Under review as submission to TMLR

Interpretability of Language Models for Learning Hierarchi-
cal Structures

Anonymous authors
Paper under double-blind review

Abstract

Transformer-based language models are effective but complex, and understanding their in-
ner workings is a significant challenge. Previous research has primarily explored how these
models handle simple tasks like name copying or selection; we extend this by investigating
how they process complex, recursive language structures defined by context-free grammars
(CFGs). We introduce a family of synthetic CFGs that produce hierarchical rules, capa-
ble of generating lengthy, locally ambiguous sequences that require dynamic programming
to parse. Despite this complexity, we show that generative models like GPT can learn
these CFG languages and generate valid completions. Analyzing the model’s internals,
we find that its hidden states linearly encode parse tree structure (via our new probing
technique), and attention patterns statistically align with the information flow of dynamic
programming-style parsing algorithms. These provide a controlled interpretability setting
for understanding how transformers may represent and compute over hierarchical syntax.

1 Introduction

Transformer-based language models, like GPT (OpenAl, 2023), are powerful but mysterious; many studies
attempt to uncover the inner workings of transformers. Perhaps the simplest observation is that attention
heads can pair closing brackets with open ones, see the concurrent work and the references therein (Zhang
et al., 2023). Others also demonstrate that transformer can store key-value knowledge pairs by storing value
in the hidden embedding of keys (see Allen-Zhu & Li (2024) and the references therein).

The seminal work from Anthropic (Elhage et al., 2021; Olsson et al., 2022) focuses on induction heads, which
are logic operations on the input level (such as [A][B]...[A] implies the next token should be [B]). They
hypothesized that induction heads may exist to “match and copy more abstract and sophisticated linguistic
features, rather than precise tokens”, yet they acknowledge that they “don’t have a strong framework for
mechanistically understanding” this. The interpretability in the wild paper (Wang et al., 2022) explored
many different types of attention heads, including “copy head”, “name mover head”, “inhibition head”, etc.
Most notably, they explained how GPT2 predicts the next token “Mary” given prefix “When Mary and John
went to the store, John gave a drink to [...]” This requires some logical reasoning by selecting (not naively
copying) what is the right name. While this result is very inspiring, there exists very simple rule-based
algorithm to achieve the same.!

In practice, transformers perform much more complex operations and reasoning, yet, achieving a mechanistic
understanding of their internal workings remains a significant challenge. To gain such interpretability on
how a transformer performs a certain task, it is often beneficial to have a well-defined algorithm for that
task; the model’s internal representations and computations can then be compared against this algorithmic
benchmark. However, many “impressive skills” of state-of-the-art language models are for tasks lacking such
clear algorithmic solutions. Motivated by this, we ask: Is there a setting for us to understand how language
models perform hard tasks, involving deep logics / reasoning / computation chains?

1Yet, they also said “to the best of our knowledge, (this is) the most detailed attempt at reverse-engineering a natural
end-to-end behavior in a transformer-based language model.”

Under review as submission to TMLR

root |->2021 19]->181618 16]->1515 13]->1112 101899 7]->221

root [->201921 19]->1718 16|->131513 13|-»>121112 10]->979 7|->322 an example sentence

root [->211919 19]->1818 16]->1413 13]->101211 10799 7|-»312

root |->2020 20|->1616 16|->1414 14]->1012 11]->88 71->32 332213123312113123211322312312111213211322311311
20|->1617 17]->151413 14]->121012 11|->97 8]->311 322333123121112131133112132121333331232212131232
20]->171618 17|->1415 14]->1211 11|->977 8|->12 221111213322131131131131111113231233133133311331
21|->1817 17]->1514 14]->1012 12 12|->797 8]->331 333332231211311121221111211233312331121113313333
21|->1716 18]->141513 15]->1011 11 12|->98 9|->121 331123333131111333312113211312121133333212111121
21]->161718 18]->151313 15]->111110 12|->889 9|->33 213223223322133221113221132323313111213223223221
21]->1618 18|->1315 15]->1010 9|->11 211133331121322221332211212133121331332212213221

15]->121211 211213331232233312

Figure 1: An example CFG used in our experiments. It generates long (e.g., length 354 in this example) and ambiguous strings.
Determining if a string = belongs to the CFG typically requires dynamic programming, even when the CFG rules are
known.

To isolate and rigorously study how models tackle tasks demanding deep reasoning over hierarchical struc-
tures, we employ a controlled setting using synthetic Context-Free Grammars (CFGs). CFGs, which include
terminal (T) and nonterminal (NT) symbols, a root symbol, and production rules, inherently hierarchically
produce highly-structured expressions. Crucially for our study, parsing such CFG-defined languages—a form
of structured reasoning—often necessitates textbook-level, yet difficult, dynamic programming (DP)—a class
of algorithms relevant to complex problem-solving. This CFG/DP paradigm provides a framework to probe
for DP-like computational mechanisms when language models tackle these structured tasks.? Generally,

e We wish to capture how models reason over long-range dependencies via CFG. The simplest example is
bracket matching, in ...Y(...)[[...]J{...}]{...}X, the next symbol X could depend on Y that was
hundreds of tokens before. Another example is coding, where goto N can only be used if N is a valid line
number that could be hundreds of lines ago.

o We wish to capture how models reason through local ambiguity. A coding grammar (like python) can
be parsed using a greedy algorithm without ambiguity, so does bracket matching — once locally seen
... 0O ... we know the two parentheses must be paired together. We focus on hard CFGs that require
global planning via dynamic programming to parse.

Most popular choices of CFGs do not satisfy the two above properties. Notably, the English CFG (e.g.,
derived from Penn TreeBank) has an average length of 28 tokens (too short), and is not very locally ambiguous
(e.g., RB JJ or JJ PP imply their parent must be ADJP). As we show in Appendix H, such CFGs can even be
learned using tiny GPT2 models with ~ 100k parameters. Thus, CFG grammars based on human languages
may be too easy for our interpretability purpose.

For this reason, we design synthetic CFGs. We give one example in Figure 1 and discuss a family
of 7 CFGs with varying difficulties in Section 2 (we have 15 more in the appendix).® We pre-train GPT-
2 (Radford et al., 2019), denoted by GPT, on a language modeling task using a corpus of strings sampled
from such CFGs. We test the model’s accuracy and diversity by feeding it prefixes from the CFG (or no
prefix, just the starting token) and observing if it can generate completions.

It is perhaps evident from Figure 1 that even if the CFG tree is given, deciding if a string satisfies it may
require scratch paper and half an hour for a person, not to mention learning the CFG from scratch. However,
we demonstrate that GPT can learn these CFGs, and using rotary or relative attention is crucial, especially
for complex CFGs (Results 1-3). More interestingly, we examine attention patterns and hidden states to
understand how GPT achieves this:

o Results 4-5. Develop a multi-head linear probing method to verify that the model’s hidden states linearly
encode NT information almost perfectly, a significant finding as pre-training does not expose the CFG
structure. (In contrast, encoder models like BERT do not.)

¢ Results 6-9. Introduce methods to visualize and quantify attention patterns, demonstrating that GPT
learns position-based and boundary-based attentions, contributing to understanding how it performs
hierarchical structure reasoning of CFG regularity and periodicity.

e Corollary. GPT models perform structure reasoning on CFGs by mimicking information flow charac-
teristic of dynamic programming. Boundary-based attention allows a token to attend to its closest NT
symbols in CFG tree, even when separated by hundreds of tokens. This resembles DP, in which parsing

2Not to say in the theory community, CFGs are also used to model some rich, recursive structure in languages, including
some logics, grammars, formats, expressions, patterns, etc.

3A benefit of using synthetic data is to control the difficulty of the data, so that we can observe how transformers learn to
solve tasks at different difficulty levels.

Under review as submission to TMLR

o
kS (examples of) rules from cfg3f
@ S3 = 3 18 18 18 18 18 18 18 18
3 5= 13 13 1 5 15 15 | 15 15 15 15 1851315
2] | = 12 127 TT 11 11 11 11 11 10 1077010 10) Tolooe
o S6 = —= © 8 -7 7 —8 -7 7 7 — 7 9 10]->899
G 1 — A _] A A A _— A _ A _— 10[->979
freg ~ . ~ ~ ~ ~ . 111597
i x= 1 3 3 3 3 1 2 2 2 1 1 1 2 1 31 11 3 3 1 11 2 2 ... 121598
12|->889

E w learns boundary-based attention to 85311

. o 8|->12
s £ most adjacent NT boundaries at all levels 3:_;31
o @ NT boundary bg=1 ol>121
©n = NT ancestor s=
c 3 learns NT ancestor/boundary info © 933
o . . . NT boundary bg=bs=b,=1 NT boundary bg=bs=1 NT boundary bg=bs=b,=b3=1 9I->11
=] linearly encoded in the hidden states NT ancestors se=", ss=12, 5,=13 NT ancestors s5=3, 55=10 NT ancestors se=?), s5=10, 5,=15, 53=18 |
Figure 2: An example string = from G = cfg3f. Though formally defined in Section 2, bold symbols in color rep-

resent NT boundaries which mark the ending positions of the parsed CFG subtrees at various levels ¢:
o we denote by by(i) = 1 if position i is at the NT ending boundary for level £ (or 0 otherwise),

o the NT ancestor s;(i) represents the tree node’s label on level £ for a symbol at position .

on a sequence 1...7 needs to be “concatenated” with another sequence ¢ + 1...j to form a solution to a
larger problem on 1...5. See Figure 2+9 for illustrations.

In Section 6, we also explore implicit CFGs (Post & Bergsma, 2013), where each T symbol is a bag of
words, and show that GPT simply learns to encode the word information on its embedding layer. We also
investigate model robustness using CFGs, showcasing under what conditions the model can auto-correct
errors and generate valid CFGs from a corrupted prefix (e.g., randomly flipping 15% of the symbols in the
prefix). These results are numbered 10 through 13.

While previous works explored synthetic grammars and interpretability (Hewitt & Manning, 2019; Deletang
et al., 2023), our contribution lies in isolating and quantifying dynamic programming-like computation in
generative models via CFGs that require global parsing decisions — a regime where local heuristics fail.

2 Our Synthetic Context-Free Grammars

A probabilistic context-free grammar (CFG) is a formal system defining a string distribution using production
rules. It comprises four components: terminal symbols (T), nonterminal symbols (NT), a root symbol
(root € NT), and production rules (R). We represent a CFG as G = (T,NT,R), with L(G) denoting the
string distribution generated by G.

We focus on L-level CFGs where each level ¢ € [L] corresponds to a set of symbols NT, with NT, C NT
for ¢ < L, NT =T, and NTy = {root}. Symbols at different levels are disjoint: NT; "NT; = & for i # j.
We consider rules of length 2 or 3, denoted as R = (R1,...,Rr—1), where each R, consists of rules:

r=(a—bec,d or r=(a—bec) for a€NT, and b,c,de€ NT;q
Given a non-terminal symbol @ € NT and any rule r = (a — %), we say a € r. For each a € NT,

its associated set of rules is R(a) := {r | r € Ry Aa € r}, its degree is [R(a)|, and the CFG’s size is
(lNT1|7 INT2|7 R |NTL|)

Generating from CFG. To generate samples x from L(G), follow these steps:

1. Start with the root symbol NT}.

2. For each layer ¢ < L, keep a sequence of symbols s, = (Sé,h . ,Sg’ml).

3. For the next layer, randomly sample a rule r € R(sg;) for each sy; with uniform probability.* Replace
sp; with b,c,d if r = (sg; = b,¢,d), or with b,c if r = (sg; — b,¢). Let the resulting sequence be
S¢ = (Sé+1,1, s 75£+1,m4+1)~

4. During generation, when a rule sg; — Sg41,j, Se41,5+1 is applied, define the parent par,(j) = par,(j +
1) := ¢ (and similarly if the rule of s;; is of length 3).

5. Define NT ancestor indices p = (p1(i),...,Pr(7))ic[m,] and NT ancestor symbols 5 = (51(7),...,5L(%))icm]
as shown in Figure 2:

pr(j) =7, pe(f) :=parg 1 (pey1(d)) and s¢(5) := 50,05

4For simplicity, we consider the uniform case, eliminating rules with extremely low probability. Such rules complicate the
learning of the CFG and the investigation of a transformer’s inner workings (e.g., require larger networks and longer training
time). Our results do extend to non-uniform cases when the distributions are not heavily unbalanced.

Under review as submission to TMLR

/5\ S
W e i
RN —
L — " e T Tea
—— M e R .
— T—w. o W s 107 P/p\/
_—=— e
N W N o

(b) a family of max-depth 11 CFGs where rules have length 1 or 2 that GPT can learn, see cfg0 in Appendix H

Figure 3: CFG visual comparisons: left is a medium-length sample, and right is a 80%-percentile-length sample

The final string is * = sp, = (g1, , SL,m,,) With z; = s ; and length len(z) = mr. We use (z,p,s) ~ L(G)
to represent x with its associated NT ancestor indices and symbols, sampled according to the generation
process. We write x ~ L(G) when p and s are evident from the context.

Definition 2.1. A symbol x; in a sample (z,p,s) ~ L(G) is the NT boundary / NT end on level £ € [L — 1]
if pe(i) # pe(i+ 1) ori = len(z). We denote bp(i) := 1y, is the NT boundary on level ¢ S the NT-end boundary
indicator function. The deepest NT-end of i is

bh(i) = mingeqo3,... . n—131be(i) =1} or L if set is empty .

The cfg3 synthetic CFG family. We focus on seven synthetic CFGs of depth L = 7 detailed in
Section B.1. The hard datasets cfg3b, cfg3i, cfg3h, cfg3g, cfg3f have sizes (1,3,3,3,3,3,3) and increasing
difficulties cfg3b < cfg3i < cfg3h < cfg3g < cfg3f. The easy datasets cfg3el and cfg3e2 have sizes
(1,3,9,27,81,27,9) and (1,3,9,27,27,9,4) respectively. The sequences generated by these CFGs are up
to 3% = 729 in length. Typically, the learning difficulty of CFGs inversely scales with the number of NT /T
symbols, assuming other factors remain constant, because having more NT /T symbols makes the language
less ambiguous and more easily parsed using greedy (see Figure 4, indeed cfg3el and cfg3e2 are much easier
to learn and we discuss more in Appendix H). We thus primarily focus on cfg3b, cfg3i, cfg3h, cfg3g, cfg3f.

Why Such CFGs. We use CFG as a proxy to study rich, recursive structure reasoning in languages—from
logics and grammars to formats and patterns. Those structures are diverse yet strict (e.g., in a CFG
describing chapter numbers, Chapter 3.1 can be only followed by Chapter 3.1.1, Chapter 4 or Chapter 3.2,
not others). The CFGs we consider are non-trivial, with over 2279 > 1089 strings in cfg3f among a total of
over 3300 > 10140 possible strings of length 300 or more (see our entropy estimation later in Figure 4). In
particular, Figure 30 in the appendix shows that cfg3f cannot be learned by transformers (much) smaller
than GPT2-small. In contrast, the English CFG (e.g., derived from Penn TreeBank) can be learned to good
accuracy using tiny GPT2 models with ~ 100k parameters — it is too easy for our interpretability purpose.

To obtain clean interpretability and facilitate clearer analysis of learned representations across processing
levels, we selected a CFG family with a ’canonical representation’ (e.g., layered CFQG). This layered structure,
while simplified, allows for direct probing of per-level NT symbol encodings and attention patterns at distinct
hierarchical depths, aiding our interpretability goals. This controlled design allows us to demonstrate a
strong correlation between the CFG representation and the hidden states in the transformer. We also create
additional CFG families to examine “not-so-canonical” CFG trees, with results deferred to Appendix H (see
an example in Figure 3). We do not claim our results encompass all CFGs; our chosen CFGs are already
challenging for a transformer to learn and can lead to clean hierarchical interpretability results.

3 Results 1-3: Transformer Can Learn Such CFGs

Before we analyze how transformers perform structure reasoning on such CFGs, we have to first verify that
they at least can learn such CFGs. In this section, we generate a large corpus {x(i)}ie[N] from a synthetic
CFG language L(G) in Section 2, and pretrain a (decoder-only) transformer model F on this corpus, treating
each terminal symbol as a separate token, using an auto-regressive task (see Appendix B.3 for details). We
evaluate how well the model learns such L(G).

Models. We denote the GPT2 small architecture (12-layer, 12-head, 768-dimensions) as GPT (Radford
et al., 2019) and implemented its two modern variants. We denote GPT with relative positional attention

Under review as submission to TMLR

GPT GPT_rel GPT_rot GPT_pos GPT_uni

_ %y, 998 99.8[99.8 99.9]99.8 99.9|99.9 99.9[99.9 100. GPT GPTrel GPT.rot GPTpos GPTuni
& o, 995 99.5(99.8 99.8/99.4 99.599.8 99.8[99.6 99.7 %
£ %y ! ! 8[99. truth GPT GPT.rel GPT.rot GPT pos GPT uni ©3, 0.00008 | 0.00011 | 0.00009 | 0.00009 | 0.00004
o % < o
%3, 96.8 96.9[99.7 99.6{99.6 99.5/99.0 99.0/98.9 98.8 7o, %3 0.00024 | 0.00014 | 0.00028 | 0.00015 | 0.00021
T v
c o % = erb 169 169 169 169 169 169 € o 7
5 %y, 99.1 99.2[98.6 98.4[97.0 96.9]96.7 96.9 £ oy, 15 | 190 | 189 | 189 | 190 | 189 g %3 000078 | 000023 | 0.00023 | 0.00027 | 0.00036
B o, 935 95.8l070 o EEE T 5; Ogj/; 204 | 203 | 203 | 203 | 202 | 203 g “o3 JRRLER]] 0.00034 | 0.00047 | 0.00058 | 0.00069
Q o 0 268 272 267 268 266 267 = Ok p
2 o, 2 o o3, IRULEER 0.00043 | 0.00060 | 0.00093 | 0.00112
g 3, 981 98.9[98.4 99.0[98.2 98.9[98.3 98.9[98.6 99.0 & by, 68 | 275 | 270 | 272 | 269 | 269 5 crg:f
3> 99.3 99 5|99.5 99.7[99.6 99.7[99.5 99.7[99.4 99.6 £ Q;?SJ 216 214 213 213 214 213 ¥ w QOID || GEHT || QTS || QFCTS || G0m
3 93
CULO CUt50 CUtO CUt50 CUtO CUt50 CUtO cut50 cutd cut50 o e 25 252 255 251 253 252 > _0.00031 | 000025 | 0.00025 | 0.00011 [0.00011

Figure 4: Generation accuracy (left), entropy (middle), KL-divergence (right) across multiple CFG datasets. Observations:
Less ambiguous CFGs (cfg3el, cfg3e2, as they have more NT/T symbols) are easier to learn. Transformers using
relative positional embedding (GPT, or GPTrt) are better for learning harder CFGs. The vanilla GPT is worse than
even GPT,,i, which is GPT with fixed, uniform attentions.

(He et al., 2020) as GPT,e, and GPT with rotary attention (Su et al., 2021; Black et al., 2022) as GPT,.
For purposes in later sections, we introduce two weaker variants. GPTpos Teplaces the attention matrix with
a matrix based solely on tokens’ relative positions, while GPT,,; uses a constant, uniform average of past
tokens from various window lengths as the attention matrix. Detailed explanations of these variants are in
Section B.2. We quickly summarize our findings as follows:

Result 1-3 (Figure 4). The GPT models (except the original absolute embedding variant) can effectively
learn our synthetic CFGs. Given any prefix, they can generate completion strings

e that can perfectly adhere to the CFG rules most of the time, (accuracy)
o that are sufficiently diverse in the CFG language, and (diversity)
e that closely follow the probabilistic distribution of the CFG language. (probability)

Result 1: Completion accuracy. We evaluate F' by letting it generate completions for prefixes
.. = (x1,22, -+ ,2.) from strings x freshly sampled from L(G). The generation accuracy is measured
as Pr, r(c) + randomness of F[(Z:c; F'(2:c)) € L(G)]. We use multinomial sampling without beam search for
generation.” Figure 4 (left) shows the generation accuracies for cuts ¢ = 0 and ¢ = 50. The ¢ = 0 result tests
the model’s ability to generate a sentence in the CFG, while ¢ = 50 tests that to complete a sentence.® The
results show that the pretrained GPT models can often generate strings that perfectly adhere to the CFG
rules for the cfg3 data family.

Result 2: Generation diversity. Could it be possible that the pretrained GPT models only memorized
a small subset of strings from the CFG? We evaluate this by measuring the diversity of its generated strings.
High diversity suggests a better understanding of the CFG rules. We consider two methods to estimate
diversity. One is to estimate the distribution’s entropy, which provides a rough estimate of (the log, of) the
support size, see the middle of Figure 4. The other is to use birthday paradox to theoretically lower bound
the support size (Arora & Zhang, 2017). This allows us to make precise claims, such as in the cfg3f dataset,
there are at least 4 x 10® distinct sentential forms derivable from a symbol on levels 1 to 5 or levels 2 to 6;
not to say from the root to level 7. Details are in Appendix C. Our general conclusion is that the pre-trained
model does not rely on simply memorizing a small set of patterns to achieve high completion accuracy.

Result 3: Distribution comparison. To fully learn a CFG, it is crucial to also learn the probabilistic
distribution. One naive approach is to compare the marginal distributions p(a,i), for the probability of
symbol a € N'T; appearing at position ¢. We observe a strong alignment between the generation probabilities
and the ground-truth, included in Appendix C.2. Another approach is to use the standard KL-divergence
formula to compare the next-token prediction probability (as predicted by the transformer model) and the
ground-truth. Let p* denote the distribution over strings in the true CFG and p that from the transformer
model. Let S = {x(i)}i be samples from the true CFG distribution. Then, the KL-divergence can be
7

€[M]
estimated as follows:

1 1 Pr«[t|z1,...,zi—1]
15T ZIES len(z)+1 Zie[len(z)—i-l] ZtETu{eos} PI‘p* [t | Lryee 7xi*1] log m

5The last softmax layer converts the model outputs into a probability distribution over (next) symbols. We follow this
distribution to generate the next symbol, reflecting the unaltered distribution learned by the transformer. This is the source of
the “randomness of F'” and is often referred to as using “temperature 7 = 1.”

6cfg3 family is large enough to ensure a negligible chance of a freshly sampled prefix of length 50 being seen during pretraining.

7Similar formula was also used in DuSell & Chiang (2022).

Under review as submission to TMLR

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

(\’936 100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 99.7 99.9/85.0

. 99.6 99.7 99.6 99.2 99.7/99.6 99.7 99.6 99.2 99.7{99.6 99.7 99.6 99.2 99.8/99.6 99.7 99.6 99.3 99.8/99.6 99.7 99.6 99.3 99.8[99.7 99.7 99.7 99.2 99.4(84.6 71.7

5
$
&

&
&

99.7 98.3 98.3 99.2 10099.7 98.1 97.8 99.0 100[99.7 98.4 98.2 99.3 10099.7 98.5 98.5 99.4 100|99.7 98.6 98.6 99.4 100 |99.9 99.8 99.8 99.7 100

3
Q“’

100 99.2 95.6 94.6 97.3{ 100 99.3 96.7 97.2 99.0/ 100 99.3 96.6 97.2 99.0| 100 99.3 96.7 96.9 98.8/ 100 99.4 97.0 97.2 98.9/100 99.5 95.5 85.6 90.5/70.8

2

100 97.6 94.3 88.4 85.9/ 100 97.5 94.8 92.9 93.5/100 97.7 95.2 93.3 94.2/ 100 97.9 95.6 93.5 93.9| 100 98.2 95.8 93.2 93.5/100 99.6 96.3 84.0 77.5/71.3

<
¢ &
3

&

33 100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 99.8 27.6

predict NT ancestor (%)
9

2
&

o
o> 99.9 100 100 100 100(99.8 100 100 100 100(99.9 100 100 100 100{99.9 100 100 100 100(99.9 100 100 100 100100 100 100 100 99.9 16.6 23.5

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

Figure 5: After pre-training, hidden states of generative models encode NT-ancestor information. The N7}y column represents
the accuracy of predicting sy, the NT ancestors on level ¢, via linear probing (4.2).

It also encodes NT boundaries (Appendix D.1); and such information is discovered gradually and hierarchically across
layers and training epochs (Appendix D.2 and D.3). As a control, we apply the same probing method to a randomly-
initialized GPT (GPT,.nd) and a BERT-style encoder (DeBERTa). Both fail to recover deep NT structure, confirming
the probe does not trivially succeed. In particular, BERT-like models are less effective at learning N'T information
on levels close to the CFG root.

(Above, Pry[t | z1,...,x,-1] is the next-token distribution predicted by the model, and Pr,«[t | 1, ..., z;—1]
is that from the ground-truth.®) In Figure 4 (right) we compute KL-divergence using M = 20000 samples.

Connection to DP. Result 1-3 is merely a small step towards showing that the model employs a DP-
like approach. Dynamic programming (e.g., the inside-outside algorithm Baker (1979)) can compute next-
token distributions of CFGs, and such algorithms can be implemented using nonlinear neural networks like
transformers, achieving a global minimum in the auto-regressive training objective.® However, the mere
existence of a dynamic-programming transformer to obtain the training objective’s global minimum is not
satisfactory. Does employing an AdamW stochastic optimizer for 100k iterations on the training objective
yield such an algorithm? The remainder of this paper will delve deeper to address this question.

Other Applications of Results 1-3. While not the focus of this paper, our constructed CFGs also serve
as a testbed for architecture designs. For instance, the strong performance of uniform attention aligns with
the effectiveness of ALiBi (Press et al., 2021) and H-Alibi (Jelassi et al., 2024), and has motivated our follow-
up work on modifying Transformer architectures to explicitly leverage short-window uniform attention (not
cited due to anonymity, but tested now even on 8B real-life models and open-sourced). Additional robustness
experiments for uniform attention—across data complexities and model sizes—are included in Appendix I.

4 Results 4-5: How Do Transformers Learn CFGs?

We delve into the learned representation of the transformer to understand how it encodes CFGs. We use
various measurements to probe the representation and gain insights.

Recall classical way to solve CFGs. Given CFG G, the classical way to reason about if a sequence
x satisfies L(G) is to use dynamic programming (DP) (Sakai, 1961). One possible implementation of DP
involves using the function DP(3, j, a), which determines whether or not x;41,2;41...,%; can be generated
from symbol a following the CFG rules. From this DP representation, a DP recurrent formula can be easily
derived.!’ In the context of this paper, any sequence x ~ L(G) that satisfies the CFG must satisfy the
following conditions:

be(i) = 1,b0(j) = 1,Vk € (4,5),be(k) =0 and s4(j) = a = DP(i,j,a) =1 (4.1)
(recall the NT-boundary by and the NT-ancestor s, notions from Section 2 and Figure 2). Note that (4.1)
is not an “if and only if” condition because there may be a subproblem DP(i,j,a) = 1 that does not lie on
the final CFG parsing tree but is still locally parsable by some valid CFG subtree. However, (4.1) provides
a “backbone” of subproblems, where verifying all DP(i, j,a) = 1 values in this backbone certifies that the
sentence x is a valid string from L(G). There are exponentially many implementations of the same DP

8There are many dynamic programming methods to compute Pry«[t | ©1,...,2;—1] exactly; which one to use is irrelevant.
9This has been carefully explored for masked language modeling case in Zhao et al. (2023).
10For example, one can compute DP(i,j,a) = 1 if and only if there exists ¢ = i1 < i2 < --+ < 4 = j such that

DP(ir,irt+1,br) = 1 for all 7 € [k — 1] and a — b1,ba2,...,br is a rule of the CFG. Implementing this naively would re-
sult in a O(len4) algorithm for CFGs with a maximum rule length of 3. However, it can be implemented more efficiently with
O(len?) time by introducing auxiliary nodes (e.g., via binarization).

Under review as submission to TMLR

1
A 1 e
3

242 1 1 1.2 1 i i,

—3$
be =
b linearly encode \.I I‘j linearly encode .

bﬁ
b=

Figure 6: Illustration of Result 5: GPT’s last layer hidden states at the blue positions linearly encode the NT ancestor/bound-
ary in the red boxes. (They may not encode NT ancestors for smaller levels because that may not be information-
theoretically possible — that is, reading only a prefix may not be enough to tell what such NTs are.)

algorithm!! and not all (i, j,a) tuples need to be computed in DP(i, j,a). Only those in the “backbone" are
necessary.

Connecting to transformer. In this section, we investigate whether pre-trained transformer F' also
implicitly encodes the NT ancestor and boundary information, which forms the basis for its structure rea-
soning capabilities. If so, it suggests the model contains sufficient information to support all the DP(4, j, a)
values in the backbone. This is a significant finding, considering that transformer F' is trained solely on
the auto-regressive task without any exposure to NT information. If the model encodes NT ancestor and
boundary information after pretraining (as demonstrated in Results 4-5), this means it internally possesses
the structural knowledge necessary not only for generation but also to certify the grammatical correctness
of sentences to the CFG. That is, its internal states effectively represent the parse tree.

4.1 Result 4: Transformer’s Last Layer Encodes NT Ancestors/Boundaries

Let [be the last layer of the transformer (other layers are studied in Appendix D.2). Given an input string
x, we denote the hidden state of the transformer at layer [and position i as F;(z) € R%. We first investigate
whether a linear function can predict (bl(i), . bL(i))ie[len(z)] and (51(1'), ... ’5L(i))i€[len(a:)] using the full

(Ei(x))ie[len(x)]. If so, it implies that the last-layer hidden states encode the CFG’s structural info up to a
linear transformation, and the linear transformation does not depend on x (a.k.a. linear probing).

Multi-head linear probing (full). Due to the high dimensionality of this linear function (e.g., len(z) =
300 and d = 768 yield 300 x 768 dimensions) and wvariable string lengths, we propose a multi-head linear
function for efficient learning. We consider a set of linear functions f,.: R — RINTI where r € [H] and H
is the number of “heads” To predict any s,(¢), we apply:

Gi(z) = ng[H],kE[len(z)] Wryisk - fr(Ek()) € RINT (4.2)
exp((Pi,r,Pr,r))

K € flon(ay SPUPLr Prr 1))

head attention” over linear functions: f, is the linear probing function mapping each hidden state (of

dimension d) to NT-symbol logits; P;, is the feature vector for position ¢ under head r, defining position-

dependent weights w, ;5 (independent of the input z), and they form matrices w, ;_ that specify how
much the hidden feature at position & contributes to linearly predicting the NT symbol at position i.

where wy ;1 1= D for trainable parameters P;, € R?. In words, G; is as a “multi-

We train G;(z) € RINTI using the cross-entropy loss to predict (sg(z')) Despite having multiple heads,

Le[L]”
Gi(z) is still a linear function over (Ex(7))refien(x)]

as the linear weights w,;_,; depend only on positions ¢ and k, not on x (except it depends on len(x)).
Similarly, we train Gj(z) € R using the logistic loss to predict the binary values (b(i)) telL]’ In this
process, the transformer is fixed after pretraining, only the linear weights are newly trained; and evaluations
are performed using fresh new samples — never seen in pretraining or linear-weight training. Details are in

Section B.4. Using such multi-head linear probing, we discover that:

HEach inner loop of the dynamic programming can proceed in any arbitrary order, not limited to k = i..j or k = j..i, and the
algorithm can prune and break early. This gives a safe estimate of at least (n!)ﬂ(”Z) possible implementations. Furthermore,
there are at least 2(7) ways to perform binarization, meaning to break length-3 rules to length-2 ones. This is just to detect
if a given string of length n belongs to the CFG.

Under review as submission to TMLR

GPT GPT_rel GPT_rot GPT_pos. GPT_uni deBERTa baseline (GPT_rand)
.g > (‘(7\% 100 100 99.6 99.8 100|100 100 99.6 99.8 100|100 100 99.6 99.8 100|100 100 99.6 99.8 100|100 100 99.6 99.8 100
[
'L K C@J/ 97.2 98.4 100 100 100|97.2 98.4 100 100 10097.2 98.4 100 100 100|97.2 98.4 100 100 100 |97.2 98.4 100 100 100 |99.f
28 %;, 998996993 100 100[99.8 99.7 99.4 100 100[99.8 99.7 99.4 100 100[99.6 9.7 99.4 100 100[99.6 99.7 99.3 99.9 100
: 93, 100 100 99,6 99.0 99.4[100 100 99.799.5 99.9[100 100 99.7 99,5 99.6]100 100 996 99.4 99.6[100 100 99.6 99.4 99,5
. E r{g\;; 100 99.1 99.1 98.2 96.2| 100 99.2 99.2 98.9 98.4/100 99.2 99.3 98.9 98.1| 100 99.2 99.2 98.7 97.9/100 99.2 99.2 98.7 97.6
Observation. BERT-like % %%, 100 100 100 100 100[100 100 100 100 100|100 100 100 100 100[100 100 100 100 100|100 100 100 100 99.9
9T %5, 99.699.9 100 100 100[99.6 99.9 100 100 100]98.6 98.9 100 100 100]99.6 99.9 100 100 100[99.6 99.9 100 100 100
83 %
(encoder-only) transformers, &% .
NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2
such as DeBERTa, trained on _ opT GPTrel GPTrot GPT_pos GPT_uni deBERTs baseline (GPT_rand)
ke d 1 d li B E s, 100 100 996998 100|100 100 99.699.8 100100 100 99.6 9.8 100|100 100 99.6 99.8 100|100 100 99.7 99.8 100|100 100 99.0
a maske anguage modeling §:
i s, 99.199.2 100 100 100[99.2 99.2 100 100 100[99.2 99.2 100 100 100[99.2 9.2 100 100 100[99.2 99.2 100 100 100/99.6 9.7 9.4 92.0
(ML \%) task7 do not store deep NT E P33, 99.899.699.5 100 100(99.8 99.7 99.5 100 100[99.8 99.7 99.5 100 100[99.8 99.7 99.5 100 100[99.8 99.7 99.5 100 100[99.8 99.0 97.3 90.898.1
© o
. . 93, 100 100 99.6 99.1 99.5/100 100 99.7 99.5 99.9/100 100 99.7 99.5 99.9/100 100 99.7 99.4 99.8/100 100 99.7 99.4 99.8/100 99.4 90.2
e %
ancestor information at the NT £ v mrmemiedm o wemslor ool oo oo ool o
b
boundaries £ 8 0., 00 100 109 100 100/ 100 100 100 100 109[100 100 100 300 100] 100 108 100 100 100160 100 100 100 100[100 100 100 343 8B
©°5 %, 99.999.9 100 100 100[99.9 99.9 100 100 100[99.9 99.9 100 100 100[99.999.9 100 100 100[99.9 99.9 100 100 100[100 100 99.9 94.5 89,5 LTS
[-X=

NT6 NTS NTA NT3 NT2 NTG NTS NTA NT3 NT2 NTG NTS NTa NTS NT2 NT6 NTS NT4 NT3 NT2 NTS NTS NT4 NT3 NT2 NTS NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2
Figure 7: Generative models encode N'T ancestors almost exactly at NT boundaries. The N7, column represents the accuracy
to predict s,(2) at locations ¢ with by(¢) = 1, via diagonal multi-head linear probing (4.3).

Observation. When applying the same probe to a random GPT or to DeBERTa (a BERT-style encoder trained
with MLM), we find NT ancestor recovery fails at deeper levels—especially at NT boundaries—highlighting that our
results reflect meaningful learned structure, not probing artifacts.

Result 4 (Figure 5). Pre-training allows GPT models to almost perfectly encode the NT ancestor sy(i)
and NT boundary by(i) information in the last transformer layer’s hidden states (Ex(Z))kelten(z)), up to a
linear transformation. (See Figure 5 for comparison against randomly-initialized GPT,ang o7 encoder model
deBERTa, which fail to recover deep NT structure.)

But, do we need this full layer for linear probing?

4.2 Result 5: NT Ancestors are Encoded At NT Boundaries

In Result 4, we used the full hidden layer, (Ei(x))ie[len(z)], to predict (54 (i))ee[L} for each position 7. This is
essential since it’s information-theoretically impossible to extract all of i’s NT ancestors by only reading
E;(x) or even all hidden states to its left, especially if x; is the start of a string or a subtree in the CFG.
But, how about those ones information-theoretically possible? In particular, how about predicting s,(i) at
locations ¢ with be(i) = 1 — i.e., at the end of the CFG subtrees.

Multi-head linear probing (diagonal). We consider a neighborhood of position ¢ in the hidden states,
say E;+1(z), and use that for linear probing. In symbols, we replace w;. ;— in (4.2) with zeros for |i — k| > 1
(tridiagonal masking), or with zeros for ¢ # k (diagonal masking).

Gi(z) = Zre[H],ke[len(z)],|i7k|§5 Wrisk - fr(Er(T)) € RINTI where 6 = 0 or 1 (4.3)

Result 5 (Figure 6). For GPT models, position i’s NT ancestor/boundary is locally encoded around position
i+ 1 when i is on the NT boundary. This is because:

e At NT boundaries (i.e., by(x) = 1), we discover that diagonal or tridiagonal multi-head linear probing
(4.3) is adequate for predicting the NT ancestors s¢(x) (see Figure 7 on Page 8).

o Such masking is also sufficient for accurately predicting NT boundaries by(i) (deferred to Figure 18 in
Appendiz D.1).

In contrast, encoder models like deBERTa do not store deep NT information at the NT boundaries.

Related work. Linear probing at least traces back to Hewitt & Manning (2019), who examines the
correlation between BERT’s hidden states and the parse tree distance metric (similar to NT-distance in our
language). Subsequent studies (see Section 7) also explored probing techniques to suggest that BERT-like
transformers can approximate CFGs from natural languages.

Our approach differs not only in the multi-head probing formula that we proposed; also that we use synthetic
data to demonstrate that linear probing can almost perfectly recover NT ancestors and boundaries, even for

114eBERTa is a modern variant of BERT, equipped with relative attentions. It is expected that encoder models may not learn
deep NT information, because in a masked-language modeling (MLM) task, the model only needs to figure out the missing
token from its surrounding, say, 20 tokens. This can be done by pattern matching, as opposed to global planning like dynamic
programming.

Under review as submission to TMLR

heodl head2 head head heads heads head? heads heads headio headl head2 ML h2 K3 he K5 K6 h7 B h9 KIO hIL h12
cm. s Tloas . NN S SR TN
8 = by, 9. = - ' - D
o® g, b § o smwmen
E' T 004 25 /%e ol foor %% 1
s 5 £g 4 J
ﬁ ul e < y\y s] 0.06 nv =4
4 4
to- S % sk "
L 0.03 1
~ G HE s % [Btoos 2
N o ° Ry % g, s
H > > 1 [0.04 £ 0o R
58" £38 “ 53
S E TE % oo EN— r=12 . x
X i - x x xix
EE SE 4 A &g -----
2a. HG 4, N 28 SR
;U TS5 ‘ay, o Moo L » (=16 - T
2 & " E S x
O, [o Sw
T 2 + Q
hel 000 2 104110411 041105110411 0411 0511 0411 0411 05120111000 | 000 S NI
(a) Bi,h,j—i for i + 6§ at NT-end in CFG level (b) By, h,j—i for i401, 5402 at NT-ends (C) Blcr;bdz,’i’;‘r for NT-ends between CFG
£. Rows represent £ = 2,3,4,5 and columns in CFG level £ = 4. Rows / columns rep- levels ¢/ — £¢. Rows represent r and
represent 6 = —2,—1,0,1,2. — Result 7. resent 01,92 = —1,0,+1. — Result 8. columns ¢/ — £. “X” means n/a entries.
— Result 9

Figure 8: After pretrained on our CFG data, GPT model’s attention has a strong bias towards “ NT-end on level ¢’ to the most
adjacent NT-end at £ 7, even across different £, £’. For definitions see Section 5.2, more experiments see Appendix E.2,
E.3 and E.4. This provides evidence for a DP-like approach to learn such hard, synthetic CFGs (discussions in
Section 5.3).

complex and ambiguous CFG strings exceeding hundreds of tokens (c.f. English CFG has an average length
of 28, see Appendix H). We focus on training generative decoder-only models; an encoder-based model like
BERT or deBERTa may not learn deep (i.e., close to the CFG root) NT information very well, as shown in
Result 4-5. Our results, along with Section 5 next, shall provide evidence that generative language models
like GPT-2 employ a DP-like approach to generate CFGs, while encoder-based models trained via MLM
struggle to learn more complex/deeper CFGs.

5 Results 6-9: How Do Transformers Learn NTs?

We now delve into the attention patterns, which reveal the model’s reasoning mechanisms. We demonstrate
that these patterns mirror the CFG’s syntactic structure and rules, with the transformer employing different
attention heads to reason with N'Ts at different CFG levels.

5.1 Result 6: Position-Based Attention

We first note that the transformer’s attention weights are primarily influenced by the tokens’ relative distance.
This holds true even when trained on the CFG data with absolute positional embedding. This implies that
the transformer learns the CFG’s regularity and periodicity through positional information, which it then
uses for generation. (We defer the figures to Appendix E.1 as this may not surprise readers.) Motivated by
this, we explore whether using position-based attention is sufficient to learn CFGs. In Figure 4, we find that
GPTpos (o1 even GPTypni) performs well, surpassing the vanilla GPT, but not reaching the full potential of GPT.
This supports the superior practical performance of relative-position based transformer variants (such as
GPT,el, GPT,ot, deBERTa) over their base models (GPT or BERT). On this other hand, this also indicates that
position-based attention alone is not enough for transformers to learn CFGs.

5.2 Result 7-9: Boundary-Based Attention

Next, our idea is to remove the position-bias from the attention to examine the remainder. We discover that
the transformer also learns a strong boundary-based attention pattern, where tokens on the NT-end bound-
aries typically attend to the “most adjacent” NT-end boundaries, see Figure 2 for an illustration.
Formally, let A; 1, j—i(x) for j > i denote the attention weight for positions j — ¢ at layer [and head h of
the transformer, on input sequence z. Given a sample pool {x(")}ne[N] € L(G), we compute for each layer
I, head h,'?

Apnp = Average[App j—i(x™) [n € N1 <i<j<len(z™)st. j—i=p],

which represents the average attention between any token pairs of distance p over the sample pool. To
remove position-bias, we focus on By p j—i(x) := A nj—i(x) — Aip,j— in this subsection. Our observation

2 Throughout this paper, we use [] to denote multi-sets that allow multiplicity, such as [1,2,2,3]. This allows us to
conveniently talk about its set average.

Under review as submission to TMLR

‘ DP(L./,18) 1 DP(i, j, @) = whether symbol a
‘ AT | AR 1 can generate X; ... X;

| DpPG+1i10) || DPG+1j10) |
(stored here, see Results 4-5) . . [

learns to

AL

after pretraining, model’s attention j — i ' === = — parse CFG
has a strong bias from any position j positions i éf;

to its most adjacent NT node positions i
) Corollary: GPT mimics
13 13 13 13 13 13 13 13 13 . .
2121212 12 12 U /1% 0110110110, dynamic programming (DP)
A 1 A —/1 —/—/1 A A A —1
|x:1233133121221111211312 |
B learns to |
R generate |
P S from CFG/
1 1 1 ¢
DP,(t,15) = DP(1,i3,13) DP(iy + 1,i5, 10 N
: - 2 | Drarip10) | DP,(j, @) = whether symbol a
‘ DPy(t, 10) ‘DP(izﬂ, i z;)[

‘ can follow sequence x; ... x;

| DPy(t,)

Figure 9: Illustration of how GPTs mimic dynamic programming. See discussions in Section 5.3.

can be broken down into three steps.

Result 7 (Figure 8(a)). By n j—i(x) exhibits a strong bias towards tokens i at NT ends.

This can be seen in Figure 8(a), where we present the average value of By j_,;(x) over data x and pairs i, j
where i 4 ¢ is the deepest NT-end on level ¢ (symbolically, b#(i + §) = ¢). The attention weights are highest
when 0 = 0 and decrease rapidly for surrounding tokens.

While Result 7 already suggests that the transformer performs precise parsing relative to an unseen parse tree
(since NT symbols were never revealed to the model), we go further below, showing stronger attention-
pattern results that connect this behavior more directly to dynamic programming.

Result 8 (Figure 8(b)). By j—i(x) favors pairs i,j both at NT ends on the same level £.

This can be seen in Figure 8(b), where we show the average B ;—i(z) over data « and pairs 4, j where
be(i + 1) = by(j + d2) = 1 for 61,62 € {—1,0,1}. Tt is maximized when d; = 2 = 0.

The connection between Result 8 and DP will be detailed in Section 5.3 and illustrated in Figure 9. Briefly,
to certify DP(i,j,a) = 1 using a rule a — b, ¢, the model must locate a midpoint k such that i...k is
generated by b and k4 1...j5 by c. This entails reading token k from position j, meaning the model must
attend NT-ends at the same level — precisely what Result 8 certifies.

We did not stop here either. To further demonstrate DP-like behavior, the attention should favor adjacent
rather than arbitrary NT-ends. In the example above, positions k and j are adjacent NT-ends for b and ¢ on
the same level; more generally (see Section 5.3), it should also favor connections from k — i — 1, representing
adjacent NT-ends across levels. This is exactly what Result 9 demonstrates next.

Result 9 (Figure 8(c)). Bin j—i(x) favors “adjacent” NT-end token pairs i, j across possibly different layers.

We define “adjacency” as follows. We introduce Bﬁﬂfﬁi‘fr to represent the average value of By j(x)
over samples 2 and token pairs ¢, j that are at the deepest NT-ends on levels ¢, ¢ respectively (symbolically,
b%(i) = £ Abf(j) = #'), and are at a distance r > 0 based on the ancestor indices on level ¢ (symbolically,
pe(4) — pe(i) =). We observe that Bf,r,‘ff_e)‘fr is minimized at the smallest possible 7:

e when ¢/ >/, it is minimized at r = 0;
e when ¢/ < ¢, it is minimized at 7 = 1 because r = 0 is undefined,'3

13For any token pair j — i with £ = b#(¢) > b#(j) = #/ — meaning i is at an NT-end closer to the root than j — it satisfies
pe(j) — pe(i) > 1 so their distance r is strictly positive.

10

Under review as submission to TMLR

In both cases, this shows NT-ends on level ¢ attend to their closest NT-ends on on every level £ to their
left. We emphasize that this is so even after removing position bias.**

In the next subsection, we explain why these results are strong supportive evidence that the GPT models
have learned to mimic a DP algorithm.

5.3 Connecting Results 4,5,7,8,9 to Dynamic Programming (DP)

DP involves storage of intermediate results and a recurrent formula to combine them. While identifying a
specific DP implementation is infeasible due to numerous possibilities (Footnote 11), we can probe for crucial
commonalities. Section 4 demonstrated that transformers encode the DP’s storage backbone—all necessary
DP(i, j,a) values on the correct CFG parse tree—independent of any specific DP implementation.

For the recurrent formula (e.g., DP(k, j, a) derived from DP(k,i,b) A DP(3, j, ¢) for rule a — b, c), DP(k,i,b)
is stored near i, while DP(k, j,a) and DP(i, j, ¢) are near j (Result 5). This necessitates a memory read of i
at j (j — i), and 4, are adjacent N'T-ends at the same level. Result 8 shows that GPT models exhibit
exactly such j — ¢ attention pattern, suggesting an information flow consistent with DP. See Figure 9 (top).

Further reading for DP/CFG experts: a two-step DP. Transformers are both parsing and generative
algorithms. While the above DP is rather naive, it only allows parsing. CFG experts (or experienced
participants in coding competitions) may recognize that the generative process requires a second DP:

let DP3(j, a) denote if prefix x1,...,z; can be followed by symbol a € NTUT.

If a rule b — ¢, a holds and DP(4, j, ¢) A DP2(i,b) are true, then DP3(j, a) is also true. This is similar to the
inside-outside algorithm (Baker, 1979). The model must perform a memory read from position j to i, where i
is the nearest NT-end to j at a different level. Unlike parsing DP; the generative DPy uses information
about the end of a prior constituent (at i) to inform the valid start (at j) for symbol a. The attention
patterns (Result 9 and Figure 9 bottom), indicative of the model’s reasoning process, is also consistent with
this directional information flow.

Finally, to generate according to the CFG distribution, DP(k, j,a) and DP2(j,a) must be converted into
probabilities to compute the final conditional probability of the next token. The full pseudocode is provided
in Algorithm 1 for reference, and it involves precisely the memory reads described above.

In sum, while pinpointing a specific DP implementation is impractical (recall Footnote 11), the DP backbone,
including storage states and recurrent formulas, is evident in pretrained models’ hidden states and attention
patterns. This suggests that pretrained (decoder-only) transformers largely mimic dynamic programming,
regardless of the specific DP implementation.

6 Results 10-13: Extensions of CFGs

We consider two extensions. The first extension is implicit CFG, where each T symbol is now hidden but
associated with a (possibly overlapping) bag of tokens, and the data is generated by sampling tokens from
the bag. We find that language models can learn such implicit CFGs by using its word embedding layer to
encode the (hidden) T symbol. Since this result is less surprising, we defer it to Appendix A and Figure 11.

6.1 Results 11-13: Robustness on Corrupted CFG

One may wish to pre-train a transformer robust against errors and inconsistencies in the input. For example, if
input is a prefix with some tokens being corrupted or missing, then one may hope the transformer to correct
the errors and still complete the sentence following the correct CFG rules. Robustness is an important
property, as it reflects the generalization and adaptation ability of the transformer to reason effectively with
real-world training data, which may not always follow the CFG perfectly (such as having grammar errors).

To test robustness, for each input prefix z.. of length ¢ that belongs to the CFG, we randomly select a set
of positions i € [c] in this prefix — each with probability p — and flip them i.i.d. with a random symbol in

14Without removing position-bias, such a statement may be meaningless as the position bias may favor “adjacent” anything,
including NT-end pairs.

11

Under review as submission to TMLR

Algorithm 1 the two-step DP to compute the next-token conditional probability
& For cleanness, shown for CFG rules of length 2; general case uses binarization (e.g., a +— b,c,d needs to be split into

length-2 rules) to keep O(n3) complexity; code to be released on GitHub upon acceptance.

Input: a (probabilistic) CFG and a (valid) prefix © = 1,22, ..., Ty.
1: initialize DP(i, j,a) < 0 for all 7, j, a except DP (4,4, z;) « 1 fori =1,2,...,n

2: for / =2 ton do

3 fori=1ton—/¢+1do

4 jei+l—1

5 for k=itoj—1do

6: for all CFG rules a + b, ¢ with prob. p do

7 | DP(i,j,a) < DP(i,j,a) 4+ p - DP(i, k,b) - DP(k+1, j, c) o see Figure 9(top)
8: & now DP(i, j,a) = the probability that symbol a € NT UT can generate x;.;
9: initialize DPy(k, a) < 0 for all k, a except DP2(0, root) + 1.

10: for £ = 0 to n do

11: for all rules a — b, ¢ with prob. p (from top to bottom levels in order) do

12: DPy(k,b) + DPy(k,b) + p - DP2(k, a)

13: for m=k+1tondo

14: ‘ DP5(m,¢) < DPy(m,c¢) + p - DPy(k,a) - DP(k 4+ 1,m,b) O see Figure 9(bottom)
15: ¢ now DP2(k,a) = the probability that CFG generates (from root) a prefiz x1.5, followed by symbol a € NT UT
Output: for all ¢ € [n]: Pr[z;41 = eos | z1,] = % and Pr[z; 1 =t | x14] = %

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation
cutd T=0.1- 100 100 100 100 100 100 100 100 100 100'100 100 100 100 100 100 100 100 100 100'99.8 100 100 100 100 100 100 100 100 100|100
cutd t=0.2-98.7 100 100 100 100 100 100 100 100 100|99.2 99.9 100 100 100 99.9 100 100 100 10098.5 100 100 100 100 100 100 100 100 100|100
cut0 t=1

corrupted cut50 t=0.1 -
corrupted cut50 t=0.2 -

corrupted cut50 T=1
cut50 t=0.1-

cut50 t=0.2-99.2 100 100 100 100 100 100 100 100 100{99.6 100 100 100 100 100 100 100 100 100/98.4 100 100 100 100 100 100 100 100 100|100

cut50 t=1m91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4&92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7&83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3|99.9

1.0 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 01 1.0 09 08 0.7 06 05 04 03 0.2 0.1 clean

generation acc (%) for cfg3b

Figure 10: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean or corrupted
prefixes with cuts ¢ = 0 or ¢ = 50, using generation temperatures 7 = 0.1,0.2, 1.0.

Observation. In Rows 4/5, by comparing against the last column, we see it is beneficial to include low-quality data
(e.g. grammar mistakes) during pre-training. The amount of low-quality data could be little (y = 0.1 fraction) or
large (every training sentence may have grammar mistake). The transformer also learns a “mode switch” between
the “correct mode” or not; details in Section 6.1. (More datasets, see Figure 27.)

T. Call the resulting prefix z... Next, we feed the corrupted prefiz T.. to the transformer F' and compute
its generation accuracy in the uncorrupted CFG: Pr,r(g), r[(2.c; F'(Z.c)) € L(G)].

We not only consider clean pre-training, but also some versions of robust pre-training. That is, we randomly
select v € [0, 1] fraction of the training data and perturb them before feeding into the pre-training process.
We compare three types of data perturbations.!?

e (T-level random perturbation). Each x; w.p. 0.15 we replace it with a random symbol in T.

o (NT-level random perturbation). Let £ = L — 1 and recall sp = (s¢,1,8¢,2;---,5¢,m,_,) is the sequence
of symbols at NT-level £. For each s ;, w.p. 0.10 we perturb it to a random symbol in NTy; and then
generate x = sy, according to this perturbed sequence.

o (NT-level deterministic perturbation). Let £ = L — 1 and fix a permutation 7 over symbols in NT,. For
each sy, w.p. 0.05 we perturb it to its next symbol in NT7_; according to m; and then generate z = sy,
according to this perturbed sequence.

150ne can easily extend our experiments by considering other types of data corruption (for evaluation), and other types of
data perturbations (for training). We refrain from doing so because it is beyond the scope of this paper.

12

Under review as submission to TMLR

We focus on p = 0.15 with a wide range of perturbation rate 7 = 0.0,0.1,...,0.9,1.0. We present our findings
in Figure 10. The main message is:

Result 11 (Figure 10, rows 4/5). When pretrained over clean data, GPT models are not so robust to
“grammar mistakes.” It is beneficial to include corrupted or low-quality pretrain data.

Specifically, GPT models achieve only ~ 30% accuracy when pretrained over clean data = ~ L(G). If we
pretrain from perturbed data — both when v = 1.0 so all data are perturbed, and when v = 0.1 so we have
a small fraction of perturbed data — GPT can achieve ~ 79%, 82% and 60% robust accuracies respectively
using the three types of data perturbations (rows 4/5 of Figure 10).

Next, we take a closer look. If we use temperature 7 = 1 for generation:
Result 12 (Figure 10, rows 3/6/9). Pre-training on corrupted data teaches model a mode switch.

o Given a correct prefix, it mostly completes with a correct string in the CFG (Row 9);
o Given a corrupted prefiz, it always completes sentences with grammar mistakes (Row 6);

o When given no prefiz, it generates corrupted strings with probability close to v (Row 3).

By comparing the generation accuracies across different 7 and ~, we observe:

Result 13 (Figure 10, rows 4/5/6). High robust accuracy is achieved when generating using low temperatures
7,16 and is not sensitive to v — even when model is trained totally on corrupted data (y = 1.0).

This should not be surprising given that the language model learned a “mode switch.” Using low temperature
encourages the model to, for each next token, pick a more probable solution. This allows it to achieve good
robust accuracy even when the model is trained totally on corrupted data (v = 1.0). Note this is consistent
with practice: when feeding a pre-trained completion model (such as Llama or GPT-3-davinci003) with
prompts of grammar mistakes, it tends to produce texts also with (even new!) grammar mistakes when
using a large temperature.

Our experiments suggest that, additional instruct fine-tuning may be necessary, if one wants the model to
always stay in the “correct mode” even for high temperatures. This is beyond the scope of this paper.

7 Related Work and Conclusion

Transformers can encode some CFGs, particularly those related to human languages (Hewitt & Manning,
2019; Shi et al., 2022; Zhao et al., 2023; Maudslay & Cotterell, 2021; Manning et al., 2020; Vilares et al., 2020;
Wu et al., 2020; Arps et al., 2022). Deletang et al. (2023) explored transformers’ learnability on languages
within the Chomsky hierarchy, including CFGs. However, the inner mechanisms of how transformers solve
these tasks remain unclear. Some works can precisely interpret each neuron’s function but focus on simpler
tasks and architectures. For example, Nanda et al. (2023) studied 1- or 2-layer transformers with context
length 3 for arithmetic addition. Murty et al. (2023) explored methods beyond linear probing to deduce tree
structures learned by transformers. They designed a score to quantify a transformer’s “tree-like” nature,
showing it becomes more tree-like during training. Our Figure 20 in Appendix D.3 supports these findings.
(This paper first appeared in May 2023, so we focus on related works before that.)

Conclusion. This paper demonstrates how transformers learn challenging synthetic CFGs, revealing an
alignment between their internal mechanisms and the information flow characteristic of dynamic program-
ming. Our primary aim was to gain deeper interpretability insights into attention and learned hierarchical
representations. This approach differs from prior interpretability efforts such as (Elhage et al., 2021; Olsson
et al., 2022; Wang et al., 2022), which focus on large models trained on real-world corpora where noise and
uncontrolled correlations can obscure deep algorithmic structure. In contrast, we take a complementary
path—using clean, synthetic data to expose and mechanistically analyze how transformers implement well-
defined, computationally deep reasoning processes. While these CFGs, offering well-defined complex tasks,
are valuable for isolating compositional behavior and probing model internals, and revealing fundamental

16Recall, when temperature 7 = 0 the generation is greedy and deterministic; when 7 = 1 it reflects the unaltered distribution
learned by the transformer; when 7 > 0 s small it encourages the transformer to output “more probable” tokens.

13

Under review as submission to TMLR

computational mechanisms potentially underpinning complex hierarchical reasoning, they do not reflect the
full diversity of natural language. We view them as an abstraction—much like other synthetic algorithmic
tasks (e.g., sorting, ListOps) used to study LLM inductive biases—and not a substitute for real-world eval-
uation. Their utility as a component in broader architecture testbeds is explored in our separate (un-cited
for anonymity) work, distinct from the interpretability focus presented here. Limitations. Our study is
restricted to grammars with fully known structure; extending to noisy, weakly-supervised, or naturalistic
hierarchies remains an open direction.

References

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning.
In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage and Extraction.
In Proceedings of the 41st International Conference on Machine Learning, ICML 2024, 2024. Full version
available at https://ssrn.com/abstract=5250633.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811.03962.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. arXiv preprint
arXiv:1706.08224, 2017.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure in
neural language models. arXiv preprint arXiv:2204.06201, 2022.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Society of
America, 65(S1):5132-S132, 1979.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: An open-source
autoregressive language model. In Proceedings of the ACL Workshop on Challenges € Perspectives in
Creating Large Language Models, 2022. URL https://arxiv.org/abs/2204.06745.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky hierarchy. In
ICLR, 2023.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondeterministic stacks.
In ICLR, 2022.
Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,

Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer circuits. Trans-
former Clircuits Thread, 1, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with
disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representations. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129-4138, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pp. 8571-8580, 2018.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Transformers
are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171-4186, 2019.

14

http://arxiv.org/abs/2001.04413
https://ssrn.com/abstract=5250633
http://arxiv.org/abs/1811.03962
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419

Under review as submission to TMLR

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent linguis-
tic structure in artificial neural networks trained by self-supervision. Proceedings of the National Academy
of Sciences, 117(48):30046-30054, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated cor-
pus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330, 1993. URL https:
//aclanthology.org/J93-2004.

Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with jabberwocky
probing. arXiv preprint arXiv:2106.02559, 2021.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Characterizing intrinsic
compositionality in transformers with tree projections. In ICLR, 2023.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. arXiv preprint
arXi:2209.11895, 2022.

OpenAl. Gpt-4 technical report, 2023.

Matt Post and Shane Bergsma. Explicit and implicit syntactic features for text classification. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 866-872, 2013.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input
length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Itiroo Sakai. Syntax in universal translation. In Proceedings of the International Conference on Machine
Translation and Applied Language Analysis, 1961.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-free-
grammar via Istm and the transformer: Difference and the explanations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8267-8276, 2022.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary
position embedding, 2021.

David Vilares, Michalina Strzyz, Anders Sggaard, and Carlos Gomez-Rodriguez. Parsing as pretraining. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 9114-9121, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability
in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593,
2022.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for analyzing
and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 4166—4176, 2020.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can transformers
learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while predicting the
masked word? arXiv preprint arXiv:2303.08117, 2023.

15

https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004

Under review as submission to TMLR

0, 01, 0, o, 20, 1y, %, 94 %, oy 0; Y%

1.00 1.00
0.75 E 0.75
0.50 E 0.50
0.25 o 0.25
0.00 0.00
-0.25 -0.25
-0.50 E '. -0.50
—0.75 -0.75
-1.00 -1.00

Figure 11: Language models learn implicit CFGs by using word embeddings to encode the (hidden) terminal symbol.

IS
& &
S
N

~
$

S
N
N
S

~
QL
S

~
&

~.
INESIRN
~

non-uniform OT distribution
A~

correlations of word embeddings
uniform OT distribution
correlations of word embeddings

A
LEL S

&
otel

We present word embedding correlations for GPT pre-trained on an implicit CFG with |T| = 3 and vocabulary size
|OT| = 300. 300 rows/columns represent observable tokens a € OT. Label ijk € {0,1}? in the figure indicates
whether a is in OT; for the three choices t € T. Details are in Section A.

APPENDIX

A Result 10: Implicit CFGs

In an implicit CFG, terminal symbols represent bags of tokens with shared properties. For example, a
terminal symbol like noun corresponds to a distribution over a bag of nouns, while verb corresponds to a
distribution over a bag of verbs. These distributions can be non-uniform and overlapping, allowing tokens
to be shared between different terminal symbols. During pre-training, the model learns to associate tokens
with their respective syntactic or semantic categories, without prior knowledge of their specific roles in the

CFG.

Formally, we consider a set of observable tokens OT, and each terminal symbol ¢ € T in G is associated with
a subset OT; C OT and a probability distribution D; over OT;. The sets (OT;); can be overlapping. To
generate a string from this implicit CFG, after generating x = (z1,22,...,2m) ~ L(G), for each terminal
symbol x;, we independently sample one element y; ~ D,,. After that, we observe the new string y =
(y1,Y2, " ,Ym), and let this new distribution be called y ~ Lo (G)

We pre-train language models using samples from the distribution y ~ Lo (G). During testing, we evaluate
the success probability of the model generating a string that belongs to Lo(G), given an input prefix y...
Or, in symbols,

Prwao(g)—i-randomness of F [(y:ca F(y.)) € LO(g)])
where F(y..) represents the model’s generated completion given prefix y... (We again use dynamic program-
ming to determine whether the output string is in Lo (G).)

We summarize our finding below and deferring details to Appendix F.

Result 10 (Figure 11). Generative language models can learn implicit CFGs very well. In particular, after
pretraining, the token embeddings from the same subset OT; are grouped together, indicating they use token
embedding layer to encode the hidden terminal symbol information.

B Experiment Setups
B.1 Dataset Details

We construct seven synthetic CFGs of depth L = 7 with varying levels of learning difficulty. It can be inferred
that the greater the number of T/NT symbols, the more challenging it is to learn the CFG. For this reason, to
push the capabilities of language models to their limits, we primarily focus on cfg3b, cfg3i, cfg3h, cfg3g, cfg3f,
which are of sizes (1,3,3,3,3,3,3) and present increasing levels of difficulty. Detailed information about
these CFGs is provided in Figure 12:

o In cfg3b, we construct the CFG such that the degree |R(a)| = 2 for every NT a. We also ensure that in
any generation rule, consecutive pairs of T/NT symbols are distinct.

The 25%, 50%, 75%, and 95% percentile string lengths are 251,278, 308, 342 respectively.

16

Under review as submission to TMLR

o In cfg3i, we set |R(a)| = 2 for every NT a. We remove the requirement for distinctness to make the data
more challenging than cfg3b.

The 25%, 50%, 75%, and 95% percentile string lengths are 276, 307, 340, 386 respectively.

o In cfg3h, we set |R(a)| € {2,3} for every NT a to make the data more challenging than cfg3i.
The 25%, 50%, 75%, and 95% percentile string lengths are 202, 238,270, 300 respectively.

o In cfg3g, we set |R(a)| = 3 for every NT a to make the data more challenging than cfg3h.
The 25%, 50%, 75%, and 95% percentile string lengths are 212, 258,294, 341 respectively.

o In cfg3f, we set |R(a)| € {3,4} for every NT a to make the data more challenging than cfg3g.

The 25%, 50%, 75%, and 95% percentile string lengths are 191, 247, 302, 364 respectively.

Remark B.1. From the examples in Figure 12, it becomes evident that for grammars G of depth 7, proving
that a string = belongs to L(G) is highly non-trivial, even for a human being, and even when the CFG rules
are known. The standard method of demonstrating x € L(G) is through dynamic programming. We further
discuss what we mean by a CFG’s “difficulty” in Appendix H, and provide additional experiments beyond
the cfg3 data family.

Remark B.2. The dataset cfg3f lies at the difficulty threshold that GPT2-small can master under our pre-
training setup (see Figure 30; training details in later sections). Although deeper, more complex CFGs are
possible, they would require a larger model and extended training. We focus on cfg3f because it already
provides compelling evidence for our findings.

Simultaneously, to illustrate that transformers can learn CFGs with larger [N'T| or | T|, we construct datasets
cfg3el and cfg3e2 respectively of sizes (1,3,9,27,81,27,9) and (1,3,9,27,27,9,4). They are too lengthy to
describe so only included in the supplementary materials.

B.2 Model Architecture Details

We define GPT as the standard GPT2-small architecture (Radford et al., 2019), which consists of 12 layers, 12
attention heads per layer, and 768 (=12 x 64) hidden dimensions. We pre-train GPT on the aforementioned
datasets, starting from random initialization. For a baseline comparison, we also implement DeBERTa (He
et al., 2020), resizing it to match the dimensions of GPT2 — thus also comprising 12 layers, 12 attention
heads, and 768 dimensions.

Architecture size. We have experimented with models of varying sizes and observed that their learning
capabilities scale with the complexity of the CFGs. To ensure a fair comparison and enhance reproducibility,
we primarily focus on models with 12 layers, 12 attention heads, and 768 dimensions. The transformers
constructed in this manner consist of 86M parameters.

Modern GPTs with relative attention. Recent research (He et al., 2020; Su et al., 2021; Black et al.,
2022) has demonstrated that transformers can significantly improve performance by using attention mecha-
nisms based on the relative position differences of tokens, as opposed to the absolute positions used in the
original GPT2 (Radford et al., 2019) or BERT (Kenton & Toutanova, 2019). There are two main approaches
to achieve this. The first is to use a “relative positional embedding layer” on |j — ¢| when calculating the
attention from j to ¢ (or a bucket embedding to save space). This approach is the most effective but tends
to train slower. The second approach is to apply a rotary positional embedding (RoPE) transformation (Su
et al., 2021) on the hidden states; this is known to be slightly less effective than the relative approach, but
it can be trained much faster.

We have implemented both approaches. We adopted the RoPE implementation from the GPT-NeoX-20B
project (along with the default parameters), but downsized it to fit the GPT2 small model. We refer to this
architecture as GPT,y. Since we could not find a standard implementation of GPT using relative attention,
we re-implemented GPT2 using the relative attention framework from DeBERTa (He et al., 2020). (Recall,
DeBERTa is a variant of BERT that effectively utilizes relative positional embeddings.) We refer to this
architecture as GPT,.

Weaker GPTs utilizing only position-based attention. For the purpose of analysis, we also consider
two significantly weaker variants of GPT, where the attention matrix exzclusively depends on the token

17

Under review as submission to TMLR

22]->2120 22]->191920 22]->202021 22]->1920 22]->2021
22]->2019 22|->212019 22]->1921 22]->202019 22]->201921
19]->1617 18 19]->1816 18 19]->1617 22|->2019 21 22|->211919 a Sample from Cfg3b
19|->1718 16 19|->16 16 19(|->1817 19]->1717 16 22]->2020
20|->171618 20|->171617 20|->1816 19|->181716 19|->1816 18 312312132132123323213132112332321233213123213132
20/->1617 20|->1818 20|->1716 19]->181617 19]->1718 313211232131221123312321232121123312313221213212
21|->1816 21|->161618 21|->171718 20|->1617 19|->1818 331312321213212332321123323121313213123221123323
21|->161817 21|->1817 21|->171817 20|->1818 20|->1616 132121313122112332312123213213231312123213232131
16]->1513 16]->1313 16]->1413 20->161717 20|->1617 123213123132321321313221313232313212112331231322
16/->131514 16|->1414 16|->1513 21|->1616 20|->1716 18 112321312321313123132213121321233122132131231321
17|->141315 17|->1515 17|->1314 21|->1616 18 21|->1817 313123132213213132
17]->1513 14 17]->1514 17]->1513 15 21]->1816 21]->1716
18]->151413 18]->141513 18]->151313 16]->1413 13 21]->1617 18 .
18]->1413 18]->1415 18]->1514 14 16]->13 14 21]->1618 a Sample from Cfg3|:
> > > > .
g})i;ﬁ }3};?,311 1l 1;?221?1 1?:;3 3 1 iiﬁj{:ii E 13 113113121222312312113113121222312231112313121212
14]>111012 14]-51010 10 13]-51110 17]51415 13 16]--1413 222312311131212113113123123123123123122313121212
14]51011 12 14]-51010 14]51012 12 17]515 14 16]->1414 312312312231312231112312311131211231231112312312
15]-51211 10 15]-51111 10 14]-51010 18]-515 13 17]>151413 231231211231312112313121212231231231231231111212
15]51112 10 15]>1110 12 14]51212 10 18]-515 15 17]51415 312231231231312111131131131222312231223123123123
1015798 101877 15]51012 18]51413 15 17)515 14 123122313121111231312312113122313121111312231231
10]-5987 10]-599 15]->111110 13151012 18]-1415 13 221131231212122312313123123121112113
11|->879 11|->777 10|->879 13]->111111 18|->1513 13
11|->789 11|->778 10]->97 13]->1111 18|->1315 .
12|->897 12]->799 10]->88 14]->1112 13]->1112 a Sample from Cfg3h
12|->978 12|->87 11]->877 14]->101110 13]->121112 131231331311332131323223212232123121313121321313
7131 7|->812 11->77 14|->1010 13|->101211 113313333113123232131323213113131232121231332132
7|->123 . 71231 11]->799 15|->1011 14]->1012 322321333311231331231332321312131133131231231311
cfg3b 232 cfg3i :-u 121->79 151121010 141121012 312133311312321331232131313312131231311212312312
8|->312 8|->22 12|->87 15]->1211 141211 232213131131331133313312322132131312133312131212
9]->321 $|->113 12|88 10]->888 14]->101212 1231311232131331313133123232213
9|->21 9|->12 7|->232 10|->777 15|->1011 11
7|->123 10|->77 15|->1111 10 .
a5 1] 589 15151010 a sample from cfg3g:
8l->12 1197 15l>121211 231221122132232312311233223313313313313312122221
cfg3h 8331 e 101892 123322331331132132233222123113233113233123231132
9::;13 12:::73 10:::799 331123112311111222312312233121111123122112332321
ol133 12]2999 11]088 231221111231331132212223321232133133133133113132
T1a231 11597 311122211322322113311323312313223323133133113231
e 115977 222332123132132211313231123331132331112223311232
21123123111132
7|22 12|->797
8|->132 12|->98
813 12]>889 a sample from cfg3f:
8|->331 71221
Cfg3g 91->233 7|>322 332213123312113123211322312312111213211322311311
9123 71>312 322333123121112131133112132121333331232212131232
9l->21 7|->32 221111213322131131131131111113231233133133311331
8|->311 333332231211311121221111211233312331121113313333
8|->12 331123333131111333312113211312121133333212111121
cfg3f 8|->331 213223223322133221113221132323313111213223223221
9|->121 211133331121322221332211212133121331332212213221
g{j i 211213331232233312

Figure 12: The context-free grammars cfg3b, cfg3i, cfg3h, cfg3g, cfg3f that we primarily use in this paper, together with a sample
string from each of them.

Observation. Although those CFGs are only of depth 7, they are capable of generating sufficiently long and hard
instances; after all, even when the CFG rules are given, the typical way to decide if a string = belongs to the CFG
language = € L(G) may require dynamic programming.

positions, and not on the input sequences or hidden embeddings. In other words, the attention pattern
remains constant for all input sequences.

We implement GPTpes, a variant of GPT, that restricts the attention matrix to be computed solely using the
(trainable) relative positional embedding. This can be perceived as a GPT variant that mazimizes the use
of position-based attention. We still choose the 12-layer, 12-head, 768-dim structure.

We also implement GPT,n;, a 12-layer, 8-head, 1024-dimensional Transformer where the attention matrices
are fized. Specifically, for each h € [8], the h-th head consistently applies a uniform average over the previous
2" — 1 tokens. This can be viewed as a GPT variant that uses the simplest form of position-based attention.
Since GPT,; lacks key and value matrices, its parameter count differs from standard GPT variants. A GPT2-
small-sized GPT,—i.e., one with 12 layers and 840 hidden dimensions—matches its parameter count. As we
show in Appendix I, this smaller version performs similarly to the 1024-dimensional GPT;.

Remark B.3. It should not be surprising that GPTpes or GPTyni perform much worse than other GPT models
on real-life wikibook pre-training. However, once again, we use them only for analysis purpose in this paper,
as we wish to demonstrate what is the maximum power of GPT when only using position-based attention
to learn CFGs, and what is the marginal effect when one goes beyond position-based attention.

Features from random transformer. Finally we also consider a randomly-initialized GPT,e, and use
those random features for the purpose of predicting NT ancestors and NT ends. This serves as a baseline,
and can be viewed as the power of the so-called (finite-width) neural tangent kernel (Jacot et al., 2018;
Allen-Zhu et al., 2019). We call this GPT,anq-

18

Under review as submission to TMLR

B.3 Pre-Training Details

For each sample x ~ L(G) we append it to the left with a BOS token and to the right with an EOS token.
Then, following the tradition of language modeling (LM) pre-training, we concatenate consecutive samples
and randomly cut the data to form sequences of a fixed window length 512.

As a baseline comparison, we also applied DeBERTa on a masked language modeling (MLM) task for our
datasets. We use standard MLM parameters: 15% masked probability, in which 80% chance of using a
masked token, 10% chance using the original token, and 10% chance using a random token.

We use standard initializations from the huggingface library. For GPT pre-training, we use AdamW with
B8 = (0.9,0.98), weight decay 0.1, learning rate 0.0003, and batch size 96. We pre-train the model for 100k
iterations, with a linear learning rate decay.!” For DeBERTa, we use learning rate 0.0001 which is better
and 2000 steps of learning rate linear warmup.

Throughout the experiments, for both pre-training and testing, we only use fresh samples from the CFG
datasets (thus using 4.9 billion tokens = 96 x 512 x 100k). We have also tested pre-training with a finite
training set of 100m tokens; and the conclusions of this paper stay similar. To make this paper clean, we
choose to stick to the infinite-data regime in this version of the paper, because it enables us to make negative
statements (for instance about the vanilla GPT or DeBERTa, or about the learnability of NT ancestors /
NT boundaries) without worrying about the sample size. Please note, given that our CFG language is very
large (e.g., length 300 tree of length-2/3 rules and degree 4 would have at least 43°0/3 possibility), there is
almost no chance that training/testing hit the same sentence.

As for the reproducibility of our result, we did not run each pre-train experiment more than once (or plot
any confidence interval). This is because, rather than repeating our experiments identically, we find it more
interesting to use the resources to run it against different datasets and against different parameters. We
pick the best model using the perplexity score from each pre-training task. When evaluating the generation
accuracy in Figure 4, we have generated more than 20000 samples for each case, and present the diversity
pattern accordingly in Figure 13.

We test our results using a mixture of V100 and A100 GPUs (on A100, pretraining a model takes less than
a day using 4GPUs), even when using float32.

B.4 Predict NT ancestor and NT boundary

Recall from Section 4.1 that we have proposed to use a multi-head linear function to probe whether or not
the hidden states of a transformer, implicitly encodes the NT ancestor and NT boundary information for
each token position. Since this linear function can be of dimension 512 x 768 — when having a context
length 512 and hidden dimension 768 — recall in (4.2), we have proposed to use a multi-head attention to
construct such linear function for efficient learning purpose. This significantly reduces sample complexity
and makes it much easier to find the linear function.

In our implementation, we choose H = 16 heads and hidden dimension d’ = 1024 when constructing this
position-based attention in (4.2). We have also tried other parameters but the NT ancestor/boundary
prediction accuracies are not very sensitive to such architecture change. We again use AdamW with g =
(0.9, 0.98) but this time with learning rate 0.003, weight decay 0.001, batch size 60 and train for 30k iterations.

Once again we use fresh new samples when training such linear functions. When evaluating the accuracies on
predicting the NT ancester / boundary information, we also use fresh new samples. Recall our CFG language
is sufficiently large so there is negligible chance that the model has seen such a string during training.

C More Experiments on Results 2-3 (Generation)

Diversity can be estimated through entropy. Given a distribution p over strings and a sampled subset
S = {:1:(1) }ie[M] from p, for any string 2 € S, denote by len(z) its length so = (1, ..., Tlen(s)), and denote

17We have slightly tuned the parameters to make pre-training go best. We noticed for training GPTs over our CFG data, a
warmup learning rate schedule is not needed.

19

Under review as submission to TMLR

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
= 0 0 0
by 0 0 0 104
=4 0 0 0
|5} 0 0 0
- 0 0 0
2 0 0 0
c
-
[}
] 102
©
[-%
>
= 1
* 10
1Y
[}
2
T 100

cuto cut50 cut0 cut50 cut0 cut50 cuto cut50 cut0 cut50

truth

Figure 13: Comparing the generation diversity S and Sf_MQ across different learned GPT models (¢ = 0 or ¢ = 50). Rows

a—Lo
correspond to NT symbols a and columns correspond to ¢2 = 2,3,...,7. Colors represent the number of distinct
elements in S;'“&Q, and the white numbers represent the collision counts (if not present, meaning there are more

than 5 collisions). More experiments in Figure 14, 15, and 16

Observation. We use M = 20000 samples. The diversity pattern from the pre-trained transformer matches that of
the ground-truth. For instance, from the root one can generate Q(M?2) distinct sequences to level £2 = 5 using the
CFG rules, and from every a € N'T one can generate Q(M?) to level £ = 6 (not to say to the T-level 3 = 7); this
is already more than the number of parameters in the model. Therefore, we conclude that the pre-trained model
does not rely on simply memorizing a small set of patterns to learn the CFGs.

by Tlen(z)+1 = €0s. The entropy in bits for p can be estimated by

_T‘}}\ Zmes Zie[len(z)+1] 10g2 Prp [‘rl | L1y - 7x75*1]

We compare the entropy of the true CFG distribution and the transformer’s output distribution using
M = 20000 samples in Figure 4 (middle).

Diversity can also be estimated using the birthday paradox to lower bound the support size of a distribution
(Arora & Zhang, 2017). Given a distribution p over strings and a sampled subset S = {x(i)}ie[M] from
p, if every pair of samples in S are distinct, then with good probability the support of p is of size at least
Q(M?). In Appendix C.1, we conducted an experiment with M = 20000. We performed a birthday paradox
experiment from every symbol a € N'Ty, to some other level ¢ > ¢;, comparing that with the ground truth.
For instance, we confirmed for the cfg3f dataset, there are at least Q(M?) distinct sentential forms that can
be derived from a symbol in level 1 to level 5, or from level 2 to level 6, etc. — not to mention from the
root in N'T; to the leaf on level 7. In particular, M? is already more than the number of parameters in the
model.

From both experiments, we conclude that the pre-trained model does not rely on simply memorizing
a small set of patterns to learn the CFGs.

C.1 Generation Diversity via Birthday Paradox

Since “diversity” is influenced by the length of the input prefix, the length of the output, and the CFG rules,
we want to carefully define what we measure.

Given a sample pool 2z,2M) € L(G), for every symbol a € NT,, and some later level 5 > ¢; that is
closer to the leaves, we wish to define a multi-set S, ¢, that describes all possible generations from a € N'Ty,
to NT,, in this sample pool. Formally,

Definition C.1. For z € L(G) and ¢ € [L], we use s4(i..j) to denote the sequence of NT ancestor symbols
on level £ € [L] from position i to j with distinct ancestor indices.®

50(i-7) = (86(K)) ke iit1,. 4} st polk)pe (bt 1)

18With the understanding that p,(0) = p,(len(z) + 1) = oo.

20

Under review as submission to TMLR

Definition C.2. For symbol a € NTy, and some layer {3 € {1,601 +1,..., L}, define multi-sei"®
Sty (2) = |[% (i..5) ‘Vi,j,i < j such that pe, (i — 1) # pe, (i) = e, (7) # pe, (+1) Na = sq, (i)ﬂ

and we define the multi-set union Sy, = Uie[M] Sasey (x(i)), which is the multiset of all sentential forms
that can be derived from NT symbol o to depth (-.

(Above, when © ~ L(G) is generated from the ground-truth CFG, then the ancestor indices and symbols
p,s are defined in Section 2. If x € L(G) is an output from the transformer F, then we let p, s be computed
using dynamic programming, breaking ties lexicographically.)

We use S;”j?z to denote the ground truth S,—s, when @2 are iid. sampled from the real

distribution L(G), and denote by

35%2 = Uie[M’] and), F(z{))eL(G) Sa—tz (a::(é), F(x;(é)))
that from the transformer F'. For a fair comparison, for each F' and p, we pick an M’ > M such that
M = |{i e [M] | x:(,?,F(J;;(;)) € L(G)}| so that F is capable of generating exactly M sentences that
nearly-perfectly satisfy the CFG rules.?’

Intuitively, for x’s generated by the transformer model, the larger the number of distinct sequences in S, f VA
is, the more diverse the set of NTs on level ¢5 (or Ts if £o = L) the model can generate starting from NT
a. Moreover, in the event that S _,¢, has only distinct sequences (so collision count = 0), then we know
that the generation from a — f3, with good probability, should include at least 2(M?) possibilities using a

birthday paradox argument. 2!

For such reason, it can be beneficial if we compare the number of distinct sequences and the collision counts
between Sf ¢, and S;E;‘?z. Note we consider all £5 > ¢; instead of only 5 = L, because we want to better

capture model’s diversity at all CFG levels.?? We present our findings in Figure 13 with M = 20000 samples
for the cfg3f dataset.

In Figure 14 we present that for cfg3b, cfg3i, cfg3h, cfg3g, in Figure 15 for cfg3el, and in Figure 16 for cfg3e2.
We note that not only for hard, ambiguous datasets, also for those less ambiguous (cfg3el, cfg3e2) datasets,
language models are capable of generating very diverse outputs.

Y Throughout this paper, we use [-] to denote multi-sets that allow multiplicity, such as [1,2,2,3]. This allows us to
conveniently talk about its collision count, number of distinct elements, and set average.

20Please note M and M’ are roughly the same, given
21 A CFG of depth L, even with constant degree and constant size, can generate 229(“ distinct sequences.
22 A model might generate a same N'T symbol sequence sy,_1, and then generate different Ts randomly from each NT. In this

way, the model still generates strings x’s with large diversity, but Sf_,L_l(a:) is small. If Sfﬂb is large for every ¢2 and a,

then the generation from the model is truely diverse at any level of the CFG.

21

Under review as submission to TMLR

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
-] 0 0 0
0 0 0 0 104
2 0 0 0
v 0 0 0
1S3
e 0 103
c
1™
[]
£ 102
[
Q
Zz
.ﬁ 101
1Y
[
2
T 10°
cut0 cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50
(a) cfg3b dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
=
o 10*
L
9]
1
2 10°
c
™
£
2
] 10
Q
>
fn
@ 1ot
'
[
2
T 100
cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50
(b) cfg3i dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
ﬁ 0 0 100
0 0
R 0 0
v 0 0
1
8 .
c
-
]
- 102
[
Q
2
.FI 101
P
[
2z
T 10°
cut0 cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50
(c) cfg3h dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
@ ; ’
o g 10
N
v 0
= E]
e 5 10°
<
-
K]
- 102
[
Q
2
= 10t
e
[]
Z
T 100

cuto cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50

(d) cfg3g dataset

Figure 14: Comparing the generation diversity S;"j% and Sé‘;eg across different learned GPT models (and for ¢ = 0 or

¢ =50). Rows correspond to NT symbols a and columns correspond to 2 = 2,3, ...,7. Colors represent the number
of distinct elements in S;'i"éz, and the white numbers represent the collision counts (if not present, meaning there

are more than 5 collisions).

22

Under review as submission to TMLR

o
S

| |
cooco Boocococcool
o o o

truth GPT GPT_rel GPT_rot GPT_pos

200
IDu

I
Looco lBlmcocon:

- I I I I I | 10*
° 1) | |) |
m
o] | | | | |
T
s] | | | | | h
:] | I I | |
£] | | | | |
]] | | | | |
b]] 1 1] | 10?
4] | | | | |
2] | 1 1 | |
2] | | | | |
&] | | | | |
4 10!
]
2
T
10°

cutd cut50 cutd cut50 cutd cut50 cutd cut50 cutd cut50

Figure 15: Comparing the generation diversity ng'}z and 85 —yp, ACTOSS different learned GPT models (and for ¢ = 0 or
¢ =50). Rows correspond to NT symbols a and columns correspond to ¢2 = 2,3,...,7. Colors represent the number
of distinct elements in S;“j%, and the white numbers represent the collision counts (if not present, meaning there
are more than 5 collisions). This is for the cfg3el dataset.

23

Under review as submission to TMLR

truth GPT GPT _rel GPT_rot GPT_pos GPT_uni

coorlooooo
OO O rOHO
oooleNn oo o
o oolooooo
ocoolooooo
Oo0ooor oo
ocooler ooo
OO0 o0oor oo

0
0
(0]
0
0
0
0
(0]

[y]

0]]]]] | 10%
ul |] | | |] | | |] | | | | | | |] | | | |

S]] i i] |

15}

[h4

c

-

@ 2
o1 10
]

Q.

>

- 10!
n

1Y

]

2

E<] 10°

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

Figure 16: Comparing the generation diversity ng'}z and 85 —yp, ACTOSS different learned GPT models (and for ¢ = 0 or
¢ =50). Rows correspond to NT symbols a and columns correspond to ¢2 = 2,3,...,7. Colors represent the number

of distinct elements in S;"j%, and the white numbers represent the collision counts (if not present, meaning there

are more than 5 collisions). This is for the cfg3e2 dataset.

24

Under review as submission to TMLR

C.2 Marginal Distribution Comparison

In order to effectively learn a CFG, it is also important to match the distribution of generating probabilities.
While measuring this can be challenging, we have conducted at least a simple test on the marginal distribu-
tions p(a,), which represent the probability of symbol a € NT, appearing at position 4 (i.e., the probability
that s,(i) = a). We observe a strong alignment between the generated probabilities and the ground-truth
distribution. See Figure 17.

GPT GPT_rel GPT_rot GPT_pos GPT_uni

‘
‘
3
5 5 1
2 0s 2 |
g 100 ‘ 3 100~ | 0.05
H o h | 000
§ 150+ i i 03 § 150+ i oes
5 200 ' ! 02 S 200 - g
A) 01 1 -0.15
ol i i N B
pr wo s o wso e wso a0 w oo s
(a) cfg3b dataset; marginal distribution (b) cfg3b dataset; marginal distribution - ground truth
o ar o o ortpes ot a o - - et
B T T G S G S U ST IV =] 109 3] (107 3] [0 { | ° 1 020
08 015
5 50 | | | | | I | | | 07 5 50 010
ERa U8V UKL LR RN R LT R0 O L L - o "
- o4 £ o
2 0s 8 o0
i i
° 200 02 © 200 -o10
o o1
2s0- |1 00 250 ~020
o w0 a0 a0 oD oo ewsd o s wo s o wso e so o a0 o e
(c) cfg3i dataset; marginal distribution (d) cfg3i dataset; marginal distribution - ground truth
ol o i P e ol - o005 —
N ‘ . g o P
os 5
p < o0
s | H
: o $o! 005
: : 000
H A o 301 ~o0s
i i
® © -0.10
o 201
“o1s
2501
cutso cutd cut50 cutd cutso cutd cut oo cutd cuts0 cutd cuts0 cutd cut50 cutd cuts0 cutd cuts0 020
(e) cfg3h dataset; marginal distribution (f) cfg3h dataset; marginal distribution - ground truth
- o o orpos L e - - orro0s -
» T . o2
i |m *: |m ! lu} i |u. Ji] i J] ! |n} i ||n lu‘ i 05 | ‘ | e
i : | 50
g : ‘ } ‘ l ‘ ‘ : } } . g -
2 f] 2 |
H A e i -
g i i ! ™ £,
H i ' : i | | 1 H ‘ oo
% l :‘[‘] i“ “ I“ “ E‘l ‘| i : %200 -
! ™ s
1 1R AT T T
o a0 wo s wo o o aso w0 wso a0 w w0
(g) cfg3g dataset; marginal distribution (h) cfg3g dataset; marginal distribution - ground truth
o1pos e o - - - o
D = - - - 0 i i n iy ; 0.20
i i 08 1 1 1 1 |
: : : : o
50 07 o] ! ! ! ! I
5 o6 H i i i i 1
a a i i i i | 000
2 04 8 1 I i i |
5 150- 20 ' | i i i i 1
2 03 i i i i i | oo
a a2 1 1 1 1 |
® 200 02 ® 200 ! ! ! : | 010
" : : : : o =
250- o 250 i : i : .
wo o o s w0 wso a0 w o owo s
(1 cfg3f dataset; Inargmal distribution (j) cfg3f dataset; marginal distribution - ground truth

Figure 17: Marginal distribution p(a,:) difference between a trained model and the ground-truth, for an NT/T symbol a
(column) at position ¢ (row). Figures on the left compare the marginal distribution of the ground-truth against
those generated from 5 models X 2 cut positions (¢ = 0/c = 50). Figures on the right showcase the marginal
distribution difference between them and the ground-truth. It is noticeable from the figures that GPT did not learn
cfg3g and cfg3f well. This is consistent with the generation accuracies in Figure 4.

25

Under review as submission to TMLR

D More Experiments on Results 4-5 (NT Ancestor and Boundary Probing)

D.1 NT Ancestor and NT Boundary Probing

Earlier, as confirmed in Figure 5, we established that the hidden states (of the final transformer layer) have
implicitly encoded the NT ancestor symbols s(i) for each CFG level £ and token position 4 using a linear
transformation. In Figure 18(a) in this section, we also demonstrate that the same conclusion applies to the
NT-end boundary by (). This completes Result 4.

More importantly, for by (i), we also show that this information is stored locally, very close to position 4 (such
as at ¢ = 1). Details can be found in Figure 18. In particular, note as shown in Figure 7, we confirmed that
at any NT boundary position ¢ where by(i) = 1, the transformer has also locally encoded clear information
about the NT ancestor symbol s,(i), either exactly at i or at ¢ £ 1. To be precise, this is a conditional
statement — given that it is an NT boundary, NT ancestors can be predicted. Therefore, in principle, one
must also verify that the prediction task for the NT boundary is successful to begin with. Such missing
experiments are, in fact, included in Figure 18(b) and Figure 18(c).

26

Under review as submission to TMLR

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

C@gé 100 100 100 100 100f100 100 100 100 100/100 100 100 100 100|100 100 100 100 100|100 100 100 100 10096.5

C’b@. 99.7 99.8 99.0 99.5 99.999.7 99.8 99.1 99.5 99.999.7 99.8 99.1 99.5 99.9/99.8 99.8 99.1 99.6 99.9]99.8 99.8 99.1 99.6 99.9/87.5

99.7 99.3 99.5 99.8 99.9/99.7 99.4 99.5 99.8 99.9|99.7 99.4 99.5 99.8 99.9|99.7 99.4 99.6 99.9 100{99.7 99.4 99.6 99.9 10088.1

99.8 98.0 98.2 99.2 99.7/99.8 98.3 98.5 99.4 99.8/99.8 98.2 98.5 99.4 99.8|99.7 98.3 98.6 99.4 99.8]99.8 98.3 98.6 99.4 99.8]92.1

C{q\;f 100 98.398.8 99.3 99.7/100 98.8 99.0 99.5 99.8/ 100 98.8 99.1 99.5 99.8/100 98.9 99.2 99.6 99.8/100 98.8 99.1 99.5 99.8/91.7

100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100

99.599.9 100 100 100}99.6 100 100 100 100/99.6 100 100 100 100|99.7 100 100 100 100{99.7 100 100 100 100

predict NT-end boundary (%)
el
&

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

(a) Predicting NT boundaries: the column NTy for £ = 2, 3,4, 5,6 represents the accuracy of predicting b, using the multi-
head linear probing function described in (4.2).

—\? GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)
;A o3, 95.7 100 99.699.5 99.9'95.8 100 99.699.5 99.9'95.8 100 99.699.5 99.9'95.7 100 99.699.5 99.9'95.8 100 99.699.5 99.9'96.5
s g %3, 96.596.9 97.7.99.4'96.6 97.197.898.5 99.4|96.6 97.0 97.8.99.4'96.5 97.0 97.7.99.4'96.6 97.197.898.5 99.4{37.5
g é %3, 91.395.097.899.199.6(91.595.297.999.199.6[91.5 95.297.999.199.6[91.5 95.2 97.999.199.6[91.5 95.2 97.999.1 99.6[88.1
lo
|:" 8, %31, .393.2 96. 89.393.2 96.6
zs C’Qsel 98.299.699.9 99.9 99.8/98.2 99.6 99.9 99.9 99.8/98.2 99.6 99.9 99.9 99.8/98.2 99.6 99.999.9 99.8/98.2 99.6 99.9 99.9 99.8
27 C’-@'see 96.099.099.9 100 100|96.1 99.099.9 100 100|96.0 99.099.9 100 100|96.0 99.099.9 100 100[96.199.099.9 100 100
g. NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

(b) Predicting NT boundaries with diagonal masking: the column NT, for ¢ = 2,3,4,5,6 represents the accuracy of
predicting b, using (4.2) but setting w, ;_,; = 0 for i # k.

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

&
&

99.9 100 99.6 99.6 99.9'99.9 100 99.6 99.6 99.9'99.9 100 99.6 99.6 99.9'99.9 100 99.6 99.6 99.9'99.9 100 99.6 99.6 99.9'96.5

o)
<
&

. 97.798.298.398.9 99.6'97.8 98.298.498.9 99.6'97.7 98.298.498.9 99.6|97.8 98.298.498.9 99.6|97.8 98.298.498.9 99.6|37.5

&
&

98.097.298.799.4 99.8|98.1 97.398.899.4 99.8|98.1 97.398.899.4 99.8|98.1 97.498.799.4 99.8|98.1 97.498.799.4 99.8|88.1

96.7 96.3 96.5 98.7 99.5[96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.7 98.8 99.6|92.1

o
&
& o

98.395.497.4 98.7 99.6/98.4 95.7 97.6 98.9 99.6/98.4 95.7 97.6 98.9 99.6/98.4 95.7 97.6 98.8 99.6/98.4 95.7 97.6 98.8 99.6/91.7

‘QQ
,b‘u
QL

99.9 100 100 100 99.9/99.9 100 100 100 99.9}99.9 100 100 100 99.9/99.9 100 100 100 99.9/99.9 100 100 100 99.9

(tridiagonal masking)
3

&
&
AN

98.799.7 100 100 100|98.8 99.7 100 100 100|98.8 99.7 100 100 100|98.8 99.7 100 100 100|98.9 99.7 100 100 100

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

predict NT-end boundary (%)

(c¢) Predicting NT boundaries with tridiagonal masking: the column NT} for £ = 2,3,4,5,6 represents the accuracy of
predicting by using (4.2) but setting wy ;5 = 0 for |i — k| > 1.

Figure 18: After pre-training, the NT-end boundary information — i.e., b,(z) for position ¢ and NT level £ — is largely stored
locally near the hidden state at position ¢ = 1, up to a linear transformation. This can be compared with the
prediction accuracy of the NT ancestor s4(z) in Figure 5.

Observation. This implies, the transformer actually knows, with a very good accuracy, that “position ¢ is already
the end of NT on level £”, by just reading all the texts until this position (possibly peeking one more to its right).
Remark 1. It may be mathematically necessary to peek more than 1 tokens to decide if a position 4 is at an NT
boundary, due to CFG’s ambiguity. But, in most cases, that can be decided quite early.

Remark 2. Predicting NT boundary is a very biased binary classification task. For levels ¢ that are close to the
CFG root, most symbols are not at NT boundary for that level ¢ (see Figure 2). For such reason, in the heatmap
color of the figures above, we have normalized the columns with respect to NT2..NT6 differently, to reflect this bias.

27

Under review as submission to TMLR

D.2 NT Probing Across Transformer’s Layers

As one may image, the NT ancestor and boundary information for smaller CFG levels ¢ (i.e., closer to
CFG root) are only learned at those deeper transformer layers I. In Figure 19, we present this finding by
calculating the linear encoding accuracies with respect to all the 12 transformer layers in GPT and GPT,. We
confirm that generative models discover such information hierarchically.

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

Ay,

97.3 87.7 79.5

o
97.5 88.7 81.1 97.8 90.6 83.0
98.5 95.5 91.9 81.9 80.7

99.1 98.3 97.0 92.0 92.7|84.7

98.3 93.9 89.2 82.1 79.4/99.3 99.0 98.5 95.6 96.0|84.7

a5
CPS

100 97.7 95.0 92.8 93.3

By
/.9,,5 99.9
g 100
5 100

98.6 95.5 91.9 85.8 82.8]99.5 99.4 99.3 97.7 97.8|84.7
98.8 97.1 95.2 90.8 89.5/99.5 99.6 99.5 98.7 98.9|84.7
99.2 98.5 97.7 94.6 94.8/99.6 99.6 99.6 99.1 99.6|84.6
99.4 99.3 99.1 97.4 97.8]99.6 99.7 99.6 99.2 99.8/|84.5
99.6 99.6 99.5 98.9 99.3/99.6 99.7 99.6 99.3 99.8/|84.6

99.6 99.7 99.6 99.2 99.7

/61,11 100 97.8 94.1 86.7 82.3| 100 97.7 94.9 92.9 93.7
/‘31/1? 100 97.6 94.3 88.4 85.9|100 97.5 94.8 92.9 93.5
NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

99.6 99.7 99.6 99.2 99.8/84.7
99.6 99.7 99.6 99.2 99.7/84.6

predict NT ancestor (%) across layers
n

99.6 99.7 99.6 99.2 99.7,

(a) Predict NT ancestors, comparing against the GPT,,,q baseline

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

99.3 99.1 98.2 98.8

99.7 99.8 99.0 99.4 99.8

By,
/"J'e 100
5 100
/tiyq 100
5 100
CI
5 100

predict NT-end boundary across layers

/ey& 100 98.2 97.6 100 98.9 99.0 99.4 99.8 99.4 99.4 98.5 99.0 99.6{99.7 99.8 99.0 99.5 99.9
/GJ,Q 100 98.4 98.4 100 98.9 99.1 99.5 99.8 99.5 99.6 98.8 99.2 99.8/99.7 99.8 99.1 99.6 99.9
/QJ’JO 100 98.5 98.7 98.9 100 98.9 99.1 99.5 99.8 99.6 99.7 99.0 99.4 99.9/99.8 99.8 99.1 99.6 99.9
/‘91/11 100 98.5 98.9 99.3 99.7|100 98.9 99.1 99.5 99.8 99.7 99.8 99.1 99.5 99.9/99.7 99.8 99.1 99.6 99.9
/‘91/12 100 98.3 98.8 99.3 99.7|100 98.8 99.0 99.5 99.8 99.7 99.8 99.0 99.5 99.9/99.7 99.8 99.1 99.5 99.9

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

(b) Predict NT boundaries, comparing against the GPT,,,g baseline

Figure 19: Generative models discover NT ancestors and NT boundaries hierarchically.

28

Under review as submission to TMLR

D.3 NT Predictions Across Training Epochs

Moreover, one may conjecture that the NT ancestor and NT boundary information is learned gradually as
the number of training steps increase. We have confirmed this in Figure 20. We emphasize that this does not
imply layer-wise training is applicable in learning deep CFGs. It is crucial to train all the layers together,
as the training process of deeper transformer layers may help backward correct the features learned in the

lower layers, through a process called “backward feature correction” (Allen-Zhu & Li, 2023).

o 100
I5 100
2p 100
25 100
3p 100
35 100
9p 100
45 100

predict NT (GPT)

93.2
95.2
96.1
96.5
96.8
97.0
97.1
97.1

79.7
83.4
86.0
87.5
88.5
89.4
90.1

74.7

100
100
100
100
100
100

predict NTend (GPT)

98.0
98.2
98.4
98.4
98.4

97.2
97.9
98.3
98.4
98.5

98.7

99.5

100
100

predict NT (GPT_rel)

96.2
96.8

86.8
91.7

79.7

100

predict NTend (GPT_rel)

98.5
98.6

98.5
98.8

98.7
99.1

99.6

100

97.0

92.7

85.3

80.0

100

98.6

98.8

99.3

99.7

100

97.1

93.2

87.5

83.4

100

98.7

98.9

99.4

99.7

100

97.2

93.6

88.9

86.0

100

98.7

98.9

99.4

99.8

100

97.2

93.7

89.7

87.8

100

98.7

98.9

99.4

99.8

100

98.4

98.5

98.8

99.5

100

97.4

94.1

90.6

89.3

100

98.7

98.9

99.4

99.8

100

98.5

98.6

98.8

99.5

100

97.3

94.0

90.8

90.1

100

98.7

98.9

99.4

99.8

100

98.4

98.6

98.9

99.5

100

97.4

94.0

91.1

91.0

100

98.7

98.9

99.4

99.8

Sp 100

97.2

90.6

76.3

100

98.5

98.6

98.9

99.6

100

97.4

94.1

91.3

91.4

100

98.7

98.9

99.4

99.8

S5 100

97.3

91.0

77.6

100

98.4

98.7

99.0

99.6

100

97.4

94.2

91.5

91.7

100

98.7

99.0

99.5

99.8

6p 100

97.2

91.4

78.8

100

98.4

98.7

99.0

99.6

100

97.3

94.3

91.6

91.8

100

98.8

99.0

99.5

99.8

65 100

97.3

91.8

79.8

100

98.4

98.7

99.0

99.6

100

97.4

94.3

91.7

92.0

100

98.7

99.0

99.5

99.8

20 100

97.4

92.1

80.5

100

98.4

98.7

99.0

99.6

100

97.5

94.4

91.7

92.3

100

98.8

99.0

99.5

99.8

Zs 100

97.4

92.4

81.2

100

98.4

98.7

99.1

99.6

100

97.4

94.3

91.8

92.5

100

98.8

99.0

99.5

99.8

8 100

97.5

92.7

82.2

100

98.4

98.7

99.1

99.6

100

97.5

94.4

91.9

92.5

100

98.8

99.0

99.5

99.8

& 100

97.3

92.7

82.6

100

98.3

98.7

99.1

99.6

100

97.5

94.5

92.1

92.5

100

98.8

99.0

99.5

99.8

9 100

973

92.9

83.3

100

98.4

98.7

99.1

99.7

100

G753

94.5

92.1

92.5

100

98.8

99.0

99.5

99.8

9s 100

97.5

93.0

83.9

80.3

100

98.4

98.7

1) 1l

99.7

100

97.4

94.4

92.2

93.0

100

98.7

99.0

99.5

99.8

20p) 100

97.5

93.3

84.4

80.5

100

98.4

98.7

99.2

99.7

100

97.5

94.5

92.3

93.0

100

98.8

99.0

99.5

99.8

100

97.5

93.3

84.7

80.8

100

98.4

98.8

99.2

99.7

100

97.5

94.5

92.3

93.0

100

98.8

99.0

99.5

99.8

22p 100

97.5

93.3

85.0

81.6

100

98.3

98.7

99.2

99.7

100

97.5

94.5

92.2

92.9

100

98.7

99.0

99.5

99.8

225 100

97.5

93.4

85.3

81.5

100

98.4

98.8

99.2

99.7

100

97.4

94.4

92.2

92.8

100

98.8

99.0

99.5

99.8

25, 100

97.6

93.5

85.6

82.4

100

98.4

98.8

99.2

99.7

100

97.5

94.5

92.2

92.9

100

98.8

99.0

99.5

99.8

225 7100

97.6

93.8

86.2

82.8

100

98.4

98.8

99.2

99.7

100

97.6

94.8

92.6

93.3

100

98.8

99.0

99.5

99.8

435 100

97.5

93.7

86.4

83.1

100

98.4

98.7

99.2

99.7

100

97.4

94.6

92.6

93.1

100

98.7

99.0

99.5

99.8

235 100

97.6

93.8

86.7

83.3

100

98.4

98.8

99.2

99.7

100

97.5

94.7

92.4

93.1

100

98.7

99.0

99.5

99.8

29, 100

97.5

93.6

86.5

83.6

100

98.3

98.8

99.2

99.7

100

97.5

94.6

92.6

93.3

100

98.7

99.0

99.5

99.8

295 100

97.6

93.8

86.7

83.5

100

98.4

98.8

99.2

99.7

100

97.5

94.7

92.9

93.4

100

98.7

99.0

99.5

99.8

45, 100

97.6

93.8

87.0

83.8

100

98.4

98.8

99.2

99.7

100

97.5

94.7

92.7

93.4

100

98.8

99.0

99.5

99.8

255 7100

97.6

93.9

87.1

84.7

100

98.4

98.8

99.2

99.7

100

97.5

94.6

92.5

93.0

100

98.8

99.0

99.5

99.8

predict NT ancestor/boundary (%) across training epochs
~N
Q
O

26, " 100

97.6

94.0

87.1

84.5

100

98.4

98.8

99.3

99.7

100

97.6

94.7

92.5

93.0

100

98.8

99.0

99.5

99.8

265 100

97.6

94.0

87.8

85.0

100

98.4

98.8

99.3

99.7

100

97.5

94.6

92.7

93.3

100

98.8

99.0

99.5

99.8

<>, 7100

97.5

94.1

87.8

85.3

100

98.4

98.8

€23

99.7

100

97.4

94.7

92.8

93.5

100

98.7

99.0

99.5

99.8

45 100

97.6

94.1

87.9

85.4

100

98.4

98.8

99.3

99.7

100

G753

94.7

92.6

93.2

100

98.8

99.0

99.5

99.8

28, 100

97.6

94.1

87.9

85.3

100

98.4

98.8

Cfe) 5}

99.7

100

97.6

94.7

92.5

93.2

100

98.8

99.0

99.5

99.8

285 7100

97.6

94.2

88.1

85.5

100

98.3

98.8

99.3

99.7

100

97.5

94.7

92.7

93.4

100

98.8

99.0

99.5

99.8

29, 100

97.6

94.3

88.2

85.6

100

98.4

98.8

99.3

99.7

100

97.5

94.8

92.8

93.6

100

98.8

99.0

99.5

99.8

295 7100

97.6

94.2

88.3

86.0

100

98.4

98.8

99.3

99.7

100

97.5

94.8

92.8

93.5

100

98.8

99.0

99.5

99.8

20p " 100

97.7

94.2

88.2

85.7

100

98.4

98.8

99.3

99.7

100

97.5

94.7

92.7

93.3

100

98.8

99.0

99.5

99.8

NT6

Figure 20: Generative models discover NT ancestors and NT boundaries gradually across training epochs (here 1 epoch equals
500 training steps). CFG levels closer to the leaves are learned faster, and their accuracies continue to increase
as deeper levels are being learned, following a principle called “backward feature correction” in deep hierarchical
learning (Allen-Zhu & Li, 2023).

NT5

NT4

NT3

NT2

NT6

NT5

NT4

NT3

NT2

29

NT6

NT5

NT4

NT3

NT2

NT6

NT5

NT4

NT3

NT2

Under review as submission to TMLR

E More Experiments on Results 6-9 (Attention Patterns)

E.1 Result 6: Position-Based Attention Pattern

Recall from Section 5.1 that we asserted the transformer’s attention weights are primarily influenced by
the relative distance of the tokens. This remains true even when trained on the CFG data with absolute
positional embedding. We omitted the details in the main body due to space constraints, but we will provide
them now.

Formally, let A; 1, j_,i(x) for j > i represent the attention weight for positions j — ¢ at layer | and head h of
the transformer, on input sequence x. For each layer [, head h, and distance p > 0, we compute the average
of the partial sum), ..., A n j—i(x) over all data x and pairs i, j with j —i = p. We observe a strong
correlation between the attention pattern and the relative distance p = j — i. The attention pattern is also
multi-scale, with some attention heads focusing on shorter distances and others on longer ones. We plot this
cumulative sum for different I, h, p in Figure 21 in both GPT/GPT, for various datasets.

30

Under review as submission to TMLR

distance p = |j-i|
130 150 170 190 210 230 250 270 290

distance p = |j
130

150 170

110

position-based attention pattern
position-based attention pattern
for GPTrel over cfg3b data

(a) GPT on cfg3b (b) GPT, on cfg3b

distance p = |
1

il distance p = |j
30 150 170 190 210 230 250 270 290 130

150 170

110

attention pattern
er cfg3i data

o2

(c) GPT on cfg3i (d) GPT, on cfg3i

distance p = |j:
110 130 150 170 190

distance p = |j-i|
130 150 170 190

£ w e
4 4 N
£ o 2 08 £ g 08
T8 4 ek 4
n.§ /‘% 23 jyg E
52 o 55 o
29 ‘s 0.6 ¥ gx N 0.6
2% « g lo, Tk
% Y % 5
4 > /%
o3 o8 04
@d 4, 04 o=y
o Ve ng U
-9 =
1Y //% L /’%7
85 Mo 02 Sy % 02
B* 4 56 4
.g 2, .g, 42,
a /6}19 a 16*12

(e) GPT on cfg3h (f) GPT,e on cfg3h

distance p = [j-i|
110 130 150 170 190

distance p = |j-i|
3 150 170 190 210 230

n-based attention pattern

'or GPT over cfg3g data
>
S
°
S
n-based attention pattern

- ° < P

2 2 s e
position-based attention pattern

for GPTrel over cfg3i data

> & &
SS9 @ @@ @@
FLEESTSTS ST SN

° ° ° o

2 2 B 2

for GPTrel over cfg3g data

(g) GPT on cfg3g (h) GPT, on cfg3g

distance p = |j li

110 130 150 170 190

distance p
30 150 170

£ A £ A
S Ayl g s
o s

£q . 2 0.8 te 2 0.8
2L A 85 % -
52 9 55

- 4
23 s 06 2L A 0.6
8C 4] lay,
£ 5 /‘% £ E /%7
-2 W 50 U
@0 04 935 % 04
O U 0w Yy
aE ol
26 25
£/ €0 4
88 Wy 02 S Uy, 02
2% 4, & 4y,]
2 % 2,
H 9 %,
2, 2N

(i) GPT on cfg3f (j) GPT,e on cfg3f

Figure 21: Position-based attention pattern. The 12 rows in each layer represent 12 heads. Observations. The attention
pattern is multi-scale: different heads or layers have different dependencies on p.

31

Under review as submission to TMLR

E.2 Result 7: From Anywhere to NT-ends

Recall from Figure 8(a), we showed that after removing the position-bias By 5 j—i(z) := Ay p j—i(x)— A pj—is
the attention weights have a very strong bias towards tokens i that are at NT ends. In Figure 22 we
complement this experiment with more datasets.

headl head2 head3 headd head5 head6 head7 head8 head9headl0 headll headl2 headl head2 head3 headd headS headé head7 head8 head9headl0 headll head12

€8 o £ B
Ot e 0.06 o o] 0.02
BT ™ i 58
€0, €3
3 m - Eﬁ 008 S m J'j 0.02
B> Lo,
L~ i3 LR]
—~ O A e 0.04 ~ Y 4
N -
N E ‘g s N Q “s 0.01
+ S] H s
4 4
T o ™ El” 5o
C - i = 4
iz . 0.01
ce - SE
SkE % SkE %
iy . N %, et =o g,
T2 (G] 0.00
T0O e M 0.01 T
D D%
he o
&S 0 4, i S W 4,
< T2 0.00 ? 0.00
-21012-21012-211012-2-1012-21012-2-1012-2-1012-2-1012-21012-2-1012-211012-2-101 2 -21012-21012-2-1012-211012-211012-21012-2-1012-2-1012-2-1012-21012-2-1012-211012 B
(a) cfg3b dataset (b) cfg3i dataset
headl head2 head3 head4 head5 head6é head7 head8 head9 headl0headll headl2 headl head2 head3 head4 head5 headé head7 head8 head9 headl0 headll headl2
© ©
< 8 % < o %
[«] o 0.01
= 0 4, 0.04 =8 “y,
‘E T -E T
0 » 0O 0.01
£ - £5¢
Yy Yy
O y= P 0.03 C y= . 0.01
— O —~ O s
N ., N ow
Q ¥ Q 0.00
+ S + 4
/3 /3
58 > w58
C o 4%, [4, 0.00
Lee s oL
2 /3
s = 2 = = % 0.00
T& " T
é w % é o %y, 0.00
&S & 4, & & 4,
21012-241012-241012-21012-21012-241012-241012-21012-2.1012-221012-211012-2101 2 0.00 21012-241012-21012-21012-211012-241012-21012-21012-21012-211012-21012-21012 0.00

(c) cfg3h dataset (d) cfg3g dataset

headl head2 head3 headd head5 head6 head7 head8 head9headl0 headllhead12

g E “ 0.05
- (T %,
£
[T~ A5
el m 0.04
i
Y
—~ Y Ay
[o VIR ™
N 0 “ 0.03
38 >
C = 0.02
o
QL
=B
<o,
1 (U] %0 0.01
>ﬁ - /%71
5 &
Y 9y,
0.00

210122101221012-21012-21012-210122101221012-21012-21012-2101221012

(e) cfg3f dataset

Figure 22: Attention weights By j, j_;(x) averaged over data x and pairs 4, j such that i+4 is at the NT-end in level £ of the CFG.
In each cell, the four rows correspond to levels £ = 2,3,4,5, and the five columns represent § = —2, —1,0,+1, +2.

Observation. Attention is largest when § = 0 and drops rapidly to the surrounding tokens of 1.

32

Under review as submission to TMLR

E.3 Result 8: From NT-ends to NT-ends

As mentioned in Section 5.2 and Figure 8(b), not only do tokens generally attend more to NT-ends, but
among those attentions, NT-ends are also more likely to attend to NT-ends. We include this full experiment
in Figure 23 for every different level £ = 2,3,4,5, between any two pairs j — ¢ that are both at NT-ends for
level ¢, for the cfg3 datasets.

33

Under review as submission to TMLR

M2 b3 hé hs he K7 he h9 h10 NI h2 M2 b3 hé hs he K7 he h9 h10 NI M2 M2 b3 hé hs he K7 he h9 h10 NI M2 M2 h3 hé hs he K7 he h9 h10 NI h2

for GPTrel over cfg3b data
for GPTrel over cfg3b data
for GPTrel over cfg3b data
for GPTrel over cfg3b data

(NTends + 1)»(NTends + 1) attention

(NTend, + 1)»(NTend, + 1) attention

(NTends + 1)»(NTends + 1) attention

(NTend, + 1)»(NTend, + 1) attention

(a) cfg3b on level £ =2 (b) cfg3b on level £ =3 (c) cfg3b on level £ =4 (d) cfg3b on level £ =5

Ml oh2 b3 ne hs he K7 ke ho KO ML W2 Ml oh2 b3 ne hs he K7 ke ho KO ML W2 M oh2 b3 ne hs he b7 ke ho KO ML W2 M oh2 b3 ne hs he b7 ke ho KO ML W2

for GPTrel over cfg3i data

for GPTrel over cfg3i data
(NTends + 1)»(NTends = 1) attention

for GPTrel over cfg3i data

(NTends + 1)»(NTends = 1) attention
for GPTrel over cfg3i data
(NTends + 1)»(NTends = 1) attention

(NTend, + 1)-(NTend, * 1) attention

(e) cfg3ion level £ =2 (f) cfg3ion level £ =3 (g) cfg3ion level £ =4

M on2 b3 ne hs h6 K7 ke 9 hO ML M2 M on2 b3 ne hS h6 K7 ke 9 hO ML M2 M on2 b3 ne hs h6 K7 ke 9 hO ML M2

for GPTrel over cfg3h data
for GPTrel over cfg3h data
for GPTrel over cfg3h data
. for GPTrel over cfg3h data

(NTend; + 1)=(NTend, + 1) attention
(NTends + 1)=(NTend; + 1) attention
(NTend, + 1)=(NTend, + 1) attention
(NTends + 1)=(NTends + 1) attention

(i) cfg3h on level £ =2 (j) cfg3h on level £ =3 (k) cfg3h on level £ =4 (1) cfg3h on level £ =5

Mh2 b3 he hs K6 K7 h h9 KO Ml b2 Mh2 b3 he hs K6 h7 8 h9 KO Ml b2 Mh2 K3 he hs K6 h7 8 h9 KO Ml b2 Mh2 K3 he hs K6 h7 8 h9 KO Ml b2

for GPTrel over cfg3g data
for GPTrel over cfg3g data
for GPTrel over cfg3g data
for GPTrel over cfg3g data

(NTends + 1)»(NTends + 1) attention

(NTends + 1)»(NTend, + 1) attention

(NTends + 1)»(NTend; + 1) attention

(NTend, = 1)»(NTend, + 1) attention

(m) cfg3g on level £ =2 (n) cfg3g on level £ =3 (o) cfg3g on level £ =4 (p) cfg3g on level £ =5

WL K2 K3 ha hs b6 W7 b h9 hID WL b2 WL h2 K3 ha hs b6 W7 e h9 KD WL b2 WL h2 K3 ha hs b6 W7 e h9 hID WL b2 WL K2 K3 ha hs b6 W7 b h9 KD WL b2

(NTends + 1)-(NTends * 1) attention
for GPTrel over cfg3f data

(NTend, + 1)»(NTend, + 1) attention
for GPTrel over cfg3f data
(NTends + 1)»(NTend; * 1) attention
for GPTrel over cfg3f data
(NTends + 1)»(NTend, * 1) attention
for GPTrel over cfg3f data

(q) cfg3f on level £ =2 (r) cfg3f on level £ =3 (s) cfg3f on level £ =4 (t) cfg3f on level £ =5

Figure 23: Attention pattern By j_;(x) averaged over data x and pairs 4,j such that i 4+ 61 and j + d2 are at the NT-end
boundaries in level £ of the CFG. In each block, the three rows correspond to ;1 = —1,0,+1 and the three columns
correspond to 2 = —1,0,+1.

Observation. Different transformer layer/head may be in charge of attending NT-ends at different levels ¢. Also,
it is noticeable that the attention value drops rapidly from §; = +1 to ;1 = 0, but less so from d3 = +1 to d2 = 0.
This should not be surprising, as it may still be ambiguous to decide if position j is at NT-end until one reads few
more tokens (see discussions under Figure 18).

34

Under review as submission to TMLR

E.4 Result 9: From NT-ends to Adjacent NT-ends

In Figure 8(c) we have showcased that B; j—i(x) has a strong bias towards token pairs i,j that are “adja-
cent” NT-ends. We have defined what “adjacency” means in Section 5.2 and introduced a notion ij;‘};f,‘ﬂ,,
to capture By ;, j—i(z) averaged over samples = and all token pairs ¢, j such that, they are at deepest NT-ends
on levels £, ¢/ respectively (in symbols, b%(i) = £ Ab¥(j) = ¢'), and of distance r based on the ancestor indices

on level £ (in symbols, pe(j) — pe(i) =1).

Previously, we have only presented by Figure 8(c) for a single dataset, and averaged over all the transformer
layers. In the full experiment Figure 24 we show that for more datasets, and Figure 25 we show that for
individual layers.

2 RO AL SO

r=o NS

7

_‘
I
IS

_‘
Il
<]

r=12

r=16

for GPTrel over cfg3h data

NTend,;—»NTend, attention pattern
for GPTrel over cfg3i data
NTend,;—»NTend, attention pattern

(a) cfg3i (b) cfg3h

r—o NI

_‘
Il

-

N

r=16 r=16

for GPTrel over cfg3g data
for GPTrel over cfg3f data

NTend;—NTend, attention pattern
NTend,;—»NTend, attention pattern

(c) cfg3g (d) cfg3f

Figure 24: Attention pattern B?I;Ld;il‘zdr

rows represent r. “xX” means empty entries.

(z) averaged over layers [, heads h and data z. The columns represent ¢/ — ¢ and the

Remark. We present this boundary bias by looking at how close NT boundaries on level ¢ attend to any other NT
boundary on level £. For some distances r, this “distance” that we have defined may be non-existing. For instance,
when £ > ¢/ one must have » > 0. Nevertheless, we see that the attention value, even after removing the position
bias, still have a large correlation with respect to the smallest possible distance r, between every pairs of NT levels
£,¢'. This is a strong evidence that CFGs are implementing some variant of dynamic programming.

Under review as submission to TMLR

layl lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 layll layl2

layl lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 layll lay12

layl lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 layl0 layll lay12

layl lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 layll lay12

(d) cfg3f

Figure 25: Attention pattern Blef;Ld;’i"[dr (z) for each individual transformer layer I € [12], averaged over heads h and data z.

The rows and columns are in the same format as Figure 24.

Observation. Different transformer layers are responsible for learning “NT-end to most adjacent NT-end” at
different CFG levels.

36

Under review as submission to TMLR

F More Experiments on Result 10 (Implicit CFGs)

We study implicit CFGs where each terminal symbol ¢ € T is is associated a bag of observable tokens OT;.
For this task, we study eight different variants of implicit CFGs, all converted from the exact same cfg3i

dataset (see Section B.1). Recall cfg3i has three terminal symbols |T| = 3:

« we consider a vocabulary size |OT| = 90 or |OT| = 300;

o we let {OT;}icT be either disjoint or overlapping; and

o we let the distribution over OT; be either uniform or non-uniform.

We present the generation accuracies of learning such implicit CFGs with respect to different model architec-
tures in Figure 26, where in each cell we evaluate accuracy using 2000 generation samples. We also present
the correlation matrix of the word embedding layer in Figure 11 for the GPT,e model (the correlation will be

similar if we use other models).

GPT -
GPT_rel -
GPT_rot -

GPT_pos -
GPT_uni -

disjoint |vocab|=90

disjoint |vocab|=300

overlap |vocab|=90

overlap |vocab|=300

98.7 99.4 99.0 99.2 |100.0 100.0 100.0 98.1 100.0 100.0 100.0 100.0
99.3 99.7 99.0 98.9 |100.0 100.0 989 99.1 | 97.8 97.9 . . 100.0 100.0 100.0 100.0
99.2 995 99.0 98.4 |100.0 100.0 98.6 99.0 | 96.4 95.9 100.0 100.0 100.0 100.0
99.2 994 984 99.2 | 100.0 100.0 96.6 96.4 91.3 100.0 100.0 100.0 99.7
99.7 99.6 984 99.0 | 100.0 100.0 92.9 100.0 100.0 99.9 100.0
CUt0 cut50 cutd cutS0 cutd cut50 cutd cutS0 cutd cutS0 cutd cutS0 cutd cutS0 cutd cut50
uniform non-uniorm uniform non-uniorm uniform non-uniorm uniform non-uniorm

Figure 26: Generation accuracies on eight implicit CFG variants from pre-trained language models.

37

Under review as submission to TMLR

G More Experiments on Results 11-13 (Robustness)

Recall that in Figure 10, we have compared clean training vs training over three types of perturbed data,
for their generation accuracies given both clean prefixes and corrupted prefixes. We now include more
experiments with respect to more datasets in Figure 27. For each entry of the figure, we have generated
2000 samples to evaluate the generation accuracy.

re-training method
NT-level 0.1 random perturbation T-level (?.15 random perturbation NT-level 0.05 deterministic permutation
cutd t=0.1- 100 100 100 100 100 100 100 100 100 100'100 100 100 100 100 100 100 100 100 100'99.8 100 100 100 100 100 100 100 100 100|100
cutd t=0.2-98.7 100 100 100 100 100 100 100 100 100}99.2 99.9 100 100 100 99.9 100 100 100 100{98.5 100 100 100 100 100 100 100 100 100
cuto t=1 24.7 39.8 0.0 14.1 22.8 35.3 44.9 0.0 14.7 .2 81.5 91.8
corrupted cut50 T=0.1-78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9|82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8
corrupted cut50 t=0.2 -77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9/81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4
corrupted cut50 T=1 05 03 0.6 04 05 07 0.0 04 03 05 06 07 06 0.0 0.1
cut50 t=0.1- 100 100 100 100 100 100 100 100 100 100|100 100 100 100 100 100 100 100 100 100 /99.4 100 100 100 100
cut50 t=0.2-99.2 100 100 100 100 100 100 100 100 100[99.6 100 100 100 100 100 100 100 100 100[98.4 100 100 100 100 100 100 100 100 100|100
cut50 T:1m91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99,4&92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7h83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3|99.9
1.0 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 01 1.0 09 08 07 0.6 05 04 03 0.2 0.1 clean

100 100 100

generation acc (%) for cfg3b

(a) cfg3b dataset

e-training method
NT-level 0.1 random perturbation T-level (;’.15 random perturbation NT-level 0.05 deterministic permutation

cuto t=0.1-99.0 99.9 99.8 99.7100.099.7 99.6 99.3 99.1 9&4'98‘0 98.8 99.4 99.5 99.4 99.6 99.3 98.9 99.3 99.7'99.6 98.4 99.4 99.8 99.4 98.3 99.6 97.9 99.6 98.5(97.7
cutd t=0.2-95.0 99.6 99.4 98.7 99.2 98.8 99.2 98.9 98.7 99.4/96.5 98.1 99.2 99.2 99.2 98.7 98.7 98.2 98.8 99.4/98.9 97.8 99.2 99.3 98.8 98.6 98.9 98.2 98.4 98.2

[ENGRSSE 0.0 13.6 25.9 36.2 0.0 14.7 25.1 33.8 46.4 0.0 17.2
corrupted cut50 t=0.1 71.9 75.1 73.2 72.9 46.4 47.6 48.2 46.4
corrupted cut50 1=0.2 {71.3 73.3 72.0 72.3 46.1 46.7 49.6 47.0
00 04 06 07 03 05 09 06 04 07 00 05 05 05 03 06 04 05 04 04 00 03 O. .4 04 06 06 04
99.1100.099.9 99.9 99.1 99.9 99.2 99.4 99.7 98.4
cut50 t=0.2 -96.0 99.7 99.9 99.4 99.6 99.7 99.5 99.3 99.1 99.2/97.7 99.0 99.6 99.7 99.5 99.8 99.4 98.7 99.4 99.7[99.2 98.8 99.4 99.8 99.5 99.7 99.7 99.2 99.4 99.1|98.6
cut50 r=1m90.1 94.4 96.6 97.6 98.9 98.8 98.7 99.7 99.4h93.3 95.8 96.7 97.9 99.0 99.2 99.2 99.2 99.1&85.1 90.3 94.5 96.2 97.2 97.3 98.6 99.0 99.3|99.9
1.0 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 0.2 0.1 clean

corrupted cut50 t=1
cut50 1=0.1 -

99.3 98.8

generation acc (%) for cfg3i

(b) cfg3i dataset

e-traini method-------
NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation
cuto T=0.1 89.0 98.0 98.1 97.5 94.9 96.9 98.0 98.4 9&1'95‘2 97.1 99.2 99.1 99.6 99.2 98.2 99.5 99.0 98.2'88.9 98.6 98.6 99.1 99.0 99.3 99.2 98.6 98.5 98.7|97.2
cut0 1=0.2 93.1 98.3 98.7 98.8 97.9 98.7 99.4 98.9 99.1|83.4 97.3 98.5 98.9 99.2 99.1 99.1 99.4 98.7 99.1|72.1 98.6 98.7 99.1 99.1 99.6 99.2 99.3 98.9 99.0/99.0

cut0 =1 Je8 22.0 34.3 46.4 71.3 83.8 91.5 NUEERW) 34.3 43.0 76.8 83.6 91.3 JREEEWAVIK:Y
corrupted cut50 t=0.1 43.1 41.5 43.3 39.5 45.9 41.7 43.4 41.0 49.4 47.0 35.4 37.2 36.3 35.3 33.9 36.6 36.6 37.0

corrupted cut50 1=0.2 34.1 32.0 32.5 33.4 37.0 35.1 35.5 34.2 44.3 43.4 46.6 43.3 48.1 46.6 47.2 48.8 41.6 27.3 29.9 29.5 28.5 27.2 30.7 30.4 30.1
corrupted cut50 t=1 A 03 06 04 07 1.0 05 08 0.6 0.0 0.7 0.8 03 07 00 14 01 06 00 05 13 1.0 08 04 09 08 04
cut50 t=0.1 .3 98.9 98.5 98.7 96.1 98.0 99.2 99.0 98.8|92.9 98.6 99.3 99.7 99.3 99.3 99.0 99.4 99.3 98.6|87.6 98.8 99.4 99.8 99.2 98.9 99.5 98.9

99.4 99.5
92.1 95.9

99.5 98.9 98.9 99.6 99.7 99.2
97.0 97.4 98.4 99.1 98.8 99.2

83.5 98.9 99.2 99.7 99.8 99.4 99.5 99.8 99.5 99.6|78.9 98.8 99.3 99.4 99.6 99.6 99.5 99.7 99.6 99.3/99.2
89.8 95.6 95.7 97.4 98.6 99.3 99.4 99.1 99.4 72.1 84.2 90.6 94.6 97.0 97.4 98.6 98.4 98.9/99.9

1.0 09 08 07 06 05 04 03 02 01 1.0 09 0.8 07 06 05 04 03 02 01 1.0 09 08 07 0.6 05 04 03 0.2 0.1 clean

cut50 1=0.2
cut50 T=1

generation acc (%) for cfg3h

(c) cfg3h dataset

Figure 27: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean or corrupted
prefixes with cuts ¢ = 0 or ¢ = 50, using generation temperatures 7 = 0.1,0.2, 1.0.

Observation 1. In Rows 4/5, by comparing against the last column, we see it is beneficial to include low-quality
data (e.g. grammar mistakes) during pre-training. The amount of low-quality data could be little (v = 0.1 fraction)
or large (every training sentence may have grammar mistake).

Observation 2. In Rows 3/6/9 of Figure 10 we see pre-training teaches the model a mode switch. When given a
correct prefix it is in the correct mode and completes with correct strings (Row 9); given corrupted prefixes it always
completes sentences with grammar mistakes (Row 6); given no prefix it generates corrupted strings with probability
v (Row 3).

Observation 3. Comparing Rows 4/5 to Row 6 in Figure 10 we see that high robust accuracy is achieved only
when generating using low temperatures 7. Using low temperature encourages the model to, for each next token,
pick a more probable solution. This allows it to achieve good robust accuracy even when the model is trained totally
on corrupted data (v = 1.0).

38

Under review as submission to TMLR

(a) the real-life CFG derived from Penn Treebank, short and simple

INVIV. VI VIV @N
MAANNAANANANAANNAANA A NAAANARNANNAAAANANANANANNANNAANAAANANRNNNANAAAAAANAANNANAN AAAARMAAARNAANANAAAANANANARAANNANAAARNAAAANNAAARNARAANAANAAANAAAANKAARANANANEAARNARA

(b) the cfg3 family we used in the main body of this paper has rule lengths 2 or 3 (cfg3f in this figure)

Kﬁ O i’%; W\
AR A A AN
KNNA MEATA /S A \ m MAVR?\ ﬁhmm A A A A AN AL /\>\/\

/N AI\
AANN ANA A/T\AA/T\A/MAAAA N /T\AAA/MAAA ANN AANANA KAAAAA M\A/\/\MM\AMMMMA ANMANANAAAR “AAAAAA AMAAAARANAANANNANRNAA A ANAAA A

(c) the cfg8 family has rule lengths 1, 2, or 3 (cfg8e in this figure)

~ s == I N e
m\/\/\ﬂ\/ﬂ\ N h /\ %ﬂ\/ﬂ'\\/\ ﬂ\(ﬁ\ /\/\ﬂ\ A/('\ﬂ\/\ﬁ\/\/\ /\ﬂ>\ §>)\\ Aﬂ\/\ﬂ\/\ A/»\ mmﬁh

(d) the cfg9 family has rule lengths 1, 2, or 3 (cfg9e in this figure)

(e) the cfg0 family has max-depth 11 and rule lengths 1 or 2 (cfgOe in this figure)
Figure 28: CFG comparisons: left is a medium-length sample and right is a 80%-percentile-length sample

H Beyond the CFG3 Data Family

The primary focus of this paper is on the cfg3 data family, introduced in Section B.1. This paper does not
delve into how GPTs parse English or other natural languages. In fact, our CFGs are more “difficult” than,
for instance, the English CFGs derived from the Penn TreeBank (PTB) (Marcus et al., 1993). By “difficult”,
we refer to the ease with which a human can parse them. For example, in the PTB CFG, if one encounters

RB JJ or JJ PP consecutively, their parent must be ADJP. In contrast, given a string

3322131233121131232113223123121112132113223113113223331231211121311331121321213333312322121312322211112133221311311311
3111111323123313313331133133333223121131112122111121123331233112111331333333112333313111133331211321131212113333321211
1121213223223322133221113221132323313111213223223221211133331121322221332211212133121331332212213221211213331232233312

that is in cfg3f, even with all the CFG rules provided, one would likely need a large piece of scratch paper
to perform dynamic programming by hand to determine the CFG tree used to generate it.

Generally, the difficulty of CFGs scales with the average length of the strings. For instance, the average
length of a CFG in our cfg3 family is over 200, whereas in the English Penn Treebank (PTB), it is only 28.
However, the difficulty of CFGs may inversely scale with the number of Non-Terminal/Terminal (NT/T)
symbols. Having an excess of NT /T symbols can simplify the parsing of the string using a greedy approach
(recall the RB JJ or JJ PP examples mentioned earlier). This is why we minimized the number of NT /T
symbols per level in our cfg3b, cfg3i, cfg3h, cfg3g, cfg3f construction. For comparison, we also considered
cfg3el, cfg3e2, which have many NT/T symbols per level. Figure 4 shows that such CFGs are extremely
easy to learn.

To broaden the scope of this paper, we also briefly present results for some other CFGs. We include the
real-life CFG derived from the Penn Treebank, and three new families of synthetic CFGs (cfg8, cfg9, cfg0).
Examples from these are provided in Figure 28 to allow readers to quickly compare their difficulty levels.

H.1 The Penn TreeBank CFG

We derive the English CFG from the Penn TreeBank (PTB) dataset (Marcus et al., 1993). To make our
experiment run faster, we have removed all the CFG rules that have appeared fewer than 50 times in the
data.?3 This results in 44 T+NT symbols and 156 CFG rules. The maximum node degree is 65 (for the
non-terminal NP) and the maximum CFG rule length is 7 (for S => " 8 , " NP VP .). If one performs

23These are a large set of rare rules, each appearing with a probability < 0.2%. We are evaluating whether the generated
sentence belongs to the CFG, a process that requires CPU-intensive dynamic programming. To make the computation time
tractable, we remove the set of rare rules.

39

Under review as submission to TMLR

9,
0, 9, 90, 9, 9, 9, 9, 9, 90, 9, 9, 90, 9, 9, 9, 0, 9, 9, 0, &
Cr, Ba, Tt e, THe, e, e, e, e, e, e, o, e, Tt le, te, The le, te, Qze
o Ve Ve N N e % S Tw e us s e, e, e, Te, Te, Te, ey %6, T6,
8 90.6 | 94.8 | 97.2 | 97.6 | 944 | 97.0 | 97.8 | 97.9 | 98.7 | 99.1 | 97.1 | 98.6 | 98.9 | 99.5 | 99.6 | 99.7 | 99.7 | 99.8 99.9[
C
g"flo 78.1 | 93.0 | 958 | 98.0 | 98.3 | 947 | 97.5 | 98.2 | 98.2 | 99.1 | 99.3 | 97.2 | 98.8 | 98.8 | 99.7 | 99.7 | 99.8 | 99.8 | 99.9 | 99.9 |
)
(a) generation accuracies for cuts ¢ = 0 and ¢ = 10
9,
En s, %, g, %, e, %, e, D, %, %, g, s, . P, g, e %, %, %25
1‘1\15 1?‘16 é\q"a 1116 %\15 e\e‘b v?\"‘e S\e\ie av?e 114‘@ 6‘%\, e?\sq v?'sq a«zsq 1167 %\Sq im@q %\Sq S\&Gq qu
420" m 0.01357 0.00806 0.00435 0.00317 0.00914 0.00450 0.00299 0.00394 0.00179 0.00119 0.00505 0.00190 | 0.00220 0.00079 0.00064 0.00066 0.00052 0.00044 0.00034
a3
(b) KL-divergence
Qo,
0, 0, 9, 9, o, 0, 0, 9, 9, o, 0, 0, 9, Qo, o, 0, 0, 90, Qo, %
by, oy o, e, e, o, The, The, o, The The, Tt Tha, Tt Tt e e, e, e, 1%19
% Ve N N6 e Ne Vo TN TN o N N T N6 U6y N6 6 6y 6 6 6y
@/71-,.00 61.1 | 60.1 | 62.0 | 58.7 | 58.7 | 57.9 | 58.3 | 59.1 | 58.4 | 57.4 | 57.0 | 57.8 | 59.2 | 58.4 | 59.4 | 57.4 | 57.3 | 57.2 | 56.9 | 57.0 | 57.2
/2
Mo,
‘75'(&/.? 12K | 68K | 135K | 235K | 335K | 135K | 235K | 335K | 468K | 864K | 1.3M | 468K | 864K | 1.7M | 3.3M | 4.9M | 7.3M |10.9M|19.2M| 85.5M
e

(c) entropy and model size

Figure 29: Real-life PTB CFG learned by GPTo: of different model sizes.

9,
3
e, e, e, e, . e, P, Yor. e, Yor, P, e, P, Yo, P, Y. P, %r. Pr, o
2 7, 6 <, 6, 6 2, e, Ry he, he, TR, The, THQ vg 06, lrg teg te
e Ry R, e, Ry, Ry, R, R, s, Re, Cte, Og, (0g T0s R
1.0 02 55 343 113 47.0 97.8
1.0 03 56 341 113 47.1 97.8

Figure 30: By contrast, small GPT,ot model sizes cannot learn the cfg3f data (compare to Figure 29(a)).

binarization (to ensure all the CFG rules have a maximum length of 2), this results in 132 T+NT symbols
and 288 rules.

Remark H.1. Following the notion of this paper, we treat those symbols such as NNS (common noun, plural),
NN (common noun, singular) as terminal symbols. If one wishes to also take into consideration the bag
of words (such as the word vocabulary of plural nouns), we have called it implicit CFG and studied it in
Section A. In short, adding bag of words does not increase the learning difficult of a CFG; the (possibly
overlapping) vocabulary words will be simply encoded in the embedding layer of a transformer.

For this PTB CFG, we also consider transformers of sizes smaller than GPT2-small. Recall GPT2-small has
12 layers, 12 heads, and 64 dimensions for each head. More generally, we let GPT-¢-h-d denote an {-layer,
h-head, d-dim-per-head GPT,s (so GPT2-small can be written as GPT-12-12-64).

We use transformers of different sizes to pretrain on this PTB CFG. We repeat the experiments in Figure 4
(with the same pretrain parameters described in Appendix B.3), that is, we compute the generation accuracy,
completion accuracy (with cut ¢ = 10), the output entropy and the KL-divergence. We report the findings
in Figure 29. In particular:

o Even a 135K-sized GPT2 (GPT-2-4-16) can achieve generation accuracy ~95% and have a KL divergence
less than 0.01. (Note the PTB CFG has 30 terminal symbols so its KL divergence may appear larger
than that of cfg3 in Figure 4.)

o Even a 1.3M-sized GPT2 (GPT-6-4-32) can achieve generation accuracy 99% and have a KL divergence
on the order of 0.001.

Note that cfg3 does not contain rare rules either. Including such rules complicates the CFG learning process, necessitating a
larger transformer and extended training time. It also complicates the investigation of a transformer’s inner workings if these
rare rules are not perfectly learned.

40

Under review as submission to TMLR

GPT GPT_rel GPT_rot GPT_pos GPT_uni GPT GPT_rel GPT_rot GPT_pos GPT_uni GPT GPT_rel GPT_rot GPT_pos GPT_uni

g o g o g

S To5, 99.6 99.6/99.9 99.9/99.9 99.9/99.9 99.9[99.9 9.8 S P9, 99.9 999|999 99.999.9 99.9/99.9 99.9/100 9.9 S o, 97.4 97.5[98.9 98.8/983 984|985 98.5(98.5 98.4
% s, 99.8 99.8/100 100100 100100 100[99.9 99.9 % “og, 99.8 99.9(99.9 100[99.9 99.8{99.9 99.9]99.9 99.9 8 0, 909 91.3[96.0 95.9[94.1 93.192.9 92.892.5 925
§ “0s. 953 95299.4 99.4/99.2 99.2(98.7 98.698.8 98.8 § 9. 99.4 99.4[99.6 99.7[99.6 99.6{99.4 99.5]99.7 99.7 § %0, 995 99.6/99.6 99.7(99.6 99.6/99.7 99.7[99.6 99.6
'g g, 97.5 97.5/98.3 98.3/98.0 98.0[97.9 97.9[97.6 97.4 .4‘3 %99, 99.8 99.9/99.8 99.9[99.9 99.9[99.8 99.9[99.9 99.9 .T—E 90, 98.0 98.3/98.5 98.6[98.4 98.5[98.7 98.8/98.1 98.2
% Yos, -97.4 97.6/93.7 93.7/94.6 94.4/93.0 93.5 % 09, 96.6 96.7[99.7 99.8[99.7 99.7[99.1 98.9/98.6 98.8 % %0, 99.7 99.8[99.7 99.7[99.7 99.7(99.7 99.8[99.7 99.7
o CUEO cut20 cutd cut20 cUtd cut20 CutO cut20 cutd cut20 o CUEO cut20 cutd cut20 cUtd cut20 CutO cut20 cutd cut20 o CUEO cut20 cutd Cut20 CUtd cut20 cutd cut20 cutd cut20

Figure 31: Generation accuracies for cfg8/9/0 data family; suggesting our results also hold for unbalanced trees with len-1 rules.

e Using M = 10000 samples, we estimate the entropy of the ground truth PTB CFG is around 60 bits, and
the output entropy of those learned transformer models are also on this magnitude.

e By contrast, those small model sizes cannot learn the cfg3f data, see Figure 30.

H.2 More Synthetic CFGs

Remember that the cfg3 family appears “balanced" because all leaves are at the same depth and the non-
terminal (NT) symbols at different levels are disjoint. This characteristic aids our investigation into the
inner workings of a transformer learning such a language. We introduce three new synthetic data families,
which we refer to as cfg8/9/0 (each with five datasets, totaling 15 datasets). These are all “unbalanced”
CFGs, which support length-1 rules.?* Specifically, the cfg0 family has a depth of 11 with rules of length 1
or 2, while the cfg8/9 family has depth 7 with rules of length 1/2/3. In all of these families, we demonstrate
in Figure 31 that GPT can learn them with a satisfactory level of accuracy.

For this ICLR submission, we have included all the trees used in the supplementary materials. Below, we
provide descriptions of how we selected them.

CFGS family. The cfg8 family consists of five CFGs, namely cfg8a/b/c/d/e. They are constructed similarly
to cfg3b/i/h/g/f, with the primary difference being that we sample rule lengths uniformly from {1,2,3}
instead of {2,3}. Additionally,

o In cfgBa, we set the degree |R(a)] = 2 for every NT a; we also ensure that in any generation rule,
consecutive pairs of terminal/non-terminal symbols are distinct. The size is (1, 3,3, 3,3, 3,3).

o In cfg8b, we set |R(a)| = 2 for every NT a; we remove the distinctness requirement to make the data
more challenging than cfg8a. The size is (1, 3,3, 3,3, 3, 3).

o In cfg8c, we set |R(a)| € {2,3} for every NT a to make the data more challenging than cfg8b. The size
is (1,3,3,3,3,3,3).

o In cfg8d, we set |R(a)| = 3 for every NT a. We change the size to (1,3,3,3,3,3,4) because otherwise a
random string would be too close (in editing distance) to this language.

o In cfg8e, we set [R(a)| € {3,4} for every NT a. We change the size to (1,3, 3,3, 3,3,4) because otherwise
a random string would be too close to this language.

A notable feature of this data family is that, due to the introduction of length-1 rules, a string in this language
L(G) may be globally ambiguous. This means that there can be multiple ways to parse it by the same CFG,
resulting in multiple solutions for its NT ancestor/boundary information for most symbols. Therefore, it
is not meaningful to perform linear probing on this dataset, as the per-symbol NT information is mostly
non-unique.?®

CFG9 family. Given the ambiguity issues arising from the cfg8 data construction, our goal is to construct
an unbalanced and yet challenging CFG data family where the non-terminal (NT) information is mostly
unique, thereby enabling linear probing.

To accomplish this, we first adjust the size to (1,4,4,4,4,4,4), then we permit only one NT per layer to
have a rule of length 1. We construct five CFGs, denoted as cfg9a/b/c/d/e, and their degree configurations
(i.e., R(a)) are identical to those of the cfg8 family. We then employ rejection sampling by generating a few

24When a length-1 CFG rule is applied, we can merge the two nodes at different levels, resulting in an “unbalanced” CFG.

25In contrast, the cfg3 data family is only locally ambiguous, meaning that it is difficult to determine its hidden N'T information
by locally examining a substring; however, when looking at the entire string as a whole, the NT information per symbol can be
uniquely determined with a high probability (if using for instance dynamic programming).

41

Under review as submission to TMLR

lo fg ss
%, 95,
RN
R

Cf‘gge

GPT
100 100 100 100 100

GPT_rel
100 100 100 100 100

GPT_rot
100 100 100 100 100

GPT_pos
100 100 100 100 100

GPT_uni
100 100 100 100 100

deBERTa

100 100 100 100 100

baseline (GPT_rand)
98.7 83.6 83.9 71.9 94.1

99.9 99.9 100 100 100

99.9 99.9 100 100 100

99.9 99.9 100 100 100

99.9 99.9 100 100 100

99.9 99.9 100 100 100

100 100 100 100 100

84.8 78.6 82.6 82.8 91.0

99.6 99.8 99.7 99.8 100

99.7 99.8 99.7 99.8 100

99.7 99.8 99.7 99.8 100

99.7 99.8 99.8 99.8 100

99.7 99.9 99.8 99.9 100

100 100 100 99.9 100

86.4 94.7

100 99.7 99.6 99.4 99.6

100 99.7 99.5 99.3 99.6|

100 99.7 99.5 99.4 99.7

100 99.8 99.6 99.5 99.7

100 99.8 99.6 99.5 99.7

100 100 99.8 99.6 99.9]

91.7 750

99.1 98.5 95.6 95.0 93.9

99.1 98.5 95.5 95.2 94.9

99.1 98.6 95.8 95.3 95.0

99.1 98.7 96.1 95.3 94.6

99.2 98.8 96.3 95.5 94.7

99.7 99.6 98.4 96.9 93.9

72.6

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

redict NT ancestor (%)

o
Figure 32: Same as Figure 5 but for the cfg9 family. After pre-training, hidden states of generative models implicitly encode
the N'T ancestors information. The NTy column represents the accuracy of predicting s;, the NT ancestors on level
£. This suggests our probing technique applies more broadly.

5 GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)
'i" F@QQ 100 99.9 100 100 100/100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 100 100 98.4 98.7|95.6 89.6 91.6

E Obgée 98.2 97.3 99.8 100 10098.2 97.3 99.8 100 10098.2 97.2 99.8 100 10098.2 97.3 99.8 100 10098.2 97.2 99.8 99.9 100|100 100 100 99.9 99.6|

= o, 97.398.9996 100 100[97.3 989 99.6 100 100[97.3 98.9 99.6 100 100|973 98.9 99.6 100 10097.3 98.9 99.6 100 100|100 100 99.994.6 97.0 JENNENATI]

E 02790 99.9 99.9 99.1 97.8 99.8[99.9 99.9 99.1 97.8 99.8/99.9 99.9 99.0 97.8 99.8/99.9 99.9 99.1 97.8 99.8/99.9 99.9 99.1 97.8 99.8/100 100 99.8 97.9 9748

% K (TQQG 98.5 98.5 97.1 94.0 98.8(98.5 98.5 97.2 94.2 99.0/98.6 98.6 97.2 94.2 99.0/98.6 98.5 97.1 94.1 98.7|98.5 98.5 97.1 94.0 98.6/99.6 99.0 95.9 89.0

g—l‘ NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2
T E GPT GPT _rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)
';'." 9, 100 99.9 100 100 100[100 9.9 100 100 100|100 9.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 100 100 99.8 99.7|97.8 93.4 94.8 90.5 99.2
E (ngbe 98.8 98.3 99.9 100 10098.8 98.3 99.9 99.9 10098.8 98.2 99.9 99.9 10098.8 98.2 99.9 100 10098.8 98.2 99.9 100 100|100 100 100 100 99.9

: ('/’99(\ 98.1 99.3 99.7 100 10098.1 99.3 99.7 100 100(98.1 99.3 99.7 100 10098.1 99.3 99.8 100 10098.1 99.3 99.7 100 100|100 100 99.9 98.6 98.6|

E Cfgsg 99.9 99.9 99.2 98.5 100{99.9 99.9 99.2 98.5 100{99.9 99.9 99.2 98.5 100{99.9 99.9 99.2 98.5 100|99.9 99.9 99.2 98.5 100|100 100 99.8 99.3 99 5

% E (7‘99s 98.7 98.7 97.6 95.6 99.2/98.8 98.8 97.7 95.7 99.3/98.7 98.8 97.7 95.7 99.3/98.7 98.8 97.7 95.6 99.1{98.7 98.7 97.6 95.5 99.1/99.6 99.3 97.8 93.3 91.2|

g.i NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

Figure 33: Same as Figure 7 but for the cfg9 data family. Generative pre-trained transformer encodes N'T ancestors almost
exactly at NT boundaries. The NT, column represents the accuracy of predicting s,(7) at locations ¢ with by (i) = 1.
This suggests our probing technique applies more broadly.

strings from these CFGs and checking if the dynamic programming (DP) solution is unique. If it is not, we
continue to generate a new CFG until this condition is met.

Examples from cfg9e are illustrated in Figure 28. We will conduct linear probing experiments on this data
family.

CFGO family. Since all the CFGs above support rules of length 3, we have focused on L = 7 to prevent
the string length from becoming excessively long.?® In the cfg0 family, we construct five CFGs, denoted as
cfgla/b/c/d/e. All of them have a depth of L = 11. Their rule lengths are randomly selected from {1, 2}
(compared to {2,3} for cfg3 or {1,2,3} for cfg8/9). Their degree configurations (i.e., R(a)) are identical to
those of the cfg8 family. We have chosen their sizes as follows, noting that we have enlarged the sizes as
otherwise a random string would be too close to this language:

o We use size [1,2,3,4,4,4,4,4,4,4,4] for cfg0a/b.
o We use size [1,2,3,4,5,6,6,6,6,6,6] for cfgOc.
o We use size [1,2,3,4,5,6,7,8,9,10, 11] for cfg0d/e.

Once again, the CFGs generated in this manner are globally ambiguous like the cfg8 family, so we cannot
perform linear probing on them. However, it would be interesting to demonstrate the ability of transformers
to learn such CFGs.

Additional experiments. We present the generation accuracies (or the complete accuracies for cut ¢ = 20)
for the three new data families in Figure 31. It is evident that the cfg8/9/0 families can be learned almost
perfectly by GPT2-small, especially the relative/rotary embedding ones.

As previously mentioned, the cfg9 data family is not globally ambiguous, making it an excellent synthetic data
set for testing the encoding of the NT ancestor/boundary information, similar to what we did in Section 4.
Indeed, we replicated our probing experiments in Figure 32 and Figure 33 for the cfg9 data family. This
suggests that our probing technique has broader applicability.

26Naturally, a larger transformer would be capable of solving such CFG learning tasks when the string length exceeds 1000;
we have briefly tested this and found it to be true. However, conducting comprehensive experiments of this length would be
prohibitively expensive, so we have not included them in this paper.

42

Under review as submission to TMLR

cfg3f cfg3g cfg3h cfg8e cfg9e cfg3f cfg3g cfg3h cfg8e cfg9e
GPT (8head,1024dim) 77.5% 77.4% 82.6% $196.1% 96.2% EIHEIR:LRRY 97.4% 97.6%) GPT (8head,1024dim) -0.00648 -0.00519 -0.00139 -0.00389 -0.00191

GPT_uni (8head,1024dim) 96.8% 96.8% 98.7% 98.7% 93.7%|98.8% 98.9% GPT_uni (8head,1024dim) -0.00112 -0.00068 -0.00035 -0.00157 -0.00086

-0.00632 -0.00095 -0.00487 -0.00148

GPT (8head,936dim) 8% NIRRT 96.9% 97.2% EIHZRIKEZ98.2% 98.4% GPT (8head,936dim) -0.00612

-0.00402 -0.00128 -0.00344 -0.00172

GPT (12head,936dim) .5% XV RZRTRE7Y 97.4% 97.4% [LRUZR:ER:E7397.8% 98.1%) GPT (12head,936dim) -0.00816

-0.00116 -0.00074 -0.00038 -0.00166 -0.00091

GPT_uni (8head,840dim) 96.8% 96.5% 98.5% 98.6% 98.5% 98.8% GPT_uni (8head,840dim)

-0.00762 -0.00333 -0.00106 -0.00220

GPT (12head,768dim) -LESECEE AT 97.0% 97.1% EERELELRINA07.4% 97.4% GPT (12head,768dim) -0.00441

cut0 cut50 cutd cut50 cut0 cut50 cutd cut50 cut0 cut50 cuto cuto cuto cuto cuto

Figure 34: Performance comparison between GPTn (uniform attention) and vanilla GPT (absolute positional embedding). Left:
generation accuracy; Right: KL divergence against ground truth. Each model is trained with 5 random seeds. We
report the median for GPTyn; and the best run for GPT.

I More on Uniform Attention

In Result 1, we observed that GPT,, (uniform attention) performs surprisingly well—significantly outper-
forming the original GPT with absolute positional embeddings. Although interpretability is the primary focus
of this paper, we briefly highlight the robustness and implications of this result.

Since GPT,p; lacks query and key matrices, its per-layer parameter count is approximately 10d? (for hidden
size d), compared to 12d? for vanilla GPT. Thus, a parameter-matched comparison would be GPT(12, 768) (12
heads, 768 dimensions) versus GPT,;(8,840) (8 heads, 840 dimensions). For completeness, we also compare
with other natural baselines such as GPT(8,1024) and GPT(12,936). All experiments are summarized in
Figure 34.

At a high level, we group six 12-layer models by parameter scale:
GPT(12, 768) & GPT (8, 840) < GPTyni(8,1024) ~ GPT(12,936) ~ GPT(8,936) < GPT(8,1024) .

Yet, across all settings, Figure 34 consistently shows that uniform attention GPT,, outperforms vanilla
GPT—ewven when the latter has more trainable parameters.

While we do not claim this constitutes a comprehensive architecture benchmark (CFG tasks do not reflect the
full spectrum of language abilities), these results reinforce the strength of uniform attention. This connects
to prior work such as ALiBi Press et al. (2021) and especially H-Alibi Jelassi et al. (2024), which apply
hard attention cutoffs—where each attention head attends only to a fixed-size window. This is structurally
similar to our GPT,,;, where the window size varies per head.

These findings also motivate our follow-up work (not cited here due to anonymity), where we incorporate
short-window uniform attention as a lightweight architectural component to further improve Transformer
performance without increasing parameter count significantly.

43

	1 Introduction
	2 Our Synthetic Context-Free Grammars
	3 Results 1-3: Transformer Can Learn Such CFGs
	4 Results 4-5: How Do Transformers Learn CFGs?
	4.1 Result 4: Transformer's Last Layer Encodes NT Ancestors/Boundaries
	4.2 Result 5: NT Ancestors are Encoded At NT Boundaries

	5 Results 6-9: How Do Transformers Learn NTs?
	5.1 Result 6: Position-Based Attention
	5.2 Result 7-9: Boundary-Based Attention
	5.3 Connecting blue Results 4,5,7,8,9 to Dynamic Programming (DP)

	6 Results 10-13: Extensions of CFGs
	6.1 Results 11-13: Robustness on Corrupted CFG

	7 Related Work and Conclusion
	A Result 10: Implicit CFGs
	B Experiment Setups
	B.1 Dataset Details
	B.2 Model Architecture Details
	B.3 Pre-Training Details
	B.4 Predict NT ancestor and NT boundary

	C More Experiments on Results 2-3 (Generation)
	C.1 Generation Diversity via Birthday Paradox
	C.2 Marginal Distribution Comparison

	D More Experiments on Results 4-5 (NT Ancestor and Boundary Probing)
	D.1 NT Ancestor and NT Boundary Probing
	D.2 NT Probing Across Transformer's Layers
	D.3 NT Predictions Across Training Epochs

	E More Experiments on Results 6-9 (Attention Patterns)
	E.1 Result 6: Position-Based Attention Pattern
	E.2 Result 7: From Anywhere to NT-ends
	E.3 Result 8: From NT-ends to NT-ends
	E.4 Result 9: From NT-ends to Adjacent NT-ends

	F More Experiments on Result 10 (Implicit CFGs)
	G More Experiments on Results 11-13 (Robustness)
	H Beyond the CFG3 Data Family
	H.1 The Penn TreeBank CFG
	H.2 More Synthetic CFGs

	I More on Uniform Attention

