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ABSTRACT

Policy gradient method typically suffers high variance, which is further amplified
in the multi-agent setting due to the exponential growth of the joint action space.
While value factorization is a popular approach for efficiently reducing the com-
plexity of the value function, integrating it with policy gradient to reduce variance
is challenging, as bias is introduced due to the limitations of factorization struc-
ture. This paper addresses the underexplored bias-variance trade-off problem by
proposing a novel policy gradient method in MARL that uses a convex combination
of joint Q-function and a factorized Q-function. This results in a policy gradient
approach that balances stochastic and factorized deterministic policy gradients,
enabling a more flexible trade-off between bias and variance. Theoretical results
validate the effectiveness of our approach, showing that factorized value functions
can effectively reduce variance while potentially maintaining low bias. Empirical
experiments on several benchmarks demonstrate that our approach outperforms
existing state-of-the-art methods in terms of efficiency and stability.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has become an increasingly popular research
area due to its wide range of potential applications, including robotics (Zhang et al. (2021a)),
autonomous driving (Zhou et al. (2020)), inventory management (Ding et al. (2022)) and so on
(Wang et al. (2021b); Yu et al. (2022b); Zhou et al. (2021)). MARL extends reinforcement learning
to scenarios where multiple agents interact in a shared environment, presenting new challenges
and opportunities for researchers in the field of RL. One popular learning paradigm in cooperative
MARL is Centralized Training with Decentralized Execution (CTDE) (Kraemer & Banerjee (2016);
Oliehoek et al. (2008)), which has shown promising results in addressing the non-stationary problem
(Hernandez-Leal et al. (2017)) of MARL by allowing agents to access global information during
training while still maintaining individual control during execution.

Policy gradient (Sutton et al. (1999)) is a successful method employed in CTDE for multi-agent
learning, enabling agents to learn centralized value functions to optimize their individual policies
while maintaining good coordination and convergence (Wang et al. (2020b); Yu et al. (2022a)).
However, policy gradient methods often suffer from high variance, which is further amplified in the
multi-agent setting due to the exponential growth of the joint action space, and the sub-optimal or
exploratory actions from other agents. Consequently, achieving a stable and efficient policy that
yields good performance in MARL poses a challenge.

Recently, value function factorization method (Rashid et al. (2020b); Son et al. (2019); Sunehag et al.
(2017); Wang et al. (2020a)) has emerged as a popular approach in MARL under CTDE for efficiently
learning the joint value function. By decomposing the joint value function into individual utilities of
individual state-action spaces, the value factorization method reduces the complexity of the factorized
function, thereby improving learning efficiency. However, this reduction in complexity comes at
the cost of introducing bias due to the limited function class. While value function factorization
has demonstrated success in value-based methods, its integration with policy gradient methods in
MARL remains relatively unexplored, and it may not fully leverage its advantages. Several policy-
based approaches (Peng et al. (2021); Wang et al. (2020b); Zhang et al. (2021b)) directly apply
value factorization to learn the value function, reducing the variance of the policy gradient but also
introducing some bias. The degree of bias and variance is determined by the factorization structures
used, and it is difficult to achieve the optimal trade-off between them since it requires new structures.
This inflexibility can limit the performance of the policy-based approach and make it challenging to
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achieve good results. Furthermore, while the theoretical properties of value factorization in policy
gradient have been partially explored (Wang et al. (2020b)), further investigation is necessary to
advance our understanding in this field.

In this paper, we demonstrate that bias-variance trade-offs can be achieved by employing a convex
combination of joint Q-function and a factorized Q-function, resulting in a Multi-Agent Interpolated
Policy Gradient (MAIPG). By integrating an unbiased stochastic policy gradient with a low-variance
factorized deterministic policy gradient, our approach offers a more flexible trade-off between bias
and variance. Theoretical results validate the effectiveness of bias-variance trade-offs and show
that the factorized value functions can effectively reduce variance while potentially maintaining low
bias. To evaluate the performance of our approach, we conducted empirical experiments on several
benchmark scenarios. The results show that our proposed method achieves superior bias-variance
trade-offs and outperforms existing state-of-the-art methods in terms of efficiency and stability.

2 BACKGROUND

2.1 PRELIMINARIES

We employ the Multi-agent Markov Decision Process (MMDP) (Boutilier (1996)) as the framework,
which is a special case that rules out the concerns of partial observability of Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) (Oliehoek & Amato (2016)) in modeling
cooperative multi-agent tasks. It’s worth noting that our method is applicable for Dec-POMDP.
The choice of MMDP is to simplify the theoretical analysis. The MMDP is defined by a tuple
⟨N ,S,A, r,P, γ⟩, where N represents the set of agents, S is the set of states, A is the set of actions,
r is the reward function, P is the transition probability function, and γ is the discount factor. At each
time step, each agent i ∈ N observes the current state s ∈ S and then selects an action ai ∈ A based
on its policy πi(ai|s) : S → ∆(A) (the probability simplex over A). The actions of all agents form a
joint action a ∼ π(a|s), where π(·|s) represents the joint policy formed by πi. The next state resulted
by current state and joint action is determined by the transition probability function P(s′|s, a), and
a global reward r is shared by all agents. The joint policy induces a distribution over trajectories
τ = (st, at, rt)

∞
t=0 and for all subsequent timesteps t, at ∼ π(·|st) and st+1 ∼ P(·|st, at). The

objective of MARL is to find a joint policy π that maximizes the expected discounted rewards, defined
by V π(s) = E

[∑∞
t=0 γ

trt|π, s0 = s
]
. Consequently, the action-value function (or Q-function) is

defined as Qπ(s, a) = r + γEs′∼P (·|s,a)
[
V π(s′)

]
. Additionally, we define deterministic policies µi

for each agent based on πi, i.e. µi(s) = argmaxaiπi(ai|s). Let µ(s) = ⟨µ1(s), ..., µn(s)⟩ be the joint
deterministic policy. Further, we use θi denote the parameters of the individual policy πθi and µθi .
Then θ = ⟨θ1, ..., θn⟩ is the parameters of the joint policy π and µ. To maintain conciseness, notations
with subscripts "i" pertain to individual agents, while notations without subscripts encompass all
agents, or they refer to single-agent notations in the context of single-agent RL.

The centralised training with decentralised execution (CTDE) paradigm is employed in our work.
CTDE allows for policy training to leverage global information that may be available, as well as
sharing information between agents during training. During execution, however, each agent can only
access its own action-observation history, thereby implementing decentralised execution.

2.2 STOCHASTIC AND DETERMINISTIC POLICY GRADIENT

Policy gradient methods can be regarded to solve the optimization problem: maxπ V
π(s0). These

methods (Schulman et al. (2015a); Williams (1992)) compute gradients of the objective and update
policy parameters to maximize the expected return. If the policy is stochastic, the policy gradient
functional form (Sutton et al. (1999)) with respect to θ is:

∇θJ(θ) = ∇θV πθ (s0) =
1

1− γ
Es∼dπθ

ρ
Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Qπθ (s, a)

]
, (1)

where dπρ := Es0∼ρ
[
(1 − γ)

∑∞
t=0 Pr

π(st = s|s0)
]

is the discounted state visitation distribution
over initial state distribution ρ. This results in a basic form of stochastic policy gradient in CTDE,
where two representative variants are COMA (Foerster et al. (2018)) and MAPPO (Yu et al. (2022a)):

∇θJCOMA(θ) = Es∼dπθ
ρ
Ea∼πθ(·|s)

[ n∑
i=1

∇θ log πi(a|s)ACOMA(s, a)
]
, (2)
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∇θJMAPPO(θ) = Es∼dπθ
ρ
Ea∼πθ(·|s)

[ n∑
i=1

min(riA
GAE
i , clip(ri, 1− ϵ, 1 + ϵ)AGAE

i )
]
, (3)

where ACOMA is counterfactual advantage, AGAE is computed using GAE (Schulman et al. (2015b)).
Both methods use centralized value functions to calculate the gradients of decentralized policies.

On the other hand, the objective function with a deterministic policy µθ(s) according to the determin-
istic policy gradient theorem (Silver et al. (2014)) can be written as:

∇θJDPG(θ) = Es∼D
[
∇θµθ(s)∇aQµ(s, a)|a=µ(s)

]
, (4)

where D is a replay buffer of any behavior policy. In MARL, a representative deterministic policy
gradient method is MADDPG (Lowe et al. (2017)), which learns centralized critics for each agent to
calculate individual policy gradient:

∇θiJMADDPG(θi) = Es,a∼D
[
∇θiµθi(s)∇aiQ

µ
i (s, a)|ai=µi(s)

]
. (5)

2.3 VALUE FACTORIZATION METHODS

In cooperative MARL, value decomposition methods are used to learn a centralized but factored
action-value function efficiently under the CTDE paradigm. Two representative examples of value-
based methods are VDN (Sunehag et al. (2017)) and QMIX (Rashid et al. (2020b)). VDN fac-
tors Qπ(s, a) into a sum of the per-agent utilities: QVDN(s, a) =

∑n
i=1Qi(s, ai). QMIX, on

the other hand, uses a hypernetwork to monotonically mix each agent’s utilities: QQMIX(s, a) =

f(s,Q1(s, a1), ..., Qn(s, an)), where f represents the hypernetwork and ∂f
∂Qi

> 0. In addition
to value-based methods, some policy-based methods also utilize factored value functions in their
gradient. DOP (Wang et al. (2020b)) and FACMAC (Peng et al. (2021)) are two such examples. DOP
adopts a linear factorization similar to VDN to obtain a decomposed policy gradient

∇θJDOP(θ) = Eπ
[∑

i

ki(s)∇θi log πi(ai|s)Qi(s, ai)
]
. (6)

On the other hand, FACMAC uses QMIX to learn a centralized Q-function instead of the joint
Q-functions of MADDPG. It also uses a centralized gradient estimator that optimises over the entire
joint action space as following:

∇θJFACMAC(θ) = Es∼D
[
∇θµθ(s)∇aQQMIX(s, a)|a=µ(s)

]
. (7)

This helps FACMAC to overcome relative overgeneralization (Wei & Luke (2016)).

3 METHOD

In this section, our focus lies on exploring the integration of value factorization and policy gradient in
MARL. To achieve this, we propose an approach that combines the joint and factorized Q-functions
using a convex combination. This results in an interpolation between stochastic policy gradient and
factorized deterministic policy gradient, which in turn provides bias-variance trade-offs. Additionally,
we present a practical algorithm that implements this concept.

3.1 MULTI-AGENT INTERPOLATED POLICY GRADIENT

The value function factorization method reduces the complexity of joint Q-function by limiting the
function class of it, making its expressive ability crucial. A better expressive ability often results in a
better fit to the Bellman equation, i.e., lower bias. However, this comes at the cost of considering a
larger function class, thus potentially increasing variance. For example, QPLEX (Wang et al. (2020a))
and QTRAN (Son et al. (2019)) have better expressive ability than QMIX and VDN, but they both need
to learn a function that involves the whole joint state-action space which can result in higher variance.
New factorization structures may achieve a better balance between bias and variance, although
constructing them is not always straightforward. As a result, our approach considers combining a
joint Q-function Qπ(s, a) : S × An → R and a factorized Q-function Qµ(s, a) : S × nA → R,
with the stochastic policy π and deterministic policy µ, respectively. Although Qπ(s, a) is unbiased,

3



Under review as a conference paper at ICLR 2024

its large joint action space encompasses actions from other agents that may come from exploration or
suboptimal policies, leading to potential high variance. In contrast, Qµ(s, a) has a factorized action
space with deterministic policy, resulting in less variance but introducing bias. To achieve a more
favorable bias-variance trade-off, we use a convex combination of the two terms as the new joint
Q-function Qjt(s, a), with a weight parameter ν:

Qjt(s, a) = (1− ν)Qπ(s, a) + νQµ(s, a). (8)

It’s worth noting that a convex combination like (8) may not work for value-based methods (see
Appendix B.1 for further details). In contrast, policy-based methods directly optimize the policy
and can capture the gradient indicated by the joint Q-function, making it easier to handle bias-
variance trade-offs by adjusting the weight parameter of (8). The following proposition provides the
policy gradient of our method, which can be regarded as a convex combination of stochastic and
deterministic policy gradient.
Proposition 1 (multi-agent interpolated policy gradient). Given (8), the policy gradient can be
written as

∇θĴ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇logπ(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
. (9)

Here, we use Ĵ to distinguish it from the original objective J . This result is derived directly from the
stochastic policy gradient theorem (Sutton et al. (1999)) and deterministic policy gradient theorem
(Silver et al. (2014)) (refer to Appendix B.2). It is important to note that these theorems require that
the Q-functions conform to the Bellman equation. However, in the case of factorized Q-functions,
they often fail to satisfy it. In Section 4.2, we will explore the bias introduced by this deviation.
Moreover, although (9) is similar to the single-agent interpolated policy gradient (Gu et al. (2017)),
they are very different in both motivations and implementations. We present a detailed comparison in
Appendix A.

The first term in (9) corresponds to the stochastic part of the gradient, which is based on sampling
actions from the joint policy, resulting in potentially high variance and thus leading to slow conver-
gence. The second term corresponds to the deterministic part of the gradient, which is based on the
gradient of the factorized Q-function with respect to the action, evaluated at the action selected by the
deterministic policy. This term has low variance, but it introduces bias consisting of the deterministic
policy and factorization. Therefore, the policy gradient theorem allows us to directly trade off bias
and variance by adjusting the weight ν. A more detailed analysis of the bias and variance trade-off
will be presented in Section 4.

3.2 PRACTICAL ALGORITHM

In this subsection, we will provide the implementation of our method that employs interpolated policy
gradients to trade off bias and variance. To update the policy parameters, we modify (9) as following:

∇θĴ(θ) = Es∼dπρ
[
(1− ν)Ea∼π

[
∇θ log πθ(a|s)Â(s, a, τ)

]
+ ν∇θµ(s)∇a′Q̂(s, a′)|a′=µ(s)

]
, (10)

where Â and Q̂ represent the estimated values, which will be specified later. There are two differences
between (9) and (10). Firstly, we use an advantage estimator instead of the joint Q-function in the
first term. This is based on the superior performance of the advantage estimator compared to directly
learning a joint Q-function (Papoudakis et al. (2020); Schulman et al. (2015b)). Secondly, the state
distribution of the second term is merged by the state distribution dµπ , as we do not have access to dµρ
when the behavior policy is π. The requirement for importance sampling is eliminated due to the
deterministic policy gradient. In addition, PPO-clipping is applied to the first term for two purposes:
to improve training stability and performance, and to ensure the gradient is equivalent to that of
MAPPO (3) when ν = 0. This allows for a direct comparison between our method and MAPPO.

The overall framework of our algorithm follows the common implementation of on-policy method that
is based on CTDE. We utilized a state value network V φ(s) with parameter φ to estimate V π(s), and
the factorized Q-functionQµ(s, a) is estimated by Q̂(s, a) which is formed by individual action-value
networks Qψ = [Qψi

i ]ni=1 and a mixing network Mω with parameters ψ and ω, respectively. The
default mixing network used is QMIX. To update the networks and compute gradients, we employ a
shared episode buffer that stores trajectories of all agents. Specifically, the advantage Â is computed
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using GAE and the Q̂ is learned using TD(λ). Similar to DDPG, we use a target Q-network, which
smoothly updates its parameters to match the factorized Q-network, to reduce overestimation.

We use policy networks πθ = [πθi ]
n
i=1 to represent the stochastic policy. These networks can be

shared among all agents when the agents are homogeneous. The deterministic policy µi shares
the same parameters with πi and reparameterization is used to realize µi(s) = argmaxaiπ(ai|s).
Specifically, for discrete tasks, µi is reparameterized using Gumbel-Softmax (Jang et al. (2016)). In
the case of continuous action space, µi represents the mean value of Gaussian distribution πi. It’s
worth noting that we only use µi to sample actions in (10) when calculate gradients, which means the
behavior policy is π. The training process is similar to on-policy RL methods, where agents interact
with the environment and collect trajectories to the shared episode buffer, and networks are updated
multiple times per mini-batch. Pseudo code for the algorithm can be found in Appendix C.

4 THEORETICAL ANALYSIS

This section presents theoretical analysis of the proposed method. We start by demonstrating how the
factorized Q-function can act as a control variate to reduce the variance of gradient estimates. Next,
by deriving performance bounds, our analysis reveals that the bias could be kept small, allowing
us to achieve favorable bias-variance trade-offs. Furthermore, we explore the compatible function
approximation under CTDE and demonstrate its relevance to the value factorization method. Our
results indicate that the factorized value function can effectively reduce variance while even preventing
the introduction of bias. The proof in this section is omitted and can be found in Appendix B.

4.1 THE FACTORIZED Q-FUNCTION AS A CONTROL VARIATE

A control variate is a statistical technique that can improve the accuracy and efficiency of estimators
by reducing their variance. The basic idea is to introduce an additional variable into the estimation
process that shares a common trend with the variable of interest. To be effective, the control variate
should exhibit a high correlation with the variable of interest and be easily estimable. In the context
of policy-based RL, the state value function V π(s) is a commonly used control variate for policy
gradients. Some previous works (Gu et al. (2016; 2017); Liu et al. (2017)) have explored using
an action-dependent control variate ϕ(s, a), such as the Q-function, to further reduce the variance.
However, it has been observed (Tucker et al. (2018)) that while the "true" value of the action-
dependent variate can significantly reduce the variance, the "learned" variate may not outperform a
state value function. This may be due to the difficulty of accurately estimating the Q-function.

In multi-agent settings, however, the utilization of value factorization methods has shown promise for
identifying a suitable control variate. The factorized Q-function is highly correlated with the original
Q-function and also easier to estimate, thereby potentially serving as an effective control variate. The
following proposition shows that our method can be seen as using factorized Q-function as a control
variate.
Proposition 2. If πθi is reparameterizable and can be expressed as ai = fθi(s, ξ), with some random
noise ξi drawn from distribution π(ξi), we can derive

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
= Eπ(a,ξ|s)

[
∇θfθ(s, ξ)∇aQ(s, a)

]
, (11)

where fθ(s, ξ) = (fθ1(s, ξ1), ..., fθn(s, ξn))
T . We then have

∇θĴ(θ) = (1− ν)Edπρ ,π
[
∇ log π(a|s)

(
Â(s, a, τ)− Q̂(s, a)

)]
+ Edπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]
. (12)

This theorem and proof is similar to Liu et al. (2017) which applies Stein control variate (Stein
(1986)) to policy gradient. Here we assume that ai ∼ πθi(a|s) can be regarded as ai = fθi(s, ξi)
with some random noise ξi, which is consistent with the practical implementation. Taking discrete
tasks as an example, ξi could be sampled from a Gumbel distribution π(ξi) and the deterministic
policy is denoted as µθi(s) = Eπ(ξi)[fθi(s, ξi)].

Using (12), the law of total variance gives the variance of the gradient:

(1− ν)2Es
[
Vara,τ |s

((
Â(s, a, τ)− Q̂(s, a)

)
∇ log π(a|s)

)]
+VarsEa|s

[(
(1− ν)Eτ |s,a

[
Â(s, a, τ)

]
+ νQ̂(s, a)

)
∇ log π(a|s)

]
.

(13)
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Thus, the variance term of joint actions, which typically has high variance, is reduced by Q̂ and a
factor of (1 − ν)2. Furthermore, in Section 5.2, we demonstrate that the factorized Q-function is
capable of reducing the variance Var(A − Q) more effectively compared to the joint Q-function.
In summary, incorporating the factorized Q-function as a control variate shows great promise in
effectively reducing variance.

4.2 PERFORMANCE BOUNDS FOR MAIPG

In this subsection, we analyze the bias of our policy gradient by comparing the original objective (1),
denoted as J(π), with the biased objective, denoted as Ĵ(π) induced by (9). As mentioned earlier,
using a factorized Q-function may violate the Bellman equations and introduce bias. To be specific,
we define the function class Q :=

{
Q|Q(s, a) = f(s, [Qi]

n
i=1), Qi ∈ R|S×A|}, where f represents

the factorization structure. Due to the limited function class, it is usually the case T Q /∈ Q, where T
is the Bellman operator. Previous works (Wang et al. (2021a; 2020b);Rashid et al. (2020a)) simplified
the update rule of the factorized Q-function as a regression problem denoted by the operator T Q

D as
follows:

Q(t+1) ← T Q
D Q(t) = argmin

q∈Q
E(s,a)∼D

(
y(t) − q(s, a)

)2
.

Here y(t) is the target and D denotes state-action distribution depending on specific algorithm. In this
paper, we set the target to be the true Q-function Qµ(s, a) and D to be the state-action distribution
induced by policy π according, namely

Q̂ = argmin
q∈Q

Es∼dπρ ,a∼π
(
Qµ(s, a)− q(s, a)

)2
. (14)

In the following, we start by providing a general bound that is applicable to all Q̂.

Proposition 3 (General bounds for MAIPG). If δ = maxs,a
∣∣Qµ(s, a) − Q̂(s, a)

∣∣, ϵ =

maxs
∣∣ log π(µ(s)|s)∣∣, we have

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νδ.

This proposition shows that the bias mainly depend on how well the factorized Q̂ can approximate
Qµ and the KL-divergence between π and µ. Furthermore, it suggests that the introduced bias is
bounded and proportional to ν. While the variance is proportional to (1− ν)2, adjusting ν allows for
a direct trade-off between bias and variance.

It’s worth noting that ϵ is relatively small. This observation is due to the fact that µ(s) =
argmaxaπ(a|s). On the other hand, the value of δ might be significant since it maximizes across the
complete state-action space. In order to obtain a tighter bound, we introduce Q̂ as the linear function
class, and the following proposition formally asserts that when considering a linear function class
and an almost deterministic policy π, the bias can be exceedingly small.

Proposition 4 (Bounds for linear function class). Assume ∇aQµ(s, a) is L-Lipschitz and there exist
σ such that for any s,

∑
a/∈D(µ(s),σ) π(a|s) ≤ σ4, where D(µ(s), σ) = {a|∥a− µ(s)∥2 ≤ σ}. Then

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νcLσ2e

ϵ
2 ,

where c is a constant.

The assumption of Lipschitz smoothness of ∇aQ is reasonable since the Q-functions tend
to be smooth in most environments. The existence of σ can be guaranteed since the term∑
a/∈D(µ(s),σ) π(a|s) monotonically decreases with increasing σ, while σ4 monotonically increases.

If the policy is nearly deterministic, it is possible to make both D(µ(s), σ) and ϵ very small. Conse-
quently, if the optimal policy is deterministic, the bias introduced to the objective would be negligible.
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4.3 COMPATIBLE FUNCTION APPROXIMATION IN MARL

Similar to the single-agent case, the Q-functions we learned may not follow the true gradient. In
this subsection, we explore the compatible function approximators of Q-function under CTDE such
that the true gradient is preserved. It’s worth noting that the results hold for both stochastic and
deterministic policy gradient. However, to simplify notation, we present the results for the stochastic
policy gradient here, and the result for deterministic policy in Appendix D. For conciseness, we
consider the tabular case, where the dimension of θi is equal to the dimension of individual action
space, denoted by m = |A|. Thus θ = (θ1, ..., θn)

T is an mn×1 column vector. We can then rewrite
the gradient of the logarithm of the joint policy with respect to θ as:

∇θ log πθ(a|s) =
n∑
i=1

∇θ log πθi(ai|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T , (15)

where the second equation follows from the independence between θi and θj for i ̸= j. Based on
this, we can state the following proposition, similar to the Compatible Function Approximation in
single-agent RL (Sutton et al. (1999)):
Proposition 5 (Compatible Function Approximation under CTDE). A function approxi-
mator Qw(s, a) is compatible with a joint stochastic policy πθ(a|s), i.e. ∇θJ(θ) =
Edπρ ,π

[
∇θ log πθ(a|s)Qw(s, a)

]
, if

1. ∇wQw(s, a) = ∇θ log πθ(a|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T and

2. w minimises the mean-squared error, MSE(θ, w) = Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)2]
.

For any stochastic policy πθ(a|s), there always exists a compatible function approximator of the
form Qw(s, a) = wT∇θ log πθ(a|s) + V (s) that satisfies condition 1. Here, V (s) can be any
differentiable baseline function that is independent of the action a. Furthermore, we can rewrite it
as Qw(s, a) =

∑
iQ

wi
i (s, ai) + V (s) where Qwi

i (s, ai) = wTi ∇θi log πθi(ai|s) and wi is an m× 1
column vector of the mn× 1 column vector w = (w1, ..., wn)

T . This implies that an approximated
Q-function that is compatible can be factorized as the linear sum of the utility of each agent.

To satisfy condition 2, we need to find the parameters w that minimise the MSE between Qw and the
true Q-function, which is quite similar to (14):

w = argmin
w

Es∼dπρ ,a∼π
(
Qπ(s, a)−Qw(s, a)

)2
where Qw(s, a) =

∑
i

Qwi
i (s, ai)+V (s). (16)

Proposition 5 indicates that we can use factorized value function as a compatible function approxima-
tor to not only reduce variance but also preserve the true gradient. This proposition also suggests that
the value function under CTDE naturally lends itself to factorization. To understand this, noticing
that, for each state, the joint value function is of dimension mn, whereas mn parameters suffice to
fully represent the individual policies. As a result, the joint value function needs to be reduced or
projected into the same dimension before updating policy parameters. This fact can be viewed as
prior knowledge within the CTDE paradigm, and value factorization emerges as a natural approach
to leverage it. It should be noted that while linear factorization, such as VDN, could be compatible
with the compatible function approximation theorem under CTDE, this compatibility may not hold
true in practice. Learning a compatible value factorization using neural networks requires further
investigation and discussion. Consequently, we defer this topic to future research.

5 EXPERIMENTS

In this section, we provide empirical results of MAIPG on matrix games and three widely adopted
cooperative multi-agent benchmarks, including the Multi-agent Particle Environment (MPE) (Lowe
et al. (2017)), StarCraftII Multi-agent Challenge (SMAC) (Samvelyan et al. (2019)) and Google
Research Football (GRF) (Kurach et al. (2020)). Full experimental setups and details can be found in
Appendix E.

5.1 MATRIX GAMES

In this section, we delve into an examination of the bias introduced by MAIPG and its potential
impact. We randomly generate stateless matrix games with elements uniformly distributed in the
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(b) 3 agents with 5 actions
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(c) 4 agents with 10 actions

Figure 1: Relative bias percentages with different ν values on randomly generated matrix games.

range [0, 1], considering various numbers of agents and actions. Figure 1 displays the relative bias
percentages η(ν) averaged over 100 randomly generated matrix games. The relative bias percentage
is defined as η(ν) := (R(ν = 0) − R(ν))/R(ν = 0), where R(ν) denotes the rewards obtained
by MAIPG with the weight parameter ν after convergence averaged across these matrix games. A
negative η(ν) indicates a biased and lower-reward situation for R(ν), while a positive η(ν) suggests
that the results with ν are superior to the standard objective. These results reveal that, first, although
ν = 1 could theoretically lead to a highly biased solution, it does not consistently result in a worse
solution than the standard ν = 0, as illustrated in (c). Second, ν ∈ (0, 1) does not lead to a significant
poor solution; instead, it interpolates between joint and factorized value functions (corresponding to
ν = 0 and ν = 1, respectively). Third, the bias introduced by ν compared to the standard objective is
small, especially when compared to the true optimum (red dashed line). For more comprehensive
analysis please refer to Appendix F.

5.2 PERFORMANCE ON BENCHMARKS
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Figure 2: The relative variance RVar
on spread task of MPE.

Multi-agent Particle Environment (MPE): Considering that
this environment is relatively simple, we utilize it to evaluate
the effectiveness of the factorized Q-function as a control vari-
ate, where we calculate the term RVar = Var(A−Q)/VarA to
provide a measure of the relative scale of variance reduction.
If RVar < 1, it indicates that the variance is reduced, whereas
RVar ≥ 1 means that the control variate Q actually increases
the variance. As shown in Fig. 2, with the dashed black line
representing RVar = 1, the joint Q-function exhibits significant
growth in RVar before convergence. In contrast, the factorized
Q-function consistently maintains a small value of RVar, thereby
effectively reducing variance. This suggests that, compared to
the joint Q-function which is hard to learn and may contribute to
increased variance, the factorized Q-function can serve as a superior control variate. We also conduct
experiments on several scenarios which can be found in Appendix E.2.

StarCraftII Multi-Agent Challenge (SMAC): We conducted a comparison of our method with
two on-policy methods: MAPPO and HAPPO (Kuba et al. (2021a)), as well as a commonly used
off-policy baseline, QMIX. The evaluation was performed on ten maps of SMAC. As shown in Fig. 8,
MAIPG achieves results better than the two on-policy methods, and in most case, it performs better
or comparably to the off-policy method QMIX. We also include the results of FACMAC in Appendix
E.2.

Google Research Football (GRF): We evaluate our algorithm with MAPPO and HAPPO in five
GRF academy scenarios, including: 3v.1, counterattack easy and hard, corner, and run-pass-shoot.
The QMIX is not involved due to its inferior performance reported in Yu et al. (2022a). The
results, depicted in Fig. 4, demonstrate that MAIPG achieves superior performance to other methods
in all settings. The experimental results on these benchmarks show that MAIPG achieves stable
performance and superior efficiency compared to the state-of-the-art methods.
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Figure 3: Mean evaluation win rate of MAIPG, MAPPO, QMIX, HAPPO in the SMAC domain, where the unit
of x-axis is 1M steps and y-axis represents the test win rate.
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Figure 4: Mean evaluation win rate of MAIPG, MAPPO and HAPPO in the GRF domain, where the unit of
x-axis is 1M steps and y-axis represents the test win rate.

5.3 ABLATION STUDY
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Figure 5: Ablation studies for different weight parameters and
factorization structures on (a) 2s3z and (b) corridor.

In this subsection, we conduct abla-
tion studies to investigate the impact
of different weight parameters and fac-
torization structures on gradient vari-
ance and performance. For these ex-
periments, we select two SMAC maps
as our test cases. Fig.5a illustrates
the variance of three different weight
parameters, namely ν = 0, 0.3, 0.5,
when used with QMIX’s and VDN’s
factorization structure, respectively.
We can observe that the original policy gradient (ν = 0) exhibits high variance. However, as
the weight parameter ν increases, the variance decreases, confirming the effectiveness of variance
reduction in MAIPG. Furthermore, for a fixed ν value, the use of VDN’s structure resulted in lower
variance compared to QMIX, which can be attributed to the complexity of the Q-function. On the
other hand, Fig. 5 shows the performance of different ν values and structures. We can observe that
both QMIX and VDN structures achieved satisfactory results with appropriate values of ν. It is worth
noting that the performance of VDN with ν = 0.5 is worse than the baseline. This may be attributed
to the introduction of excessive bias caused by the weight parameter and structure. These results
highlight the inherent bias-variance trade-offs associated with MAIPG.

6 CONSLUSION AND FUTURE WORKS

This paper focuses on mitigating the variance associated with multi-agent policy gradient methods.
Our approach involves combining policy gradient and value function decomposition by employing a
convex combination of joint and factorized value functions, resulting in multi-agent interpolated policy
gradient (MAIPG). Theoretical analysis demonstrates that MAIPG effectively reduces variance, and
the utilization of the factorized value function holds promise for minimizing bias. Experimental results
further support these findings. For future work, one avenue is to achieve an unbiased compatible
factorized function. Additionally, exploring the feasibility of implementing a switching control
mechanism similar to MANSA to automatically adjust the weight parameter ν holds promise.
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A RELATED WORKS

Value factorization methods. Value factorization methods such as VDN (Sunehag et al. (2017))
and QMIX (Rashid et al. (2020b)), have been developed to decompose the joint value function into
individual value functions while preserving the Individual-Global-MAX (IGM) principle (Son et al.
(2019)). To adhere to the IGM principle more effectively, QTRAN (Son et al. (2019)) formulates the
decomposition as an optimization problem. WQMIX (Rashid et al. (2020a)) assigns higher weights
to the optimal joint action values in QMIX’s operator. QPLEX (Wang et al. (2020a)) introduces a
duplex dueling structure to constrain the advantage functions. Both QTRAN and QPLEX can achieve
the sufficient and necessary conditions for IGM. However, we do not consider QTRAN and QPLEX
in this paper due to their potential for high variance.

Multi-agent policy gradient methods. COMA (Foerster et al. (2018)) and MADDPG (Lowe et al.
(2017)) firstly introduce the paradigm of centralized critic with decentralized actors to deal with
the non-stationarity issue while maintaining decentralized execution. MAAC (Iqbal & Sha (2019))
and MAPPO (Yu et al. (2022a)) build upon this paradigm by integrating it with SAC (Haarnoja
et al. (2018a;b)) and PPO (Schulman et al. (2017)), respectively. DOP (Wang et al. (2020b)) is
the first attempt to introduce linear value factorization to multi-agent policy gradient and formally
establishes its convergence guarantee. FOP (Zhang et al. (2021b)) and FACMAC (Peng et al. (2021))
are two methods that integrate SAC with QPLEX and MADDPG with QMIX, respectively. Kuba
et al. (2021b) derived the optimal baseline (OB) that achieves minimal variance in multi-agent policy
gradient. While it can cooperate with our method, we opted against OB because it requires estimating
the joint Q-function and is not compatible with GAE. MANSA (Mguni et al. (2023)) introduced
an additional agent that uses switching controls to decide when to use independent or centralized
learning. Applying this idea to our work to dynamically adjust the weight parameter ν is a promising
avenue for future research. Another line is about the fully decentralized multi-agent learning (de Witt
et al. (2020); Suttle et al. (2020); Yang et al. (2018); Zhang et al. (2018)), where each agent has its
own reward.

Single-agent RL. The IPG method (Gu et al. (2017)) is particularly relevant to this paper. The
basic difference between IPG and MAPIG lies in the usage of off-policy data. IPG employs off-
policy updates to enhance sample efficiency, whereas MAIPG exclusively employs on-policy policy
gradients to harmonize with the factorized Q-function, thereby achieving both low variance and low
bias. Specifically, while IPG samples trajectories over behavior policy β, MAIPG relies on on-policy
trajectories of π as stipulated in equation (14) for theoretical underpinning. Furthermore, MAIPG
incorporates a factorized Q-function, distinguishing it from IPG’s use of a single off-policy critic
for Q-function estimation. Along the line of control variate in RL, Q-prop (Gu et al. (2016)) firstly
introduces an off-policy critic as a control variate. Additionally, (Liu et al. (2017)) introduce a more
general action-dependent baseline function to improve sample efficiency. However, as pointed out in
(Tucker et al. (2018)), the action-dependent baseline does not reduce variance over a state-dependent
baseline in commonly tested benchmark domains.

B OMITTED PROOFS

B.1 CONVEX COMBINATION FOR VALUE-BASED METHOD

In Section 3, we discovered that employing a convex combination, as shown in (8), may not effectively
balance the bias and variance for value-based methods. To further illustrate this point, let’s consider
the Bellman operator T Q

D introduced in Section 4.2

argmin
Q̂∈Q

E(s,a)∼D

(
r + γmax

a′

(
(1− ν)Q(s′, a′) + νQ̂(s′, a′)

)
− (1− ν)Q(s, a)− νQ̂(s, a)

)2

.

where Q represents the unfactorized value function and Q̂ represents the factorized value function,
and we use the one-step TD target. However, this formulation presents two problems. Firstly, we
encounter difficulties in finding an action a′ that maximizes the interpolated Q-function (1−ν)Q+νQ̂.
Secondly, we can observe that Q = Qπ/(1− ν) and Q̂ = 0 form an optimal solution. This implies
that the factorized function may not be adequately learned, raising concerns about its effectiveness.
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Another approach would be to learn the two Q-functions separately through their own Bellman
equations. However, this renders the additional joint Q-function redundant, as the individual Q-
functions are only associated with the factorized Q-function. Overall, applying an interpolated
Q-function in value-based methods is not as straightforward as it is in policy-based methods. This
necessitates further investigation in future research to better understand and address these challenges.

B.2 OMITTED PROOFS IN SECTION 3.1

Proposition 1 (multi-agent interpolated policy gradient). Given (8), the policy gradient can be
written as

∇θJ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇logπ(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
(17)

Proof. The gradient with respect to the interpolated value function is

∇Vjt(s0) = ∇Ea∼π[Qjt(s0, a)]
= (1− ν)∇Ea∼π

[
Qπ(s0, a)

]
+ ν∇Qµ(s0, µ(s0)).

According to the stochastic policy gradient theorem and deterministic policy gradient theorem, we
have

∇Ea∼π
[
Qπ(s0, a)

]
=

1

1− γ
Es∼dπs Ea∼π

[
∇ log π(a|s)Qπ(s, a)

]
and

∇Qµ(s0, µ(s0)) =
1

1− γ
Es∼dµs0

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
Therefore, we get the policy gradient over some initial state distribution ρ

∇θJ(θ) = Es0∼ρ
[
∇Vjt(s0)

]
= (1− ν)Es∼dπρ ,a∼π

[
∇ log π(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ∇Qµ(s, a)|a=µ(s)

]
,

(18)

where we ignored the coefficient (1− γ)−1.

B.3 OMITTED PROOFS IN SECTION 4.1

Proposition 2. If πθi is reparameterizable and can be expressed as ai = fθi(s, ξ), with some random
noise ξi drawn from distribution π(ξi), we can derive

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
= Eπ(a,ξ|s)

[
∇θfθ(s, ξ)∇aQ(s, a)

]
(19)

then we have

∇θJ(θ) = (1− ν)Edπρ ,π
[
∇ log π(a|s)

(
Â(s, a, τ)− Q̂(s, a)

)]
+ Edπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]
(20)

Proof. We follow the proof of Liu et al. (2017) that we let ai = fθi(s, ξ + i) + ξ′, where ξ′ is
Gaussian noiseN (0, h2) and later we will take h→ 0+. The joint distribution of (ai, ξi) given s can
be written as

πi(ai, ξi|s) = πi(ai|ξi, s)π(ξi) ∝ exp
(
− 1

h2
(ai − fi(s, ξi))2

)
π(ξi)

Then we have

∇θi log πi(ai, ξi|s) =
1

h2
∇θifθi(s, ξi)(ai − fθi(s, ξi))

= −∇θifθi(s, ξi)∇ai log πi(ai, ξi|s)
Multiplying both sides with ϕ(s, ai) and taking the expectation yield

Eπi(ai,ξi|s)
[
∇θi log πi(ai, ξi|s)ϕ(s, ai)

]
= −Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇ai log πi(ai, ξi|s)ϕ(s, ai)

]
= Eπi(ξi)

[
∇θifi(s, ξi)Eπi(ai|ξi,s)

[
−∇ai log πi(ai, ξi|s)ϕ(s, ai)

]]
= Eπi(ξi)

[
∇θifi(s, ξi)Eπi(ai|ξi,s)

[
∇aiϕ(s, ai)

]]
= Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇aiϕ(s, ai)

]
(21)
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where the third equality comes from Stein’s identity (Stein (1986)):

Eπ
[
∇a log π(a|s)ϕ(s, a) +∇aϕ(s, a)

]
= 0, ∀s

On the other hand,

Eπi(ai,ξi|s)
[
∇θi log πi(ai, ξi|s)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
+ Eπi(ai,ξi|s)

[
∇θi log πi(ξi|s, a)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
+ Eπi(ai|s)

[
Eπi(ξi|s,ai)

[
∇θi log πi(ξi|s, a)

]
ϕ(s, ai)

]
= Eπi(ai|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
.

(22)
By combining (21) and (22) we have

Eπi(ai|s)
[
∇θi log πi(ai|s)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇aiϕ(s, ai)

]
(23)

Using (15), the j-th element of column vector Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
has the form:(

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

])
i
=

(
Eπ(a|s)

[∑
i

∇θ log π(ai|s)Q(s, a)
])
j

=
(∑

i

Eπ(ai|s)
[
∇θ log π(ai|s)Eπ(a−i|s)

[
Q(s, a)

]])
j

=
(∑

i

Eπi(ai|s)
[
∇θ log π(ai|s)ϕ(s, ai)

])
j

= Eπj(aj |s)
[
∇θj log πj(aj |s)ϕ(s, aj)

]
,

(24)

where we let ϕ(s, ai) = Eπ−i(a−i|s)
[
Q(s, a)

]
.

Noticing that ∇aQ(s, a) = (∇a1Q(s, a), ...,∇anQ(s, a)) and ∇θfθ(s, ξ) is a diagonal
Jacobian matrix with diagonal element ∇θifi(s, ξi), the j-th element of column vector
Eπ(a,ξ|s)

[
∇θf(s, ξ)∇aQ(s, a)

]
has the form:(

Eπ(a,ξ|s)
[
∇θf(s, ξ)∇aQ(s, a)

])
j
= Eπ(a,ξ|s)

[
∇θjfj(s, ξj)∇ajQ(s, a)

]
= Eπ(ai,ξi|s)

[
∇θfi(s, ξi)∇aiEπ−i(a−i|s)

[
Q(s, a)

]]
= Eπj(aj ,ξj |s)

[
∇θjfj(s, ξj)∇ajϕ(s, aj)

] (25)

Combining (23), (24) and (25), we get (19). Therefore, we can rewrite (10) as following

∇θJ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇ log π(a|s)

(
Qπ(s, a)− Q̂(s, a)

)]
+ Es∼dπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]

B.4 OMITTED PROOFS IN SECTION 4.2

Lemma 1. For two policies π and π′ we have that

|V π(ρ)− V π
′
(ρ)| ≤ 2

(1− γ)2
Es∼dπρ [DTV (π, π

′)] (26)

The proof of Lemma 1 can be found in Xu et al. (2020), where we assume that the reward |r| ∈ [0, 1]
for convenience.

Proposition 3 (Genral bounds for MAIPG). If δ = maxs,a
∣∣Qµ(s, a) − Q̂(s, a)

∣∣, ϵ =

maxs
∣∣ log π(µ(s)|s)∣∣, we have

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νδ
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Proof. We overload notation and write V π(ρ) = Es0∼ρ
[
V π(s0)

]
, then∣∣J(π)− Ĵ(π)∣∣ = ∣∣V π(ρ)− Vjt(ρ)∣∣

=
∣∣Es0∼ρ,a∼π[Qπ(s0, a)]− (1− ν)Es0∼ρ,a∼π

[
Qπ(s0, a)

]
− νEs0∼ρ

[
Q̂(s0, µ(s0))

]∣∣
=ν

∣∣Es0∼ρ,a∼π[Qπ(s0, a)]− Es0∼ρ
[
Qµ(s0, µ(s0))

]
+ Es0∼ρ

[
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

]∣∣
≤ν

∣∣V π(ρ)− V µ(ρ)∣∣+ νEs0∼ρ
[∣∣Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

∣∣].
(27)

Using the result of Lemma 1, we get∣∣V π(ρ)− V µ(ρ)∣∣ ≤ 2

(1− γ)2
Es∼dπρ [DTV (π, π

′)]

≤ 2

(1− γ)2
√

2Es∼dπρ
[
DKL

(
π(·|s), µ(s)

)]
=

2
√
2

(1− γ)2
√
−Es∼dπρ

[
log π

(
µ(s)|s

)]
≤ 2

√
2ϵ

(1− γ)2
,

where the second inequality follows Pinsker’s inequality (Csiszár & Körner (2011)) and Jensen’s
inequality. Note that the equality only holds for discrete action space. We omitted the discussion of
continuous actions because the conclusion is similar but the expression can be complex.

Considering that
∣∣Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

∣∣ ≤ maxs,a
∣∣Qµ(s, a)− Q̂(s, a)

∣∣ = δ, we get∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νδ,

which completes the proof.

Proposition 4 (Bounds for linear function class). Assume ∇aQµ(s, a) is L-Lipschitz and there exist
σ such that for any s,

∑
a/∈D(µ(s),σ) π(a|s) ≤ σ4, where D(µ(s), σ) = {a|∥a− µ(s)∥2 ≤ σ}. Then∣∣J(π)− Ĵ(π)∣∣ ≤ 2

√
2ϵ

(1− γ)2
ν + νcLσ2e

ϵ
2 ,

where c is a constant.

Proof. According to (27)∣∣J(π)− Ĵ(π)∣∣ = ∣∣V π(ρ)− Vjt(ρ)∣∣
=ν

∣∣Es0∼ρ,a∼π[Qπ(s0, a)]− Es0∼ρ
[
Qµ(s0, µ(s0))

]
+ Es0∼ρ

[
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

]∣∣
≤ν

∣∣V π(ρ)− V µ(ρ)∣∣+ ∣∣Es∼ρ[Qµ(s, µ(s))− Q̂(s, µ(s))
]∣∣,

it suffices to prove that ∣∣Es∼ρ[Qµ(s, µ(s))− Q̂(s, µ(s))
]∣∣ ≤ cLσ2e

ϵ
2 .

We consider the Taylor expansion with Lagrange remainder of Qµ(s, a), namely,

Qµ(s, a) = Qµ(s, µ(s)) +∇aQµ(s, a)|a=µ(s)(a− µ(s)) +
1

2
∇2
aQ

µ(s, aξ)∥a− µ(s)∥22.

The Lipschitz continuity give that

∥∇aQµ(s, a)−∇a′Qµ(s, a′)∥2 ≤ L∥a− a′∥2.
Therefore, for ∀a, a′ ∈ D(µ(s), σ),

∥Qµ(s, a)−Qµ(s, µ(s))−∇aQµ(s, a)|a=µ(s)(a− µ(s))∥ ≤
1

2
Lσ2.

This implies that the first order Taylor expansion can approximate Qµ with remainder of O(Lσ2) if
a ∈ D. For a /∈ D, we have

∥Qµ(s, a)−Qµ(s, µ(s))−∇aQµ(s, a)|a=µ(s)(a− µ(s))∥ ≤ L
√
mn,
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where we assume that a ∈ [−1, 1]mn and mn is the dimension of joint action as used in Section 4.3.
In fact, we can always normalize actions into [−1, 1] for any task. We can also derive the Taylor
expansion of Qµ in terms of Qi:

Qµ = c0 +
∑
i

λiQi +
∑
i,j

λijQiQj + ...,

where λi = ∂Qµ

∂Qi
, λij = 1

2
∂2Qµ

∂Qi∂Qj
and c0 is a constant. Considering that the same order Taylor

expansions have the same order of reminders. We have for ∀a ∈ D,

∥Qµ(s, a)− c−
∑
i

λiQi(s, ai)∥ ≤ c1Lσ2,

where c1 is a constant. Therefor, there exist linear function Q(s, a) such that the MSE problem 14
satisfies∑
s

dπρ (s)
∑
a

π(a|s)
(
Qµ(s, a)−Q(s, a)

)2
=

∑
s

dπρ (s)
(∑
a∈D

+
∑
a/∈D

)
π(a|s)

(
Qµ(s, a)−Q(s, a)

)2
≤ c21L2σ4 +mnL2σ4

≤ c2L2σ4,

where c2 is another constant. As a consequence, the minimizer Q̂ of the MSE problem 14 will have
the error less than c2Lσ2, namely

c2L
2σ4 ≥

∑
s

dπρ (s)
∑
a

π(a|s)
(
Qµ(s, a)− Q̂(s, a)

)2
≥

∑
s

dπρ (s)π(µ(s)|s)
(
Qµ(s, µ(s))− Q̂(s, µ(s))

)2
≥

∑
s

Es0∼ρ
[
(1− γ)

∞∑
t=0

Prπ(st = s|s0)π(µ(s)|s)
(
Qµ(s, µ(s))− Q̂(s, µ(s))

)2]
≥ (1− γ)Es0∼ρ

[
π(µ(s0)|s0)

(
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

)2]
≥ (1− γ)e−ϵEs0∼ρ

[(
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

)2]
≥ (1− γ)e−ϵ

(
Es0∼ρ

[
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

])2

.

We then get
∣∣Es0∼ρ[Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

]∣∣ ≤ c3Lσ2e
ϵ
2 which completes the proof.

B.5 OMITTED PROOFS IN SECTION 4.3

Proposition 5 (Compatible Function Approximation under CTDE). A function approx-
imator Qw(s, a) is compatible with a joint stochastic policy πθ(a|s), i.e. ∇θJ(θ) =
Edπρ ,π

[
∇θ log πθ(a|s)Qw(s, a)

]
, if

1. ∇wQw(s, a) = ∇θ log πθ(a|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T and

2. w minimises the mean-squared error, MSE(θ, w) = Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)2]
.

Proof. If w minimises the MSE then the gradient of it w.r.t. w must be zero. We then use the fact
that, by condition 1,∇wQw(s, a) = ∇θ log πθ(a|s),

∇wMSE(θ, w) = 0

Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)
∇θ log πθ(a|s)

]
= 0

Then we have

Edπρ ,π
[
Qw(s, a)∇θ log πθ(a|s)

]
= Edπρ ,π

[
Qπ(s, a)∇θ log πθ(a|s)

]
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Algorithm 1. MAIPG with recurrent neural network

1: Initialize policy networks πθ, state-value networks V φ, action-value networks Qψ = [Qψi

i ]ni=1
and a mixing network Mω

2: Initialize target networks: ψ′ = ψ, ω′ = ω
3: while step ≤ step_max do
4: set data buffer D = {}
5: for j = 1 to batch_size do
6: τ = [] empty list
7: initialize hidden states for πθ, V φ and Qψ
8: Generate a trajectory and store it in τ
9: Compute advantage estimate Â via GAE on τ

10: Compute target value V̂ on τ
11: Compute target value M̂ via TD(λ) on τ
12: Split trajectory τ into chunks of length L
13: for l = 1 to T//L do
14: D = D

⋃
(τ [l : l + T ], Â[l : l + T ], V̂ [l : l + T ], M̂ [l : l + T ])

15: end for
16: end for
17: for mini-batch k = 1, ...,K do
18: b← random mini-batch from D with all agent data
19: for each data chunk c in the mini-batch b do
20: update RNN hidden states for π,V and Q from first hidden state in data chunk
21: end for
22: end for
23: Adam updates θ,φ,ψ and ω with mini-batch b using the computed target values and the

gradients described in 10
24: if step mod d = 0 then
25: Update target networks: ψ′ = αψ + (1− α)ψ′, ω′ = αω + (1− α)ω′

26: end if
27: end while

C ALGORITHM

In this section, we present the pseudo code of our algorithms, as shown in Algorithm 1.

D COMPATIBLE FUNCTION APPROXIMATION FOR DETERMINISTIC POLICY

The compatible function approximation for deterministic policy is similar to the proposition 5 for
stochastic policy.

Proposition 6 (Compatible Function Approximation for deterministic policy). A function ap-
proximator Qw(s, a) is compatible with a joint deterministic policy µθ(s), i.e. ∇θJ(θ) =
E
[
∇θµθ(s)∇aQw(s, a)|a=θ(s)

]
, if

1. ∇aQw(s, a)|a=µθ(s) = ∇θµθ(s)Tw = diag{∇θiµi(s)}Tw and

2. w minimises the mean− squared error, MSE(θ, w) = E
[
ϵ(s; θ, w)T ϵ(s; θ, w)

]
where

ϵ(s; θ, w) = ∇aQw(s, a)|a=µθ(s) −∇aQµ(s, a)|a=µθ(s)

Proof. The second equality of condition 1 comes from the fact that ∇θµθ is a diagonal Jacobian
matrix with elements ∇θiµi(s), where we write µθ = (µθ1 , ..., µθ1)

n as a column vector. If w
minimises the MSE then the gradient of ϵ2 w.r.t. w must be zero. We then use the fact that, by
condition 1, ∇wϵ(s; θ, w) = ∇θµ(s),

∇wMSE(θ, w) = 0

E
[
∇θµ(s)ϵ(s; θ, w)

]
= 0
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Figure 6: Mean evaluation win rate of MAIPG, MAPPO in the MPE domain.

Then we have

E
[
∇θµ(s)∇aQw(s, a)|a=µθ(s)

]
= E

[
∇θµ(s)∇aQµ(s, a)|a=µθ(s)

]

Similarly, we can always find compatible function approximator of the form Qw(s, a) = (a −
µθ(s))

T∇θµθ(s) + V (s) that satisfies condition 1, and it can be rewritten as Qw(s, a) =∑
iQi(s, ai) + V (s) where Qi(s, ai) = (ai − µθi(s))T∇θiµi(s).

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION

Our implementation is based on the MAPPO’s code base. We keep the same structures and hyper-
parameters, and only turn our weight parameter ν across the different tasks. Note that if we set
ν = 0, our algorithm is identical to MAPPO. As for the structure of the additional Q-network, we use
the same architecture as the state value network. The mixing network for the QMIX’s factorization
structure we used, is the same as QMIX, which is a fully-connected hyper-network with two 64-
dimensional hidden layers with eLU activation. The hyper-parameters in different benchmarks are
basically default setting in MAPPO as presented in Table 1, Table 2, Table 3 and Table 4.

Table 1: Common hyper-parameters used across all environments.

hyperparameters value hyperparameters value hyperparameters value

gamma 0.99 optimizer Adam actor hidden dim 64
gae lamda 0.95 td lamda 0.8 value hidden dim 64

num mini-batch 1 ppo-clip 0.2 Q hidden dim 64
max grad norm 10 activation ReLU hidden layer 1MLP+1GRU

E.2 SETUPS AND ADDITIONAL RESULTS

All the learning curves in the experiments are plotted based on several runs with different random
seeds using mean and standard deviation. Specifically, MAIPG and MAPPO are averaged over at
least ten seeds, and HAPPO and QMIX are averaged over three to five seeds.

Multi-agent Particle Environment (MPE): The global state is formed by a concatenation of all
agents’ local observation since MPE does not provide it. We consider the three fully cooperative
tasks: spread, line and formation (Agarwal et al. (2019)). The result is shown in Fig. 6, where we set
num_agents = 5 for the three tasks. The weight parameter is set to 0.05 since the reward in MPE is
not normalized while the advantage function in (10) is normalized.

StarCraftII Multi-agent Challenge: Building upon the popular real-time strategy game StarCraft
II, SMAC offers a wide range of battle scenarios that require agents to exhibit strategic thinking,
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Table 2: Hyperparameters used in MPE.

hyperparameters value hyperparameters value

actor lr 7e-4 weight parameter 0.05
critic lr 7e-4 episode length 25

rollout threads 128 epoch 10

Table 3: Hyperparameters used in SMAC.

hyperparameters value hyperparameters value

actor lr 5e-4 critic lr 5e-4
weight parameter simple:0.4, hard:0.3, super hard:0.3 rollout threads 8

epoch simple:5, hard:10, super hard:15 episode length 400

Table 4: Hyperparameters used in GRF.

hyperparameters value hyperparameters value

actor lr 5e-4 episode length 400
critic lr 5e-4 rollout threads 50
epoch 15 weight parameter 0.5

coordination, and adaptability. The game environment presents intricate maps, diverse unit types,
and challenging objectives, all of which contribute to the complexity of the tasks. In this paper,
all experiments on StarCraft II utilize the default reward and observation settings of the SMAC
benchmark. We pause the training every episode and evaluate 32 episodes with individual policies to
measure win rate of each algorithm. For each random seed, we pause the training every episode and
evaluate 32 episodes with individual policies to measure win rate of each algorithm. Moreover, we
provide additional results including FACMAC in Fig.7.

Google Research Football: GRF offers a set of cooperative multi-agent challenges that involve
teams of agents playing against teams of bots in various football scenarios. The primary objective in
these scenarios is for the agents to score goals against the opposing team. In GRF, each agent has
access to complete information about the environment state through their local observations. In this
paper, the dense-reward setting in GRF is employed, where all agents share a single reward. This
reward is computed as the sum of individual agents’ dense rewards. To evaluate the performance of
the agents, the success rate is calculated based on 100 rollouts of the game.
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Figure 7: Mean evaluation win rate of MAIPG, MAPPO, QMIX, HAPPO and FACMAC in the SMAC domain,
where the unit of x-axis is 1M steps and y-axis represents the test win rate.
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Figure 8: Mean evaluation win rate of MAIPG and QMIX in the SMAC domain, where the unit of x-axis is 1
hour on RTX3090 GPU and y-axis represents the test win rate.

.

F RESULTS ON MATRIX GAMES

In this section, we delve into an examination of the bias introduced by MAIPG and its potential impact.
Proposition 4 establishes a bound on the bias between the standard objective and MAIPG’s objective,
and Proposition 5 ensures its convergence. However, concerns arise regarding whether MAIPG
could lead to a suboptimal local optimum. Specifically, when Qπ and Qµ in Equation 8 converge
to distinct maxima, there is a likelihood that a convex combination of Qπ and Qµ might result in a
suboptimal action. To simplify, in the value-based case, we have Qπ(s, a∗) ≤ maxaQ

π(s, a) and
Qµ(s, a∗) ≤ maxaQ

µ(s, a), where a∗ = argmax((1− ν)Qπ(s, a) + νQµ(s, a)). Consequently, it
is essential to demonstrate whether MAIPG’s objective leads to additional suboptimal local optima.
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Table 5: Cooperative matrix game. The optimal action is (A,A) and sub-optimal action is (C,C).

(a) Payoff of matrix game

a1

a2 A B C

A 2 -2 -2
B -2 0 0
C -2 0 1

(b) Payoff of matrix game

a1

a2 A B C

A 2 -2 -2
B -2 0.5 0
C -2 0 1

(c) Results of matrix game (a)

ν

seed
1 2 3 4 5 6 7 8 9 10

0.0 2 1 1 1 1 1 2 1 2 2
0.1 2 2 1 1 1 1 2 1 2 2
0.2 2 2 1 1 1 1 2 1 1 2
0.3 2 2 1 1 1 1 2 1 1 2
0.4 2 2 1 1 1 1 2 1 1 2
0.5 1 2 1 1 0 1 2 1 1 2
0.6 1 2 2 1 0 1 2 1 1 2
0.7 1 2 1 1 1 1 2 1 1 2
0.8 1 2 1 1 1 1 1 2 1 2
0.9 1 2 1 1 1 1 2 2 1 2
1.0 1 2 1 1 1 1 2 2 0 2

(d) Results of matrix game (b)

ν

seed
1 2 3 4 5 6 7 8 9 10

0.0 2 1 1 0.5 1 1 1 1 2 0.5
0.1 2 1 1 0.5 1 1 2 1 2 0.5
0.2 2 1 1 0.5 1 1 2 0.5 1 0.5
0.3 2 2 1 0.5 1 1 2 0.5 1 0.5
0.4 2 2 1 0.5 0.5 1 2 0.5 1 0.5
0.5 1 2 1 0.5 0.5 1 2 0.5 1 0.5
0.6 1 2 1 0.5 0.5 1 2 0.5 1 0.5
0.7 1 2 1 0.5 0.5 1 2 0.5 1 2
0.8 1 2 1 0.5 0.5 1 2 0.5 1 2
0.9 1 2 1 0.5 0.5 1 2 0.5 0.5 2
1.0 1 2 1 0.5 1 1 2 0.5 0.5 2

It is crucial to note that we cannot conclusively assert the superiority of policies induced solely by
the standard objective (corresponding to Qπ) or solely by the factorized objective (corresponding
to Qµ). This is due to the fact that, in comparison to the unbiased Qπ, Qµ inherently yields biased
solutions while achieving commendable results, as demonstrated in the previous works like QMIX
and FACMAC. Therefore, our primary objective is to investigate whether selecting from the range
(0, 1) results in inferior solutions compared to the extremes of ν = 0 or ν = 1. For simplicity, we
will refer to Qπ in the following, even though our method exclusively utilizes V π .

Figure 1 displays the relative bias percentages η(ν) averaged over 100 randomly generated stateless
matrix games with elements evenly distributed in the range [0, 1]. The relative bias percentage is
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defined as η(ν) := (R(ν = 0)−R(ν))/R(ν = 0), whereR(ν) denotes the average rewards obtained
by MAIPG with the weight parameter ν after convergence in matrix games. A negative η(ν) indicates
a biased and lower-reward situation forR(ν), while a positive η(ν) suggests that the results with ν are
superior to the standard objective. These results reveal that, first, although ν = 1 could theoretically
lead to a highly biased solution, it does not consistently result in a worse solution than the standard
ν = 0, as illustrated in (c). Second, ν ∈ (0, 1) does not lead to a significant poor solution; instead,
it interpolates between joint and factorized value functions (corresponding to ν = 0 and ν = 1,
respectively). Third, the bias introduced by ν compared to the standard objective is small, especially
when compared to the true optimum (red dashed line).

To further elucidate the convergence outcomes of MAIPG with varying values of ν, we selected two
specific matrix games labeled as (a) and (b) in Table 5. In these games, the optimal action is (A,A),
while the suboptimal action is (C,C). Due to the non-monotonic nature of these matrix games, value
factorization methods like VDN and QMIX are known to encounter challenges, often becoming stuck
in the suboptimal action (C,C). If the standard objective could converge to (A,A), there might
exist specific values of ν such that the convex combination of the two objectives would lead to the
undesirable action (B,B).

The outcomes of these experiments are detailed in Table 5:(c) and (d). The experiments encompassed
a range of ν values, from 0 to 1, with 10 different seeds for each ν. The resulting rewards after
convergence were recorded, revealing several noteworthy observations. Firstly, when ν = 0 or ν = 1,
indicating the exclusive use of eitherQπ orQµ, suboptimal maxima or even poor maxima (Table 5(d))
are likely to be obtained in both situations. Secondly, the impact of random seeds on the convergence
point is more pronounced than variations in ν. Thirdly, instances of poor outcomes resulting from the
convex combination of Qπ and Qµ (i.e., ν ∈ (0, 1)) are seldom observed. Only in instances where
seed = 5 and ν = 0.5, 0.6 in Table 5(c), or ν = 0.4, 0.5, 0.6, 0.7, 0.8 in Table 5(d), is it conceivable
that these outcomes may be attributed to this combination.

Based on the above experiments, two main observations emerge. Firstly, while factorized value
functions may be suboptimal in some nonmonotonic matrices, policy-based methods with the standard
objective are also prone to becoming ensnared in the same suboptima in such matrices. Secondly,
in an on-policy context, the convergence point of factorized value functions depends on the current
policy. Since Qπ and Qµ are updated using the distribution induced by the same policy, they tend to
share the same local optima if converged.

In conclusion, our experiments highlight the robustness of MAIPG, despite its use of a biased
objective. The observed bias is minimal, and the likelihood of it leading to suboptimal policies
comparable to using Qπ or Qµ alone. Crucially, the on-policy implementation plays a key role,
ensuring the biased objective does not compromise the quality of the policy. This adaptability, coupled
with the small bias and reduced variance traded off by ν, underscores MAIPG’s efficacy.

G CONVERGENCE ANALYSIS

In this section, we present an asymptotic convergence proof for our interpolated policy gradient,
denoted as ∇Ĵ(θ) in Equation 9. The proof is a simplified version of Theorem 4.2 from Zhang et al.
(2020). Let {θk}k≥0 be the sequence of parameters given by the update rule:

θk+1 → θk + αk∇Ĵ(θk), (28)
where αk is the stepsize sequence satisfies the Robbins-Monro condition:

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k = 0

Lemma 2. The interpolated policy gradient ∇Ĵ(θ) is Lipschitz continuous with some constant
L > 0.

Proof. The Lemma 3.2 of Zhang et al. (2020) gives that the standard policy gradient ∇J(θ) is
Lipschitz continuous with

L1 :=
URLΘ

(1− γ)2
+

(1 + γ)URB
2
Θ

(1− γ)3
,
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where UR is the bound of reward function, LΘ and BΘ are Lipschitz constant and bound of
∇θlogπθ(a|s), respectively. The Lemma 1 of Xiong et al. (2022) establishes that the determin-
istic policy gradient is Lipschitz continuous with

L2 := (
1

2
LPL

2
µLdCd +

Lψ
1− γ

)(Lr +
γURLP
1− γ

) +
Lµ

1− γ
(LQLµ +

γ

2
L2
PURLµCd +

γLPLrLµ
1− γ

),

where LP , Lµ, Ld, Lψ , Lr and LQ are Lipschitz constant of transition function P (s′|s, a), determin-
istic policy µθ(s), state visitation distribution dµ(s),∇θµθ(s), reward function r(s, a), gradient of Q
function ∇aQµ(s, a), respectively. Note that all of these continuities are standard or necessary mild
regularity requirements.

Now, we have

∥∇Ĵ(θ1)−∇Ĵ(θ2)∥ ≤ (1− ν)L1∥θ1 − θ2∥+ νL2∥θ1 − θ2∥.

By defining L := (1− ν)L1 + νL2, we complete the proof.

Now, we define the auxiliary random variable Wk = Ĵ(θk) − Ll̂2
∑∞
j=k α

2
k, where l̂ is the upper

bound of ∥∇Ĵ(θk)∥. We have the following lemma.

Lemma 3. The objective function sequence defined by (28) satisfies the following stochastic ascent
property:

J(θk+1) ≥ J(θk) + (θk+1 − θk)T∇Ĵ(θk)− Lα2
k l̂

2

Moreover, the sequence {Wk} is a saticifies

Wk+1 ≥Wk + αk∥∇Ĵ(θk)∥2 (29)

Proof. Consider the first-order Taylor expansion of Ĵ(θk+1) at θk. Then there exists some θ̃k =
λθk + (1− λ)θk+1 for some λ ∈ [0, 1] such that Wk+1 can be written as

Wk+1 = Ĵ(θk) + (θk+1 − θk)T∇Ĵ(θ̃k)− Ll̂2
∞∑

j=k+1

α2
k

= Ĵ(θk) + (θk+1 − θk)T∇Ĵ(θk) + (θk+1 − θk)T [∇Ĵ(θ̃k)−∇Ĵ(θk)]− Ll̂2
∞∑

j=k+1

α2
k

≥ Ĵ(θk) + (θk+1 − θk)T∇Ĵ(θk)− L∥θk+1 − θk∥2 − Ll̂2
∞∑

j=k+1

α2
k

where the inequality follows from applying Lipschitz continuity of the gradient. By definition of
Wk+1, we have

Ĵ(θk+1) ≥ Ĵ(θk) + (θk+1 − θk)T∇Ĵ(θk)− Lα2
k l̂

2,

which establishes the first argument of the lemma. In addition, note that θk+1 − θk = αk∇Ĵ(θk), we
have

Wk+1 ≥Wk + αk∥∇Ĵ(θk)∥2.

This concludes the proof.

Proposition 5 (Asymptotic Convergence). For the sequence θk defined by (28), we have
limk→∞ θk ∈ θ∗, where θ∗ is the set of stationary points of Ĵ(θ).

Proof. By definition, we have the boundedness of Wk, i.e., Wk < J∗, where J∗ is the global
maximum of Ĵ(θ). Thus, (29) can be written as

J∗ −Wk+1 ≤ J∗ −Wk − αk∥∇Ĵ(θk)∥2,
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where {J∗ −Wk} is a nonnegative bounded sequence of random variables. Therefore, we have
∞∑
k=0

αk∥∇Ĵ(θk)∥2 <∞, a.s. (30)

Note the stepsize {αk} is non-summable. Therefore, the only way that (30) may be valid is if the
following holds:

lim inf
k→∞

∥∇Ĵ(θk)∥2 = 0. (31)

So far, it suffices to show that lim sup
k→∞

∥∇Ĵ(θk)∥2 = 0. Specifically, suppose that for some random

realization, we have

lim sup
k→∞

∥∇Ĵ(θk)∥2 = ϵ > 0.

Then it must hold that ∥∇Ĵ(θk)∥ ≥ 2ϵ/3 for infinitely many k. Moreover, (31) implies that
∥∇Ĵ(θk)∥ ≤ ϵ/3 for infinitely many k. We thus can define the following sets N1 and N2 as

N1 = {θk : ∥∇Ĵ(θk)∥ ≥ 2ϵ/3}, N2 = {θk : ∥∇Ĵ(θk)∥ ≤ ϵ/3}.

Note that since ∥∇Ĵ(θk)∥ is continuous by Lemma 2, both sets are closed in the Euclidean space.
We define the distance between the two sets as

D(N1, N2) = inf
θ1∈N1

inf
θ2∈N2

∥θ1 − θ2∥.

Then D(N1, N2) must be a positive number since the sets N1 and N2 are disjoint and closed.
Moreover, since bothN1 andN2 are infinite sets, there exists an index set I such that the subsequence
{θk}k∈I of {θk}k≥0 crosses the two sets infinitely often. In particular, there exist two sequences of
indices {si}i≥0 and {ti}i≥0 such that

{θk}k∈I = {θsi , ..., θti−1},

with {θsi}i≥0 ⊆ N1, {θti}i≥0 ⊆ N2 and for any indices k = si + 1, ..., ti − 1 ∈ I (not including
si) in between the indices {si} and {ti}, we have

ϵ

3
≤ ∥∇Ĵ(θk)∥ ≤

2ϵ

3
≤ ∥∇Ĵ(θsi)∥.

By the triangle inequality, we may write

∑
k∈I

∥θk+1 − θk∥ =
∞∑
i=0

ti−1∑
k=si

∥θk+1 − θk∥ ≥
∞∑
i=0

∥θsi − θti∥ ≥
∞∑
i=0

D(N1, N2) =∞. (32)

Moreover, (30) implies that

∞ >
∑
k∈I

αk∥∇Ĵ(θk)∥2 ≥
∑
k∈I

αk
ϵ2

9

using the definition of ϵ. We may therefore conclude that
∑
k∈I αk < ∞. Given that ∥Ĵ(θk)∥ is

bounded, we have ∑
k∈I

∥θk+1 − θk∥ =
∑
k∈I

αk∥∇Ĵ(θk)∥ <∞,

which contradicts (32). This allows us to conclude lim sup
k→∞

∥∇Ĵ(θk)∥2 = 0 almost surely. This

statement together with (31) allows us to conclude that lim
k→∞

∥∇Ĵ(θk)∥ = 0 almost surely, which

completes the proof.
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