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Abstract

Multivariate Hawkes process provides a powerful framework for modeling tem-
poral dependencies and event-driven interactions in complex systems. While
existing methods primarily focus on uncovering causal structures among observed
subprocesses, real-world systems are often only partially observed, with latent
subprocesses posing significant challenges. In this paper, we show that continuous-
time event sequences can be represented by a discrete-time causal model as the
time interval shrinks, and we leverage this insight to establish necessary and suf-
ficient conditions for identifying latent subprocesses and the causal influences.
Accordingly, we propose a two-phase iterative algorithm that alternates between
inferring causal relationships among discovered subprocesses and uncovering new
latent subprocesses, guided by path-based conditions that guarantee identifiabil-
ity. Experiments on both synthetic and real-world datasets show that our method
effectively recovers causal structures despite the presence of latent subprocesses.

1 Introduction

Causal discovery in complex systems is crucial in domains such as social networks [S7], neuroscience
[4], and finance [20]]. Multivariate Hawkes processes [19, [31]] have become a powerful tool for
modeling temporal dependencies and event-driven interactions. Most existing methods [52, [14]
39, 24] rely on Granger causality [26] and maximum likelihood estimation [48], or on pre-binned
likelihood approaches [42, 16, 137]]. However, these methods operate under the sufficiency assumption
that all task-relevant subprocesses are observed. In practice, many components remain unmeasured
(e.g., unrecorded neurons in spike train data [22])), creating latent confounders that hinder reliable
causal discovery. Existing strategies for missing data [40] do not identify entirely unobserved
subprocesses, making this an important open challenge. A detailed review is deferred to Appendix [A]

In this work, we address the largely unexplored problem of learning causal structures in Hawkes
processes with latent subprocesses. Our framework leverages a discrete-time representation and
rank constraints on cross-covariance matrices to enable both causal discovery and latent subprocess
identification. Specifically, we contribute:

* A principled framework for identifying latent subprocesses without prior knowledge of their
existence or number.

* Necessary and sufficient conditions linking discretized Hawkes representations to causal influence,
enabling discovery of both observed and latent subprocesses.

* A two-phase iterative algorithm that alternates between structure recovery and latent subprocess
discovery, with practical identifiability guarantees.
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Figure 1: Illustration of a multivariate Hawkes process with three subprocesses N1, Ny, N3. (a) A
point process representation, where the continuous timeline is partitioned into intervals of length A.
(b) The corresponding summary causal graph, which is the central object of this paper. Each node
represents a subprocess, with causal relations N7 <— Ny = N3, and self-loops on all nodes. (¢) The
window causal graph, depicting the underlying time-lagged causal mechanism. Each node denotes
the count in a time interval A, modeled as a weighted sum of lagged parent nodes and an uncorrelated
noise, as in Eq.[2| Note: This paper focuses on cases where some subprocesses are latent.

2 Partially Observed Multivariate Hawkes Process-based Causal Model

2.1 Multivariate Hawkes Process

A multivariate Hawkes process is a self-exciting point process modeling temporal dependencies
among events via a set of counting processes Ng = {N;}'_,, where N;(t) records the number of
type-i events up to time ¢.

Definition 2.1 (Multivariate Hawkes Process [19,[31])). Foreachi € {1,...,![}, the intensity of N; is
l t

Xi(t) = pu +Z/ s (t — 5) AN, (s), (1
j=170

where fi; is the background rate and ¢;;(s) > 0 the excitation kernel measuring the decaying influence

of past type-j events on N;. Stationarity requires the spectral radius of ®;; = fooo ¢i;(s)ds to be less
than one.

For each subprocess N;, we define its parent cause set Pg C Ng as the minimal set such that \; (¢)
depends only on histories of Pg and not on others. Equivalently, N; is locally independent [12]] of
Ng\Pg given Pg. Further background and derivations appear in Appendix

2.2 Model Definition

We formalize our framework as a graphical causal model for multivariate Hawkes processes, where
nodes represent subprocesses and directed edges correspond to nonzero excitation functions. The
goal is to recover both observed and latent subprocesses and their causal relations.

Definition 2.2 (Partially Observed Multivariate Hawkes Process-based Causal Model (PO-MHP)).
Let G = (Ng,&g) be a directed graph, where each node N; € Ng represents a subprocess. A
directed edge F;; exists iff fg ¢i;(t — s) dN;(s) > 0. The node set consists of p observed nodes
Og = {0;}_, and ¢ latent nodes Lg = {L;}{_;.

The PO-MHP model naturally allows cycles and self-loops, as well as edges between observed and
latent subprocesses.

Definition 2.3 (Causal Effect). For any N;, N; € Ng, if a directed path exists from N, to N;, then
N; is a cause of Nj and Nj is an effect of N;.

Definition 2.4 (Parent Cause Set). For N; € Ng, the minimal set Pg C Ng \ {NV;} is called its
parent cause set if every directed path to N; passes through some node in Pg. If N; has a self-loop,
it is also included in Pg.

Remark. N; is locally independent of Ng \ Pg given Pg if and only if Pg is its parent cause set.
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3 Structure Identification in Partially Observed Hawkes Processes

3.1 From Continuous-Time to Discrete-Time Representation

Directly inferring causal structure from the continuous-time formulation in Eq.[T)is difficult, especially
with latent subprocesses. Instead of MLE-based approaches [52, 14,139, 24} 142} |6l 37], we establish
an explicit reduction from Hawkes dynamics to a discrete-time linear autoregressive model, which
enables time-aware rank tests for causal discovery.

Theorem 3.1 (Hawkes Process as a Linear Autoregressive Model). Let Ng = {N;}._, be a
stationary multivariate Hawkes process with intensities {1, } and excitation functions {¢;;(s)}.
Define discretized event counts

N™ = N;(nA) = Ny((n — 1)), N =o,

K2 K3

Sor binwidth A € (0,6). As A — 0, the process admits the linear autoregressive representation

j=1k=1

where 9( ) = = Ap,;, fjk) f(k 1 A $ij(s)ds, and 5( V) is white noise.

This discrete-time view shows that each current variable Ni(”) is a weighted sum of lagged variables
plus noise, enabling causal inference via cross-covariance rank conditions. Proofs are deferred to
Appendix [G] In practice, only a finite number of lags need be considered, since excitation functions

decay and 93?) vanish for large k; we choose m lags exceeding this effective support [27,36].

3.2 Structure Discovery Through Rank Constraints

We link statistical properties of Hawkes data to the discretized variables of window causal graph,
which in turn identifies the summary graph—even with latent subprocesses. Under the linear
representation in Eq. 2| with white noise, the causal structure induces characteristic low-rank patterns
in cross-covariance matrices of observed variables.

Lemma 3.2 (D-separation < Rank in the Window Graph). Consider the window causal graph
of a PO-MHP. For any disjoint variable sets A, B, and C,, C, d-separates A, and B,, iff
rank(¥a,uc, B,uC,) = , ,UC,,,B,UC, denotes the cross-covariance matrix between
A,UC, and B, UC,, and |C,| is the cardinality of C,,.

Proposition 3.3 (Identifying Observed Parent Cause Set). Let Og = {O;}¥_, be observed subpro-
cesses (latent subprocesses may exist). For target O1, the following are equivalent: (i) In the summary
graph, the set Pg C Og is the parent cause set of the subprocess O1; (ii) In the window graph,

with the observed variable set O, = {Ol(j) }Zeef?;mp}n} ‘Pg is the minimal set such that lagged

variable set P, := {O }gé%;m’“"n_l} contains all parent variables of the current variable OY‘);

(iii) Pg is the minimal set such that variable set P, d-separates O%") from the rest O,\{P, U Ogn) }.
(iv) Pg is the minimal set such that rank(zoﬁ")qu, Ov\Oi")) = |P,|.

Proposition [3.3|depends only on observed variables and thus identifies the observed parent cause set
Pg of any target Oy, regardless of latent subprocesses, implying local independence of O; given Pg.

Intermediate Latent Subprocesses. Latent nodes lying on directed paths between O; and its
identified observed parents are in general unidentifiable (their effects can be absorbed by observed
parents). For Hawkes, however, once Pg is identified, the discrete-time structure allows counting the
number of such intermediate latent nodes under mild conditions; details are in Appendix [C]

Latent Confounders. A latent confounder is a latent node that must be included in the parent cause
set to render an observed effect locally independent of others (e.g., O1 < L1 — O, in Figure [2a)).
Rank conditions in Proposition [3.3]alone cannot reveal such L, because it is unobserved.
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Figure 2: Latent-confounder examples. (a) Summary graph with a latent confounder L; for O1, Oa;
some nodes have self-loops. (b) Corresponding window graph with two effective lags. (c)—(d) More
complex latent paths from L; to {O1, O3} via intermediate latent subprocesses.

Assumption 1 (Excitation function). Assume excitation function ¢;;(s) = a;;w(s) with a time lag s
related decay function w(s) and coefficients a,; representing the peer influence between event types.

This covers exponential decay o e~P¢ and other normalized decays [5]. We also assume rank-
faithfulness to exclude measure-zero degeneracies (Appendix D).

Under Assumption excitation coefficients in (2Z) decompose as ijk) =aij [, (’Zél) Aw(s)ds, so the

decay part of k-dependence is shared across edges. In the setting of Figure 2a] with two lags (m = 2),
the current variables (O{™, O$™) depend linearly on (L{" ™", L{" ™)) with a rank-1 coefficient ma-

trix; hence rank | X, () ) ()ysefn—m,..my | = 1, indicating one latent confounder affecting
{01 702 }7 {Oi }ie{3,4}

O, and O, (formalized in Proposition [3.5} proof in Appendix [K). If O1, O, have self-loops, indirect
paths via their lagged variables increase rank; including their observed lags restores identifiability,
yielding rank E{OEJ')}Z_-EE{{IS}NL ,,,,, "y, {Ogj)}gee{{;z;n ..... n}U{OEJ)}gg{{;g}m ,,,,, nl}) = 2m + 1, where 2m
accounts for observed lags of 01,05 and the +1 corresponds to a single latent confounder (see
Appendix [E). We introduce a path situation to capture all graphical configurations that could induce
rank deficiency.

Definition 3.4 (Symmetric Acyclic Path Situation). Let L; be a latent confounder for observed set
Og1. The following hold: (i) there exist directed paths from L to each node in Og; containing
only intermediate latent nodes (no observed nodes on the paths, and endpoints are not reused as
intermediates); (ii) all such paths have equal length; (iii) the paths are acyclic and intermediate latent
nodes have no self-loops.

The structures in Figures [2c]and 2d] satisfy Definition [3.4} adding or removing intermediate latent
nodes asymmetrically or forming cycles breaks it. The next result leverages Definition[3.4]to detect a
latent confounder from observed effects.

Proposition 3.5 (Identifying a Latent Confounder from Observed Effects). Consider a PO-MHP
with excitation function ¢;;(s) = a;;w(s) and rank-faithfulness. Let O, = {OgJ)}JE{nfm"”’n}.

i€{1,...,p}
For two observed subprocesses O1, Oo, rank <Z{O(j)}jegn—}vn ..... "} o\ (o Ogn>}> =2m+ 1iff
i Jic{1,2 » Yv >

there exists a latent confounder L in the parent cause sets of {O1, Oz} such that conditioning on
PG = L1 U {01,043} renders {O1, 02} locally independent of Og \ Pg, and Ly with {O1, 03}
satisfy the Definition

Surrogate-Based Recovery of Remaining Relations. Once a latent confounder L; is detected from
its observed effects (Proposition [3.5]), we recover the remaining relations by treating one observed
effect as an observed surrogate of L, and grouping its observed siblings. Intuitively, under the
excitation function assumption and rank-faithfulness, conditioning on the surrogate (and its siblings)
isolates the local influence of the underlying latent node, so that the parent-cause tests reduce to rank
conditions on blocks of cross-covariances, analogous to the observed-only case. This surrogate view
also composes: it enables testing relations between an inferred latent and an observed node, as well
as between two inferred latents via their surrogates. The formal statements—including the surrogate
definition and two theorems covering (i) parent set identification when latent causes are involved and
(ii) discovery of new latent subprocesses causally related to inferred latent subprocesses—together
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with Fig.[7] are deferred to Appendix [ In practice, we therefore: (1) detect latent confounders via
the 2m+1 rank signature; (2) select surrogates and siblings; (3) apply the surrogate-based rank tests
to complete the graph among observed and inferred latent subprocesses.

4 Rank-based Discovery Algorithm

In this section, we present a two-phase iterative algorithm that leverages the identification theorems
to iteratively identify causal relationships among discovered subprocesses and discover new latent
subprocesses. Let Ag denote the active process set, consisting of subprocesses whose parent causes
are yet to be identified. Initially, .Ag is set to the observed subprocess set Og and is progressively
updated throughout the procedure. Additionally, due to the existence of cycles in the summary causal
graph, observed subprocesses previously identified as effects may still serve as causes for other
subprocesses in Ag, and thus remain under investigation. The overall procedure is in Algorithm [T}

Algorithm 1 Two-Phase Iterative Discovery Algorithm

Input: Observed subprocess set Og
Output: Causal graph G
1: Initialize partial causal graph G := (), active process set Ag = Og.
repeat
(G, Ag) < Identifying Causal Relations (G, Ag,Og). //phase I
(G, Ag) + Discovering New Latent Subprocesses (G, Ag, Og). //phase 11
until Ag is empty or no updates occur.
return: G

AN AN

Phase I: Identifying Causal Relations Each iteration begins with Phase I, which aims to identify
the causal structure for under-investigated subprocesses (both latent and observed) in Ag. In this
phase, we systematically iterate over each subprocess in .Ag and attempt to identify its parent causes
using the current Ag U Og. If a subprocess’s parent cause set is fully contained within this set, it
can be identified using Proposition and Theorem[F.2] Once its parent cause set is identified, the
subprocess is removed from .4g. This phase continues until no further updates occur. Details of this
phase are provided in Algorithm 2]in Appendix [O.1]

Phase II: Discovering New Latent Subprocesses When no more subprocesses in .Ag can be
resolved using Phase I, we enter Phase II. This phase seeks to discover new latent confounder
subprocesses by exhaustively checking all pairs in Ag using Proposition [3.5] and Theorem [F3]
Identified latent confounders are merged if they overlap in subprocesses, implying they share the
same latent parent cause. .Ag is then updated to add new latent subprocesses and remove their effects,
and the algorithm returns to Phase I in the next iteration. The procedure continues until Ag is empty
or remains unchanged. Detailed steps are provided in Algorithm 3|in Appendix [0.2}

Theorem 4.1 (Identifiability of the Causal Graph). Consider a PO-MHP with excitation function
¢ij(s) = a;jw(s) and rank faithfulness. If each latent confounder subprocess, along with all its
observed surrogates, satisfies Definition[3.4) then the causal graph over the observed subprocesses
and latent confounder subprocesses can be identified. In particular, when no latent subprocesses
exist, the causal graph is fully identifiable through only Phase I of the algorithm.

Moreover, the computational complexity depends on the number of subprocesses (including latent
confounders) and the density of the underlying causal graph, which together determine the number of
iterations required for complete graph discovery. A detailed complexity analysis is in Appendix [P}

5 Experiments

Synthetic Data We compare our method against six strong baselines. SHP [37] and THP [6]
are discrete-time (binned) Hawkes methods, while NPHC [1]] is a cumulant-based approach. Be-
cause existing Hawkes-based methods do not identify latent subprocesses without prior knowledge,
we also include two rank-based methods designed for i.i.d. linear models—Hier. Rank [21]] and
RLCD [[13]—and we further add LPCMCI [16] as a time-series baseline that handles exogenous
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latent confounders. For these three methods (Hier. Rank, RLCD, LPCMCI), we apply the discretized
(binned) Hawkes data on them. For our method, we evaluate both on event sequences generated by
the Hawkes process in Eq. (T)) and on data generated directly from the discrete-time model in Eq. (2).
We test across six synthetic graph families: the fully observed graph in Fig.[Ib]and five structures with
latent subprocesses in Figs. 2aland[7aH7d] We report average F1-score over ten runs on a personal
PC (CPU). Additional details and further results (larger graphs, sensitivity to A, and robustness to
rank-faithfulness violations) appear in Appendix [Q] As shown in Fig. 3] our method consistently
outperforms the baselines on both fully and partially observed graphs. Notably, latent cases typically
require larger sample sizes: because the spectral radius of a stationary Hawkes process is < 1, causal
influences attenuate along latent paths, which in turn demands more data for reliable detection.

—=— Qurs (Discrete) Ours (Hawkes) —+ SHP === NPHC -=-- THP --=-- Hier. Rank RLCD = LPCMCI

Case 1 Case 2 Case 3 Case 4

1.0 1.0 1.0 1.0

.0, 0.0 0.0 0.0
30000 50000 80000 30000 50000 80000 30000 50000 80000 30000 50000 80000
Samples Samples Samples Samples

Figure 3: Fl1-score comparisons for first four synthetic causal graphs (Cases 1-4), corresponding to
the structures in Figs.[Ib] 2] [7a|and[7b] See Appendix [Q.3|for additional cases.

Real-world Data We evaluate on a public cellular network
dataset [37]] with expert-validated ground truth. The corpus
contains 18 alarm types collected from 55 devices (= 35k
events over eight months); not every device exhibits all alarms.
We focus on device_id=8, which contains the alarms rele-
vant to the subgraph under study. For evaluation, we con-
sider a five-alarm subgraph (Alarm_ids=0-3 and 7) and
treat Alarm_id=7 as latent via manual exclusion. Notably,
Alarm_id=1 and Alarm_id=3 are both observed effects of
the latent subprocess (Alarm_id=7), which enables its recov-
ery from observed data. Our inferred graph (Fig. ) correctly
recovers the latent subprocess and its major influences; the
only discrepancy from the ground truth is a single missing edge, Alarm_id=1 — Alarm_id=3.
Moreover, on this sub-dataset our method quantitatively outperforms representative baselines; see
Appendix [Q.4]for details.

Alarm_id 1

~

( Aarm_id7 |
\

~___~

Figure 4: Inferred causal subgraph
from the cellular network dataset,
where Alarm_id=7 is successfully
identified as a latent subprocess.

6 Conclusion and Future Work

In this paper, we proposed a principled framework for structure learning in partially observed multi-
variate Hawkes processes (PO-MHP). By leveraging sub-covariance rank constraints and a carefully
designed path constraint, our method effectively identifies both causal relationships among observed
subprocesses and latent confounders influencing them. Specifically, we established necessary and
sufficient conditions for inferring latent subprocesses and identifying causal relations, and developed a
two-phase iterative algorithm with identifiability guarantees to recover the full causal graph. Notably,
our approach naturally extends to discrete time series data, given its foundation in the discretized
representation of Hawkes processes. Future work includes relaxing the identification conditions to
broaden applicability, and applying our method to diverse real-world datasets for deeper domain
insights.
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A Related Work

This work is closely related to three areas: point processes, Hawkes processes, and causal discovery
methods.

Point Processes. Extensive efforts have been devoted to understanding temporal dependencies
in point processes. Meek [34] introduced a graphical framework for general point processes, lever-
aging §*-separation and process independence to connect graphical representations with statistical
properties. Gunawardana and Meek [18]] proposed a one-dimensional point process model with
piecewise-constant conditional intensity, utilizing a closed-form Bayesian approach to infer temporal
dependencies between event types. Chwialkowski and Gretton [8] developed a kernel-based inde-
pendence test applicable to general random processes, providing a nonparametric perspective on
dependency learning.

Several studies have focused on specific structures within point processes. Basu et al. [3]] investigated
Granger causality for discrete transition processes while incorporating inherent grouping structures.
Daneshmand et al. [11] proposed a continuous-time diffusion network inference method based
on a parametric cascade generative process, advancing the modeling of temporal influence. In the
context of marked point processes, Didelez [[12] introduced a class of graphical models capable of
capturing local independence over different marks, offering a more generalized approach to analyzing
dependencies in complex systems.

Hawkes Processes. Hawkes processes [19| 31]] constitute a class of point processes with self-
exciting intensities that capture how past events modulate the likelihood of future events. Much
work on learning temporal dependencies in Hawkes processes builds on Granger causality [17]].
Representative extensions adopt predefined excitation kernels, including exponential [[15 (57} 154! 6],
power-law [56]], and nonparametric forms [32} 33]].

Regularization plays a central role in structure learning for Hawkes processes. Xu et al. [52]] expand
kernels on basis functions and use sparse-group lasso for estimation. Zhou et al. [57] propose a convex
program with nuclear- and ¢;-norms to promote low-rank and sparsity. Ide et al. [24] introduce
cardinality-regularized Hawkes with an ¢, penalty. Nonparametric approaches include estimating
integrated kernels [1]] and deep models with attribution for Granger inference [55]. However, most
of these methods target relations among observed subprocesses and do not address truly latent
components.

When only binned counts are available, a line of work fits Hawkes from discretized event sequences.
Shlomovich et al. [42] develop an EM procedure with importance sampling to estimate parameters
from binned data when exact timestamps are unavailable. Qiao et al. (SHP) [377]] learn causal structure
from discrete-time event sequences via sparsity-regularized likelihood over bin counts. Cai et al.
(THPs) [6] incorporate topological constraints to recover causal influences on discretized sequences.
These discrete/binned approaches generally assume full observability and do not identify the existence
or number of latent subprocesses.

Causal Discovery Methods. Causal discovery [35] aims to uncover causal relations from data
and has been studied extensively under i.i.d. assumptions with DAG structures. Classical families
include constraint-based methods (e.g., PC [44]), score-based methods (e.g., GES [7]]), and functional
approaches (e.g., LINGAM [41]).

Latent variables present significant challenges to these methods. To address this, extensions such as
the FCI algorithm [45}!43]] and its variants [10} 9] leverage conditional independence constraints to
infer partial causal structures in the presence of independent (i.e., exogenous) latent confounders.

Recent advances have extended these methods to handle causally related latent confounders. Repre-
sentative examples include Huang et al. [21]] and Dong et al. [[13]], which identify equivalence classes
in linear models by leveraging second-order (rank) statistics. However, the result graphs of their
approaches are usually equivalent classes of the ground truth graph, and these approaches typically
rely on structural conditions that are not natural in discretized Hawkes settings: (i) hierarchical
latent structures [21] (e.g., no observed-to-observed edges and no observed-to-latent edges), and (ii)
cardinality constraints [21}[13]] (e.g., |children| > |parents| for latent groups). In time-series obtained
from Hawkes processes, the induced autoregressive representation is dense across many lags, so
observed surrogates are often fewer than the effective latent “parents,” violating such cardinality
requirements; moreover, endogenous latent confounders (latent variables influenced by observed
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processes) naturally happen in our setting. Furthermore, Xie et al. [50} 51] and Jin et al. [25] utilized
higher-order statistics to accurately identify causal graphs even in the presence of latent confounders.
But they still have unfeasible cardinality constraints, and they still assume i.i.d. samples, which can
introduce spurious dependencies and invalidate guarantees when temporal constraints are ignored.

There are also extensions of constraint-based discovery to time series (e.g., SVAR-based LINGAM
[23])) and PC-style temporal methods (e.g., PCMCI [38]], LPCMCI [16]). These rely on conditional
independence tests over lagged variables and again presuppose assumptions (weak autocorrelation,
exogenous latent variables) that are misaligned with Hawkes dynamics, where dense cross-lag effects
and endogenous latent variables are common.

A.0.1 Detailed Relation to a Binned Hawkes process Estimation Method

Shlomovich et al. [42] address parameter estimation for binned Hawkes processes via a modified EM
algorithm when only bin counts Ny = N ((t +1)A) — N(tA) are observed and exact event times are
unavailable. The bin counts are treated as observed data and the unobserved event times 7 as latent
variables (their Eq. 6). Because direct Monte Carlo sampling of 7 is intractable in Hawkes models,
they employ importance sampling to simulate within-bin timestamps that match the observed counts,
thereby maximizing the (binned) likelihood (see their Sec. 2).

Our goal and methodology differ. Leveraging the link between INAR and linear autoregressive models,
Theorem|3.T]establishes an explicit linear structural representation for discretized multivariate Hawkes
processes. This connection enables causal discovery directly over binned variables—including the
identification of latent confounder subprocesses—with identifiability guarantees (Propositions[3.3]
and[3.3} Theorems[F2]and[E3). In contrast to likelihood maximization based on simulated event times,
our framework uses time-aware rank constraints on cross-covariances to recover causal structure. To
the best of our knowledge, prior work has not provided a direct, theoretically grounded reduction
from Hawkes processes to linear structural models for the purpose of causal discovery.

A.0.2 Detailed Relation to Rank-Based Latent Discovery in i.i.d. Models

Huang et al. [21] (and related works by Xie et al. [51]] and Dong et al. [13]]) study latent structure
discovery under i.i.d. assumptions and continuous variables. Our problem differs substantively: we
aim to recover causal structure among observed and latent subprocesses in multivariate Hawkes
processes, where each subprocess is a point process and inference is performed on discretized
representations.

Different Data Domain and Causal Assumptions. Huang et al. [21] (and Xie et al. [51]) assume
a latent hierarchical structure, specifically: (i) there are no direct causal links among observed
variables, and all dependencies among observed variables arise exclusively from their latent con-
founder variables; and (ii) observed variables cannot cause latent variables, i.e., endogenous latent
confounders are ruled out (see Eq. 1 and Definition 1 in [21], and Eq. 1, 2 and Definition 1 in [51]]).
Neither assumption is needed in our framework. We allow both direct observed-to-observed edges
(see Proposition Proposition [3.3]in our paper) and the existence of endogenous latent confounder
subprocesses that can be caused by observed subprocesses (see Theorem [F.2]in our paper).

Cardinality Requirements vs. Hawkes Density. Huang et al. [21], Xie et al. [51]], and Dong et
al. [13] rely on a cardinality condition of the form |children| > |parents| for certain latent sets (cf.
Definition 4 in [21]], Condition 1 in [51]], Definition 5 in [[13]). This is generally incompatible with
discretized Hawkes processes, whose autoregressive representation is inherently dense (Eq.[2]in our

paper): if a latent L; causes Oz, then each discretized variable Oén) is influenced by many lags of L;
(potentially hundreds or thousands in practice), making the required |children| > |parents| condition
fail systematically. Our method avoids such cardinality assumptions: leveraging the separable
excitation (Assumption [I)), we place lagged observed variables on both sides of carefully chosen
cross-covariance blocks so that rank deficiency reliably signals latent confounders (lines 199-216;

Proposition 3.5} Theorem[F3).

Time-Aware vs. i.i.d. Causal Discovery. The above i.i.d. methods do not exploit temporal order
and, in principle, can test variables at time n as putative parents of variables at time n — 1. Our
procedure is explicitly time-aware: candidate parents for ¢ = n are restricted to appropriate lags

12
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(Propositions [3.3|and 3.5} Theorems[F:2]and [F3), aligning identification with Hawkes dynamics. This
distinction mirrors PC [44] (i.i.d.) vs. PCMCI [38]] (time series).

B Multivariate Hawkes Process Details

Before introducing multivariate Hawkes process, we first describe the temporal point process and
counting process briefly. A temporal point process is a random process whose realization consists of a
list of discrete events in time {77, T%, . .. } taking values in [0, c0). Another equivalent representation
is the counting process, N1 = {N;(t)|t € [0, 00)}, where Ny (t) records the number of events before
time ¢ and N1 (0) = 0. A multivariate point process with [ types of events is represented by [ counting
processes {N;}!_, on a probability space (2, F,P). N; = {N;(t)|t € [0,00)}, where N;(t) is
the number of type-i events occurring before time ¢t and N;(0) = 0. U = {1,...,l} (sometimes
abbreviated as [{]) represents the set of event types. 2 = [0, 00) x U is the sample space. F = F(t) is
a filtration, that is, a non-descreasing family of o-algebras which for each time point ¢ € R, represent
the set of event sequences the processes can realize before time ¢t. P is the probability measure. Point
processes can be characterized by the conditional intensity function, which models patterns of interest,
such as self-triggering or self-correcting behaviors [53]]. The conditional intensity function is defined
as the expected instantaneous rate of type-i events occurring at time ¢, given the event history:

Ni(t) = }Lli% E[N;(t+ h) }; N ()| H(t)]

; 3)
where H(t) = {(tx,?)|tx < t,i € U} collects historical events of all types before time t. The

multivariate Hawkes process is a class of multivariate point processes characterized by a self-
triggering pattern as defined in Definition

C Identifying Intermediate Latent Subprocesses

(a) (b)

Figure 5: Example of an intermediate latent subprocess on the directed path from O; to O;. (a)
The summary causal graph, where L1 is the intermediate latent subprocess. (b) The corresponding
window causal graph with two effective lag variables.

As shown in the summary causal graph in Fig.[5a] L, is an intermediate latent subprocess on the
directed path fromthe observed subprocess Oz to Os. According to Proposition [3.3] L, is not
identifiable and its effect is attributed to Oo, leading to the inference that O, is the parent cause of
Os. This is because the influence of L, is indistinguishable from that of Oy and can be effectively
merged into Oa.

Consider now the corresponding window causal graph shown in Fig.[5b} The observed variable

set is given by O, = {Ogj )}ZEG{{IL ggl}n}, where m = 3 exceeds the number of effective lag

variables (which is 2 in this example). Instead of conditioning on all three lagged variables
{Oén_l), Oén_z), Oé"_?’)} of Os, we exclude Ogn_l) and condition only on {Oén_Q), Oé"_g)}.
In this case, O:(),") becomes d-separated from the remaining variables in O,,. This property arises

)

because, due to the presence of the intermediate latent subprocess L, Ogn_l no longer has a direct
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influence on O:(,)"). The following corollary formalizes a general method for identifying the number
of intermediate latent subprocesses that may exist between an observed subprocess and each of its
inferred observed parent causes.

Corollary C.1 (Identifying Intermediate Latent Subprocesses). Let Og = {O;}'_, denote the ob-

served subprocesses, with the corresponding observed variable set O, = {Ol(j )}Z ee{{f ;mp}n}

Consider an observed subprocess Oy and its inferred observed parent cause set Pg C Og.
For any Oy € Pg, let h be the largest value such that the lagged variable set P, =

{Ogj)}joeig;;m’“"nfl}\{Oéj)}jg{n,hw,n,l} d-separates O§") from the remaining variables
o,\{P, U O§”)}. Equivalently, h is the largest value such that:

rank( = |Py|.

Xomyup,, ou\{OY”})

This is equivalent to stating that the shortest directed path from O to Oy that does not pass through
any other observed subprocess consists of h latent subprocesses.

Remark C.2. In Corollary [C.I] O; and O, may refer to the same subprocess in cases where Propo-
sition infers that O; has a self-loop. In such cases, Corollary can be used to determine
whether this self-loop represents a direct self-excitation or is mediated through intermediate latent
subprocesses.

Proof. Let Og = {O;}!_, and O, := {Ogj )}Zee{{f ;mp}"} Consider an observed subprocess O

and its inferred parent cause set Pg. For any Oy € Pg, assume the shortest directed path from O, to
O consists of h latent subprocesses. This implies that the lagged variables {Oéj ) } je{n—h,...n—1} do

not influence Ogn), while the variables {Oéj)}je{n_m)wn_h} do.

Thus, the variable set P, = {05”}{5{6’;;’”7“""*1} \ {Oéj)}je{n,hw,n,l} is the minimal set that
d-separates Ogn) from the remaining variables. By Lemma this implies:

rank (E = |Py|.

{o{"yuP,, ov\{OY")})

This completes the proof. O

D Rank Faithfulness for the Hawkes Process

Assumption 2 (Rank Faithfulness for the Hawkes Process). A probability distribution p is rank
faithful to the graph G if every rank constraint on any sub-covariance matrix that holds in p is entailed
by every linear structural model (as defined in Eq.[I) with respect to G and the excitation function

(bl](s) = aijw(t)7 Vi, j € {17 s ,Z}

The rank faithfulness assumption is widely adopted in the causal discovery literature for i.i.d. data
(46, 21]. In our setting, it concerns only the excitation function coefficients a;;, and prior studies
have shown that violations of this assumption occur only in degenerate cases of Lebesgue measure
zero. Specifically, it fails only in rare pathological scenarios, such as when multiple a;; coefficients
involving those of latent subprocesses are exactly equal across different subprocesses in a manner
that induces rank deficiency—situations that are highly unlikely to arise in practical applications.

To empirically assess the robustness of our method to potential violations of rank faithfulness, we
conduct a sensitivity analysis where, for each synthetic graph, we choose the exponential excitation
function ¢;;(s) = aije*ﬂs and deliberately assign identical a;; values to two randomly selected
edges, thereby artificially increasing the risk of the violation of rank faithfulness. The results,
reported in Table [3]in Appendix [Q.3] demonstrate that our method remains robust even under such
perturbations.
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(b)

Figure 6: Illustration of self-Looped observed subprocesses under latent confounder influence. (a)
Summary causal graph where O1, O2, O3, and O4 are observed subprocesses, and L is a latent
confounder subprocess. All subprocesses have self-loops. (b) Corresponding window causal graph
for (a), illustrating the discretized causal mechanisms among O+, Os, and L1, with two effective lag
variables.

E Accounting for Self-Looped Observed Subprocesses under Latent
Confounder Influence

Consider Fig. [6] where O; and O, also have self-loops. As shown in Fig. [6b] these self-loops
introduce additional indirect effects, where the lagged latent variables {ng ) } je{n—m,....,n—1} Prop-

agate their influence to the current variables OYL) and Oén) through the observed lagged variables

() ie{n—m,....n—1}
{O'j }ge{1,2} :

Fortunately, since these lagged variables are observed, they can be explicitly incorporated into the
structural equations and, correspondingly, into the covariance matrix. Considering the window
graph in Fig.[6b| with m effective lag variables, the structural equations for the observed variables

{Oz(j)}ie{”’m""’"} can be written as:

1€{1,2}
_ - [ 7(n—1)7 -
o 1 [H] [ n
O§n71> Lgnfm) 62’;71) +9(()?>
nfm O(nil) (n—m)
O§ ) 1 € +0
—E + 1 , 4
o ) e +9<o> “)
n— 1 n—
Oé 2 Oénfl) ((;2 b —|—9<(,(f)
n—m n—m 0
_Oé >_ Ogn*m) _5572 ) + ‘951)_
_ . | o -
Qoyly fOAw(s)ds e oyl f(mA—l)A w(s)ds 1 -+ 1 o -+ 0
0 0. 0 1 % o o % o
0 0 0
0 0 o - 1 0o -2 0
E= A m 0 1 ®)
Uogly [y w(s)ds -+ Goy, f(m HA w(s)ds 0 -+ 0
0 0. 0 o % o 1 % 0 }
I 0 : 0 o Y 0 o % o1

It is straightforward to see that the rank of the coefficient matrix E is 2m + 1. Accordingly, by
including these observed lagged variables in the cross-covariance matrix, we obtain:

rank ( {O(J)}Zg{{I‘L27TL ,,,,, n} {O(J)}iee{:4}m ..... n}U{O(])}fS{LZm ,,,,, nl}) =2m + 17
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where 2m corresponds to the observed lagged variables of O; and O, and 1 corresponds to the latent
confounder subprocess L;. For a formal proof, see Proposition [3.5] and Appendix [K] This result
implies the presence of a latent confounder subprocess L1, such that the set { L1, O1, Oz} forms the
parent cause set of {O1, Oz }. Conditioning on this set renders {O1, Oz} locally independent of O3
and Oy.

F Surrogate-Based Recovery of Latent Structure

Proposition allows us to infer the existence of a latent confounder from its observed effects.
This raises an important question: How can we systematically infer the remaining causal relations
involving the inferred latent subprocesses? This challenge is illustrated by the four summary graphs
in Fig. [/l In the following, we show how the observed effects can serve as surrogates for their
associated latent confounders, enabling the recovery of the remaining causal structure.

(d)

Figure 7: Illustrative examples of interactions among inferred latent confounder and the remaining
observed subprocesses. In (a)—(c), assume L, has been inferred via its observed effects {O1, O}
(a) O3 causes L. (b) Both L; and O3 cause Oy. (¢) Ly causes L4, where L4 can be inferred from
{O3,04}. (d) Ly serves as the latent confounder of both latent confounder L and Ls.

Definition F.1 (Observed Effects as Surrogates). For each latent subprocess L; inferred from its
observed effects {O1, Oz}, we define one of its observed effects, denoted as De(Ly) = Oq, to
serve as an observed surrogate of L. This surrogate is chosen such that there exists a directed
path from L, to De(L;) that does not pass through any other observed subprocesses. We further
define Sib(De(L1)) as the set of observed siblings of De(Ly ), containing all known other observed
subprocesses affected by L through paths that also do not pass through other observed subprocesses.

For any observed subprocess O, we adopt the unified notation De(O1) = O1, and correspondingly,
Sib(De(01)) = (). Moreover, Sib(De(L1)) represents the minimal set of observed subprocesses
required to isolate the local influence of L; on the rest of the system, except through De(L;).

Theorem F.2 (Identifying Parent Cause Set with Latent Confounder Involved). Consider a
PO-MHP with excitation function ¢;;(s) = a;;w(s) and rank faithfulness. The system
Ng = Og U Lg consists of observed subprocesses Og = {O0;}'_,, and inferred la-
tent confounder processes Lg whose parent cause sets are yet to be identified. Let O, =

{OEj)}fgfffTZ,’}"’”} denote the corresponding observed variable set. For a subprocess N1 € Ng
and a candidate parent cause set P; C Ng, when either Ny is latent, or P( contains la-

tent subprocesses, or both, the following condition holds: Pg is the minimal set such that

_ _ j ()Y IE{R—m,.n} (G)yg€{n—m,...n—1}
rank (Za, B,) = |Ay|—1, where A, == {De(Nl)(”,De(Ll)(”}Lﬁp,g u{o; }Oiep,g U

(ie{n—m,..., n} _ n n .
{07 Yo, esueini U sivez) ey, @19 Br = Ov) (PetN)®™ UADE(L) )1,y ) if and

only if P is a subset of the parent cause set of Ny such that: conditioning on Sg := Pg U De(N1) U
{De(Li)}Lie% USib(De(Ny))U {Sib(De(Li))}Llep/g renders N; locally independent of Ng\Sg; for
each L; € Pg, the latent confounder L; with observed effects {De(N1), De(L;)} satisfies Defini-

tion[3.4} and, all possible observed surrogates of N; in Og have been identified so as to be added
into the observed sibling set.

With Theorem (and Proposition [3.3)), we can identify arbitrary causal relations among both
observed and inferred latent subprocesses. This naturally raises a final question: How can we further
infer new latent subprocesses that are causally related to inferred latent subprocesses, as in Fig.[7d?
As shown in the following theorem, the observed surrogate of a latent subprocess can still be leveraged
for such inference.
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Theorem F.3 (Identifying Latent Confounder from Latent Confounder ). Consider a PO-MHP
with excitation function ¢;;(s) = a;jw(s) and rank faithfulness. The system Ng = Og U Lg
consists of observed subprocesses Og = {O;}!_,, and inferred latent confounder processes Lg

whose parent cause sets remain unidentified by Theorem Let O, := {Of”}feeff 77’;}”}

denote the corresponding observed variable set. For any two subprocesses N1, No C Ng (ei-

ther observed or latent), rank (Xa, B,) = |Ay| — 1, where A, = {De(N; (J)}Zeeéfg}m """ "y
[ODYsmsed | suipetnay » and By = O\{De(N)™, De(No)™} , if and only if there exits

a latent confounder subprocess Ly in the parent cause set of { N1, Na} such that: conditioning
on P; = L1 U{N;}icq1,2y U {Sib(De(N;))}ieq1,2y renders { N1, Na} locally independent of
NG\ PG, Ly with {De(N1), De(No)} satisfies Deﬁmtlo - and all possible observed surrogates
of {N1, Na} in Og have been identified so as to be added into the observed sibling set.

Theorem [F.2] and Theorem [F.3] are extensions of Proposition [3.3]and Proposition respectively.
These extend the framework by replacing latent subprocesses with their observed surrogates when
evaluating the rank of the relevant sub-covariance matrices.

G Proof of Theorem 3.1

Proof. To prove Theorem [3.1] we proceed in three steps. First, we define the multivariate INAR
sequence (Definition [G.T)) and show that it admits a linear autoregressive model representation
(Proposition|[G.3). Then, in Theorem|[G.5] we establish that this multivariate INAR counting process
converges weakly to a multivariate Hawkes process as the bin size A — 0, with the correspondence
between the parameters of both models made explicit. The details are as follows:

Step 1: Definition of the Multivariate INAR model. We begin by introducing the multivariate
INAR model, adapted from Definition 20 in the paper B. Hawkes forests in [29].

Definition G.1 (Multivariate integer-valued autoregressive model [29]). An multivariate integer-
valued autoregressive time series(multivariate INAR) is a sequence of Ny-valued random variables

X, = {X™, x5 XY en, with X9 = 0, defined as:

(n—k)
nX

l
xM=3" Z € o +e(">, ie{l,...,l},n €Ny, (6)
j=1k=1 =

where the reproduction coefficients 0” > 0 with the subcritical matrix Dory Hgf)](i) JEfL,.l}s

(n) ud ) ud

and the immigration coefficients 0( ) >0. ¢ P01s(0(0)) and § % Po 15(9( )) are mutually

independent and also independent of e( ),

Remark G.2. Definition [G.I] follows Definition 20 in paper B. Hawkes Forests in [29]], but with

adapted notation to match Theorem- Key correspondences include: d = I, — j, 7 = 4,1 — h,
) PIC)

(Xn)nEZ — XU, X,(qu) X(n) f(lj k) — §( i ) 61(1]) — 6(n) QG 5.k — 92(]]9), Qg j — 950) We

also restrict indices to n € NO to match our Hawkes process formulation (Definition ; this is

purely notational and does not affect the model semantics, as the indices are used to describe relative
positions within the time series.

Step 2: Linear autoregressive representation of the INAR model. The multivariate INAR
sequence admits an equivalent linear autoregressive representation, as shown in Proposition [G.3]

corresponding to Proposition 3.1 in [27]. The current variable X l-(n) is expressed as a weighted sum
of all lag variables Xj’v“k, plus a constant term 950) and a stationary white-noise term 5§n).

Proposition G.3. Let X, be a l-dimensional INAR sequence as in Definition|G.I|with immigration
coefficients 950) > 0, reproduction coefficients 0@ >0, and Xi(o) = 0. Then

(") X(n) 9(0) Z Z 0 (n— k)7 n € N, @)

J=1k=1
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defines a white-noise sequence, i.e., (Egn)) is stationary, E[agn)] =014¢€ {l,...,l}, n € Ng.

Moreover, let the | X | noise matrices unu;:/ = [agms;n)](i’j)e{l ,,,,, 1} and reproduction-coefficient
matrices Ay, == [Ggf)](i’j)e{lw,l}, we have:
. 7 n —1 Y
Efu,u]] = { 48 (Ut =S 401 ) o =, ®)
Ole7 n # n/.

Remark G.4. Proposition|G.3]is adapted from Proposition 3.1 of [27], which also appears as Proposi-
tion 6 of the same paper in the author’s doctoral thesis [29]]. The original formulation uses full vector
and matrix notation; here, we present each dimension separately for consistency with our notation.
Moreover, we adapted notations as in Remark[G.2]

Step 3: Convergence of the INAR to a Hawkes process. Finally, we show that the multivariate
INAR process converges to a multivariate Hawkes process as A — 0. The corresponding parameters
of the INAR and the Hawkes process are also stated in the below theorem.

Theorem G.5 (Multivariate INAR converging to multivariate Hawkes process [29]). Let Ng1 =
{N;}._, be a stationary multivariate Hawkes process with background intensities {y;}!_,, and
piecewise-continuous excitation functions {¢;;(s) > 0,Vs € (0,00)}._;. For bin width A € (0,9),
let X, = {X{n), Xén), . 7Xl(n))n€N0 be an multivariate INAR sequence with:

kA

91(,0) = Api, 91(;) :/ ¢ij(s)ds,
(k=1)A

and X,i(o) = 0. From the sequences X,,, we define a family of point processes Ngo = {Nf}ézl,
where for each N?,

NA@) = > X, telo,00). )

n:nA<t

Then, Nga converges weakly to Ng in distribution, as A — 0.

Remark G.6. Theorem|G.5]is a simplified version of Theorem 25 in [29]. The original proof proceeds
via convergence of Hawkes forests (constructed via branching random walks), showing that the
Hawkes process is a limit of INAR-based approximating forests. The convergence of Hawkes
process and INAR comes from the convergence of Hawkes forest and the approximating forest with
corresponding parameters. We adapt it here with a direct correspondence between Hawkes and
INAR parameters, and restrict domains to ¢ € [0, 00) and n € Ny for consistency and clarification.
Typically, Hawkes process results hold for both domains [31, Remark 2], since variable ¢ and n is
used only to calibrate relative positions. Moreover, besides the notation changes in Remark [G.2]
we adopt: Ng — Ng1, Npa) — Nga, the reproduction intensities h; ; = w; jm; ; — excitation
function ¢;;.

Remark G.7. The constant ¢ in the Theorem [G.3] comes from the moment structure of the INAR
sequence. For details, see Theorem 2 in [28] and Corollary 24 in paper B. Hawkes forests in [29].

In summary: The linear autoregressive representation of the multivariate INAR model is estab-
lished in Proposition [G.3] based on the model definition provided in Definition[G.T] The convergence
of the multivariate INAR process to the multivariate Hawkes process, along with the correspondence
of their parameters, is presented in Theorem [G.5] Together, these results validate the discrete-time
linear formulation stated in Theorem [3.1] This completes the proof.

O

H Proof of Lemma[3.2]

Proof. The proof of Lemma[3.2]is based on Proposition 2.2 and Theorem 2.4 from [47]], which we
restate here for completeness.
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Proposition H.1 (Rank Characterization of Conditional Independence [@7]]). Let X ~ N (u1, )
be a multivariate normal random vector, and let A, B, and C be disjoint subsets of indices. Then
the conditional independence statement X 4 1 X p | X holds if and only if the cross-covariance
matrix ¥ auc, uc has rank |C!|.

Although this result was originally established for linear acyclic models with independent Gaussian
noise, it relies solely on second-order properties (variance and covariance) of the data and leverages
path analysis rooted in the independence of noise terms. Consequently, this result remains valid for
linear models with arbitrary noise distributions, since the argument applies to any distribution with
finite second moments.

Theorem H.2 (Conditional Independence in Directed Graphical Models [47]). In a directed graph G,
a set C d-separates A and B if and only if the conditional independence statement X 4 1L Xp | X¢
holds for every distribution that is Markov with respect to G.

Combining the two results, we obtain the following: For any linear acyclic causal model with disjoint
variable sets A, B,, and C,, the set C,, d-separates A, and B,, in the associated causal graph if
and only if:

rank(¥a,uc,,B,uc,) = |Cyl.

This equivalence confirms that the d-separation criterion in the causal graph corresponds to a rank
condition on the cross-covariance matrix ¥ a ,uc,,B,UC, -

Since the window causal graph in PO-MHP is a DAG with linear causal relations and serially
uncorrelated white noise, the above rank condition applies directly to the window causal graph in the
PO-MHP framework. This completes the proof.

I Proof of Proposition 3.3]

Proof. For any subprocess O, we prove the equivalence of the four statements step by step.

(1) & (2): If Pg is the parent cause set of O in the summary graph, by construction of the window
causal graph, it equivalent to that the corresponding lagged variable set P, contains all direct parent

variables of O%n). This follows from the fact that, in the window graph, directed edges exist from the
effective lag variables of each parent subprocess to 0§"). Moreover, by definition of the parent cause
set, Pg is minimal with this property.

(2) & (3): If P, contains all direct parents of 0§"> in the window graph, by the Markov property
of DAGs, P, d-separates 0§"> from all other observed variables in O,\ (PU U {Og“)}> Reversly,
if P, d-separates O%") from all other observed variables in O, (PU U {O;n)}> , by the Granger

causality-events in the future cannot causally influence events in the past, P, should contain all direct

parents of OE”) in the window graph. Moreover, by definition of the parent cause set, Pg is minimal
with this property.

(3) < (4): By applying Lemma the d-separation between Ogn) and the rest of the variables,
conditioned on P,, is equivalent to the rank constraint:

rank (% oy0p,, 0,00 ) = IPel

(4) & (1): Assume the rank condition holds for P,,. By Lemma@], this implies that P, d-separates

O%n) from all other variables in the window graph. Translating back to the summary graph, this
implies that Pg is the minimal parent cause set of O, as no smaller set can block all paths to O;.

Thus, all statements are equivalent. This completes the proof. O
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J Preliminaries for Proofs of Proposition 3.5/ and Theorems [F.2and [F.3|

To establish this result, we rely on the concepts of trek separation (t-separation) and d-separation
introduced by [47], which provide powerful tools for analyzing latent structures in linear causal
models.

Definition J.1 (Trek [47]). A trek in the DAG G from variable V; to variable V/ is an ordered pair of
directed paths (P, P2) where P4 has sink V;, P4 has sink Vj, and both Py and P have the same
source Vj,. The common source V% is called the top of the trek, denoted top(P1, P2). Note that one
or both of Py and P, may consist of a single variable, that is, a path with no edges. A trek (P1,P2)
is simple if the only common variable among Py and P is the common source top(P1, P2). We let
T(Vi, V;) and S(V;, V;) denote the sets of all treks and all simple treks from V; to Vj}, respectively.
Definition J.2 (T-separation [47]). Let A, B,, Ca, and Cg be four subsets of total variable set V.
We say the ordered pair (C s, Cg) t-separates A, from B, if, for every trek (71; 7o) from a variable
in A, to a variable in B, either 7; contains a variable in C or 75 contains a variable in Cg.
Theorem J.3 (Trek separation for directed graphical models [47])). The sub-matrix ) 5 g has rank
less than equal to r for all covariance matrices consistent with the graph G if and only if there
exist subsets C4,Cp C Vg with |C 4| 4+ |Cp| < r such that (C 4, Cp) t-separates A from B.
Consequently,

rank(Xa g) < min{|C4| + |Cg| : (Ca, Cp) t-separates A from B}

and equality holds for generic covariance matrices consistent with G.

Corollary J.4 (T-separation and D-separation [47]]). A set C d-separates A and B in G if and only if
there is a partition C = C4 U Cp such that (C 4, Cp) t-separates A U C from B U C.

Therefore, when Ca and Cg are disjoint, the combined set C U Cg also serves as a d-separator
between A and B. Moreover, since the window graph in the Hawkes process is a DAG with linear
relations, the above results can be directly applied after suitable adaptation to the Hawkes process
setting.

K Proof of Proposition 3.5
Proof. We prove both directions of the equivalence.

(<) If such a latent confounder L, exists, the rank condition holds. Suppose there exists a
latent confounder L, that is one common parent cause in the parent cause set of {O1, O}, and that
L together with {O1, O3} makes them locally independent of other subprocesses.

Given that L; and its paths to O; and O, satisfy Definition [3.4] the contribution of L; to both Oy
and O5 in the window graph occurs through the same number of latent intermediates, resulting in

an aligned contribution across time lags. In this setup, the influence of L; will appear as a shared
i€{1,2}

component across the observed variables {Ogj ) }j e{n—m,..;n}"

Consider the window graph with m considered effective lag variables. Following the logic of trek
separation, in the window graph with m effective lag variables, the minimal choke set C that
t-separates O%n), Oé") from the rest is given by:

. n ] n—m,...,n—1
Cy = {ng)}je{n—m ..... n—1} U {OE )}Z€€§12} }

It is equivalent to that C,4 is the minimal set that d-separates {O§n),O§”)} from the
0.\{01"”, 05"},

Thus, by Theorem the generic rank of the cross-covariance matrix is bounded above by |[Ca | =
2m 4+ m = 3m, where 2m comes from observed lag variables of {O1, Oz} and m comes from latent
lag variables of L,. However, due to the structure of the excitation function ¢;;(s) = a;;w(s), the
latent subprocess L contributes effectively as a single shared component across all its lag variables,
reducing the effective rank from m to 1.
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j€{n—m,...n}
(2

i€{1,2}
as the linear regression on those check points as:
- - [ 7 (n=1)7 - -
o 1 [HT] e
—1 —1
Tl I P I
| for ] e
I Y R I R i (10)
Og") O§n_m) esz) + 021)
O§n71> Ogn—l) 62’;71) + 0((,?)
_O;"_m)_ Oé:n'—'m) _6((72_m) + 05;?)_
r m 1 0 9
Qoyly fOA w(s)ds -+ aoy f(nil)A w(s)ds 1 - 1 0o --- 0
0 9. 0 1 % 0 o % o
0 0 0
E— 2 on 0 0 1 0 1 0 (11
Qosty Jy w(s)ds - aoyny f(m—l)A w(s)ds 0 -+ 0 1 -
0 2. 0 o 2 o 1 %
i 0 ; 0 o 0 o o1

It is straightforward to see that the rank of the coefficient matrix E is 2m + 1, because the two row
corresponding to Ogn) and Oén) in E are linearly dependent (proportional to each other).
Furthermore, the cross-covariance matrix of {O% }fg?;}m"} and 0,\{0!™ 0O}, ie.,
)

o . TpT :
{OE”HSS}’" ..... " o {0,051 can be written as EC4C ,F' where E and F are coefficient

matrix by regressing variables on those choke points. The rank(C 4 CZFT) has full column rank,
because F calculated from regressing all the rest variables OU\{OYL)7 Oén)} on C4 and without
blocking lagged variables, no shrinkage of rank occurs. Consequently, the rank of the cross-covariance

matrix rank [ ¥ = rank (EC4CF ") =rank(E) = 2m +1

{O g 0,\{0f™ 05y

(The following theorem proofs also adopt a similar way).

Thus, the total rank becomes:

rank = 2m (from observed lags of O; and O3) + 1 (from L1) = 2m + 1.

(=) If the rank condition holds, there exists a latent confounder L, satisfying the claimed
properties. Conversely, assume the observed rank condition:

rank (E{Ogﬂ}zg{(;z}m“wn}v 01)\{0571)705")}) =2m =+ 1.
By construction of the window graph (Eq. 2)), if there were no latent confounder between O, and
O3, the rank would be at most 2m, corresponding to the observed lag variables of O; and Os.
The observed rank being strictly 2m + 1 thus implies the presence of an additional latent variable
influencing both O and Os.

Due to the rank faithfulness assumption (Assumption [2), such a rank elevation uniquely corresponds
to a latent subprocess 1.1 acting as a parent cause of both O; and Os. Furthermore, for the rank
increment to be exactly one, the causal paths from L; to Oy and Oy must satisty the symmetric path
situation (Definition [3.4): i.e., the paths only involve intermediate latent subprocesses of the same
depth without self-loops, ensuring that the contribution of L, introduces a single additional rank
component shared by both O, and O3 at the same temporal lag level.
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Finally, by construction, conditioning on P/, := L1 U {O1, Oz} removes all causal influence from
Ly, rendering {O1, Oz} locally independent of the remaining observed subprocesses.

This completes the proof. O

L Proof of Theorem [E2]
Proof. We prove both directions of the equivalence.

(<) If such a parent cause set Pé’; exists, the rank condition holds. Assume that Péj is the
minimal set of subprocesses such that:

* P is a subset of the parent cause set of N.

* Conditioning on Sg := P UDe(N1) U{De(Li)} 1,ep;, USib(De(N1)) U{Sib(De(Li))} 1, ep,,
renders N7 locally independent of all other subprocesses in the system.

* All possible observed surrogates of IV; in Og have been identified.

* Foreach L; € P(, the relationship between L; and its observed effects {De(N1 ), De(L;)} satisfies
Definition[3.4]

In this setup, the lagged variables of De(Np) and De(L;), as well as the lagged and current
variables of their observed siblings Sib(De(Ny)) and Sz’b(De(Li))Liepé, appear in both A,
and B,. The rank contribution from these observed variables is deterministically: |0,:| =

€] @) ypiE{n—m, ..., n—1} ()yie{n-—m,..., n—1} (J)yi€{n—m,..., n}
{De(N1)V’),De(L;)V }LiEPlg U{O7 }OiE'PIQ U{O7 }O'i681b(De(N1)>U{Sib(De(Li))}LiE»p/g .

The remaining part of A,, ie., A,\O,1, consists of the current variables
{De(N1)™, De(Li) ™}, epy-

Given the symmetric path structure (Definition , each latent confounder L; € Pg contributes
exactly one shared latent component, as the influence propagates through symmetric, acyclic paths.
Due to the specific excitation function ¢;;(s) = a;;w(s), this results in precisely one rank contribution
per latent subprocess, regardless of the number of lagged variables.

Thus, the latent contribution adds exactly:

0u2 = [{Li}L.em

= ‘De(Li)(n)}LieP'g

rank-one components.

Combining both observed and latent contributions, the total rank becomes:

|0u1| + |Ouvz| = [Ou1| + |Ou2| + 1 (from De(N,)™M) —1 = |A,| — 1.

(=) The rank condition implies the claimed causal structure and local independence. Assume
that P is the minimal set such that:

rank (Xa, B,) = |Ay] — 1

By the theory of trek separation (Theorem [J.3)), such a rank deficiency implies that the information
flow between A, and B, must pass through a set of choke points, corresponding to the candidate
parent causes in Pg.

If no latent confounders existed, or if P; were not part of the parent cause set of Ny, the rank would
be exactly |O,;1], solely contributed by the lagged variables of observed surrogates and both the
current and lagged variables of their siblings.

Since all possible observed surrogates of NV; in Og have been identified, the extra deficiency of rank
(i.e., |Oy2]) thus directly implies the existence of latent subprocesses contributing shared rank-one
components. By the rank faithfulness, this observed rank pattern is only consistent with the existence
of latent subprocesses {L;}1,ep, that act as confounders between De(NN1) and their respective

observed effects, and these latent subprocesses are members of the parent cause set of V7.
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For the rank deficit per latent subprocess to be exactly one, the contribution from each latent
subprocess must propagate through symmetric acyclic paths, consistent with Definition [3.4] ensuring
a single rank-one component contribution per latent subprocess. Moreover, the inclusion of the
observed surrogates and their siblings ensures that no alternative paths can explain the dependency
patterns. Thus, P; must be the subset of parent causes, satisfying the conditional local independence
of N; given Sg.

Therefore, the rank condition is both necessary and sufficient to identify P as the subset of parent
causes of Ny, considering both observed and latent subprocesses. This completes the proof. O

M  Proof of Theorem
Proof. We prove both directions of the equivalence.

(<) If such a latent confounder L, exists, the rank condition holds. Assume there exists a latent
confounder subprocess L; such that:

» L1 is a common parent cause of { N1, No}.
* Conditioning on P := Ly U Ny, N USib(De(N;));c(y oy renders { N1, N2} locally independent
of the rest of the system Ng\Py.

All possible observed surrogates of { N1, N2} in Og have been identified.
* L, and its observed effects {De(Ny), De(N2)} satisfy Definition[3.4]

By the Definition[3.4] the causal influence from Ly to {De(Ny), De(N2)} is symmetric and only
propagates through the same number of intermediate latent subprocesses without self-loops. Under
this condition, the contributions of L; to the observed surrogates {De(N;), De(N3)} appear as a
rank-one component across the lagged variables of these subprocesses, aligned in time.

Thus, in the window graph, the latent influence from L, will introduce exactly one additional rank
component across the observed variable set A, beyond the rank contribution from the observed
lagged variables themselves.

Formally, following the arguments for Proposition 3.5} the rank of ¥, B, is determined by the
minimal set of choke points that t-separate A, from B,, in the window graph Given the assumed
structure:

* The lagged variables of {De(N;),De(N3)} and both the current and lagged wvari-

ables (_)f their observed siblings, denoted as O, = {De(Ni)(j)}Zgﬁ;{n"”’n_l} U
{0Y )}Jof‘ég;&é;&ﬁ))usib(pe( N,))» @ppear in both A, and B,, contributing deterministically

|O,1] to the rank.

* The influence from L, propagates symmetrically to both De(N7) and De(N3) through acyclic
paths composed exclusively of latent subprocesses, per Definition As a result, due to the
excitation function ¢;;(s) = a,;;w(s), the total rank contribution from L, is exactly one.

Therefore, the total rank becomes:

rank (XA, B,) = |Ou1| +1=|A,] -1

(=) If the rank condition holds, such a latent confounder ., must exist. Now assume the
observed rank condition:

rank (¥a, B,) = |[Ay| — 1

We know that parent cause sets of all inferred latent confounder processes in Mg remain unidentified
even after applying Theorem In the absence of any new latent confounder, the maximum
possible rank would be |O,1], corresponding solely to the contributions of the lagged variables
of {De(N7), De(N2)} and both the current and lagged variables of their observed siblings. The
observed rank being exactly |O,1]|+1 = |A,| — 1 implies the existence of an additional latent source
influencing both N1, N5 and their observed surrogates.
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Due to the rank faithfulness, this increment must be attributed to a unique latent subprocess L
that acts as a confounder for NV; and N5. Moreover, the fact that the rank increment is only one
implies that the paths from L; to Ny, Ny must satisfy the symmetric and acyclic conditions in
Definition[3.4] ensuring that the influence of L is captured as a rank-one shared component at the
observed surrogates level.

Moreover, the inclusion of the observed surrogates and their siblings ensures that all other
possible paths and confounding structures are blocked, enforcing 73& = L1 U{Ny,No} U
{8ib(De(N;)) }bieq1,23 in ensuring local independence and all possible observed surrogates of
{N1, N2} in Og have been identified.

Thus, the rank pattern is both necessary and sufficient to imply the existence of L; and the claimed
causal and conditional independence structure. This completes the proof. O

N Proof of Theorem 4.1]

Proof. We prove the theorem by considering the two cases separately: (i) the system contains no
latent subprocesses, and (ii) the system contains latent subprocesses that satisfy Definition [3.4]

Case (i): No latent subprocesses. In this case, the system consists solely of observed subprocesses
Og. Since there are no latent confounders, Phase I alone is sufficient for identifiability. This
follows directly from Proposition[3.3] which ensures that for each observed subprocess, its parent
cause set can be uniquely identified by checking the rank condition of the relevant cross-covariance
matrices. Specifically, since all subprocesses are observed and no latent subprocesses confound their
relationships, the rank condition provides a unique solution. Thus, the entire causal graph can be
identified solely through Phase I.

Case (ii): Presence of latent subprocesses satisfying Definition In the general case where
latent subprocesses exist, the algorithm relies on the synergy between Phase I and Phase II.

* Phase I iteratively identifies the parent cause set for each subprocess (including both observed and
previously discovered latent subprocesses) whose parent cause set is fully contained in the current
set of known subprocesses. By Proposition [3.3]and Theorem [F.2] this identification is guaranteed
when no latent confounders intervene or when latent confounders are already represented by their
observed surrogates.

* Phase II handles the discovery of new latent confounder subprocesses by systematically applying
Proposition [3.5] and Theorem [F.3] The identifiability is guaranteed under the condition that all
latent confounders and their associated observed effects satisfy Definition This condition
ensures that each latent confounder contributes a unique, identifiable rank-1 pattern in the cross-
covariance matrix of its observed surrogates and their siblings, enabling its detection through the
rank conditions established in the theorems.

Termination and completeness. The algorithm alternates between Phase I and Phase II. Since
each iteration either identifies a new parent cause set or discovers a new latent subprocess, and given
the finite number of subprocesses (including latent ones), the algorithm must eventually terminate.

By construction:

* All observed subprocesses will eventually have their parent cause sets identified through Phase L.

* All latent subprocesses satisfying Definition[3.4] will be identified through Phase II and incorporated
into the active set for further investigation.

* The recursive application of the identification theorems ensures that no causal relationships (either
between observed, latent, or between observed and latent) will remain unidentified under the
conditions.

* If Definition [3.4] fails for any latent, the algorithm terminates without fabricating that latent or any
edges it would entail, thereby returning only the identifiable portion of the causal graph (sound
abstention).

Thus, under excitation function ¢;;(s) = a;;w(s) and rank faithfulness, the entire causal graph
consisting of both observed subprocesses and latent confounders can be identified. This completes
the proof. O
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O Details of identification algorithm

0.1 Phasel

The detailed algorithm for Phase I is in Algorithm[2]

Algorithm 2 Identifying Causal Relations

Input: Partial causal graph G, Active subprocess set .Ag, Observed subprocess set Og
Output: Partial causal graph G, Active subprocess set Ag
1: repeat
2:  Select a subprocess N; from Ag.
for Len = 1to | Ag U Og| do
repeat
Select subset P;; C Ag U Og such that [P;| = Len.
if (AgUOg,P;, N1) satisfies Proposition and Theoremthen
Ag = Ag\ Ny, and update G.
Return to line 2.
9: end if
10: until All subsets of Ag U Og with size Len selected.
11:  end for
12: until Ag is not updated or |Ag| < 1.
13: return: G, Ag

PRI N AW

0.2 Phase Il

The detailed algorithm for Phase II is in Algorithm [3]

Algorithm 3 DiscoveringNewLatentComponentProcesses

Input: Partial causal graph G, Active subprocess set Ag, Observed subprocess set Og
Output: Partial causal graph G, Active subprocess set .Ag
1: Initialize cluster set C := () and the group size Len = 2.
repeat
Select a subset Vg from Ag such that |Yg| = Len.
if (AgUOg,Yg) satisfies Propositionand Theorem F.3|then
Add Yg into C.
end if
until All subset of Ag with size Len selected.
Merge all the overlapping sets in C.
9: for each merged set C; € C do
10:  Introduce a new latent subprocess L.
11:  Ag = Ag U L;\C;, and update G.
12: end for
13: return: G, Ag

PRI RN

P Computational Complexity of the Algorithm

In this section, we analyze the computational complexity of our two-phase iterative algorithm,
which alternates between: (1) inferring causal relationships among discovered subprocesses and (2)
identifying new latent subprocesses. Let n denote the number of processes in the active process set
Ag and m denote the number of subprocesses in the augmented process set Tg = Ag U Og at the
start of each phase. Assume each test is an oracle test.

Phase I: Inferring Causal Relationships

For each component process N1 € Ag, we evaluate subsets of Tg starting from subsets of size 1 up
to the size of 7g, stopping when the test result is positive. In the worst case, for each N1, we need to
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evaluate all subsets of 7g, which requires ;- (Tk”) tests. For one subprocess Ny € Ag, if its parent
cause set is found, Ag is updated. After that, the algorithm will restart to go over all the subprocesses
in Ag to make sure no parent cause set of subprocesses in .Ag can be found. In the worst case, the
algorithm find parent cause set for the last component process in .Ag each time. The complexity of
Phase I is upper bounded by: O (n! >, ().

Phase II: Identifying New Latent Subprocesses

n

In this phase, we test all subsets of .Ag of size 2. Since there are (2

Phase II is upper bounded by: O ((g) )
Overall Complexity

) such subsets, the complexity of

The total complexity of the algorithm depends on the number of (both observed and latent) sub-
processes and the structural density of the causal graph, as these factors determine the number of
iterations required for the algorithm to run. Combining the two phases, for each iteration, the overall

complexity is approximately upper bounded by: O (n! > | () + (3)).

In practical scenarios, the structural density of the causal graph and sparsity of dependencies may
reduce the number of required iterations and tests, leading to improved efficiency compared to this
worst-case analysis.

Q More Details of Experiments

Q.1 Synthetic Data Generation and Implementation

We evaluate our method on two types of synthetic data: event sequences generated by the Hawkes
process in Eq. (I)), and discrete-time data generated directly from the discrete-time model in Eq. (2))

Hawkes Process Data: We generate event sequences using the tick library [2f], an efficient frame-
work for simulating multivariate Hawkes processes. The excitation function is set as exponential
kernel ¢;;(s) = ;e P, where $ is fixed at 1. o;; is sampled uniformly from [0.8, 0.99] except for
Case 1. Because of the cycles between N2 and N3 of Case 1, large o;; may lead to nonstationarity.
Thus, we sample «;; uniformly from [0.40,0.80] specifically for Case 1. To ensure stationarity
and avoid explosive behavior, we verify the spectral radius of the integrated excitation matrix after
generating oy;;. To discretize the sequences for our method, we select the time bins of length 0.1 and
consider 600 effective lag time bins as discretized lag variables for the calculation sub-covariance
matrix. The sample size corresponds to the number of discrete data points.

Discrete-Time Series Data: To assess our method under ideal discrete-time conditions (i.e., exactly
satisfying Theorem [3.1)), we generate data directly from Eq. (Z). The excitation function is set as
exponential kernel ¢;;(s) = a; e~ Ps. The coefficients a; and decay parameter (3 are set as above.
Similar to the Hawkes data, we verify the spectral radius to ensure stationarity. The noise terms are
drawn from independent Gaussian distributions. We set the number of effective lag variables to 200.
The sample size corresponds to the number of discrete data points.

Preprocessing and Rank Deficiency Testing: For each trial, we standardize the discretized data to
ensure fair comparison. To test for rank deficiency, we use canonical correlation analysis (CCA) [49],
following the procedure in [21]]. We use the grid search to find the best rank test threshold. We also
conduct a empirical sensitivity analysis for test threshold. The result is in Appendix[Q.3] A threshold
of 0.10 provides a good balance across multiple scenarios.

Data Usage for Baselines: For Hawkes process-based methods (SHP [37]], THP [6], and NPHC [(1]),
we use the raw Hawkes process data produced by the tick library. For rank-based methods designed
for i.i.d. data with linear relations (Hier. Rank [21] and RLCD [13])), we use the discretized Hawkes
process data.

We run all the experiments on a personal PC (CPU).

Q.2 Evaluation Metrics

We evaluate the accuracy of causal structure recovery using the standard F1-score, which combines
precision and recall.
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Causal relationships among both latent and observed subprocesses are represented by an adjacency
matrix, where each entry is either 1 or O, indicating the presence or absence of a directed edge,
respectively. Specifically, AdjG(i, j) = 1 denotes a directed edge from the j-th subprocess to the i-th
subprocess, while AdjG (i, j) = 0 indicates no such edge.

We measure the similarity between the estimated and ground-truth adjacency matrices using the
F1-score. First, we compute precision, defined as

true positives

recision = - o
P total inferred positives’

which represents the proportion of correctly inferred edges among all predicted edges. Next, we
calculate recall, defined as

true positives

recall = —
total ground-truth positives’

which captures the proportion of correctly inferred edges relative to the true causal edges. The
F1-score, given by

recision x recall
Fl-score = 2 - p.,—,
precision + recall

harmonizes precision and recall to provide a balanced measure of structural recovery.

Practical Considerations

In practice, the indices of latent subprocesses in the estimated (summary) graph may not correspond
to those in the ground truth. To address this, following Huang et al. [21], we permute the latent
subprocess indices in the estimated graph and select the permutation that minimizes the difference
from the true graph. When the number of estimated latent subprocesses is smaller than the true
number, we add isolated latent nodes to balance the comparison. Conversely, if the estimate exceeds
the true number, we select the subset that best matches the true latent subprocesses.

Additionally, since our inferred summary graph simplifies the underlying causal structure, by omitting
intermediate latent subprocesses and redundant edges as formalized in our theorems and Definition[3.4}
we adjust the ground-truth adjacency matrix to this idealized representation before comparison. This
ensures a fair evaluation of causal discovery.

For baselines designed for i.i.d. data with linear relations (i.e., Hier. Rank [21] and RLCD [13])),
their output graphs capture relationships among discretized variables, rather than subprocesses. To
enable fair comparison, we regard an edge N1 — N5 as correctly identified if more than half of the
considered variables associated with NV, have inferred edges to those of V5.

Q.3 Additional Experimental Results

Comparisons on Cases 5 and 6 Fig.[§]shows the F1-score comparisons for Cases 5 and 6, which
correspond to intricate latent confounder structures illustrated in Fig[7c|and Fig[7d] These cases
involve interactions between latent confounders. The results indicate that our method maintains
strong performance even under these challenging causal configurations.

Sensitivity to Time Discretization Interval ~ We evaluate the sensitivity of our method to the
choice of the discretization interval A with decay parameter 5 = 1 in the exponential excitation
function ¢;;(s) = a;je~P%. As shown in Table [I| when A is set to 0.01 or 0.05, our method
achieves consistently high F1-scores across all cases, confirming that the discretized representation
sufficiently preserves the temporal dynamics of the underlying Hawkes process. Even at A = 0.1,
the performance remains stable. However, when A increases to 0.3, we observe a sharp drop in
performance, highlighting that overly coarse discretization leads to significant loss of temporal
resolution, impairing the estimation of causal structures. The result shows the need to choose a small
bin width A relative to the typical support of the excitation function [27} [30].
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Figure 8: F1-score comparisons on the remaining two causal graphs (Cases 5 and 6), involving latent
confounder interactions. Case 5 and Case 6 correspond to the causal structures in Figs. [7c|and[7d}
respectively.

Sensitivity to Rank-Test Threshold We evaluate the sensitivity of our method to the threshold 7
used in the rank test (i.e., the cutoff deciding rank deficiency). We vary 7 € {0.01,0.05,0.10, 0.20}
and assess three representative cases. Each experiment uses 30k Hawkes samples generated by the
tick library under an exponential excitation function ¢;;(s) = a;je”* with 3 = 1 and time interval
A = 0.1; results are averaged over ten runs. As shown in Table [2] in the fully observed setting
(Case 1) precision remains 1.00 while recall decreases as 7 increases, whereas in latent settings
(Cases 2-3) a moderately larger threshold improves precision because of the attenuation of causal
influences through the latent subprocesses. Overall, a threshold of 0.10 provides a good balance
across different scenarios.

Robustness to Violations of Rank Faithfulness To test robustness under violations of rank faithful-
ness, we randomly select two edges in each synthetic graph and assign them identical coefficients c;;
for the exponential excitation function ¢;;(s) = ¢ je’ﬂ % in every run. This manipulation introduces
potential linear dependencies in the cross-covariance matrix, which could challenge rank-based
methods. As presented in Table [3] despite the induced degeneracy, our method maintains strong
performance, especially as the sample size increases. These results suggest that our approach is
robust to moderate violations of rank faithfulness in practical scenarios.

Table 1: Performance of our method under varying A values using 80k Hawkes process samples
generated by the tick library with decay parameter 5 = 1 in the exponential excitation function.
Case 1-3 correspond to Figs. [Tb] [2a] and [7a] respectively. Results are averaged over ten runs.
Performance remains stable and high when A < 0.1, but degrades significantly at A = 0.3 due to
the loss of fine-grained temporal information.

Precision Recall F1-Score
A Casel Case2 Case3 Casel Case2 Case3 Casel Case2 Case3
0.01 0.98 091 0.84 0.92 0.93 0.83 0.93 0.92 0.84
0.05 1.00 0.96 0.83 0.84 0.98 0.82 0.90 0.97 0.82
0.10 1.00 091 0.86 0.87 0.93 0.83 0.93 0.92 0.84
0.30 0.50 0.55 0.50 0.17 0.63 0.33 0.25 0.59 0.40

Evaluation on a larger and more complex causal graph We further evaluate our method on a
larger causal graph with 14 subprocesses, as shown in Fig.[9] Table[d|reports the F1-scores averaged
over ten runs. Despite the increased complexity, our method successfully recovers the underlying
causal structure with high accuracy.

Scalability and Runtime Profiling We profile runtime on three representative synthetic graphs
(Cases 1-3) and two real-world settings. All runs were executed on an AMD EPYC 9454 CPU. The
first real-world setting follows our main paper: a five-alarm subgraph (Alarm_ids=0-3 with one
latent Alarm_id=7) from device_id = 8. The second merges all devices into a single multivariate
event sequence with all 18 alarms to gauge scaling with graph size. We observe that Case 1 is fastest as
no latent confounders are present and Phase I suffices. Case 2 introduces latent confounders, requiring
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Table 2: Sensitivity to the rank-test threshold 7. Each entry is averaged over ten runs on 30k
samples generated with an exponential kernel (3 = 1). Case 1-3 correspond to Figs. and|[7a]
respectively. Overall, a threshold of 0.10 provides a good balance across different scenarios.

Precision Recall Fi
Threshold 7 Casel Case2 Case3 Casel Case2 Case3 Casel Case2 Case3
0.01 1.00 0.42 0.57 0.80 0.53 0.50 0.88 0.47 0.53
0.05 1.00 0.62 0.62 0.64 0.73 0.54 0.77 0.67 0.57
0.10 1.00 0.66 0.72 0.60 0.75 0.65 0.74 0.71 0.68
0.20 1.00 0.76 0.68 0.47 0.85 0.63 0.62 0.80 0.65

Table 3: Performance of our method when, in each run, two edges in each graph are randomly
assigned identical coefficients o;; for the exponential excitation function, increasing the risk of rank
deficiency. Hawkes process samples are generated by the tick library. Case 1-3 correspond to
Figs.[Tbl [2a] and[7a] respectively. Results are averaged over ten runs. Despite these perturbations, our
method maintains strong performance, demonstrating robustness to such violations.

Precision Recall F1-Score
#Samples Casel Case2 Case3 Casel Case2 Case3 Casel Case2 Case3
30k 0.87 0.60 0.72 0.87 0.75 0.71 0.87 0.67 0.71
50k 0.92 0.83 0.76 0.84 0.82 0.73 0.87 0.82 0.74
80k 0.95 0.84 0.83 0.90 0.83 0.80 0.92 0.83 0.81

Figure 9: Illustration of a larger causal graph consisting of 14 subprocesses, used to evaluate scalability
and robustness.

Table 4: Performance of our method on the larger causal graph in Fig. @ using Hawkes process data
generated by the tick library. Results are averaged over ten runs. The method consistently recovers
the causal structure with improving accuracy as sample size increases.

Sample Size Precision Recall F1-score

30k 0.65 0.52 0.58
50k 0.71 0.58 0.64
80k 0.80 0.71 0.75
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both phases in the first iteration and increasing runtime. Case 3 is slowest among synthetic cases
because the latent confounder is itself caused by an observed subprocess, triggering an additional
iteration to identify its observed parent. For real data, merging all devices markedly increases runtime
as the sequence spans all 18 alarms and may deviate from a homogeneous Hawkes mechanism. A
phase-wise complexity breakdown is provided in Appendix [P} which offers further insight into the
scalability of the algorithm.

Table 5: Runtime across synthetic and real-world settings.

Graph Type Runtime (s)
Case 1 227.80
Case 2 1036.01
Case 3 2603.95
Real Dataset (Alarm_ids=0-3, device_id = 8) 1364.71
Real Dataset (all devices merged; 18 alarms) 20914.29

Q.4 Analysis of Real-world Dataset Results

We evaluate our method on a real-world cellular network dataset [37], which includes expert-validated
ground-truth causal relationships. The dataset comprises 18 distinct alarm types and ~35,000 recorded
alarm events collected over eight months from an operational telecommunication network. This
benchmark has been widely used in prior work (e.g., the PCIC 2021 causal discovery track and [37]),
where performance for many methods is available and top F1-scores are reported up to ~ 0.6.

For our evaluation, we focus on a subgraph involving five alarm types (Alarm_ids=0-3 and 7),
where Alarm_id=7 is manually excluded and treated as a latent subprocess. Both Alarm_id=1
and Alarm_id=3 are observed effects of this latent subprocess, providing an opportunity to assess
our method’s ability to infer latent confounders. The ground-truth causal subgraph is shown in
Figure[I0] Compared with our inferred causal graph, the ground truth contains an additional edge
from Alarm_id=1 to Alarm_id=3. However, as noted in Definition causal edges between
observed effects of a latent confounder are permissible in our framework.

During inference, using Proposition [3.3]and Theorem[F2] we correctly identify Alarm_ids=0,1,3
as the parent causes of Alarm_id=2, and Alarm_ids=1,3 as the parent causes of Alarm_id=0.
The parent cause sets of Alarm_id=1 and Alarm_id=3 cannot be fully explained by the observed
subprocesses alone. This necessitates the existence of a latent confounder influencing both, leading
to the successful identification of Alarm_id=7 as a latent subprocess.

Alarm_id 1

\
( Alarm_id7 )
\\ -

Alarm_id 0

Alarm_id 2

Figure 10: Ground-truth causal subgraph from the metropolitan cellular network dataset. Alarm_id=7
is treated as a latent subprocess.

Baselines and protocol. We compare against representative Hawkes-based methods (SHP [37],
THP [6], NPHC [[1]), two rank-based latent-variable methods originally for i.i.d. data (Hier. Rank [21]],
RLCD [13]), and a time-series method for exogenous latents (LPCMCI [16]). Following our
rebuttal, LPCMCI is newly included. For fairness, all baselines are run on the same sub-dataset
(Alarm_ids=0-3 and 7 from device_id = 8) used by our method, with each method evaluated over
ten runs and averaged.

Results on the sub-dataset. Our method achieves the best F1-score when the data conforms to a
single multivariate Hawkes process (per-device setting). Table [6]reports the average F1-scores.
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Table 6: F1-scores on the cellular network sub-dataset (Alarm_ids=0-3 and 7, device_id = 8) where
Alarm_id=7 is manually excluded and treated as a latent subprocess; averages over 10 runs.

Algorithm F1-score

SHP 0.49
THP 0.48
NPHC 0.42
Hier. Rank 0.00
RLCD 0.39
LPCMCI 0.43
Ours 0.76

Merged-devices analysis. For completeness, we also merge events from all 55 devices into a single
multivariate sequence with all 18 alarm types and analyze it with our method. This setting violates the
assumption that samples share the same generative mechanism (devices can be heterogeneous), and it
yields a much lower F1-score (0.17). This illustrates why per-device analysis is more compatible
with our assumptions, whereas merged-device data can confound structure learning.

Dataset description. The dataset records 34,838 alarm events from a metropolitan cellular network
[37], covering 18 alarm types and 55 devices. Each record contains:

* Alarm ID: one of 18 alarm types,

* Device ID: one of 55 devices,

» Start Timestamp: time when the alarm was triggered,
* End Timestamp: time when the alarm was resolved.

For causal analysis, we sort events by alarm type and use the start timestamp as the event time,
yielding a temporally ordered sequence suitable for inference.

R Limitations

Our method recovers the causal structure of the discretized time-series representation of a multivariate
Hawkes process; the correspondence to the underlying continuous-time (PO-)MHP holds in the limit
as A — 0. When the observational resolution is coarse (large finite A), this approximation may not
fully capture the continuous-time dynamics. We therefore recommend choosing A small relative to
the typical support of the excitation kernel and provide a sensitivity analysis in Table
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions listed in the abstract and introduction correspond to the
content of the sections that follow.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explain each assumption in detail and perform sensitivity experiments to
violations of the assumptions in Appendix [Q.3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For each theoretical result, we clearly state the corresponding assumptions and
attach the corresponding proofs in the appendix. All theorems, formulas, and proofs in the
paper are numbered and cross-referenced.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of the algorithm are in Appendix |O]and we explain the experimental
setup in detail in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset is publicly available and we attach a demonstration code in the
supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the algorithm are in Appendix [O]and we explain the experimental
setup in detail in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In our paper, the source of volatility is mainly synthetic data generated, not
the model itself. Once data is fixed, our method become deterministic. We report averaged
results over multiple independent trials aiming to reduce the randomness in data generation.
Moreover, as our focus is on structural identifiability rather than predictive performance
variance, we prioritized reporting the main trends across multiple scenarios.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Our experiment can be run on a personal PC (CPU).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: They are discussed in the introduction and conclusion part.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The real-world dataset we used is publicly accessible, and we cite the source
regarding the dataset.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1415 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1416 may be required for any human subjects research. If you obtained IRB approval, you
1417 should clearly state this in the paper.

1418 * We recognize that the procedures for this may vary significantly between institutions
1419 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1420 guidelines for their institution.

1421 * For initial submissions, do not include any information that would break anonymity (if
1422 applicable), such as the institution conducting the review.

1423 16. Declaration of LLLM usage

1424 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1425 non-standard component of the core methods in this research? Note that if the LLM is used
1426 only for writing, editing, or formatting purposes and does not impact the core methodology,
1427 scientific rigorousness, or originality of the research, declaration is not required.

1428 Answer: [NA]

1429 Justification: [NA|

1430 Guidelines:

1431 * The answer NA means that the core method development in this research does not
1432 involve LLMs as any important, original, or non-standard components.

1433 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1434 for what should or should not be described.
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