
Generic Neural Architecture Search via Regression

Yuhong Li1, Cong Hao2, Pan Li3, Jinjun Xiong4, Deming Chen1

University of Illinois at Urbana-Champaign1, Georgia Institute of Technology2,
Purdue University3, University at Buffalo 4

leeyh@illinois.edu, callie.hao@ece.gatech.edu, panli@purdue.edu,
jinjun@buffalo.edu, dchen@illinois.edu

Abstract

Most existing neural architecture search (NAS) algorithms are dedicated to and
evaluated by the downstream tasks, e.g., image classification in computer vision.
However, extensive experiments have shown that, prominent neural architectures,
such as ResNet in computer vision and LSTM in natural language processing,
are generally good at extracting patterns from the input data and perform well on
different downstream tasks. In this paper, we attempt to answer two fundamental
questions related to NAS. (1) Is it necessary to use the performance of specific
downstream tasks to evaluate and search for good neural architectures? (2) Can we
perform NAS effectively and efficiently while being agnostic to the downstream
tasks? To answer these questions, we propose a novel and generic NAS framework,
termed Generic NAS (GenNAS). GenNAS does not use task-specific labels but
instead adopts regression on a set of manually designed synthetic signal bases
for architecture evaluation. Such a self-supervised regression task can effectively
evaluate the intrinsic power of an architecture to capture and transform the input
signal patterns, and allow more sufficient usage of training samples. Extensive
experiments across 13 CNN search spaces and one NLP space demonstrate the
remarkable efficiency of GenNAS using regression, in terms of both evaluating
the neural architectures (quantified by the ranking correlation Spearman’s ρ be-
tween the approximated performances and the downstream task performances)
and the convergence speed for training (within a few seconds). For example, on
NAS-Bench-101, GenNAS achieves 0.85 ρ while the existing efficient methods
only achieve 0.38. We then propose an automatic task search to optimize the
combination of synthetic signals using limited downstream-task-specific labels,
further improving the performance of GenNAS. We also thoroughly evaluate Gen-
NAS’s generality and end-to-end NAS performance on all search spaces, which
outperforms almost all existing works with significant speedup. For example, on
NASBench-201, GenNAS can find near-optimal architectures within 0.3 GPU hour.
Our code has been made available at: https://github.com/leeyeehoo/GenNAS

1 Introduction

Most existing neural architecture search (NAS) approaches aim to find top-performing architectures
on a specific downstream task, such as image classification [1, 2, 3, 4, 5], semantic segmentation [6,
7, 8], neural machine translation [9, 10, 11] or more complex tasks like hardware-software co-
design [12, 13, 14, 15, 16]. They either directly search on the target task using the target dataset
(e.g., classification on CIFAR-10 [2, 17]), or search on a proxy dataset and then transfer to the target
one (e.g. CIFAR-10 to ImageNet) [18, 3]. However, extensive experiments show that prominent
neural architectures are generally good at extracting patterns from the input data and perform well to
different downstream tasks. For example, ResNet [19] being a prevailing architecture in computer
vision, shows outstanding performance across various datasets and tasks [20, 21, 22], because of its

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/leeyeehoo/GenNAS

Samples near the classification boundary

heavily affect the classification accuracy

(a) Classification

Groundtruth
Prediction

NN NN

NN NN

Samples equally contribute to the regression accuracy

(b) Regression

Figure 1: For classification, only samples near the decision boundary determine the classification
accuracy. For regression, all samples equally contribute to the regression accuracy. Therefore,
regression is better at leveraging all training samples than classification to achieve faster convergence.

advantageous architecture, the residual blocks. This observation motivates us to ask the first question:
Is there a generic way to search for and evaluate neural architectures without using the specific
knowledge of downstream tasks?

Meanwhile, we observe that most existing NAS approaches directly use the final classification
performance as the metric for architecture evaluation and search, which has several major issues. First,
the classification accuracy is dominated by the samples along the classification boundary, while other
samples have clearer classification outcomes compared to the boundary ones (as illustrated in Fig. 1a).
Such phenomena can be observed in the limited number of effective support vectors in SVM [23],
which also applies to neural networks because of the theory of neural tangent kernel [24]. Therefore,
discriminating performance of classifiers needs many more samples than necessary (the indeed
effective ones), causing a big waste. Second, a classifier tends to discard a lot of valuable information,
such as finer-grained features and spatial information, by transforming input representations into
categorical labels. This observation motivates us to ask the second question: Is there a more effective
way that can make more sufficient use of input samples and better capture valuable information?

To answer the two fundamental questions for NAS, in this work, we propose a Generic Neural
Architecture Search method, termed GenNAS. GenNAS adopts a regression-based proxy task using
downstream-task-agnostic synthetic signals for network training and evaluation. It can efficiently
(with near-zero training cost) and accurately approximate the neural architecture performance.

Insights. First, as opposed to classification, regression can efficiently make fully use of all the
input samples, which equally contribute to the regression accuracy (Fig. 1b). Second, regression on
properly-designed synthetic signals is essentially evaluating the intrinsic representation power of
neural architectures, which is to capture and distinguish fundamental data patterns that are agnostic
to downstream tasks. Third, such representation power is heavily reflected in the intermediate data
of a network (as we will show in the experiments), which are regrettably discarded by classification.

Approach. First, we propose a regression proxy task as the supervising task to train, evaluate,
and search for neural architectures (Fig. 2). Then, the searched architectures will be used for the
target downstream tasks. To the best of our knowledge, we are the first to propose self-supervised
regression proxy task instead of classification for NAS. Second, we propose to use unlabeled synthetic
data (e.g., sine and random signals) as the groundtruth (Fig. 3) to measure neural architectures’
intrinsic capability of capturing fundamental data patterns. Third, to further boost NAS performance,
we propose a weakly-supervised automatic proxy task search with only a handful of groundtruth
architecture performance (e.g. 20 architectures), to determine the best proxy task, i.e., the combination
of synthetic signal bases, targeting a specific downstream task, search space, and/or dataset (Fig. 4).

GenNAS Evaluation. The efficiency and effectiveness of NAS are dominated by neural architecture
evaluation, which directs the search algorithm towards top-performing network architectures. To
quantify how accurate the evaluation is, one widely used indicator is the network performance Ranking

2

Correlation [25] between the prediction and groundtruth ranking, defined as Spearman’s Rho (ρ) or
Kendall’s Tau (τ). The ideal ranking correlation is 1 when the approximated and groundtruth rankings
are exactly the same; achieving large ρ or τ can significantly improve NAS quality [26, 27, 28].
Therefore, in the experiments (Sec. 4), we evaluate GenNAS using the ranking correlation factors it
achieves, and then show its end-to-end NAS performance in finding the best architectures. Extensive
experiments are done on 13 CNN search spaces and one NLP space [29]. Trained by the regression
proxy task using only a single batch of unlabeled data within a few seconds, GenNAS significantly
outperforms all existing NAS approaches on almost all the search spaces and datasets. For example,
GenNAS achieves 0.87 ρ on NASBench-101 [30], while Zero-Cost NAS [31], an efficient proxy
NAS approach, only achieves 0.38. On end-to-end NAS, GenNAS generally outperforms others with
large speedup. This implies that the insights behind GenNAS are plausible and that our proposed
regression-based task-agnostic approach is generalizable across tasks, search spaces, and datasets.
Contributions. We summarize our contributions as follows:

• To the best of our knowledge, GenNAS is the first NAS approach using regression as the self-
supervised proxy task instead of classification for neural architecture evaluation and search. It is
agnostic to the specific downstream tasks and can significantly improve training and evaluation
efficiency by fully utilizing only a handful of unlabeled data.

• GenNAS uses synthetic signal bases as the groundtruth to measure the intrinsic capability of
networks that captures fundamental signal patterns. Using such unlabeled synthetic data in
regression, GenNAS can find the generic task-agnostic top-performing networks and can apply to
any new search spaces with zero effort.

• An automated proxy task search to further improve GenNAS performance.
• Thorough experiments show that GenNAS outperforms existing NAS approaches by large margins

in terms of ranking correlation with near-zero training cost, across 13 CNN and one NLP space
without proxy task search. GenNAS also achieves state-of-the-art performance for end-to-end NAS
with orders of magnitude of speedup over conventional methods.

• With proxy task search being optional, GenNAS is fine-tuning-free, highly efficient, and can be
easily implemented on a single customer-level GPU.

2 Related Work

NAS Evaluation. Network architecture evaluation is critical in guiding the search algorithms of
NAS by identifying the top-performing architectures, which is also a challenging task with intensive
research interests. Early NAS works evaluated the networks by training from scratch with tremendous
computation and time cost [18, 1]. To expedite, weight-sharing among the subnets sampled from
a supernet is widely adopted [3, 28, 4, 32, 33]. However, due to the poor correlation between
the weight-sharing and the final performance ranking, weight-sharing NAS can easily fail even in
simple search spaces [34, 35]. Yu et al. [36] further pointed out that without accurate evaluation,
NAS runs in a near-random fashion. Recently, zero-cost NAS methods [37, 31, 38, 39] have been
proposed, which score the networks using their initial parameters with only one forward and backward
propagation. Despite the significant speed up, they fail to identify top-performing architectures in
large search spaces such as NASBench-101. To detach the time-consuming network evaluation
from NAS, several benchmarks are developed with fully-trained neural networks within the NAS
search spaces [40, 30, 35, 29, 41], so that researchers can assess the search algorithms alone in the
playground.

NAS Transferability. To improve search efficiency, proxy tasks are widely used, on which the
architectures are searched and then transferred to target datasets and tasks. For example, the CIFAR-
10 classification dataset seems to be a good proxy for ImageNet [18, 3]. Kornblith et al. [42] studied
the transferability of 16 classification networks on 12 image classification datasets. NASBench-
201 [35] evaluated the ranking correlations across three popular datasets with 15625 architectures.
Liu et al. [43] studied the architecture transferability across supervised and unsupervised tasks.
Nevertheless, training on a downsized proxy dataset is still inefficient (e.g. a few epochs of full-blown
training [43]). In contrast, GenNAS significantly improves the efficiency by using a single batch of
data while maintaining extremely good generalizability across different search spaces and datasets.

Self-supervised Learning. Self-supervised learning is a form of unsupervised learning, that the
neural architectures are trained with automatically generated labels to gain a good degree of com-

3

………

Input I Stage-1 Stage-2 Stage-3

Groundtruth
(Proxy task)

Regression- -

:

(GenNAS)

Classi cation
(Existing
evaluators)

-

(a) CNN regression

RNN RNN RNN…

Fully
connected

layer

Fully
connected

layer

- - -

(b) RNN regression

Figure 2: Regression architectures on CNNs and RNNs. (a) On CNNs, we remove the final classifier
and extract multiple stages of intermediate feature map for training. (b) On RNNs, we construct a
many-to-many regression task, where the input and output tensors have the same size.

prehension or understanding [44, 45, 46, 47, 43]. Liu et al. [43] recently proposed three unlabeled
classification proxy tasks, including rotation prediction, colorization, and solving jigsaw puzzles,
for neural network evaluation. Though promising, this approach did not explain why such manually
designed proxy tasks are beneficial and still used classification for training with the entire dataset. In
contrast, GenNAS uses regression with only a single batch of synthetic data.

3 Proposed GenNAS

In Section 3.1, we introduce the main concepts of task-agnostic GenNAS: 1) the proposed regression
proxy task for both CNN architectures and recurrent neural network (RNN) architectures; 2) the
synthetic signal bases used for representing the fundamental data patterns as the proxy task. In
Section 3.2, we introduce the automated proxy task search.

3.1 GenNAS

3.1.1 Regression Architectures

Training using unlabeled regression is the key that GenNAS being agnostic to downstream tasks.
Based on the insights discussed in Section 1, the principle of designing the regression architecture is
to fully utilize the abundant intermediate information rather than the final classifier.

Regression on CNNs. Empirical studies show that CNNs learn fine-grained high-frequency spatial
details in the early layers and produce semantic features in the late layers [48]. Following this
principle, as shown in Fig. 2a, we construct a Fully Convolutional Network (FCN) [49] by removing
the final classifier of a CNN, and then extract the FCN’s intermediate feature maps from multiple
stages. We denote the number of stages as N . Inputs. The inputs to the FCN are unlabeled real
images, shaped as a tensor I ∈ Rb×3×h×w, where b is the batch size, and h and w are the input image
size. Outputs. From each stage i (1 ≤ i ≤ N) of the FCN, we first extract a feature map tensor,
denoted by Fi ∈ Rb×ci×hi×wi , and reshape it as F̂i ∈ Rb×c′i×h

′×w′ through a convolutional layer
Mi by F̂i = Mi(Fi) (with downsampling if wi > w′ or hi > h′). The outputs are the tensors F̂i,
which encapsulate the captured signal patterns from different stages. Groundtruth. We construct a
synthetic signal tensor for each stage as the groundtruth, which serves as part of the proxy task. A
synthetic tensor is a combination of multiple synthetic signal bases (more details in Section 3.1.2),
denoted by F∗i . We compare F̂i with F∗i for training and evaluating the neural architectures. During
training, we use MSE loss defined as L =

∑N
i=1 E[(F∗i − F̂i)

2]; during validation, we adjust each
stage’s output importance as L =

∑N
i=1

1
2N−i E[(F∗i − F̂i)

2] since the feature map tensors of later
stages are more related to the downstream task’s performance. The detailed configurations of N , h′,
w′, and c′i are provided in the experiments.
Regression on RNNs. The proposed regression proxy task can be similarly applied to NLP tasks
using RNNs. Most existing NLP models use a sequence of word-classifiers as the final outputs,

4

Sin1D

Sin2D

Dot

GDot

(a) Examples of signal bases

…
Sin2D Global

Dot Local

Combination

…

…

Input
Batch

One stacked synthetic signal tensor
for one batch of data

One channel

(b) Examples of synthetic signal tensors

Figure 3: (a) Examples of synthetic signal bases (2D feature maps). (b) Examples of the synthetic
signal tensors by stacking 2D feature maps along the channel dimension for CNN architectures.

whose evaluations are thus based on the word classification accuracy [50, 51, 52]. Following the
same principle for CNNs, we design a many-to-many regression task for RNNs as shown in Fig. 2b.
Instead of using the final word-classifier’s output, we extract the output tensor of the intermediate
layer before it. Inputs. For a general RNN model, the input is a random tensor I ∈ Rl×b×d, where l
is the sequence length, b is the batch size, and d is the length of input/output word vectors. Given
a sequence of length l, the input to the RNN each time is one slice of the tensor I, denoted by
I(i) ∈ Rb×d, 1 ≤ i ≤ l. Outputs. The output is F̂ ∈ Rl×b×d, where a slice of F̂ is F̂ (i) ∈ Rb×d.
Groundtruth. Similar to the CNN case, we generate a synthetic signal tensor F∗ as the proxy task
groundtruth.

3.1.2 Synthetic Signal Bases
The proxy task for regression aims to capture the task-agnostic intrinsic learning capability of
the neural architectures, i.e., representing various fundamental data patterns. For example, good
CNNs must be able to learn different frequency signals to capture image features [53]. Here, we
design four types of synthetic signal basis: (1) 1-D frequency basis (Sin1D); (2) 2-D frequency
basis (Sin2D); (3) Spatial basis (Dot and GDot); (4) Resized input signal (Resize). Sin1D and
Sin2D represent frequency information, Dot and GDot represent spatial information, and Resize
reflects the CNN’s scale-invariant capability. The combinations of these signal bases, especially with
different sine frequencies, can represent a wide range of complicated real-world signals [54]. If a
network architecture is good at learning such signal basis and their simple combinations, it is more
likely to be able to capture real-world signals from different downstream tasks.

Fig.3a depicts examples of synthetic signal bases, where each base is a 2D signal feature map. Sin1D
is generated by sin(2πfx+φ) or sin(2πfy+φ), and Sin2D is generated by sin(2πfxx+2πfyy+φ),
where x and y are pixel indices. Dot is generated according to biased Rademacher distribution [55] by
randomly setting k% pixels to ±1 on zeroed feature maps. GDot is generated by applying a Gaussian
filter with σ = 1 on Dot and normalizing between ±1. The synthetic signal tensor F∗ (the proxy
task groundtruth) is constructed by stacking the 2D signal feature maps along the channel dimension
(CNNs) or the batch dimension (for RNNs). Fig.3b shows examples of stacked synthetic tensor F∗
for CNN architectures. Within one batch of input images, we consider two settings: global and
local. The global setting means that the synthetic tensor is the same for all the inputs within
the batch, as the Sin2D Global in Fig. 3b, aiming to test the network’s ability to capture invariant
features from different inputs; the local setting uses different synthetic signal tensors for different
inputs, as the Dot Local in Fig.3b, aiming to test the network’s ability to distinguish between images.
For CNNs, the real images are only used by resize, and both global and local settings are used.
For RNNs, we only use synthetic signals and the local setting, because resizing natural language or
time series, the typical input of RNNs, does not make as much sense as resizing images for CNNs.

5

3.2 Proxy Task Search

While the synthetic signals can express generic features, the importance of these features for different
tasks, NAS search spaces, and datasets may be different. Therefore, we further propose a weakly-
supervised proxy task search, to automatically find the best synthetic signal tensor, i.e., the best
combination of synthetic signal bases. We define the proxy task search space as the parameters when
generating the synthetic signal tensors. As illustrated in Fig. 4, first, we randomly sample a small
subset (e.g., 20) of the neural architectures in the NAS search space and obtain their groundtruth
ranking on the target task (e.g., image classification). We then train these networks using different
proxy tasks and calculate the performance ranking correlation ρ of the proxy and the target task. We
use the regularized tournament selection evolutionary algorithm [1] to search for the task that results
in the largest ρ, where ρ is the fitness function.

…

A small subset of all

neural architectures

Network 1

Network 2

Network 3

Network 4

Ranking on

Proxy task

Ranking on

Target

dataset

1 1

3 2

2 3

4 4

Ranking Correlation (or)

Task search

space

Figure 4: Proxy task search.

Proxy Task Search Space. We consider the follow-
ing parameters as the proxy task search space. (1)
Noise. We add noise to the input data following the
distribution of parameterized Gaussian or uniform
distribution. (2) The number of channels for each
synthetic signal tensor (ci in F∗i ∈ Rb×ci×h′×w′)
can be adjusted. (3) Signal parameters, such as the
frequency f and phase φ in Sin, can be adjusted. (4)
Feature combination. Each synthetic signal tensor
uses either local or global, and tensors can be se-
lected and summed up. Detailed parameters can be
found in the supplemental material.

4 Experiments

We perform the following evaluations for GenNAS. First, to show the true power of regression, we
use manually designed proxy tasks without task search and apply the same proxy task on all datasets
and search spaces. We demonstrate that the GenNAS generally excels in all different cases with
zero task-specific cost, thanks to unlabeled self-supervised regression proxy task. Specifically, in
Section 4.1, we analyze the effectiveness of the synthetic signal bases and manually construct two sets
of synthetic tensors as the baseline proxy tasks; in Section 4.2, we extensively evaluate the proposed
regression approach in 13 CNN search spaces and one NLP search space. Second, in Section 4.3,
we evaluate the proxy task search and demonstrate the remarkable generalizability by applying one
searched task to all NAS search spaces with no change. Third, in Section 4.4, we evaluate GenNAS
on end-to-end NAS tasks, which outperforms existing works with significant speedup.

Experiment Setup. We consider 13 CNN NAS search spaces including NASBench-101 [30],
NASBench-201 [35], Network Design Spaces (NDS) [56], and one NLP search space, NASBench-
NLP [29]. All the training is conducted using only one batch of data with batch size 16 for 100
iterations. Details of NAS search spaces and experiment settings are in the supplemental material.

4.1 Effectiveness of Synthetic Signals

The synthetic signal analysis is performed on NASBench-101 using CIFAR-10 dataset. From the
whole NAS search space, 500 network architectures are randomly sampled with a known performance
ranking provided by NASBench-101. We train the 500 networks using different synthetic signal
tensors and calculate their ranking correlations with respect to the groundtruth ranking. Using the
CNN architecture discussed in Section 3.1.1, we consider three stages, S1 to S3 for N = 3; the
number of channels is 64 for each stage. For Sin1D and Sin2D, we set three ranges for frequency
f : low (L) f ∈ (0, 0.125) , medium (M) f ∈ (0.125, 0.375), and high (H) f ∈ (0.375, 0.5). Within
each frequency range, 10 signals are generated using uniformly sampled frequencies. For Dot and
GDot, we randomly set 50% and 100% pixels to ±1 on the zeroized feature maps.

The results of ranking correlations are shown in Table 1. The three stages are evaluated independently
and then used together. Among the three stages, Sin1D and Sin2D within medium and high frequency
work better in S1 and S2, while the high frequency Dot and resize work better in S3. The low
frequency signals, such as GDot, Sin1D-L, Sin2D-L, and the extreme case zero tensors, result in
low ranking correlations; we attribute to their poor distinguishing ability. We also observe that the

6

Table 1: Ranking correlation (Spearman’s ρ) analysis of different synthetic signals on NASBench-101.

Stage Sin1D Sin2D Dot GDot Resize Zero
L M H L M H 50% 100% 50% 100%

S1 0.13 0.43 0.64 0.14 0.53 0.63 0.55 0.62 0.18 0.16 0.56 0.17
S2 0.03 0.52 0.79 0.05 0.73 0.72 0.64 0.69 0.03 0.02 0.73 0.18
S3 0.08 0.77 0.80 0.23 0.78 0.72 0.76 0.81 0.16 0.17 0.80 0.22

GenNAS-combo:: 0.85

best task in S3 (0.81) achieves higher ρ than S1 (0.64) and S2 (0.79), which is consistent with the
intuition that the features learned in deeper stages have more impact to the final network performance.

When all three stages are used, where each stage uses its top-3 signal bases, the ranking correlation
can achieve 0.85, higher than the individual stages. This supports our assumption in Section 3.1.1
that utilizing more intermediate information of a network is beneficial. From this analysis, we choose
two top-performing proxy tasks in the following evaluations to demonstrate the effectiveness of
regression: GenNAS-single – the best proxy task with a single signal tensor Dot%100 used only in
S3, and GenNAS-combo – the combination of the three top-performing tasks in three stages.

4.2 Effectiveness and Efficiency of Regression without Proxy Task Search

To quantify how well the proposed regression can approximate the neural architecture performance
with only one batch of data within seconds, we use the ranking correlation, Spearman’s ρ, as
the metric [31, 43, 34]. We use the two manually designed proxy tasks (GenNAS-single and
GenNAS-combo) without proxy task search to demonstrate that GenNAS is generic and can be
directly applied to any new search spaces with zero task-specific search efforts. The evaluation
is extensively conducted on 13 CNN search spaces and 1 NLP search space, and the results are
summarized in Table 2.
On NASBench-101, GenNAS is compared with zero-cost NAS [31, 37] and the latest classi-
fication based approaches [43]. Specifically, NASWOT [37] is a zero-training approach that
predicts a network’s trained accuracy from its initial state by examining the overlap of ac-
tivations between datapoints. Abdelfattah et al. [31] proposed proxies such as synflow to
evaluate the networks, where the synflow computes the summation of all the weights multi-
plied by their gradients and has the best reported performance in the paper. Liu et al. [43]
used three unsupervised classification training proxies, namely rotation prediction (rot), col-
orization (col), and solving jigsaw puzzles (jig), and one supervised classification proxy (cls).

GenNAS-search-N (0.87)
GenNAS-combo (0.85)
GenNAS-single (0.81)

Figure 5: The effectiveness of regression-based
proxy task. GenNAS significantly outperforms all
the existing NAS evaluation approaches regarding
ranking correlation, with near-zero training cost.

We report their results after 10 epochs (@ep10)
for each proxy. The results show that GenNAS-
single and GenNAS-combo achieve 0.81 and
0.85 ρ on CIFAR-10, and achive 0.73 on Im-
ageNet, respectively, much higher than NAS-
WOT and synflow. It is also comparable and
even higher comparing with the classification
proxies, cls@ep5 and cls@ep10. Notably, the
classification proxies need to train for 10 epochs
using all training data, while GenNAS requires
only a few seconds, more than 40× faster.
On NASBench-201, we further compare with
vote [31] and EcoNAS [26]. EcoNAS is a re-
cently proposed reduced-training proxy NAS
approach. Vote [31] adopts the majority vote
between three zero-training proxies including
synflow, jacob_cov, and snip. Clearly, GenNAS-
combo outperforms all these methods regard-
ing ranking correlation, and is also 60× faster
than EcoNAS and 40× faster than cls@ep10.
On Neural Design Spaces, we evaluate GenNAS on both CIFAR-10 and ImageNet datasets. Compar-
ing with NASWOT and synflow, GenNAS-single and GenNAS-combo achieve higher ρ in almost
all cases. Also, synflow performs poorly on most of the NDS search spaces especially on ImageNet
dataset, while GenNAS achieves even higher ρ. Extending to NLP search space, NASBench-NLP,
GenNAS-single and GenNAS-combo achieve 0.73 and 0.74 ρ, respectively, surpassing the best

7

Table 2: GenNAS ranking correlation evaluation using the correlation Spearman’s ρ. GenNAS-single and
GenNAS-combo use a single or a combination of synthetic signals that are manually designed without proxy
task search. GenNAS search-N, -D, -R mean the proxy task is searched on NASBench-101, NDS DARTS
design space, and NDS ResNet design space, respectively. The top-1/2/3 results of GenNAS and efficient NAS
baselines are highlighted by †/‡/§ respectively for each task. The values with superscripts are obtained after
task search (s) or transferred (t) from a previous searched task. Methods like jig@ep10 which is 40x slower
compared to the GenNAS in prediction are not considered as efficient ones.

NASBench-101
Dataset NASWOT synflow jig@ep10 rot@ep10 col@ep10 cls@ep10 GenNAS

[37] [31] > 40× slower single combo search-N
CIFAR-10 0.34 0.38 0.69 0.85 0.71 0.81 0.81§ 0.85‡ 0.87†s

ImgNet 0.21 0.09 0.72 0.82 0.67 0.79 0.65§ 0.73† 0.71‡t

NASBench-201
Dataset NASWOT synflow jacob_cov snip cls@ep10 vote EcoNAS GenNAS

> 40× slower > 60× slower single combo search-N
CIFAR-10 0.79§ 0.72 0.76 0.57 0.75 0.81 0.81 0.77 0.87‡ 0.90†t

CIFAR-100 0.81 0.76 0.70 0.61 0.75 0.83‡ 0.75 0.69 0.82§ 0.84†t

ImgNet16 0.78 0.73 0.73 0.59 0.68 0.81§ 0.77 0.70 0.81‡ 0.87†t

Neural Design Spaces
Dataset NAS-Space NASWOT synflow cls@ep10 GenNAS

> 40× slower single combo search-N search-D search-R
CIFAR-10 DARTS 0.65 0.41 0.63 0.43 0.68 0.71§t 0.86†s 0.82‡t

DARTS-f 0.31 0.09 0.82 0.51 0.59† 0.53§t 0.58‡t 0.52t

Amoeba 0.33 0.06 0.67 0.52 0.64 0.68§t 0.78†t 0.72‡t

ENAS 0.55 0.19 0.66 0.56 0.70§ 0.67t 0.82†t 0.78‡t

ENAS-f 0.43 0.26 0.86 0.65 0.65 0.67§t 0.73†t 0.67‡t

NASNet 0.40 0.00 0.64 0.56 0.66§ 0.65t 0.77†t 0.71‡t

PNAS 0.51 0.26 0.50 0.32 0.58 0.59§t 0.76†t 0.71‡t

PNAS-f 0.10 0.32 0.85 0.45 0.48§ 0.56†t 0.55‡t 0.47t

ResNet 0.26 0.22 0.65 0.34 0.52 0.55§t 0.54‡t 0.83†s

ResNeXt-A 0.65§ 0.48 0.86 0.57 0.61 0.80‡t 0.63t 0.84†t

ResNeXt-B 0.60§ 0.60‡ 0.66 0.26 0.30 0.53t 0.55t 0.71†t

ImageNet DARTS 0.66 0.21 – 0.61 0.75‡ 0.70§t 0.84†t 0.55t

DARTS-f 0.20 0.37 – 0.68§ 0.69‡ 0.67t 0.69†t 0.59t

Amoeba 0.42 0.25 – 0.63 0.72§ 0.73‡t 0.80†t 0.67t

ENAS 0.69§ 0.17 – 0.59 0.70‡ 0.58t 0.81†t 0.65t

NASNet 0.51 0.01 – 0.52 0.59§ 0.52t 0.70†t 0.61‡t

PNAS 0.60‡ 0.14 – 0.28 0.39 0.45§t 0.62†t 0.40t

ResNeXt-A 0.72 0.42 – 0.80§ 0.84‡ 0.75t 0.62t 0.87†t

ResNeXt-B 0.63 0.31 – 0.71‡ 0.79† 0.51t 0.60t 0.64§t

NASBench-NLP
Dataset grad_norm snip grasp synflow jacob_cov ppl@ep3 GenNAS

> 192× slower single combo search
PTB 0.21 0.19 0.16 0.34 0.56§ 0.79 0.73 0.74‡ 0.81†s

zero-proxy method (0.56). Comparing with the ppl@ep3, the architectures trained on PTB [57]
dataset after three epochs, GenNAS is 192× faster in prediction.
Fig. 5 visualizes the comparisons between GenNAS and existing NAS approaches on NASBench-101,
CIFAR-10. Clearly, regression-based GenNAS (single, combo) significantly outperforms the existing
NAS with near-zero training cost, showing remarkable effectiveness and high efficiency.

4.3 Effectiveness of Proxy Task Search and Transferability

GenNAS‐Search‐N (0.87)
GenNAS‐Combo (0.85)
GenNAS‐Single (0.81)

Training Cost (number of minibatches)

Epochs

Sp
ea
rm

an
’s
Rh

o

of Samples

Sp
ea
rm

an
’s
Rh

o

Regularized Evolutionary
Random Search

Figure 6: Proxy task search.

Effectiveness of Proxy Task Search. While the un-
searched proxy tasks can already significantly outper-
form all existing approaches (shown in Section 4.2), we
demonstrate that the proxy task search described in Sec-
tion 3.2 can further improve the ranking correlation. We
adopt the regularized evolutionary algorithm [1]. The
population size is 50; the tournament sample size is
10; the search runs 400 iterations. We randomly select
20 architectures with groundtruth for calculating the ρ.
More settings can be found in the supplemental mate-
rial. Fig. 6 shows the search results averaged from 10
runs with different seeds. It shows that the regularized
evolutionary algorithm is more effective comparing with
random search, where the correlations of 20 architec-
tures are 0.86± 0.02 and 0.82± 0.01, respectively.

8

Table 3: GenNAS end-to-end NAS results comparing with the state-of-the-art NAS approaches,
showing test accuracy (%) on different NAS-spaces and datasets. ? denotes a method that is replicated
with the same regularized evolutionary algorithm in Section 4.4 for fair comparison. On NASBench-
201, the GPU hours do not include task search since GenNAS-N is transferred from NASBench-101.
The values with superscripts are obtained after task search (s) or transferred (t) from a previous
searched task.

NASBench-101(CIFAR-10)

Optimal NASWOT? synflow? Halfway? GenNAS-N

94.32 93.30±0.002 91.31±0.02 93.28±0.002 93.92±0.004s

NASBench-201

Dataset Optimal RSPS DARTS-V2 GDAS SETN ENAS NASWOT GenNAS-N

CIFAR-10 94.37 84.07±3.61 54.30±0.00 93.61±0.09 87.64±0.00 53.89±0.58 92.96±0.80 94.18±0.10t

CIFAR-100 73.49 58.33±4.34 15.61±0.00 70.61±0.26 56.87±7.77 15.61±0.00 70.03±1.16 72.56±0.74t

ImgNet16 47.31 26.28±3.09 16.32±0.00 41.71±0.98 32.52±0.21 14.84±2.10 44.43±2.07 45.59±0.54t

GPU hours 2.2 9.9 8.8 9.5 3.9 0.1 0.3

Neural Design Spaces (CIFAR-10)

NAS-Space Optimal NASWOT? synflow? cls@ep10? GenNAS-N GenNAS-R GenNAS-D

ResNet 95.30 92.81±0.10 93.52±0.31 94.51±0.20 94.48±0.24t 94.63±0.23t 94.77±0.13s

ResNeXt-A 94.99 93.39±0.67 94.05±0.48 94.24± 0.22 94.25±0.21t 94.12±0.20t 94.37±0.14t

ResNeXt-B 95.12 93.56±0.33 93.65±0.64 94.33±0.26 94.29±0.24t 94.26±0.35t 94.23±0.32t

In the following experiments, we evaluate three searched proxy tasks, denoted by GenNAS search-N,
-D, and -R, meaning that the task is searched on NASBench-101, NDS DARTS search space, and
NDS ResNet search space, respectively. We study the performance and transferability of the searched
tasks on all NAS search spaces. Proxy task search is done on a single GPU GTX 1080Ti. On
NASBench-101 (GenNAS-N), ResNeXt (GenNAS-R), and DARTS (GenNAS-D), the search time
is 5.75, 4, and 12.25 GPU hours, respectively. Once the proxy tasks is searched, it can be used to
evaluate any architectures in the target search space and can be transferred to other search spaces.

GenNAS with Searched/Transferred Proxy Task. The performance of GenNAS-search-N, -D, and
-R proxy tasks is shown in Table 2. First, in most cases, proxy task search improves the ranking
correlation. For example, in NDS, using the proxy task searched on DARTS space (search-D)
outperforms other GenNAS settings on DARTS-like spaces, while using proxy task search-R on
ResNet-like spaces outperforms others as well. In NASBench-NLP, the proxy task search can push the
ranking correlation to 0.81, surpassing the ppl@ep3 (0.79). Such results demonstrate the effectiveness
of our proposed proxy task search. Second, the searched proxy task shows great transferability: the
proxy task searched on NASBench-101 (search-N) generally works well for other search spaces, i.e.,
NASBench-201, NDS, and NASBench-NLP. This further emphasizes that the fundamental principles
for top-performing neural architectures are similar across different tasks and datasets. Fig. 5 visualizes
the performance of GenNAS comparing with others.

4.4 GenNAS for End-to-End NAS

Finally, we evaluate GenNAS on the end-to-end NAS tasks, aiming to find the best neural architec-
tures within the search space. Table 3 summarizes the comparisons with the state-of-the-art NAS
approaches, including previously used NASWOT, synflow, cls@ep10, and additionally Halfway [30],
RSPS [28], DARTS-V1 [3], DARTS-V2, GDAS [58], SETN [59], and ENAS [60]. Halfway is
the NASBench-101-released result using half of the total epochs for network training. In all the
searches during NAS, we do not use any tricks such as warmup selection [31] or groundtruth query
to compensate the low rank correlations. We fairly use a simple yet effective regularized evolutionary
algorithm [1] and adopt the proposed regression loss as the fitness function. The population size
is 50 and the tournament sample size is 10 with 400 iterations. On NASBench-101, GenNAS finds
better architectures than NASWOT and Halfway while being up to 200× faster. On NASBench-201,
GenNAS finds better architectures than the state-of-the-art GDAS within 0.3 GPU hours, being
30× faster. Note that GenNAS uses the proxy task searched on NASBench-101 and transferred
to NASBench-201, demonstrating remarkable transferability. On Neural Design Spaces, GenNAS
finds better architectures than the cls@ep10 using labeled classification while being 40× faster. On
NASBench-NLP, GenNAS finds architectures that achieve 0.246 (the lower the better) average final
regret score r, outperforming the ppl@ep3 (0.268) with 192× speed up. The regret score r at the

9

Table 4: Comparisons with state-of-the-art NAS methods on ImageNet under the mobile setting. ∗ is
the time for proxy task search.

Method Test Err. (%) Params FLOPS(M) Search Cost Searched Searched
top-1 top-5 (M) (M) (GPU days) Method dataset

NASNet-A [18] 26.0 8.4 5.3 564 2000 RL CIFAR-10
AmoebaNet-C [1] 24.3 7.6 6.4 570 3150 evolution CIFAR-10
PNAS [63] 25.8 8.1 5.1 588 225 SMBO CIFAR-10

DARTS(2nd order) [3] 26.7 8.7 4.7 574 4.0 gradient-based CIFAR-10
SNAS [64] 27.3 9.2 4.3 522 1.5 gradient-based CIFAR-10
GDAS [58] 26.0 8.5 5.3 581 0.21 gradient-based CIFAR-10
P-DARTS [65] 24.4 7.4 4.9 557 0.3 gradient-based CIFAR-10
P-DARTS 24.7 7.5 5.1 577 0.3 gradient-based CIFAR-100
PC-DARTS [32] 25.1 7.8 5.3 586 0.1 gradient-based CIFAR-10
TE-NAS [62] 26.2 8.3 6.3 - 0.05 training-free CIFAR-10

PC-DARTS 24.2 7.3 5.3 597 3.8 gradient-based ImageNet
ProxylessNAS [4] 24.9 7.5 7.1 465 8.3 gradient-based ImageNet
UNNAS-jig [43] 24.1 - 5.2 567 2 gradient-based ImageNet
TE-NAS 24.5 7.5 5.4 599 0.17 training-free ImageNet

GenNAS-combo 25.1 7.8 4.8 559 0.04 evolution+few-shot CIFAR-10
GenNAS-D14 24.3 7.2 5.3 599 0.7∗+0.04 evolution+few-shot CIFAR-10

moment t is r(t) = L(t)− L?, where L(t) is the testing log perplexity of the best found architecture
according to the prediction by the moment, and L? = 4.36 is the lowest testing log perplexity in the
whole dataset achieved by LSTM [50] architecture.

On DARTS search space, we also perform the end-to-end search on ImageNet-1k [61] dataset. We
fix the depth (layer) of the networks to be 14 and adjust the width (channel) so that the # of FLOPs is
between 500M to 600M. We evaluate two strategies: one without task search using GenNAS-combo
(see Table 1), and the other GenNAS-D14 with proxy task search on DARTS search space with
depth 14 and initial channel 16. The training settings follow TENAS [62]. The results are shown in
Table 4. We achieve top-1/5 test error of 25.1/7.8 using GenNAS-combo and top-1/5 test error of
24.3/7.2 using GenNAS-D14, which are on par with existing NAS architectures. GenNAS-combo
is much faster than existing works, while GenNAS-D14 pays extra search time cost. Our next step
is to investigate the searched tasks and demonstrate the generalization and transferrability of those
searched tasks to further reduce the extra search time cost.

These end-to-end NAS experiments strongly suggest that GenNAS is generically efficient and effective
across different search spaces and datasets.

5 Conclusion
In this work, we proposed GenNAS, a self-supervised regression-based approach for neural archi-
tecture training, evaluation, and search. GenNAS successfully answered the two questions at the
beginning. (1) GenNAS is a generic task-agnostic method, using synthetic signals to capture neural
networks’ fundamental learning capability without specific downstream task knowledge. (2) GenNAS
is an extremely effective and efficient method using regression, fully utilizing all the training samples
and better capturing valued information. We show the true power of self-supervised regression via
manually designed proxy tasks that do not need to search. With proxy search, GenNAS can deliver
even better results. Extensive experiments confirmed that GenNAS is able to deliver state-of-the-art
performance with near-zero search time, in terms of both ranking correlation and the end-to-end NAS
tasks with great generalizability.

6 Acknowledgement

We thank IBM-Illinois Center for Cognitive Computing Systems Research (C3SR) for supporting
this research. We thank all reviewers and the area chair for valuable discussions and feedback.
This work utilizes resources [66] supported by the National Science Foundation’s Major Research
Instrumentation program, grant #1725729, as well as the University of Illinois at Urbana-Champaign.
P.L. is also partly supported by the 2021 JP Morgan Faculty Award and the National Science
Foundation award HDR-2117997.

10

References
[1] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[2] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[5] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang,
Xiaogang Wang, and Chang Xu. Vision transformer architecture search. arXiv preprint
arXiv:2106.13700, 2021.

[6] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille,
and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 82–92, 2019.

[7] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast neural architecture search of
compact semantic segmentation models via auxiliary cells. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9126–9135, 2019.

[8] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas: Fast neural archi-
tecture search for faster semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–0, 2019.

[9] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun
Chang. Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural
architecture search. arXiv preprint arXiv:2103.12424, 2021.

[10] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
Hat: Hardware-aware transformers for efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020.

[11] David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on
Machine Learning, pages 5877–5886. PMLR, 2019.

[12] Cong Hao and Deming Chen. Deep neural network model and fpga accelerator co-design:
Opportunities and challenges. In 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT), pages 1–4. IEEE, 2018.

[13] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu,
and Deming Chen. Fpga/dnn co-design: An efficient design methodology for 1ot intelligence
on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2019.

[14] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle Rupnow,
Jinjun Xiong, Thomas Huang, Honghui Shi, et al. Skynet: a hardware-efficient method for
object detection and tracking on embedded systems. arXiv preprint arXiv:1909.09709, 2019.

[15] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny
deep learning on iot devices. arXiv preprint arXiv:2007.10319, 2020.

[16] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Mcunetv2: Memory-efficient
patch-based inference for tiny deep learning. arXiv preprint arXiv:2110.15352, 2021.

[17] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pages 2902–2911. PMLR, 2017.

11

[18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 801–818, 2018.

[21] Mark Marsden, Kevin McGuinness, Suzanne Little, and Noel E O’Connor. Resnetcrowd: A
residual deep learning architecture for crowd counting, violent behaviour detection and crowd
density level classification. In 2017 14th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pages 1–7. IEEE, 2017.

[22] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning for medical imaging. arXiv preprint arXiv:1902.07208, 2019.

[23] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support
vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

[24] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[25] Wayne W Daniel et al. Applied nonparametric statistics. 1990.

[26] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang,
and Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11396–11404, 2020.

[27] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness
of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

[28] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
In Uncertainty in Artificial Intelligence, pages 367–377. PMLR, 2020.

[29] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,
and Evgeny Burnaev. Nas-bench-nlp: neural architecture search benchmark for natural language
processing. arXiv preprint arXiv:2006.07116, 2020.

[30] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning, pages 7105–7114. PMLR, 2019.

[31] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

[32] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737, 2019.

[33] Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu,
and Deming Chen. Edd: Efficient differentiable dnn architecture and implementation co-search
for embedded ai solutions. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

[34] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. arXiv preprint
arXiv:1909.09656, 2019.

[35] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. arXiv preprint arXiv:2001.00326, 2020.

12

[36] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. arXiv preprint arXiv:1902.08142, 2019.

[37] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search
without training. arXiv preprint arXiv:2006.04647, 2020.

[38] Debadeepta Dey, Shital Shah, and Sebastien Bubeck. Fear: A simple lightweight method to
rank architectures. arXiv preprint arXiv:2106.04010, 2021.

[39] Guihong Li, Sumit K Mandal, Umit Y Ogras, and Radu Marculescu. Flash: Fast neural
architecture search with hardware optimization. ACM Transactions on Embedded Computing
Systems (TECS), 20(5s):1–26, 2021.

[40] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Nas-bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777, 2020.

[41] Xiu Su, Tao Huang, Yanxi Li, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang
Xu. Prioritized architecture sampling with monto-carlo tree search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10968–10977, 2021.

[42] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2661–2671, 2019.

[43] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels
necessary for neural architecture search? In European Conference on Computer Vision, pages
798–813. Springer, 2020.

[44] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[45] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discrimi-
native unsupervised feature learning with convolutional neural networks. Citeseer, 2014.

[46] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE international conference on computer vision,
pages 1422–1430, 2015.

[47] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using
videos. In Proceedings of the IEEE international conference on computer vision, pages 2794–
2802, 2015.

[48] Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component helps
explain the generalization of convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8684–8694, 2020.

[49] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[50] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[51] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Eleventh annual conference of the international
speech communication association, 2010.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[53] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

13

[54] Georgi P Tolstov. Fourier series. Courier Corporation, 2012.

[55] Stephen J Montgomery-Smith. The distribution of rademacher sums. Proceedings of the
American Mathematical Society, 109(2):517–522, 1990.

[56] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1882–1890, 2019.

[57] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

[58] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1761–1770, 2019.

[59] Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template
network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
3681–3690, 2019.

[60] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pages
4095–4104. PMLR, 2018.

[61] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[62] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

[63] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European conference on computer vision (ECCV), pages 19–34, 2018.

[64] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture
search. arXiv preprint arXiv:1812.09926, 2018.

[65] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1294–1303, 2019.

[66] Volodymyr Kindratenko, Dawei Mu, Yan Zhan, John Maloney, Sayed Hadi Hashemi, Benjamin
Rabe, Ke Xu, Roy Campbell, Jian Peng, and William Gropp. Hal: Computer system for scalable
deep learning. In Practice and Experience in Advanced Research Computing, pages 41–48.
2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

14

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	Proposed GenNAS
	GenNAS
	Regression Architectures
	Synthetic Signal Bases

	Proxy Task Search

	Experiments
	Effectiveness of Synthetic Signals
	Effectiveness and Efficiency of Regression without Proxy Task Search
	Effectiveness of Proxy Task Search and Transferability
	GenNAS for End-to-End NAS

	Conclusion
	Acknowledgement

