model posterior

distribution of TS commonly result in flawed decision-making in experimentation, a fact that is known in the academic community but often

brushed off in industry settings [12].

Comparison of Confidence Intervals on Cumulative Gain. So far, the results presented from this experiment have reinforced that accurate

decision-making in experimentation cannot be made reliably from sample observations of adaptively collected data. Recall that our solution

to combat this challenge is to base performance evaluations the cumulative gain metric. To quantify the uncertainty in these estimates and

make comparisons between the performance of treatments, we rely on always-valid confidence intervals that can be monitored throughout

an experiment. Crucially, the amount of uncertainty and consequently the size of the confidence intervals is highly dependent on the traffic

allocation. Algorithms that balance traffic intelligently over treatments to reduce this uncertainty reach decisions faster, while methods that

more greedily assign traffic to treatments in order to minimize experimentation cost take longer.

(a) TS

(b) CGSE

Figure 9: The minimum upper and lower confidence intervals on the cumulative gain of each arm.

We validate this through the experimental data presented in Figure 9. In particular, we show the minimum lower and upper bounds using

the always-valid confidence interval on the cumulative gain rate for each arm in comparison to the active set of arms. That is, we show
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min𝑗∈A𝑡
𝐺𝑖, 𝑗,𝑡 −𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) and min𝑗∈A𝑡

𝐺𝑖, 𝑗,𝑡 +𝐶 (𝑖, 𝑗, 𝑡, 𝛿/𝑘) (normalized to a rate) for each day 𝑡 that an arm 𝑖 ∈ [𝑘] was active, where
A𝑡 denotes the day’s set of active arms. Again, these quantities can be interpreted as the maximum potential loss (and gain, respectively)

relative to the set of active arms, which holds with high probability by the always-valid confidence intervals. The data resulting from TS and

CGSE are presented in Figure 9a and Figure 9b, respectively. If the upper confidence bound is below zero, this indicates that the arm is not

the counterfactual optimal. Observe that with the data from TS (Figure 9a), no definitive decisions can be made comparing the performance

of arms. This is a direct result of the erratic traffic allocation. In contrast, the CGSE data (see Figure 9b) finds that both Arm 4 and Arm

1 are not optimal early in the experiment. Consequently, they were eliminated from consideration and the resulting traffic was shifted

to the remaining arm for the rest of the experiment to increase decision-making power. Moreover, Arm 5 was close to being eliminated

and likely would have been removed if the experiment continued on marginally longer. This data is evidence of the significant increase

in decision-making power that results from CGSE and points to the potential for faster experiments and higher overall experimentation

throughput by using the algorithm in place of TS.

Comparison of Algorithm Regret Performance. To finish our analysis of this representative experiment, we compare the running empirical

means of the algorithms during the experiment. As has been alluded to, TS is an optimal procedure for minimizing regret in stationary

environments. CGSE gives up some cost minimization in near stochastic environments to be able to make decisions faster. The trade-off

is not symmetric between regret minimization and identification time, and consequently we expect that the loss in metric accrual during

experiments is compensated for by the ability to make decisions faster and launch more experiments as a result. Figure 10 shows the

running empirical means over the course of the experiment for TS and CGSE. As can be expected given that this experiment was only mildly

non-stationary, TS outperforms CGSE by this metric. However, the gap is relatively small with a relative lift of 2.45% over the duration of the

experiment. This can be the price of adaptive experimentation for inference, which is markedly less than the price of a standard A/B/N

experiment.

(b)

Figure 10: Running Empirical means for TS and CGSE.

E.2 Robustness to Non-Stationarity and Always-Valid Inference
We now show more live experiment results that reinforce the observations made in the main body of the paper. Specifically, the robustness

to non-stationarity for CGSE (which TS lacks) and the utility of always-valid inference.

To begin, we revisit live experiment 1 discussed in Section 4.2.1 and illustrated in Figure 4. Here, we show the daily empirical means

for the arms in the TS and CGSE data in Figures 11a and 11b, respectively. As mentioned in Section 4.2.1, TS began to shift traffic to Arm

1 at day 26 before finally giving nearly all the traffic to this arm for the remainder of the experiment after day 30 despite it being clearly

the worst performing arm. The reason for this behavior becomes more clear looking at Figure 11. Between days 22-25, TS gave almost no

traffic to Arm 1. During this time period, the daily mean performance of each arm moves downward and consequently the posterior means

move downward as well in TS for the arms receiving samples. However, the posterior mean for Arm 1 is unchanged since it did not receive

samples. This results in Arm 1 starting to get more traffic between days 26-30. During this time period, the underlying performance of all

arms move up significantly. This has the most impact on the posterior mean of Arm 1 in TS since it has begun to receive the most traffic. As

this continues, the observations only reinforce the behavior of TS and this results in Arm 1 getting nearly all the traffic for the remainder

of the experiment. This is a clear example of Simpson’s paradox negatively impacting TS, while CGSE overcomes this issue by using the

cumulative gain estimator and a traffic allocation that controls the variance of the estimator.

We observe a similar phenomenon in the experiment presented in Figure 12. In this experiment, CGSE produced a uniform traffic split

over the arms during the experiment due to the small gaps and traffic. Yet, we observe that the arm that receives the most traffic in the TS
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(a) TS daily empirical means (b) CGSE daily empirical means

Figure 11: Live Experiment 1 daily empirical means.

data is in fact the arm with the lowest observed running empirical mean in the data from CGSE, indicating that the algorithm has made a

mistake in terms of traffic allocation and this can also result in misleading inferences.

(a) CGSE running empirical means (b) TS running empirical means (c) TS traffic allocation

Figure 12: Live Experiment 6: TS shifts the majority of traffic to the worst performing arm.

We conclude with the experiment shown in Figure 13 where we see the weekly rolling empirical means over the arms and the running

empirical means in a situation where no arm was eliminated until the final day of the experiment so the allocation was uniform. There is

significant daily time-variation in the arm performances, yet the orange arm is almost always empirically best on a weekly rolling basis. This

does not effect CGSE since it is similar to a constant gap setting and at the end of this experiment the optimal arm was identified as can be

seen through the confidence intervals in Figure 13b. In contrast, for the TS, no decision could be made based on the data that was collected.
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(a) CGSE Rolling Empirical Means (b) The minimum upper and lower confidence intervals on the cumulative gain of each arm.

Figure 13: Live Experiment 7: CGSE identifies the optimal arm with significant non-stationarity.
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