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Abstract

Multimodal Sentiment Analysis (MSA) aims to infer human emotions by inte-
grating complementary signals from diverse modalities. However, in real-world
scenarios, missing modalities are common due to data corruption, sensor fail-
ure, or privacy concerns, which can significantly degrade model performance.
To tackle this challenge, we propose Hyper-Modality Enhancement (HME), a
novel framework that avoids explicit modality reconstruction by enriching each
observed modality with semantically relevant cues retrieved from other samples.
This cross-sample enhancement reduces reliance on fully observed data during
training, making the method better suited to scenarios with inherently incomplete
inputs. In addition, we introduce an uncertainty-aware fusion mechanism that
adaptively balances original and enriched representations to improve robustness.
Extensive experiments on three public benchmarks show that HME consistently
outperforms state-of-the-art methods under various missing modality conditions,
demonstrating its practicality in real-world MSA applications.

1 Introduction

Multimodal Sentiment Analysis (MSA) aims to identify an individual’s emotional state toward a
given topic, person, or entity by leveraging complementary signals from modalities such as language,
audio, and video [1–3]. By integrating verbal, vocal, and visual cues, MSA offers a more nuanced
understanding of human emotions and has been widely applied in emotion-aware systems like
human-computer interaction and social media analysis. Considerable progress has been made in
designing sophisticated fusion networks to integrate multimodal information[4–9]. However, in
real-world scenarios, missing modalities frequently occur due to factors such as data corruption,
sensor failures [10], or privacy concerns[11, 12], which pose significant challenges to the robustness
of MSA systems.

Recent efforts have explored the challenge of MSA under missing modality conditions [13–18].
For example, IMDer [15] adopts a diffusion-based model to reconstruct missing modalities, while
HRLF [18] employs a teacher-student framework, where the teacher model is trained with fully
observed data and the student model learns to handle missing modalities by knowledge transfer.
Although these methods achieve promising results, they share two key limitations. (i) They typically
adopt a pseudo-missing setting, where missing modalities are artificially simulated by masking
full-modality training data, while the ground-truth representations of the masked modalities are still
used for supervision. However, such fully observed samples are often scarce in practice, limiting
the scalability and real-world applicability of these methods. (ii) These approaches mainly rely on
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the modalities available in the current sample, overlooking the potential of leveraging cross-sample
information that could enrich the representations and enhance the robustness of sentiment predictions.

To address these challenges, we propose Hyper-Modality Enhancement (HME), a framework de-
signed to address missing modalities without relying on full-modality reconstruction. Specifically,
HME consists of two key components: (i) Hyper-Modality Representation Generation: This com-
ponent learns a shared representation for the current sample using a small set of learnable prompts,
conditioned on its available modalities. Simultaneously, it extracts modality-specific information
from other samples to enrich this shared representation with sentiment-relevant signals. To ensure
robustness, we apply a Variational Information Bottleneck (VIB) [19], which filters out irrelevant
or noisy information. (ii) Uncertainty-aware Fusion: Given that representations from different
modalities and samples may vary in reliability, HME incorporates an uncertainty-aware fusion
mechanism that estimates the confidence of each input. This mechanism adaptively integrates these
representations, mitigating the influence of noisy or unreliable signals and enhancing robustness under
missing modality conditions. Together, these components mitigate the limitations of pseudo-missing
training strategies and enhance the model’s robustness in coping with realistic missing modality
patterns. Our main contributions are as follows.

• A novel hyper-modality enhancement mechanism is introduced to leverage cross-sample
semantic cues for strengthening observed modalities, without relying on explicit modality
reconstruction.

• An uncertainty-aware fusion mechanism is developed to adaptively combine original and en-
riched features, enabling robust sentiment prediction under incomplete modality conditions.

• Our extensive experiments on three benchmark datasets demonstrate that HME achieves
superior performance and greater robustness compared to existing methods.

2 Related Work

2.1 Multimodal Sentiment Analysis with Missing Modalities

Multimodal Sentiment Analysis (MSA) aims to predict sentiment by integrating information from
language, video, and audio modalities. However, many established approaches [5, 7, 20–23] assume
the consistent availability of all modalities across training, validation, and testing. Their performance
often degrades significantly when any modality is missing [14, 15, 18], a scenario frequently encoun-
tered in real-world applications. To tackle this challenge, some approaches attempt to reconstruct
missing modalities from the observed ones within the same sample like DiCMoR [24], IMDer [15],
GCNet [13], MCTN [25], MMIN [26], DCCA [27], and DCCAE [28], often relying on ground-truth
representations of the masked modalities for supervision. Others adopt a teacher-student framework,
where a teacher model trained on full-modality data guides a student model operating on incomplete
inputs [16–18, 11]. Although effective when trained on fully observed datasets, these methods
commonly assume access to complete data during training to supervise either the reconstruction
or the knowledge transfer process. This assumption limits their applicability in scenarios where
full-modality samples are scarce or unavailable. Besides, existing methods often treat each sample
independently, overlooking valuable contextual cues that could be leveraged from semantically related
instances. In contrast, our proposed HME framework operates directly on incomplete data, without
relying on modality reconstruction or teacher supervision. It enhances representations by leveraging
contextual information from related instances, enabling more robust sentiment prediction.

2.2 Hyper-Modality Representation

Recent advancements in multimodal learning have explored "hyper-modality representations" [21, 14]
to efficiently integrate information from diverse sources. These approaches often employ compact
prompts—distilled representations of individual modalities—to capture task-relevant features. For
instance, MPLMM [29] pre-trains on complete multimodal datasets, distilling this comprehensive
knowledge into prompts that can later supplement or stand in for missing modalities. Similarly,
methods like ALMT [21] and LNLN [14] construct hyper-modality representations by distilling
information from other modalities into prompts, but crucially, they presume the constant availability of
the language modality as a primary anchor. While these techniques demonstrate strong performance,
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Figure 1: Visualization of HME framework. It consists of three modules: Pre-Processing Module,
Hyper-Modality Representation Generation Module and Multimodal Hyper-Modality Fusion Module.

their practical applicability is often limited by their core assumptions: either the necessity of pre-
training on complete datasets or the continuous presence of a specific modality. Such requirements
are frequently unrealistic in real-world scenarios. In contrast, our proposed HME model is designed
to robustly generate hyper-modality representations directly from any available modality, without
these restrictive prerequisites.

3 Methodology

The overall structure of the proposed HME is shown in Figure 1. It consists of three modules,
the Pre-Processing module processes the multimodal input to extract the modality-specific rep-
resentations (introduced in Section 3.2), the Hyper-Modality Representation Generation Module
provides enhanced hyper-modality information (introduced in Section 3.3), and Multimodal Hyper-
Modality Fusion module fuses the enhanced representations with original representations based on
the uncertainty of the enhanced representations (introduced in Section 3.4).

3.1 Problem Definition

Given the multimodal input D = {Xi
L, X

i
A, X

i
V }Ni=1, each representation Xi

m ∈ RTm×dm is char-
acterized by a sequence length Tm and feature dimensionality dm, where m ∈ {L, V,A} denotes
modality and N is the length of the dataset. For simplicity, we omit the superscript i and use Xm to
denote the representation of modality m. In real-world scenarios, some modalities may be missing for
individual samples. To model this, missing modality representations are replaced with zero vectors
[16, 13, 14]. For simplicity, we use X ′

m to uniformly represent the modality m regardless of whether
it is present or not. The goal of MSA with missing modalities is to predict the sentiment ŷ using
incomplete modalities {X ′

L, X
′
V , X

′
A}.

3.2 Pre-Processing Module

Representations of each sample are firstly extracted to form the initial modality representation
{XL, XV , XA}. To simulate real-world scenarios with incomplete data, random modality dropout
is applied to generate inputs with missing modalities, denoted as {X ′

L, X
′
V , X

′
A}. For each input

modality X ′
m,m ∈ {L, V,A}, following prior research [16, 22], we then use a 1D temporal convolu-

tional layer with a kernel size of 3× 3 to standardize all modalities to the same dimension (d) and
sequence length (T ). Position embeddings [30] are added to encode temporal information, resulting
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(a) Modality Enhancement module. (b) Hyper-Modality Generation module.

Figure 2: The pipeline of Modality Enhancement (a) and Hyper-Modality Generation (b) module (e.g.
using language modality). Here ‘Q, K, V’ denote the query, key and value in attention, respectively.

in: X̂m = W3×3(X
′
m) + PE(T, d), where PE(T, d) denotes position embeddings. These represen-

tations are passed through a transformer encoder [30], Fp
ϕm

(·), to capture dynamic modality-specific
information. Finally, the Global Average Pooling (GAP) layer is applied to produce compact modality
representations: Hm = GAP (Fp

ϕm
(X̂m)), where Hm ∈ Rd, ϕm is the network parameter.

3.3 Hyper-Modality Representation Generation Module

The Hyper-Modality Representation Generation Module generates the enriched modality represen-
tation by injecting sentiment-relevant information from other samples. Given modality-specific
representations Hm, the module sequentially applies three components: Modality Enhancement,
Hyper-Modality Generation and Variational Information Bottleneck, respectively. First, Modality
Enhancement strengthens each modality’s and each sample’s representations via a few learnable
prompts, enabling prompts to dynamically gather informative signals from samples in current batch.
Then, Hyper-Modality Generation fuses the enhanced modality specific and shared information, se-
lectively integrating cross-sample sentiment cues into a richer, hyper-modality representation. Finally,
Variational Information Bottleneck filters noise and redundancy, distilling compact, high-quality
representations. We next detail each sub-module.

Modality Enhancement. For each modality m, a similarity matrix is first computed using samples
in the current batch, denoted as Sm ∈ RB×B , where B is the batch size. Taking modality L
as an example in Figure 2 (a), the similarity between representations is measured using cosine
similarity [16, 31]: sim(hi, hj) =

h⊤
i hj

||hi||·||hj || , where hi and hj denote different samples within
the same modality m in current batch. To better handle missing modalities and to reduce the
reliance on individual representations—which can introduce noise—while ensuring that the selected
representations remain meaningful, we simultaneously apply a similarity threshold and averaging
strategy. Specifically, a similarity threshold ts is set: representations with similarity scores exceeding
ts are selected and then averaged to form an enhanced representation. If no representation satisfies
the threshold ts, or if the modality is missing, we instead average all available representations of
the current modality within the batch to capture the modality-specific information. This process is
formulated as:

H ′
m,i =

{
Avg(Hm(Idx)), ifIdx ̸= ∅
Avg(Hm,j ̸= 0), otherwise

, (1)

where Idx = [Sm(i, j) > ts] denotes the indexes of the representations, of which the similarities
with i-th representation are higher that ts. And Hm,j ̸= 0 denotes the non-missing representations of
modality m. Avg(·) denotes averaging the representations.

After obtaining the enhanced representations H ′
m, Perceiver model [32, 21, 14] is employed to

refine these representations. Specifically, the Perceiver model uses learnable prompts to learn from
the representations by using cross-modal transformer blocks and transformer blocks. In the cross-
modal transformer, the input representations H ′

m serve as keys and values, while learnable prompts
E′

m ∈ Rlp×d act as queries. Here lp is the length of the prompt. And the attention [30] is defined as:

Em = ATTNϕm,m(E′
m, H ′

m) = Softmax(
E′

mWQe
W⊤

h (H ′
m)⊤√

d
)H ′

mWVh
, (2)

where WQe ,W
⊤
h ,WVh

∈ Rd×d are trainable weights. Subsequent layers apply a standard transformer
structure with identical input for the query, key, and value. The final enhanced modality representation
Em ∈ Rd is obtained by averaging the output of the last transformer layer.
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To capture common information across modalities and facilitate hyper-modality interaction, we
introduce another set of learnable prompts E′

S ∈ Rlp×d. These prompts are designed to aggregate
features from all available modalities for each sample, even when some modalities are missing. The
computation of ES follows a similar procedure to Eq. 2, with three key modifications: (i) replacing
E′

m with E′
S ; (ii) replacing H ′

m with the concatenated features [HL, HV , HA]; and (iii) adjusting the
dimensions of the associated trainable weights accordingly. The final representation ES ∈ Rd is also
obtained by averaging the output of the last transformer layer.

Hyper-Modality Generation. This module generates the representation of each modality of the
current sample by integrating sentiment-relevant information from other samples, thus obtaining
the hyper-modality representation, which can be seen in Figure 2 (b). Taking modality L as an
example, we compute the enhanced representations of modality L with modalities V and A using
Eq. 2 by setting queries to EL, keys and values to EA and EV . These are defined as EL,V =
ATTNϕL,V

(EL, EV ) and EL,A = ATTNϕL,A
(EL, EA). The sentiment-relevant information are

then distilled into the overall representation of each sample through setting ES as query: RL =
ATTNϕS,L

(ES , [EL,V , EL,A]). Through performing on all three modalities, we obtain Rm =
ATTNϕS,m

(ES , [Em,m1
, Em,m2

]), where m,m1,m2 ∈ {L, V,A},m ̸= m1 ̸= m2.

Variational Information Bottleneck. Selecting representations based solely on similarity can
introduce errors, as samples with similar features may have different labels. Furthermore, the
uncertain availability of modalities can also lead to redundancy when integrating information. To
address these challenges, we employ the Variational Information Bottleneck (VIB) [19] to reduce
noise and redundancy in the representations. VIB approximates the information bottleneck [33–35]
by learning an encoding Z that is maximally expressive about target Y while being maximally
compressive about input X through optimizing the following function:

LV IB = I(Z, Y )− βI(Z,X). (3)
Here I(·) is the mutual information, β is the Lagrange multiplier. Specifically, we follow the previous
ways that use the LTASK (introduced in Eq. 9) and Kullback Leibler divergence [19, 36] to measure
the I(Z, Y ) and I(Z,X) through:

LV IB =
1

N

N∑
i=1

LTASK(ŷibi , yi) + βKL(p(zi|xi)||N (0, I)), (4)

where: p(zi|xi) ∼ N (µi, σ
2
i I), and µi = fθ1(xi), σi = fθ2(xi). Here two MLP layers fθ1 and fθ2

are used to encode the mean ui and standard deviation σi of zi, and another MLP layer fθ3 is used
to map the zi into the logits ŷibi using ŷibi = fθ3(zi). And the re-parameterization trick [37] is also
adapted as: zi = µi + ϵσi, ϵ ∈ N (0, I). Here zi is the compressed denoised representation of xi, and
the whole representation of each modality can be denoted as Fm ∈ Rd. Through assigning X = Rm

and Z = Fm in Eq. 3, we obtain the compressed hyper-modality enhanced representations Fm and
their corresponding standard deviation σm for each modality m.

3.4 Multimodal Hyper-Modality Fusion Module

The effectiveness of multimodal fusion depends on the reliability of the representations from each
modality. As the representation power of compressed representations can vary, it is essential to account
for this variability during the fusion process. Drawing inspiration from the EAU framework [36],
which uses variance as a measure of uncertainty in representations that higher variance indicates more
scattered representations, we incorporate the standard deviation of hyper-modality representations to
guide their fusion with the original representations.

Specifically, we compute the reciprocal of the standard deviation, expressed as ζm = 1
σm+eps , where

eps = 10−8 prevents division by zero. Additionally, since the difference of the standard deviation
may very high, we limit the influence of uncertainties using thresholds tl and tu, constraining ζm to
lie within [tl, tu]. Besides, the contribution of the enhanced hyper-modality should not exceed the
original modality representation, thus we define the uncertainty weights as: U2

m = [1.0, ζm] to fuse
the Hm and Fm. Furthermore, the interactions between the hyper-modality enhanced representations
Fm may also provide sentiment-relevant information, thus we define the uncertain weights of these
three representations as:

U3
m =

eζm∑
m∈{L,V,A} e

ζm
. (5)
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Then the uncertainty weights are combined with attention weights [30] for further fusion through:

A2
m =

[Hm, Fm]Wa,mW⊤
h,m√

d
, (6)

and

A3
m =

FlavWaW
⊤
a,h√

d
, (7)

where Wa,m, W⊤
h,m, Wa,W⊤

a,h are trainable parameters, and Flav = [FL, FV , FA].

The integrated representation of each modality is then fused with A2
m through: Sm =

Softmax(U2
mA2

m)[Hm, Fm], and the fused representations of three hyper-modality enhanced rep-
resentations is calculated as: SH = Softmax(U3

mA3
m)Flav. The fused representations are then

concatenated across modalities to form Sall = [SL, SV , SA, SH ], where Sall ∈ R4×d. Sall is then fed
into a transformer encoder, denoted as Fσ(·) for further fusion. And the output, Hfinal, is flattened
into R4d and passed through a two-layer MLP fθ4 . The MLP reduces the representation first to R2d

and then to Rk, producing the final prediction ŷ. Here, k represents the dimensionality of the task
labels. The process can be formulated as: ŷ = fθ4(Fσ(Sall)).

Overall Loss. The overall loss for the HME framework is defined as:
Lall = LTASK(ŷ, y) + αLV IB . (8)

Here the LV IB is averaged over the three modalities, and LTASK for regression and classification
tasks is defined as:

LTASK =

{
CrossEntropy(ŷ, y) Classification

|ŷ − y| Regression
. (9)

4 Experiments

4.1 Datasets and Implementation Details

Datasets. Three widely-used datasets are adapted, named CMU-MOSI [38], CMU-MOSEI [39]
and IEMOCAP [40]. CMU-MOSI and CMU-MOSEI consist of 2,199 and 22,856 video clips,
respectively. Each clip has a regression label ranging from -3 (strongly negative) to 3 (strongly
positive). While IEMOCAP is a dialogue dataset with 4,453 samples, categorized into four emotional
classes: neutral, happy, sad, and angry. Following prior research [29, 13], the ‘positive/negative’
accuracy and F1-score is adapted in MOSI and MOSEI, and averaged accuracy and F1-score of four
classes is used to evaluate the IEMOCAP.

Feature Extraction. For text, the pre-trained BERT-base model [41] is used to obtain contextual
embeddings. For the video modality, we perform face detection and feature extraction using the
MTCNN [42] and OpenFace [43] toolkits. For audio, Mel-frequency cepstral coefficients and pitch
features are extracted using the COVAREP toolkit [44].

Implementation Details. The performance of each model is evaluated with two protocols, fixed
missing protocol and random missing protocol. For the former protocol, we test the performance on
the test set with the same missing modality. For example, ‘L’ in Table 1 denotes that only language
modality is available. Under this protocol, the modality is only removed during validation and
inference—not during training, which aligns with following existing approaches [13, 15, 24, 29] and
is intended to simulate real-world scenarios where certain modalities may be missing only at test
time. While for random missing protocol, following existing approaches [13, 15, 24], we randomly
drop some modalities for each sample. Here missing rate (MR) is adapted to evaluate the missingness
of the dataset. The MR is defined as MR = 1 −

∑N
i=1 ai

3×N , where ai is the number of the available
modalities in ith sample, ‘N ’ denotes the total number of the samples in each dataset. Since at least
one modality is present, so the ai ≥ 0 and MR ≤ 2

3 . Following GCNet [13], we also choose the
MR from [0.0, 0.1, ..., 0.7], where 0.7 is the approximation of 2

3 . The MR is kept the same in both
training, validation and testing phase. To mimic the real-world situations, we set the paradigm in
training, validation and testing phase that the modalities are dropped and can not be used for guidance
for reconstruction. Due to the space limits, more implementation details can be found in Appendix
A.2.
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Table 1: Performance on MOSI and IEMOCAP with missing modalities. ‘ACC/F1’ is reported. ‘+’:
results under fixed missing protocol; ‘-’: results under random missing protocol.

Datasets Avail GCNet MPLMM DiCMoR IMDer LNLN HME

MOSI+

L 83.7/83.6 83.8/83.8† 84.5/84.4 84.8/84.7 84.9/85.1 85.7/85.6
V 56.1/55.7 54.7/42.1† 62.2/60.2 61.3/60.8 52.2/58.9 63.6/63.4
A 56.1/54.5 54.6/42.0† 60.5/60.8 62.0/62.2 52.2/58.9 62.7/62.2

L,V 84.3/84.2 83.8/83.7† 85.5/85.4 85.5/85.4 84.9/85.1 85.8/85.8
L,A 84.5/84.4 83.7/83.6† 85.5/85.5 85.4/85.3 84.9/85.2 85.8/85.7
A,V 62.0/61.9 57.3/42.6† 64.0/63.5 63.6/63.4 52.2/58.9 64.6/64.5

L,A,V 85.2/85.1 83.8/83.8† 85.7/85.6 85.7/85.6 84.3/84.6 86.4/86.3
Avg. 73.1/72.8 71.7/65.9† 75.4/75.1 75.5/75.3 70.8/73.8 76.4/76.2

IEMOCAP+

L -/76.1 69.2/69.3 75.2/68.2† 75.1/67.2† 76.8/74.4† 79.1/78.1
V -/61.6 57.6/57.0 73.6/68.8† 75.1/70.1† 74.5/69.9† 75.7/70.8
A -/63.5 59.8/59.7 76.0/68.7† 75.5/70.2† 77.1/74.6† 78.9/76.8

L,V -/77.4 74.7/74.5 74.4/72.1† 75.2/72.6† 77.0/75.5† 79.7/78.9
L,A -/79.1 76.0/75.4 78.7/76.5† 76.6/71.7† 77.9/75.4† 80.7/80.0
A,V -/65.4 67.3/67.4 76.3/75.2† 76.3/72.3† 77.3/74.9† 78.1/76.3

L,A,V -/82.7 -/- 78.7/76.5† 77.5/75.4† 78.4/77.4† 81.1/80.6
Avg. -/72.3 67.4/67.2 76.1/72.3† 75.9/71.4† 77.0/74.6† 79.0/77.4

MOSI−

0.0 85.2/85.1 83.8/83.8† 85.7/85.6† 85.7/85.7† 84.2/84.0† 86.4/86.3
0.1 82.3/82.3 80.6/80.7† 83.2/83.2† 84.6/84.4† 81.4/81.4† 84.9/84.7
0.2 79.4/79.5 77.7/77.9† 81.6/81.3† 81.7/81.8† 78.7/78.7† 82.9/82.9
0.3 77.2/77.2 75.0/75.1† 78.4/77.9† 79.9/79.4† 74.7/74.8† 81.1/81.0
0.4 74.3/74.4 70.0/69.8† 76.2/74.7† 78.1/77.2† 70.3/69.9† 79.9/80.0
0.5 70.0/69.8 67.4/66.6† 72.6/72.7† 73.6/73.7† 67.1/66.3† 76.4/76.4
0.6 67.7/66.7 63.4/61.8† 71.3/71.4† 72.9/69.8† 62.5/60.5† 74.5/74.4
0.7 65.7/65.4 59.2/56.2† 69.1/69.2† 67.7/67.1† 61.0/58.3† 73.5/71.7

Avg. 75.2/75.1 72.1/71.5† 77.3/77.0† 78.0/77.4† 72.5/71.7† 80.0/79.7

IEMOCAP−

0.0 -/78.4 76.4/72.0† 78.7/76.5† 77.5/75.4† 78.4/77.4† 81.1/80.6
0.1 -/77.5 76.1/70.8† 77.1/73.7† 77.2/72.8† 78.0/76.3† 80.9/80.3
0.2 -/77.3 75.7/67.9† 76.4/72.5† 75.9/71.6† 77.6/75.7† 80.7/80.0
0.3 -/76.2 75.6/67.4† 75.8/71.6† 75.7/70.8† 77.5/75.4† 79.0/77.8
0.4 -/75.1 75.5/66.6† 75.5/69.0† 74.9/70.8† 77.4/74.0† 78.7/77.3
0.5 -/73.8 74.0/66.2† 75.1/68.5† 74.7/68.2† 76.8/72.9† 78.5/77.1
0.6 -/71.9 73.2/66.0† 74.5/68.0† 73.5/67.0† 76.6/72.6† 77.8/76.1
0.7 -/71.4 72.4/65.7† 74.3/67.5† 73.1/65.3† 76.5/70.2† 77.6/76.0

Avg. -/75.2 74.9/67.8† 75.9/70.9† 75.3/70.2† 77.4/74.3† 79.3/78.2

4.2 Comparison with the State-of-the-arts

We compare HME with the state-of-the-art models specifically designed for MSA under missing
modality scenarios, including GCNet [13], IMDer [15], DiCMoR [24], LNLN [14], and MPLMM
[29]. In some cases, we were unable to directly compare with results reported in prior work under
identical settings—either because the specific missing modality protocol was not used, or the results
for certain datasets were not reported for those conditions. For a fair comparison, we re-implement
the models from their open-source codes according to our training paradigm, which are denoted with
symbol †. More results on MOSEI dataset can be found in Appendix A.3.1.

Quantitative Results. Table 1 summarizes the performance of HME and baselines across MOSI and
IEMOCAP datasets under the both missing modality protocols. Under fixed missing protocol, HME
generally outperforms existing models. On MOSI dataset, HME surpasses all baselines across every
metric, achieving an average performance increase of 0.9. For the IEMOCAP dataset, HME performs
comparably to GCNet when all modalities are available but demonstrates significant advantages over
other models in scenarios with missing modalities. On average, across all missing modality scenarios,
HME improves ACC by 2.0 and F1 score by 2.8 over the best-performing baseline. This strong
performance extends to the random missing protocol. On both MOSI and IEMOCAP datasets, HME
consistently outperforms all models across all metrics and at every MR. Specifically, HME yields
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Table 2: Ablation results of HME components on MOSI and IEMOCAP datasets.

Datasets HME w/o EL w/o EV w/o EA w/o ES w/o Um w/o HMG
Ablations on Fixed Missing Protocol

MOSI 76.4/76.2 75.2/74.7 75.2/75.1 75.3/74.6 75.2/74.7 75.4/75.1 75.0/74.5
IEMOCAP 79.0/77.4 78.4/76.3 78.1/76.2 78.5/76.5 78.2/76.1 79.1/76.3 78.5/76.8

Ablations on Random Missing Protocol
MOSI 79.0/78.7 77.3/76.8 77.3/76.7 76.7/76.2 77.2/76.9 77.6/77.2 76.6/76.2

IEMOCAP 79.0/77.8 78.4/76.8 78.4/76.7 78.3/76.5 78.4/76.9 78.2/76.4 78.7/77.2

average improvements in ACC and F1-score of 2.0 and 2.3, respectively, on MOSI, and 1.9 and
3.9, respectively, on IEMOCAP. The consistent superiority of HME across both missing protocols
underscores its effectiveness and robustness in handling various missing modalities.

4.3 Ablation Study

To better understand the contribution of each component in HME, we conduct an ablation study on
the following parts across both missing modality protocols: (i) ‘w/o Em’ refers to the model without
the hyper-modality enhanced representation of modality m; (ii) ‘w/o ES’ refers to the model without
the overall representation of the current sample; (iii) ‘w/o Um’ refers to the model without uncertainty
weights, using only vanilla attention weights for fusion; and (iv) ‘w/o HMG’ refers to the model
without the hyper-modality generation module, where the modality representations Em are directly
passed into the VIB for further processing. The results of averaged performance of two missing
protocols are presented in Table 2, with more detailed results in Appendix A.3.2.

Effects of the HME components. In both missing protocols, removing any component resulted in
a decline in performance across all datasets and missing protocols, highlighting the effectiveness
of each part of HME. Moreover, the importance of specific components varies across datasets. For
example, removing the HMG module causes the largest performance drop in MOSI datasets under
both missing protocols, whereas on the IEMOCAP dataset, the removal of Um results in the largest
performance decline. Furthermore, the removal of uncertainty weights Um also leads to a substantial
drop in performance, particularly in F1 score, emphasizing the role of uncertainty in accurately
guiding the model to distinguish between sentiment categories. Overall, Um and HMG contribute the
most to performance improvement. For example, removing HMG leads to the largest performance
drop on the MOSI and MOSEI datasets under the fixed missing protocol, while removing Um has the
most significant impact under the random missing protocol in IEMOCAP and MOSEI.

4.4 Visualization of the Training Loss and Representations

To better analyze the convergence of the loss components during training, we conduct experiments
on the IEMOCAP dataset with an MR value of 0.7, which is depicted in Figure 3 (a). Note that the
LV IB,1 and LV IB,2 are the two components of LV IB . Specifically, training is conducted over 100
epochs, with early stopping applies at the 60th epoch. We observe that all loss components of HME
gradually decrease over time and stabilize after a few epochs, indicating the rational design of HME’s
loss components. This consistent reduction in both overall and local losses, with minimal fluctuations,
further validates the effectiveness of HME’s loss component structure.

Besides, to understand the differences between the enhanced hyper-modality representations Fm

and the original representations Hm, we visualize them using t-SNE. Figure 3 (b) shows these
visualizations on the MOSI test set with an MR of 0.7. We find that the enhanced hyper-modality
representation Fm captures additional sentiment-relevant information, forming distinct clusters that
do not overlap with the original representations Hm. More visualizations for the fused representations
Sm and SH can be found in Appendix A.3.9.

4.5 Qualitative Analysis

To investigate the relationship between uncertainty weights and the input modalities, we compute
the average uncertainty scores across three modalities under 14 missing-modality scenarios derived
from two missing-protocol setups on the validation set. Each scenario is executed five times to ensure
reliability, and the results, including 95% confidence intervals, are presented in Table 3. Further
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(a) (b)

Figure 3: Visualization of training loss convergence on the IEMOCAP dataset (a) and learned
representations on the MOSI dataset (b) with MR = 0.7. (a) All losses show clear convergence
during training. (b) The enhanced hyper-modality representations capture distinct information
compared to the original ones, forming separate clusters.

Table 3: Average uncertainty weights of the three modalities on IEMOCAP dataset.

MR 0.1 0.2 0.3 0.4 0.5 0.6
FL 0.426±0.023 0.424±0.011 0.341±0.007 0.336±0.027 0.323±0.019 0.322±0.033
FA 0.244±0.034 0.248±0.008 0.299±0.029 0.319±0.046 0.338±0.037 0.348±0.033
FV 0.330±0.034 0.328±0.004 0.360±0.025 0.345±0.022 0.339±0.031 0.330±0.029

L A V L,A L,V A,V
FL 0.290±0.034 0.273±0.054 0.322±0.001 0.301±0.007 0.312±0.028 0.364±0.015
FA 0.350±0.049 0.467±0.134 0.389±0.005 0.355±0.013 0.416±0.062 0.311±0.026
FV 0.360±0.028 0.260±0.104 0.289±0.004 0.344±0.012 0.272±0.041 0.325±0.017

ts 0.1 0.2 0.3 0.4 L,A,V(ts0.7) MR=0.7
FL 0.358±0.012 0.353±0.016 0.432±0.003 0.461±0.003 0.409±0.003 0.293±0.026
FA 0.219±0.013 0.238±0.017 0.247±0.004 0.230±0.003 0.257±0.009 0.365±0.021
FV 0.423±0.010 0.403±0.012 0.318±0.004 0.310±0.003 0.335±0.005 0.342±0.031

analyses of model stability (in A.3.3), error (in A.3.4), generalization (in A.3.5), VIB components (in
A.3.6), enhanced representations (in A.3.7), hyper-parameters (in A.3.8), case visualization (A.3.9)
and computational efficiency (in A.3.10) are detailed in the Appendix.

Our findings reveal that the uncertainty weights of the three modalities are strongly influenced by
the number of missing modalities (i.e., the MR value). Specifically: (i) When fewer modalities are
missing (low MR, e.g., MR = 0.0, 0.1, 0.2): The language modality exhibits the smallest variance in
its enhanced representations, providing the most information, while the audio modality shows the
largest variance. This may explain why prior studies often regard language as the primary modality
in fusion process [14, 21]. (ii) As the MR value increases: The audio modality’s variance gradually
decreases, and its uncertainty weights increase, reflecting its growing contribution to the fusion
process. Conversely, the language modality’s uncertainty weights decrease as its representation
variance grows. (iii) Similar trends are observed under the fixed missing protocol. For example, when
only one modality is present (MR = 0.7), the audio modality tends to maintain smaller variance.

Since the hyper-modality representations are generated from representations that satisfy the similarity
threshold ts, we further analyze the relationship between uncertainty weights and ts. Specifically,
we conduct experiments under the full-modality scenario (MR = 0.0, corresponding to L,A,V)
to isolate the impact of ts on uncertainty weights, which is shown in Table 3. Our findings reveal
the following: (i) When ts is low (e.g., 0.1 or 0.2): The video modality demonstrates the smallest
variance in its representations, resulting in the highest uncertainty weights, while the audio modality
exhibits the largest variance. (ii) As ts increases, The language modality’s uncertainty weights rise,
gradually aligning with its behavior in low-MR scenarios, where it dominates with higher uncertainty
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Figure 4: Case visualization of selected samples with ts = 0.9 on the MOSI dataset. Green boxes
indicate representations with the same label, while red boxes denote samples with different labels.

Figure 5: Case visualization of selected samples with ts = 0.5 on the MOSI dataset. Green boxes
indicate representations with the same label, while red boxes denote samples with different labels.

weights. (iii) Across all ts values: The audio modality’s uncertainty weights remain consistently low,
mirroring its behavior in low-MR scenarios.

To better understand the the proposed modality enhancement, we visualize selected sample pairs from
the MOSI dataset under different similarity thresholds. Specifically, we examine two configurations
with a MR of 0.7 and a batch size of 128: (i) a similarity threshold of 0.9 (Figure 4), and (ii) a
similarity threshold of 0.5 (Figure 5). A higher similarity threshold tends to select samples that are
more semantically consistent with the current label. Conversely, lowering the threshold increases
sample diversity but also introduces a few mismatched labels. Nonetheless, the subsequent VIB and
uncertainty-aware fusion mechanism effectively reduce the impact of these mismatches. Further
analysis of the effects of batch size and selected samples is provided in the Appendix A.3.9.

5 Conclusion and Discussion

In this paper, we present the Hyper-Modality Enhancement (HME) framework to address the chal-
lenges posed by missing modalities in multimodal sentiment analysis. By integrating sentiment-
relevant information from other samples, HME effectively enhances the representation of the sample.
The uncertainty-aware fusion strategy further ensures that the enhanced representations are robust and
reliable, even when generated data varies in quality. Experimental evaluations on multiple benchmark
datasets demonstrate that HME outperforms existing state-of-the-art methods, achieving superior
performance in terms of both accuracy and robustness when handling missing modalities.

Discussion of Limitation. While the use of VIB helps reduce redundant information, generating
separate representations for each modality can still result in overlapping content. Besides, HME only
focuses on mitigating noise from other samples but does not account for potential noise within the
original modality representations themselves. We plan to address these challenges in future work.

Discussion of Societal Impacts. Recognizing emotions from incomplete multimodal data enhances
the robustness and usability of MSA systems but also raises ethical concerns. Inference from partial
signals may lead to inaccurate or biased predictions, potentially misrepresenting individuals or groups.
Moreover, the use of MSA models can introduce privacy risks or enable surveillance without consent.
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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our work.
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implications would be.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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mentation Details" sections of the paper specify all the training and testing details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Tables 3, 8 and 9 of the paper, we conducted significance tests on the
experimental results to demonstrate the superior performance of the proposed framework.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The "A.2 Additional Implementation Details" section of the paper explains
that all experiments are conducted on an NVIDIA GTX 3090 GPU. Besides, the "A.3.10
Computation Overhead and Trade-off Analysis" section of the paper explains that execution
time and peak GPU memory usage of the proposed method.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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Answer: [Yes]
Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the "5 Conclusion and Discussion" section for the societal
impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The MOSI, MOSEI, IEMOCAP, UR-FUNNY and MUStARD datasets in this
paper are existing assets and we cite the references.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Additional HME Details

In this section, we provide further details of the HME framework. After the sample selection step
in Eq.1, the extracted features H ′

m are passed into a Perceiver network [32] to generate enhanced
representations. The Perceiver refines the features through a combination of cross-modal and self-
attention mechanisms [30], enabling richer information exchange across modalities. The Perceiver
operates by introducing a set of learnable latent vectors, denoted as E′

m ∈ Rlp×d, which interact with
the input features H ′

m. Each Perceiver layer alternates between two key components: a cross-attention
block and a self-attention block [32]. In the cross-attention block, the latent vectors E′

m act as the
queries, while the input features H ′

m serve as the keys and values. This process allows the latent
vectors to selectively attend to informative aspects of H ′

m, formulated as:

Hca = ATTNϕm,m(E′
m, H ′

m) = Softmax(
E′

mWQe
W⊤

h (H ′
m)⊤√

d
)H ′

mWVh
, (10)

where WQe
,Wh,WVh

∈ Rd×d are trainable weights, and Hca ∈ Rlp×d. The resulting features are
then normalized and refined through a residual connection:

Ĥca = LN(E′
m, Hca) + E′

m, (11)

followed by a feed-forward update:

Hff = LN(Wff Ĥca) + Ĥca, (12)

where Wff is trainable. The subsequent self-attention block applies the same mechanism but sets
the queries, keys, and values all to the same input (e.g., Hff ). By stacking multiple layers of
these alternating blocks, the Perceiver gradually produces a enhanced representation E′

m. Finally,
the enhanced modality representation Em ∈ Rd is obtained by averaging the outputs of the last
transformer layer.

A.2 Additional Implementation Details

In this section, we describe the datasets, and implementation details used in experiments.

MUStARD and UR-FUNNY datasets. We conduct additional experiments on the UR-FUNNY
[45] and MUStARD [46] datasets, both designed for humor detection from multimodal data. The
UR-FUNNY dataset contains 1,866 videos from 1,741 speakers, comprising 9,588 utterances. The
data are divided into 7,614 training, 980 validation, and 994 test instances. The MUStARD dataset
includes 690 videos, split into 539 training, 68 validation, and 68 test utterances.

Implementation Details. To ensure reliable training and prevent overfitting or underfitting, we train
100 epochs and apply early stopping with a patience of 10 epochs across all reproduced baseline
models and HME. Specifically, training is terminated when the validation loss fails to improve for
10 consecutive epochs. Besides, for both missing modality protocols, the reported results for HME
and re-implemented baselines (denoted with symbol †) are the averages from five separate runs. All
models are evaluated on an NVIDIA GTX 3090 GPU.

For HME under the two missing protocols across three datasets, several hyper-parameters remain
consistent, such as the Perceiver layers in the modality enhancement module, which are set to 3
layers, the prompt length lp = 5, the similarity threshold ts = 0.6, and the bounds of uncertainty
weights tl = 0.2, tu = 1.0. However, some hyper-parameters vary depending on the specific dataset
and configuration. For the MOSI and MOSEI datasets, the default hyper-parameters under both
settings are as follows: learning rate of 4e-5, batch size of 256, and VIB loss weight α = 1.0. The
hidden dimension d for MOSI and MOSEI also differ across protocols. For MOSI, the fixed missing
protocol uses a hidden dimension d of 96, while the random missing protocol uses 192. In the case
of MOSEI, the hidden dimension d is set to 192 for both protocols. In contrast, for the IEMOCAP
dataset, the default hyper-parameters are consistent across both missing protocols, with a learning
rate of 1e-4, batch size of 24, VIB loss weight α = 0.5, and hidden dimension d = 30.

To identify the optimal hyper-parameters of HME, we performed a search over a limited set of values.
For the MOSI and MOSEI datasets, the learning rate was selected from {1e-5, 2e-5, 3e-5, 4e-5}, the
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Table 4: Performance comparison under fixed missing protocol on MOSEI.

Datasets Avail GCNet MPLMM† DiCMoR IMDer LNLN HME

MOSEI

L 83.0/83.2 84.6/84.6 84.2/84.3 84.5/84.5 84.1/84.4 85.5/85.4
V 61.9/61.6 62.2/53.2 63.6/63.6 63.9/63.6 62.9/77.2 64.6/62.9
A 60.2/60.3 61.8/49.4 62.9/60.4 63.8/60.6 62.9/77.2 64.1/59.7

L,V 84.3/84.4 85.2/85.1 84.9/84.9 85.0/85.0 84.4/84.7 85.7/85.7
L,A 84.3/84.4 85.1/85.1 85.0/84.9 85.1/85.1 84.1/84.4 85.6/85.4
A,V 64.1/57.2 63.2/51.0 65.2/64.4 64.9/63.5 62.9/77.2 65.4/63.7

L,A,V 85.2/85.1 85.3/85.3 85.1/85.1 85.1/85.1 84.1/84.5 86.2/86.2
Avg. 74.7/73.7 75.3/70.5 75.8/75.4 76.0/75.3 75.1/81.4 76.7/75.6

Table 5: Performance comparison under random missing protocol on MOSEI.

Datasets MR GCNet MPLMM† DiCMoR† IMDer† LNLN† HME

MOSEI

0.0 85.2/85.1 85.3/85.3 85.1/85.1 85.1/85.1 85.1/85.1 86.2/86.2
0.1 82.3/82.1 83.7/83.5 83.2/83.1 83.5/83.3 83.1/83.0 84.0/83.8
0.2 80.3/79.9 81.4/80.8 81.2/80.8 81.3/80.9 81.7/81.0 82.3/81.9
0.3 77.5/76.8 79.2/78.3 79.0/77.9 79.4/78.8 79.1/78.1 80.0/79.6
0.4 76.0/74.9 77.1/76.1 76.9/75.2 76.1/74.3 76.9/75.6 77.6/76.4
0.5 74.9/73.2 75.6/73.8 73.7/71.7 75.3/72.4 75.1/72.4 75.7/74.7
0.6 74.1/72.1 72.7/70.6 71.1/70.4 71.2/66.5 72.5/68.6 73.0/72.5
0.7 73.2/70.4 70.5/69.2 70.6/68.9 71.1/65.9 70.6/65.2 72.4/69.2

Avg. 77.9/76.8 78.2/77.2 77.6/76.6 77.9/75.9 78.0/76.1 78.9/78.0

VIB loss weight α from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the hidden dimension d from {92, 128, 160,
192, 256}. For the IEMOCAP dataset, the learning rate was chosen from {1e-4, 5e-4, 1e-3, 2e-3},
the VIB loss weight α from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the hidden dimension d from {30, 35,
40, 45, 50, 55}.

To identify the hyper-parameter of the re-implemented baselines, we adhered to the hyper-parameter
guidelines provided in the official implementations of these models. For models like IMDer [15] and
DiCMoR [24], which included pre-trained weights, we used the publicly available checkpoints and
configurations. For baselines without available hyper-parameters for specific datasets, we aligned
their hyper-parameters with HME’s settings where possible. When unique parameters were required,
we referred to their recommended settings from other publicly available implementations.

Since MOSI and MOSEI are regression tasks, consistent with previous work [29], we convert the
ground truth and predictions into two categories: greater than 0 and less than 0. This enables the
calculation of binary classification metrics such as accuracy and F1-score.

A.3 Additional Results

Here we present additional experimental results in this section. These include the performance
of different models on MOSEI dataset (in A.3.1), the ablation studies for each component under
various missing modality scenarios across three datasets (in A.3.2), model stability analysis (in
A.3.3), error analysis (in A.3.4), generalization and plug-and-play applicability analysis (in A.3.5),
VIB components analysis (in A.3.6), enhanced representations analysis (in A.3.7), hyper-parameter
analysis(in A.3.8), case visualization and representation visualization (in A.3.9), and computation
overhead and trade-off analysis (in A.3.10).

A.3.1 Results on MOSEI Dataset

In this section, we compare the performance of HME with other baselines on the MOSEI dataset
under two missing protocols. The results are shown in Tables 4 and 5. Under the fixed missing
protocol, HME performs slightly worse than LNLN in the missing language modality scenario in
terms of F1 score, but it delivers strong results across other scenarios for both metrics. In the random
missing protocol, HME performs slightly worse than GCNet at MR values of 0.6 and 0.7, but it still
outperforms the current state-of-the-art models at all other missing rates. On average, HME improves
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Table 6: Ablation results of fixed missing protocol on three datasets.

Methods L V A L,V L,A A,V L,A,V
Ablations on MOSI

HME 85.7/85.6 63.6/63.4 62.7/62.2 85.8/85.8 85.8/85.7 64.6/64.5 86.4/86.3
w/o EL 85.4/85.0 61.7/60.3 61.1/60.2 85.7/85.4 84.6/84.2 62.5/62.6 85.4/85.2
w/o EV 85.1/84.8 61.3/61.2 62.0/62.1 84.9/84.6 85.7/85.4 62.5/62.3 85.2/85.2
w/o EA 84.9/84.9 60.5/58.1 62.3/61.0 85.2/85.1 85.5/85.3 63.0/61.8 85.8/85.7
w/o ES 85.4/85.0 61.7/60.3 61.1/60.2 85.7/85.4 84.6/84.2 62.5/62.6 85.5/85.4
w/o Um 85.2/85.0 61.0/60.8 61.1/60.7 85.7/85.6 85.7/85.4 62.7/61.9 86.1/86.0

w/o HMG 85.1/84.9 60.5/60.4 60.2/59.1 85.5/85.4 85.4/85.3 63.3/61.5 85.2/85.1
w/o VIB 84.8/84.6 61.1/61.3 61.9/61.6 85.7/85.6 85.2/85.0 62.7/62.5 85.4/85.2

Ablations on MOSEI
HME 85.5/85.4 64.6/62.9 64.1/59.7 85.7/85.7 85.6/85.4 65.4/63.7 86.2/86.2

w/o EL 85.2/85.0 63.8/60.3 59.4/57.7 85.5/85.4 85.2/85.1 64.2/59.8 86.1/86.0
w/o EV 85.1/85.1 63.4/58.6 61.6/52.1 85.6/85.3 85.2/85.1 64.2/59.8 86.1/86.0
w/o EA 85.2/85.0 63.8/60.3 60.2/53.1 85.4/85.4 85.2/85.1 64.2/59.8 85.9/85.8
w/o ES 85.2/85.1 63.1/59.9 60.6/56.8 85.5/85.3 85.3/85.2 64.0/59.6 85.8/85.7
w/o Um 85.1/85.0 63.6/55.5 61.5/55.5 85.4/85.3 85.1/85.1 64.1/57.2 86.1/86.0

w/o HMG 85.3/85.2 62.8/55.5 61.0/51.9 85.5/85.3 85.1/85.0 63.5/53.1 85.6/85.6
w/o VIB 85.4/85.3 64.5/60.3 61.8/56.8 85.6/85.5 85.2/85.1 65.3/62.4 85.9/85.8

Ablations on IEMOCAP
HME 79.1/78.1 75.7/70.8 78.9/76.8 79.7/78.9 80.7/80.0 78.1/76.3 81.1/80.6

w/o EL 78.8/77.6 74.3/68.0 78.0/75.5 79.5/78.3 80.4/79.4 77.2/75.0 80.8/80.0
w/o EV 78.2/77.4 74.1/70.0 78.1/75.7 79.1/78.0 80.5/79.4 75.8/72.5 80.9/80.2
w/o EA 78.7/77.9 74.5/69.2 78.6/75.9 79.2/78.3 80.4/79.3 77.5/74.5 80.9/80.4
w/o ES 78.2/77.4 74.0/69.0 78.8/75.6 78.9/78.1 80.2/79.2 77.1/74.3 80.0/79.4
w/o Um 78.2/77.5 73.9/69.0 78.3/75.4 78.4/77.9 80.3/79.5 76.7/74.4 81.0/80.2

w/o HMG 78.8/77.7 74.9/70.0 78.4/76.3 78.7/77.8 80.1/79.4 77.8/75.9 80.8/80.2
w/o VIB 78.9/77.7 73.9/69.9 78.4/75.9 79.1/78.1 80.3/79.6 76.7/74.1 80.6/79.7

the metrics by 0.7 and 0.8 across all eight MR values. These findings indicate that HME offers
superior overall performance and greater robustness compared to existing state-of-the-art models.

A.3.2 Detailed Ablation Results

In this section, we present detailed ablation results for both missing modality protocols, as shown in
Tables 6 and 7. Due to space constraints in the main text, we add ablation experiments for the VIB
component here, labeled as ‘w/o VIB’. To maintain the integrity of the HMG component, the VIB
ablation was performed by removing the LV IB term in Lall during training.

Removing any component from HME consistently results in a performance drop across all missing
modality scenarios. Specifically, removing the VIB leads to redundancy and interference from
noisy information, reducing the model’s effectiveness. Eliminating the enhanced hyper-modality
representation Em results in a decline, likely because it removes sentiment-relevant information that
could be provided by other samples for the current sample. Removing the Um component can result
in lower-quality representations that are given more weight during the fusion process, especially
in modalities with weaker representation capabilities, leading to a decrease in performance during
fusion. Finally, removing the entire HMG module limits the model to using only individual modality
representations from other samples, disregarding the interactions between these modalities, which are
crucial for capturing sentiment-relevant information. These results highlight the critical importance
and effectiveness of each component within the HME framework.

A.3.3 Model Stability Analysis

Since modality missing occurs randomly, we conduct five separate runs to comprehensively evaluate
the performance of HME and report the averaged results. To further assess the statistical significance
of HME, we present the 95% confidence intervals for ACC and F1 scores under the random missing
modality protocol on all three datasets, as shown in Table 8. Even in the worst-case scenario, HME
consistently shows competitive performance, demonstrating its strong performance.
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Table 7: Ablation results of random missing protocol on three datasets.

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ablations on MOSI

HME 84.9/84.7 82.9/82.9 81.1/81.0 79.9/80.0 76.4/76.4 74.5/74.4 73.5/71.7
w/o EL 83.4/83.2 81.6/81.5 80.2/79.9 77.6/76.7 74.1/73.8 73.9/72.5 70.0/70.0
w/o EV 84.2/83.9 81.9/81.5 79.7/79.0 77.3/77.0 74.4/73.9 73.2/72.3 70.7/69.3
w/o EA 83.2/82.9 81.6/81.3 79.3/78.8 77.1/76.6 74.4/74.0 71.2/71.2 70.4/68.7
w/o ES 84.2/83.8 81.1/80.9 80.0/79.8 76.7/76.6 75.2/74.9 72.3/72.4 70.6/69.6
w/o Um 83.7/83.4 82.2/82.2 79.9/79.6 78.5/78.4 75.2/74.8 72.4/71.5 71.3/70.7

w/o HMG 83.7/83.7 80.8/80.8 80.0/79.3 75.3/75.2 74.1/74.1 72.4/71.2 69.8/69.2
w/o VIB 83.1/82.8 81.1/81.1 78.8/78.8 78.2/77.6 75.2/74.8 72.6/72.1 71.0/69.5

Ablations on MOSEI
HME 84.0/83.8 82.3/81.9 80.0/79.6 77.6/76.4 75.7/74.7 73.0/72.5 72.4/69.2

w/o EL 83.8/83.6 81.8/81.1 79.7/78.8 77.1/75.9 75.2/73.9 72.5/71.2 71.0/66.4
w/o EV 83.7/83.4 81.6/81.0 79.0/78.6 76.8/75.6 74.8/73.5 71.8/70.9 70.9/65.8
w/o EA 83.5/83.2 81.7/81.1 79.3/78.6 77.1/75.2 74.8/73.1 72.6/69.5 70.8/65.8
w/o ES 83.7/83.4 81.7/81.2 79.2/78.0 77.1/75.3 75.3/73.6 72.3/71.0 71.5/68.7
w/o Um 83.2/83.0 81.5/80.7 79.5/78.0 76.6/75.0 74.5/71.6 72.5/70.1 70.8/65.6

w/o HMG 83.5/83.1 81.6/80.8 79.3/78.0 76.7/75.6 74.1/73.2 72.1/69.7 70.6/67.8
w/o VIB 83.7/83.3 81.7/81.2 79.1/78.6 76.7/76.0 75.2/73.9 72.7/71.0 71.0/67.7

Ablations on IEMOCAP
HME 80.9/80.3 80.7/80.0 79.0/77.8 78.7/77.3 78.5/77.1 77.8/76.1 77.6/76.0

w/o EL 80.3/79.4 79.8/78.9 78.8/77.5 78.5/76.8 78.0/76.4 76.7/74.6 76.5/74.1
w/o EV 79.7/78.9 79.6/78.2 78.8/77.6 78.5/77.0 78.2/76.2 77.4/75.2 76.8/74.0
w/o EA 80.0/79.0 79.7/78.5 78.9/76.9 78.6/76.5 77.6/75.8 76.8/74.4 76.7/74.2
w/o ES 79.7/79.0 79.6/78.4 78.9/77.6 78.3/76.7 78.0/76.5 77.6/75.3 76.9/74.6
w/o Um 80.0/79.1 79.6/78.1 78.6/77.3 78.2/76.5 77.3/75.3 77.2/74.5 76.7/73.8

w/o HMG 80.3/79.6 80.0/79.0 78.9/77.3 78.5/77.0 78.2/76.4 77.7/75.7 77.3/75.4
w/o VIB 80.0/79.3 79.9/79.1 78.8/77.5 78.3/76.7 78.3/76.1 77.1/74.8 77.0/74.6

Table 8: Performance under random missing protocol on MOSI (95% confidence intervals).

Datasets 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Statistical significance of ACC

MOSI 84.9±0.2 82.9±0.2 81.1±0.2 79.9±0.7 76.4±0.3 74.5±0.6 73.5±0.9
MOSEI 84.0±0.2 82.3±0.3 80.0±0.3 77.6±0.2 75.7±0.3 73.0±0.2 72.4±0.5

IEMOCAP 80.9±0.2 80.7±0.3 79.0±0.4 78.7±0.3 78.5±0.3 77.8±0.2 77.6±0.1
Statistical significance of F1

MOSI 84.7±0.2 82.9±0.4 81.0±0.3 80.0±1.0 76.4±0.4 74.4±0.6 71.7±0.5
MOSEI 83.8±0.3 81.9±0.3 79.6±0.6 76.4±0.1 74.7±0.3 72.5±0.6 69.2±0.4

IEMOCAP 80.3±0.2 80.0±0.3 77.8±0.4 77.3±0.1 77.1±0.3 76.1±0.4 76.0±0.3

To better evaluate HME in real-world scenarios, we conduct two additional experiments. (i) Since
real-world modality missing varies, we test HME using 10 different random seeds to simulate diverse
missing modality conditions. (ii) Recognizing that the number of available samples in practical
applications can vary, which affects the generation of hyper-modality representations, we test HME
with 10 different batch sizes. The results of these experiments on the MOSI dataset, presented in
Table 9, show that HME maintains strong stability and consistently delivers robust performance.

A.3.4 Error Analysis

There may be failure cases where samples within a batch are semantically similar but express different
sentiments. When these samples are used to enhance each other, they can introduce conflicting signals,
a problem we call negative enhancement. To better understand the effect of negative enhancement, we
conducted experiments on the MOSI dataset, focusing on cases where the cosine similarity between
selected representations was greater than 0.9, to examine whether these representations aligned
more closely with the ground-truth labels or with the model’s predictions, and to identify the factors
contributing to mis-classification.
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Table 9: Testing stability under random missing protocol on MOSI (95% confidence intervals).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Statistical significance with 10 different random seeds

ACC 83.9±0.4 82.3±0.4 80.9±0.4 78.8±0.8 76.4±0.5 73.6±1.2 72.8±1.2
F1 83.6±0.4 82.2±0.4 80.7±0.4 78.9±0.8 76.1±0.6 73.1±1.1 71.5±0.4

Statistical significance with 10 different batch sizes
ACC 84.3±0.4 82.2±0.4 81.0±0.4 78.6±0.7 76.4±0.3 74.0±0.9 73.1±0.8
F1 84.0±0.4 82.2±0.4 80.7±0.5 78.7±0.7 76.1±0.4 73.6±1.4 71.7±0.4

Table 10: Alignment analysis of high-similarity samples on MOSI.
Align with Ground Truth Otherwise

Correct Predictions 87.08% (5647/6485) 12.92% (838/6485)
Wrong Predictions 26.26% (255/971) 73.74% (716/971)

The results, summarized in Table 10, reveal two key findings. (i) The selected representations align
more with the model’s predictions than with the ground truth. Specifically, there are 6,363 cases
where they match the predictions, compared to 5,902 cases where they match the ground truth. This
suggests that semantically similar tones may bias the model toward incorrect sentiment predictions.
(ii) In misclassified instances, the selected representations tend to reinforce the model’s incorrect
predictions rather than the true labels (716 vs. 255 cases). This highlights the influence of negative
enhancement in amplifying model bias during classification.

To address this, HME applies two strategies. (i) During sample selection, a similarity threshold ts is
introduced: only samples with feature similarity above this threshold are considered valid neighbors.
If the similarity falls below the threshold, the model either uses the average batch representation or
discards the neighbor entirely. This reduces the risk of injecting misleading information. (ii) The VIB
module helps suppress residual noise. By enforcing compressed and task-relevant representations,
VIB filters out inconsistencies and ensures that the fused features remain robust. Together, these
strategies lead to consistent improvements across datasets and missing-modality scenarios.

A.3.5 Generalization and Plug-and-Play Applicability Analysis

To evaluate the plug-and-play applicability of the proposed HME framework, we integrated the Hyper-
Modality Representation Generation (HMG) module into the MPLMM architecture and tested it
under random missing-modality conditions on the MOSI dataset. As shown in Table 11, incorporating
HMG consistently improved performance, yielding average gains of +1.2 in accuracy and +1.8 in F1
score across different missing rates. These improvements highlight the plug-and-play compatibility
of HME with existing models.

We further explored the generalization capability of HME from two perspectives: hyper-parameter
sensitivity and cross-dataset transferability. First, we assessed the generalization performance by
directly applying the hyper-parameters trained and optimized on MOSI dataset, to two external
datasets, UR-FUNNY [45] and MUStARD [46]. As reported in Table 12, HME again outperformed
the MPLMM baseline across multiple missing-modality configurations. This consistent improvement
suggests that the hyper-parameters optimized on MOSI transfer well to other datasets, confirming the
robustness and scalability of the HME.

Next, to test cross-dataset generalization ability, we trained and validated HME on one dataset and
evaluated it on another using identical configurations. The results, summarized in Table 13, show
a noticeable performance drop when transferring from MUStARD to UR-FUNNY, with average
accuracy decreasing from 68.7 to 51.3 and F1 score from 69.9 to 55.5. In contrast, the reverse
transfer showed a smaller degradation, with accuracy decreasing from 64.6 to 61.3 and F1 from
65.8 to 64.0. This can be attributed to inherent dataset differences and size disparities. MUStARD
and UR-FUNNY differ substantially in modality composition and data distribution. For example,
accuracy performance with all modalities (‘L,A,V’) present drops notably between the two datasets
(75.0 vs. 49.7 and 72.6 v.s. 63.2). The presence of missing modalities further amplifies this domain
gap. Moreover, the smaller size of MUStARD (539/68/68 for train/validation/test) provides limited
variability compared to the much larger UR-FUNNY dataset (7614/980/994), making transfer from
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Table 11: Ablation experiments of MPLMM on MOSI with random missing protocol.

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg.
Accuracy Performance

MPLMM 81.4 78.7 74.7 70.3 67.1 62.5 61.0 70.8
+ HMG 81.9 78.5 75.0 72.1 69.2 65.2 61.9 72.0

∆ +0.5 -0.2 +0.3 +1.8 +2.1 +2.7 +0.9 +1.2
F1 Performance

MPLMM 81.4 78.7 74.8 69.9 66.3 60.5 58.3 70.0
+ HMG 81.9 78.6 75.1 72.3 69.3 64.5 61.1 71.8

∆ +0.5 -0.1 +0.3 +2.4 +3.0 +4.0 +2.8 +1.8

Table 12: Performance on UR-FUNNY and MUStARD datasets with fixed missing protocol.
Methods L A V L,A L,V A,V L,A,V Avg.

Accuracy performance on UR-FUNNY
MPLMM 67.6 61.8 61.8 67.6 67.6 61.8 67.6 65.1

HME 70.6 63.2 61.7 75.0 72.0 63.2 75.0 68.7
F1 performance on UR-FUNNY

MPLMM 68.1 61.8 61.8 68.1 68.1 61.8 68.1 65.4
HME 70.6 63.9 67.2 75.0 73.1 64.6 75.0 69.9

Accuracy performance on MUStARD
MPLMM 71.7 52.3 53.0 72.4 71.7 54.8 72.4 64.0

HME 72.9 53.3 52.5 72.8 72.9 55.5 72.6 64.6
F1 performance on MUStARD

MPLMM 71.8 54.3 54.9 72.5 71.8 55.2 72.5 64.7
HME 73.0 56.6 56.8 73.0 73.0 55.8 72.7 65.8

MUStARD to UR-FUNNY more challenging. Conversely, training on UR-FUNNY benefits from
greater data diversity, leading to a smaller performance decline when transferring to MUStARD.

A.3.6 VIB Components Analysis

To mitigate misleading semantic signals that may arise during cross-sample enhancement, HME
includes a VIB module. As shown in Table 10, the retrieved similar samples occasionally contain
sentiment-related cues that contradict the sentiment label of the target instance, thereby introducing
noise and degrading model performance. The VIB module addresses this issue by compressing latent
representations and retaining only task-relevant information. The ablation results presented in Tables

Figure 6: Case visualization of selected enhancement samples for each modality on the MOSI dataset.
The similarity threshold is set to 0.9 and the batch size to 8. Green boxes indicate representations
with the same label, while red boxes denote samples with different labels.
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Table 13: Generalization performance between MUStARD and UR-FUNNY.

Methods L A V L,A L,V A,V L,A,V Avg.
Accuracy Performance from MUStARD to UR-FUNNY

HME 50.8 50.3 50.9 54.4 51.5 51.6 49.7 51.3
F1 Performance from MUStARD to UR-FUNNY

HME 52.5 52.9 52.5 56.2 55.5 53.6 65.4 55.5
Accuracy Performance from UR-FUNNY to MUStARD

HME 63.2 60.2 57.4 63.2 61.8 60.3 63.2 61.3
F1 Performance from UR-FUNNY to MUStARD

HME 66.3 62.9 60.2 66.3 64.7 60.4 67.1 64.0

Table 14: Performance comparison under different weights of VIB components.
I(Z,X) 0.1 0.2 0.5 1.0 2.0 5.0

HME 78.0/75.9 77.4/75.3 76.8/74.9 76.5/73.7 76.0/72.8 75.5/71.3
I(Z, Y ) 0.1 0.2 0.5 1.0 2.0 5.0

HME 77.3/74.9 77.5/75.4 77.6/76.0 77.5/75.1 77.3/74.9 77.1/74.5
VIB 0.1 0.2 0.5 1.0 2.0 5.0
HME 77.7/75.1 77.8/75.5 77.6/76.0 76.9/75.0 76.5/74.4 75.7/73.8

6 and 7 indicate that removing the VIB module consistently results in performance degradation across
all datasets, underscoring its effectiveness in suppressing misleading or noisy cues.

The VIB objective comprises two components, I(Z,X) and I(Z, Y ), which quantify the amount
of information retained from the input and the relevance of the latent representation to the target
label, respectively. To assess the contribution of each component, we perform a detailed analysis by
varying their relative weights both independently and jointly. As reported in Table 14, increasing
the weight of I(Z,X), which enforces stronger compression, tends to discard useful sentiment
information and consequently reduces performance. In contrast, increasing the weight of I(Z, Y )
initially improves accuracy by enhancing label alignment, but excessive emphasis on this term
ultimately leads to performance deterioration, likely due to overfitting or the under-utilization of
complementary multimodal cues.

A.3.7 Enhanced Representations Analysis

To examine the relationship between enhanced, raw, and selected-sample representations, we compute
the mean squared error (MSE) between representations at different enhancement stages: modality
enhancement (Em), hyper-modality generation (Rm), noise-reduced compression (Fm), and modality
fusion (Sm). Each is compared against the corresponding representation (Hm) and the average of
selected samples (H ′

m). Specifically, experiments are conducted on samples containing all three
modalities (‘L,A,V’) with a similarity threshold of 0.9 on the MOSI training set. Table 15 reports the
mean MSE across all modalities, and Table 16 focuses on the language modality.

The results show that enhanced representations (Em, Rm, Fm) are consistently closer to H ′
m than

to Hm, with MSE differences within 0.2. This indicates that enhancement effectively incorporates
information from related samples while preserving original modality representation. After fusion,
Sm exhibits comparable MSE distances to both Hm and H ′

m, slightly favoring Hm. This suggests
that the uncertainty-aware fusion mechanism prioritizes original representations while adaptively
weighting enhanced features based on their variance.

Table 15: Mean MSE distance between different representations of three modalities on MOSI dataset.
Em Rm Fm Sm

Hm 3.61 3.76 2.93 0.76
H ′

m 3.47 3.63 2.79 0.77
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Table 16: Mean MSE distance between language representations on MOSI dataset.
EL RL FL SL

HL 2.71 2.70 2.19 0.51
H ′

L 2.53 2.52 1.99 0.53

Figure 7: Performance of different ts, tu and lp in IEMOCAP dataset with MR = 0.7.

Since the enhanced representations at each stage are obtained from the mean representation of the
selected samples (H ′

m ∈ Rd), the attention weights of the learnable prompts cannot distinguish which
selected sample contributes more. Therefore, we omit the visualization and analysis of this part and
leave it for future work.

A.3.8 Hyper-parameter Analysis

In this section, we present the analysis of hyper-parameters, including the similarity threshold (ts),
upper bound of uncertainty weights (tu), and the length of the prompts (lp). Figure 7 shows the
variation in F1 score for HME under the random missing modality protocol (MR = 0.7) on the
IEMOCAP dataset, with different values of ts, tu and lp.

Effects of different ts. As ts increases, the F1 score initially improves, then starts to decline. The
worst performance occurs when ts = 1.0, where HME relies solely on the average representation.
At ts = 0.1, the performance is even better than at ts = 0.5. This suggests that when fewer
modality representations are available within the batch, lower values of ts allow for more diverse
representations, even though they may have some error. The VIB module helps to extract useful
information from these representations. As ts increases, the representations that meet the high
similarity threshold become less frequent, reducing the amount of useful information, which leads to
performance degradation.

Effects of different tu. As tu increases, the F1 score shows a similar trend of initially increasing, then
decreasing. The highest performance is observed at tu = 1.0. This improvement can be attributed
to the fact that, at MR = 0.7 (where only one modality is present per sample), many of the original
representations in the fusion process are likely to be missing and replaced with zero vectors. A tu
value of 1.0 helps to compensate for these missing values, providing sufficient information.

Effects of different lp. As lp increases, the F1 score again shows an initial improvement followed
by a decline. When lp is small, the model can only carry limited information, which restricts its
performance. At lp = 5, the model contains the most complete set of modality information, yielding
the best performance. However, as lp increases further, the prompt may start to include unnecessary
or irrelevant information, which can negatively affect the model’s performance.

A.3.9 Case Visualization and Representation Visualization

Here we visualize selected sample pairs from the MOSI dataset under different batch sizes. Specifi-
cally, we examine an extra configuration with a MR of 0.7, a similarity threshold of 0.9 and a batch
size of 8 (Figure 6). From Figures 4 and 6, we observe that larger batch sizes increase the likelihood
that the selected samples share the same sentiment label as the current input. When the batch size is
large, HME benefits from a broader selection pool and tends to choose samples with labels consistent
with the current input. In contrast, when the batch size is small and some modalities are missing,
HME relies on the available representations for enhancement.
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Figure 8: Visualization of learned representations on the MOSI dataset with MR = 0.7.

Table 17: Comparison of parameter count and running time for different models on the MOSI dataset.
Models # Parameters running time (↓)

MPLMM 128,335,507 3,433s
DiCMoR 113,007,057 12,792s

IMDer 122,484,049 175,138s
HME 118,542,893 684s

Besides, to further understand the differences between the enhanced hyper-modality representations
and the original representations, we visualize the additional representations using t-SNE: the original
modality representation Hm, and the hyper-modality representation Fm, and the fused representations
Sm and SH . Figure 8 shows these visualizations on the MOSI test set with an MR of 0.7. Our
observations are as follows: (i) After uncertainty-aware attention fusion, the information from
Fm is well integrated into the original representation. This results in non-overlapping clusters
between Sm, SH and Fm. (ii) The hyper-modality representation Fm integrates effectively with the
original modality representation Hm, as evidenced by overlapping information between the fused
representations.

A.3.10 Computation Overhead and Trade-off Analysis

Computation overhead. The computational efficiency of HME with three state-of-the-art baselines
is compared on the MOSI dataset. To ensure fairness, all models were trained for 100 epochs under
identical settings on an NVIDIA GTX 3090 GPU. As shown in Table 17, HME completed training in
just 684 seconds, which is only 20% of the runtime of MPLMM, 5% of DiCMoR, and less than 1%
of IMDer. In terms of model size, HME has approximately 118M parameters, slightly more than
DiCMoR but fewer than most other baselines. These results highlight the notable efficiency of HME
in both training speed and parameter count.

Trade-off between performance and computational cost. Since HME’s enhanced representations
are highly sensitive to batch size, larger batches may improve performance but require greater
computational resources. To examine this trade-off and explore the performance upper bound, we
conducted additional experiments on MOSI under the random missing protocol. Specifically, the
average accuracy and F1 score with varying the batch size across seven missing rates is evaluated.
As summarized in Table 18, performance improves steadily as batch size increases, peaking at 256.

Table 18: Computational overhead of HME with different batch sizes on the MOSI dataset.
Batch Size ACC/F1 Training Time Peak GPU Memory

64 76.6/76.3 429s 5.6GB (5,635MB)
128 77.3/77.0 315s 8.3GB (8,279MB)
256 79.0/78.7 290s 13.2GB (13,169MB)
288 77.8/77.4 280s 14.6GB (14,621MB)
320 78.1/77.6 280s 15.8GB (15,785MB)
352 77.9/77.2 273s 17.0GB (17,023MB)
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Beyond this point, both accuracy and F1 score show a slight decline. This suggests that while larger
batches generally benefit learning, there is a saturation point beyond which gains diminish and minor
degradation may occur.

To provide a more practical perspective, we also measured training time (over 50 epochs) and peak
GPU memory usage under different batch sizes in Table 18. The results reveal three trends: (i)
training time decreases as batch size grows, which may due to fewer updates per epoch, (ii) GPU
memory usage increases, and (iii) performance improves up to batch size 256, then gradually declines.
Overall, a batch size of 256 offers the best balance—delivering peak performance with acceptable
training time and manageable memory consumption.
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