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Abstract

Multivariate Hawkes process provides a powerful framework for modeling tem-1

poral dependencies and event-driven interactions in complex systems. While2

existing methods primarily focus on uncovering causal structures among observed3

subprocesses, real-world systems are often only partially observed, with latent4

subprocesses posing significant challenges. In this paper, we show that continuous-5

time event sequences can be represented by a discrete-time causal model as the6

time interval shrinks, and we leverage this insight to establish necessary and suf-7

ficient conditions for identifying latent subprocesses and the causal influences.8

Accordingly, we propose a two-phase iterative algorithm that alternates between9

inferring causal relationships among discovered subprocesses and uncovering new10

latent subprocesses, guided by path-based conditions that guarantee identifiabil-11

ity. Experiments on both synthetic and real-world datasets show that our method12

effectively recovers causal structures despite the presence of latent subprocesses.13

1 Introduction14

Causal discovery in complex systems is crucial in domains such as social networks [57], neuroscience15

[4], and finance [20]. Multivariate Hawkes processes [19, 31] have become a powerful tool for16

modeling temporal dependencies and event-driven interactions. Most existing methods [52, 14,17

39, 24] rely on Granger causality [26] and maximum likelihood estimation [48], or on pre-binned18

likelihood approaches [42, 6, 37]. However, these methods operate under the sufficiency assumption19

that all task-relevant subprocesses are observed. In practice, many components remain unmeasured20

(e.g., unrecorded neurons in spike train data [22]), creating latent confounders that hinder reliable21

causal discovery. Existing strategies for missing data [40] do not identify entirely unobserved22

subprocesses, making this an important open challenge. A detailed review is deferred to Appendix A.23

In this work, we address the largely unexplored problem of learning causal structures in Hawkes24

processes with latent subprocesses. Our framework leverages a discrete-time representation and25

rank constraints on cross-covariance matrices to enable both causal discovery and latent subprocess26

identification. Specifically, we contribute:27

• A principled framework for identifying latent subprocesses without prior knowledge of their28

existence or number.29

• Necessary and sufficient conditions linking discretized Hawkes representations to causal influence,30

enabling discovery of both observed and latent subprocesses.31

• A two-phase iterative algorithm that alternates between structure recovery and latent subprocess32

discovery, with practical identifiability guarantees.33
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Figure 1: Illustration of a multivariate Hawkes process with three subprocesses N1, N2, N3. (a) A
point process representation, where the continuous timeline is partitioned into intervals of length ∆.
(b) The corresponding summary causal graph, which is the central object of this paper. Each node
represents a subprocess, with causal relations N1 ← N2 ⇌ N3, and self-loops on all nodes. (c) The
window causal graph, depicting the underlying time-lagged causal mechanism. Each node denotes
the count in a time interval ∆, modeled as a weighted sum of lagged parent nodes and an uncorrelated
noise, as in Eq. 2. Note: This paper focuses on cases where some subprocesses are latent.

2 Partially Observed Multivariate Hawkes Process-based Causal Model34

2.1 Multivariate Hawkes Process35

A multivariate Hawkes process is a self-exciting point process modeling temporal dependencies36

among events via a set of counting processes NG = {Ni}li=1, where Ni(t) records the number of37

type-i events up to time t.38

Definition 2.1 (Multivariate Hawkes Process [19, 31]). For each i ∈ {1, . . . , l}, the intensity of Ni is39

λi(t) = µi +

l∑
j=1

∫ t

0

ϕij(t− s) dNj(s), (1)

where µi is the background rate and ϕij(s)≥0 the excitation kernel measuring the decaying influence40

of past type-j events on Ni. Stationarity requires the spectral radius of Φij =
∫∞
0

ϕij(s)ds to be less41

than one.42

For each subprocess Ni, we define its parent cause set PG ⊆ NG as the minimal set such that λi(t)43

depends only on histories of PG and not on others. Equivalently, Ni is locally independent [12] of44

NG\PG given PG . Further background and derivations appear in Appendix B.45

2.2 Model Definition46

We formalize our framework as a graphical causal model for multivariate Hawkes processes, where47

nodes represent subprocesses and directed edges correspond to nonzero excitation functions. The48

goal is to recover both observed and latent subprocesses and their causal relations.49

Definition 2.2 (Partially Observed Multivariate Hawkes Process-based Causal Model (PO-MHP)).50

Let G = (NG , EG) be a directed graph, where each node Ni ∈ NG represents a subprocess. A51

directed edge Eij exists iff
∫ t

0
ϕij(t − s) dNj(s) > 0. The node set consists of p observed nodes52

OG = {Oi}pi=1 and q latent nodes LG = {Li}qi=1.53

The PO-MHP model naturally allows cycles and self-loops, as well as edges between observed and54

latent subprocesses.55

Definition 2.3 (Causal Effect). For any Ni, Nj ∈ NG , if a directed path exists from Ni to Nj , then56

Ni is a cause of Nj and Nj is an effect of Ni.57

Definition 2.4 (Parent Cause Set). For Ni ∈ NG , the minimal set PG ⊆ NG \ {Ni} is called its58

parent cause set if every directed path to Ni passes through some node in PG . If Ni has a self-loop,59

it is also included in PG .60

Remark. Ni is locally independent of NG \ PG given PG if and only if PG is its parent cause set.61
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3 Structure Identification in Partially Observed Hawkes Processes62

3.1 From Continuous-Time to Discrete-Time Representation63

Directly inferring causal structure from the continuous-time formulation in Eq. 1 is difficult, especially64

with latent subprocesses. Instead of MLE-based approaches [52, 14, 39, 24, 42, 6, 37], we establish65

an explicit reduction from Hawkes dynamics to a discrete-time linear autoregressive model, which66

enables time-aware rank tests for causal discovery.67

Theorem 3.1 (Hawkes Process as a Linear Autoregressive Model). Let NG = {Ni}li=1 be a68

stationary multivariate Hawkes process with intensities {µi} and excitation functions {ϕij(s)}.69

Define discretized event counts70

N
(n)
i := Ni(n∆)−Ni((n− 1)∆), N

(0)
i = 0,

for bin width ∆ ∈ (0, δ). As ∆→ 0, the process admits the linear autoregressive representation71

N
(n)
i =

l∑
j=1

n∑
k=1

θ
(k)
ij N

(n−k)
j + ε

(n)
i + θ

(0)
i , (2)

where θ
(0)
i = ∆µi, θ

(k)
ij =

∫ k∆

(k−1)∆
ϕij(s)ds, and ε

(n)
i is white noise.72

This discrete-time view shows that each current variable N
(n)
i is a weighted sum of lagged variables73

plus noise, enabling causal inference via cross-covariance rank conditions. Proofs are deferred to74

Appendix G. In practice, only a finite number of lags need be considered, since excitation functions75

decay and θ
(k)
ij vanish for large k; we choose m lags exceeding this effective support [27, 36].76

3.2 Structure Discovery Through Rank Constraints77

We link statistical properties of Hawkes data to the discretized variables of window causal graph,78

which in turn identifies the summary graph—even with latent subprocesses. Under the linear79

representation in Eq. 2 with white noise, the causal structure induces characteristic low-rank patterns80

in cross-covariance matrices of observed variables.81

Lemma 3.2 (D-separation ⇔ Rank in the Window Graph). Consider the window causal graph82

of a PO-MHP. For any disjoint variable sets Av, Bv and Cv, Cv d-separates Av and Bv, iff83

rank(ΣAv∪Cv,Bv∪Cv
) = |Cv|, where ΣAv∪Cv,Bv∪Cv

denotes the cross-covariance matrix between84

Av ∪Cv and Bv ∪Cv , and |Cv| is the cardinality of Cv .85

Proposition 3.3 (Identifying Observed Parent Cause Set). Let OG = {Oi}pi=1 be observed subpro-86

cesses (latent subprocesses may exist). For target O1, the following are equivalent: (i) In the summary87

graph, the set PG ⊆ OG is the parent cause set of the subprocess O1; (ii) In the window graph,88

with the observed variable set Ov := {O(j)
i }

j∈{n−m,...,n}
i∈{1,2,...,p} , PG is the minimal set such that lagged89

variable set Pv := {O(j)
i }

j∈{n−m,...,n−1}
Oi∈PG

contains all parent variables of the current variable O(n)
1 ;90

(iii) PG is the minimal set such that variable set Pv d-separates O(n)
1 from the rest Ov\{Pv ∪O(n)

1 }.91

(iv) PG is the minimal set such that rank(Σ
O

(n)
1 ∪Pv, Ov\O(n)

1
) = |Pv|.92

Proposition 3.3 depends only on observed variables and thus identifies the observed parent cause set93

PG of any target O1, regardless of latent subprocesses, implying local independence of O1 given PG .94

Intermediate Latent Subprocesses. Latent nodes lying on directed paths between O1 and its95

identified observed parents are in general unidentifiable (their effects can be absorbed by observed96

parents). For Hawkes, however, once PG is identified, the discrete-time structure allows counting the97

number of such intermediate latent nodes under mild conditions; details are in Appendix C.98

Latent Confounders. A latent confounder is a latent node that must be included in the parent cause99

set to render an observed effect locally independent of others (e.g., O1 ← L1 → O2 in Figure 2a).100

Rank conditions in Proposition 3.3 alone cannot reveal such L1 because it is unobserved.101
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(a) (b) (c) (d)

Figure 2: Latent-confounder examples. (a) Summary graph with a latent confounder L1 for O1, O2;
some nodes have self-loops. (b) Corresponding window graph with two effective lags. (c)–(d) More
complex latent paths from L1 to {O1, O2} via intermediate latent subprocesses.

Assumption 1 (Excitation function). Assume excitation function ϕij(s) = aijw(s) with a time lag s102

related decay function w(s) and coefficients aij representing the peer influence between event types.103

This covers exponential decay αije
−βs and other normalized decays [5]. We also assume rank-104

faithfulness to exclude measure-zero degeneracies (Appendix D).105

Under Assumption 1, excitation coefficients in (2) decompose as θ(k)ij = aij
∫ k∆

(k−1)∆
w(s)ds, so the106

decay part of k-dependence is shared across edges. In the setting of Figure 2a with two lags (m = 2),107

the current variables (O(n)
1 , O

(n)
2 ) depend linearly on (L

(n−1)
1 , L

(n−2)
1 ) with a rank-1 coefficient ma-108

trix; hence rank

(
Σ{O(n)

1 ,O
(n)
2 }, {O(j)

i }j∈{n−m,...,n}
i∈{3,4}

)
= 1, indicating one latent confounder affecting109

O1 and O2 (formalized in Proposition 3.5; proof in Appendix K). If O1, O2 have self-loops, indirect110

paths via their lagged variables increase rank; including their observed lags restores identifiability,111

yielding rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , {O(j)

i }j∈{n−m,...,n}
i∈{3,4} ∪{O(j)

i }j∈{n−m,...,n−1}
i∈{1,2}

)
= 2m+1, where 2m112

accounts for observed lags of O1, O2 and the +1 corresponds to a single latent confounder (see113

Appendix E). We introduce a path situation to capture all graphical configurations that could induce114

rank deficiency.115

Definition 3.4 (Symmetric Acyclic Path Situation). Let L1 be a latent confounder for observed set116

OG1. The following hold: (i) there exist directed paths from L1 to each node in OG1 containing117

only intermediate latent nodes (no observed nodes on the paths, and endpoints are not reused as118

intermediates); (ii) all such paths have equal length; (iii) the paths are acyclic and intermediate latent119

nodes have no self-loops.120

The structures in Figures 2c and 2d satisfy Definition 3.4; adding or removing intermediate latent121

nodes asymmetrically or forming cycles breaks it. The next result leverages Definition 3.4 to detect a122

latent confounder from observed effects.123

Proposition 3.5 (Identifying a Latent Confounder from Observed Effects). Consider a PO-MHP124

with excitation function ϕij(s) = aijw(s) and rank-faithfulness. Let Ov = {O(j)
i }

j∈{n−m,...,n}
i∈{1,...,p} .125

For two observed subprocesses O1, O2, rank
(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O(n)

1 ,O
(n)
2 }

)
= 2m + 1 iff126

there exists a latent confounder L1 in the parent cause sets of {O1, O2} such that conditioning on127

P ′
G = L1 ∪ {O1, O2} renders {O1, O2} locally independent of OG \ P ′

G , and L1 with {O1, O2}128

satisfy the Definition 3.4.129

Surrogate-Based Recovery of Remaining Relations. Once a latent confounder L1 is detected from130

its observed effects (Proposition 3.5), we recover the remaining relations by treating one observed131

effect as an observed surrogate of L1 and grouping its observed siblings. Intuitively, under the132

excitation function assumption and rank-faithfulness, conditioning on the surrogate (and its siblings)133

isolates the local influence of the underlying latent node, so that the parent-cause tests reduce to rank134

conditions on blocks of cross-covariances, analogous to the observed-only case. This surrogate view135

also composes: it enables testing relations between an inferred latent and an observed node, as well136

as between two inferred latents via their surrogates. The formal statements–including the surrogate137

definition and two theorems covering (i) parent set identification when latent causes are involved and138

(ii) discovery of new latent subprocesses causally related to inferred latent subprocesses–together139
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with Fig. 7, are deferred to Appendix F. In practice, we therefore: (1) detect latent confounders via140

the 2m+1 rank signature; (2) select surrogates and siblings; (3) apply the surrogate-based rank tests141

to complete the graph among observed and inferred latent subprocesses.142

4 Rank-based Discovery Algorithm143

In this section, we present a two-phase iterative algorithm that leverages the identification theorems144

to iteratively identify causal relationships among discovered subprocesses and discover new latent145

subprocesses. Let AG denote the active process set, consisting of subprocesses whose parent causes146

are yet to be identified. Initially, AG is set to the observed subprocess set OG and is progressively147

updated throughout the procedure. Additionally, due to the existence of cycles in the summary causal148

graph, observed subprocesses previously identified as effects may still serve as causes for other149

subprocesses in AG , and thus remain under investigation. The overall procedure is in Algorithm 1.150

Algorithm 1 Two-Phase Iterative Discovery Algorithm
Input: Observed subprocess set OG
Output: Causal graph G
1: Initialize partial causal graph G := ∅, active process set AG := OG .
2: repeat
3: (G,AG)← Identifying Causal Relations (G,AG ,OG). //phase I
4: (G,AG)← Discovering New Latent Subprocesses (G,AG ,OG). //phase II
5: until AG is empty or no updates occur.
6: return: G

Phase I: Identifying Causal Relations Each iteration begins with Phase I, which aims to identify151

the causal structure for under-investigated subprocesses (both latent and observed) in AG . In this152

phase, we systematically iterate over each subprocess in AG and attempt to identify its parent causes153

using the current AG ∪ OG . If a subprocess’s parent cause set is fully contained within this set, it154

can be identified using Proposition 3.3 and Theorem F.2. Once its parent cause set is identified, the155

subprocess is removed from AG . This phase continues until no further updates occur. Details of this156

phase are provided in Algorithm 2 in Appendix O.1.157

Phase II: Discovering New Latent Subprocesses When no more subprocesses in AG can be158

resolved using Phase I, we enter Phase II. This phase seeks to discover new latent confounder159

subprocesses by exhaustively checking all pairs in AG using Proposition 3.5 and Theorem F.3.160

Identified latent confounders are merged if they overlap in subprocesses, implying they share the161

same latent parent cause. AG is then updated to add new latent subprocesses and remove their effects,162

and the algorithm returns to Phase I in the next iteration. The procedure continues until AG is empty163

or remains unchanged. Detailed steps are provided in Algorithm 3 in Appendix O.2.164

Theorem 4.1 (Identifiability of the Causal Graph). Consider a PO-MHP with excitation function165

ϕij(s) = aijw(s) and rank faithfulness. If each latent confounder subprocess, along with all its166

observed surrogates, satisfies Definition 3.4, then the causal graph over the observed subprocesses167

and latent confounder subprocesses can be identified. In particular, when no latent subprocesses168

exist, the causal graph is fully identifiable through only Phase I of the algorithm.169

Moreover, the computational complexity depends on the number of subprocesses (including latent170

confounders) and the density of the underlying causal graph, which together determine the number of171

iterations required for complete graph discovery. A detailed complexity analysis is in Appendix P.172

5 Experiments173

Synthetic Data We compare our method against six strong baselines. SHP [37] and THP [6]174

are discrete-time (binned) Hawkes methods, while NPHC [1] is a cumulant-based approach. Be-175

cause existing Hawkes-based methods do not identify latent subprocesses without prior knowledge,176

we also include two rank-based methods designed for i.i.d. linear models—Hier. Rank [21] and177

RLCD [13]—and we further add LPCMCI [16] as a time-series baseline that handles exogenous178
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latent confounders. For these three methods (Hier. Rank, RLCD, LPCMCI), we apply the discretized179

(binned) Hawkes data on them. For our method, we evaluate both on event sequences generated by180

the Hawkes process in Eq. (1) and on data generated directly from the discrete-time model in Eq. (2).181

We test across six synthetic graph families: the fully observed graph in Fig. 1b and five structures with182

latent subprocesses in Figs. 2a and 7a–7d. We report average F1-score over ten runs on a personal183

PC (CPU). Additional details and further results (larger graphs, sensitivity to ∆, and robustness to184

rank-faithfulness violations) appear in Appendix Q. As shown in Fig. 3, our method consistently185

outperforms the baselines on both fully and partially observed graphs. Notably, latent cases typically186

require larger sample sizes: because the spectral radius of a stationary Hawkes process is < 1, causal187

influences attenuate along latent paths, which in turn demands more data for reliable detection.188

Figure 3: F1-score comparisons for first four synthetic causal graphs (Cases 1–4), corresponding to
the structures in Figs. 1b, 2a, 7a and 7b. See Appendix Q.3 for additional cases.

Figure 4: Inferred causal subgraph
from the cellular network dataset,
where Alarm_id=7 is successfully
identified as a latent subprocess.

Real-world Data We evaluate on a public cellular network189

dataset [37] with expert-validated ground truth. The corpus190

contains 18 alarm types collected from 55 devices (≈ 35k191

events over eight months); not every device exhibits all alarms.192

We focus on device_id=8, which contains the alarms rele-193

vant to the subgraph under study. For evaluation, we con-194

sider a five-alarm subgraph (Alarm_ids=0–3 and 7) and195

treat Alarm_id=7 as latent via manual exclusion. Notably,196

Alarm_id=1 and Alarm_id=3 are both observed effects of197

the latent subprocess (Alarm_id=7), which enables its recov-198

ery from observed data. Our inferred graph (Fig. 4) correctly199

recovers the latent subprocess and its major influences; the200

only discrepancy from the ground truth is a single missing edge, Alarm_id=1 → Alarm_id=3.201

Moreover, on this sub-dataset our method quantitatively outperforms representative baselines; see202

Appendix Q.4 for details.203

6 Conclusion and Future Work204

In this paper, we proposed a principled framework for structure learning in partially observed multi-205

variate Hawkes processes (PO-MHP). By leveraging sub-covariance rank constraints and a carefully206

designed path constraint, our method effectively identifies both causal relationships among observed207

subprocesses and latent confounders influencing them. Specifically, we established necessary and208

sufficient conditions for inferring latent subprocesses and identifying causal relations, and developed a209

two-phase iterative algorithm with identifiability guarantees to recover the full causal graph. Notably,210

our approach naturally extends to discrete time series data, given its foundation in the discretized211

representation of Hawkes processes. Future work includes relaxing the identification conditions to212

broaden applicability, and applying our method to diverse real-world datasets for deeper domain213

insights.214
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A Related Work383

This work is closely related to three areas: point processes, Hawkes processes, and causal discovery384

methods.385

Point Processes. Extensive efforts have been devoted to understanding temporal dependencies386

in point processes. Meek [34] introduced a graphical framework for general point processes, lever-387

aging δ∗-separation and process independence to connect graphical representations with statistical388

properties. Gunawardana and Meek [18] proposed a one-dimensional point process model with389

piecewise-constant conditional intensity, utilizing a closed-form Bayesian approach to infer temporal390

dependencies between event types. Chwialkowski and Gretton [8] developed a kernel-based inde-391

pendence test applicable to general random processes, providing a nonparametric perspective on392

dependency learning.393

Several studies have focused on specific structures within point processes. Basu et al. [3] investigated394

Granger causality for discrete transition processes while incorporating inherent grouping structures.395

Daneshmand et al. [11] proposed a continuous-time diffusion network inference method based396

on a parametric cascade generative process, advancing the modeling of temporal influence. In the397

context of marked point processes, Didelez [12] introduced a class of graphical models capable of398

capturing local independence over different marks, offering a more generalized approach to analyzing399

dependencies in complex systems.400

Hawkes Processes. Hawkes processes [19, 31] constitute a class of point processes with self-401

exciting intensities that capture how past events modulate the likelihood of future events. Much402

work on learning temporal dependencies in Hawkes processes builds on Granger causality [17].403

Representative extensions adopt predefined excitation kernels, including exponential [15, 57, 54, 6],404

power-law [56], and nonparametric forms [32, 33].405

Regularization plays a central role in structure learning for Hawkes processes. Xu et al. [52] expand406

kernels on basis functions and use sparse-group lasso for estimation. Zhou et al. [57] propose a convex407

program with nuclear- and ℓ1-norms to promote low-rank and sparsity. Ide et al. [24] introduce408

cardinality-regularized Hawkes with an ℓ0 penalty. Nonparametric approaches include estimating409

integrated kernels [1] and deep models with attribution for Granger inference [55]. However, most410

of these methods target relations among observed subprocesses and do not address truly latent411

components.412

When only binned counts are available, a line of work fits Hawkes from discretized event sequences.413

Shlomovich et al. [42] develop an EM procedure with importance sampling to estimate parameters414

from binned data when exact timestamps are unavailable. Qiao et al. (SHP) [37] learn causal structure415

from discrete-time event sequences via sparsity-regularized likelihood over bin counts. Cai et al.416

(THPs) [6] incorporate topological constraints to recover causal influences on discretized sequences.417

These discrete/binned approaches generally assume full observability and do not identify the existence418

or number of latent subprocesses.419

Causal Discovery Methods. Causal discovery [35] aims to uncover causal relations from data420

and has been studied extensively under i.i.d. assumptions with DAG structures. Classical families421

include constraint-based methods (e.g., PC [44]), score-based methods (e.g., GES [7]), and functional422

approaches (e.g., LiNGAM [41]).423

Latent variables present significant challenges to these methods. To address this, extensions such as424

the FCI algorithm [45, 43] and its variants [10, 9] leverage conditional independence constraints to425

infer partial causal structures in the presence of independent (i.e., exogenous) latent confounders.426

Recent advances have extended these methods to handle causally related latent confounders. Repre-427

sentative examples include Huang et al. [21] and Dong et al. [13], which identify equivalence classes428

in linear models by leveraging second-order (rank) statistics. However, the result graphs of their429

approaches are usually equivalent classes of the ground truth graph, and these approaches typically430

rely on structural conditions that are not natural in discretized Hawkes settings: (i) hierarchical431

latent structures [21] (e.g., no observed-to-observed edges and no observed-to-latent edges), and (ii)432

cardinality constraints [21, 13] (e.g., |children| > |parents| for latent groups). In time-series obtained433

from Hawkes processes, the induced autoregressive representation is dense across many lags, so434

observed surrogates are often fewer than the effective latent “parents,” violating such cardinality435

requirements; moreover, endogenous latent confounders (latent variables influenced by observed436
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processes) naturally happen in our setting. Furthermore, Xie et al. [50, 51] and Jin et al. [25] utilized437

higher-order statistics to accurately identify causal graphs even in the presence of latent confounders.438

But they still have unfeasible cardinality constraints, and they still assume i.i.d. samples, which can439

introduce spurious dependencies and invalidate guarantees when temporal constraints are ignored.440

There are also extensions of constraint-based discovery to time series (e.g., SVAR-based LiNGAM441

[23]) and PC-style temporal methods (e.g., PCMCI [38], LPCMCI [16]). These rely on conditional442

independence tests over lagged variables and again presuppose assumptions (weak autocorrelation,443

exogenous latent variables) that are misaligned with Hawkes dynamics, where dense cross-lag effects444

and endogenous latent variables are common.445

A.0.1 Detailed Relation to a Binned Hawkes process Estimation Method446

Shlomovich et al. [42] address parameter estimation for binned Hawkes processes via a modified EM447

algorithm when only bin counts Nt = N((t+1)∆)−N(t∆) are observed and exact event times are448

unavailable. The bin counts are treated as observed data and the unobserved event times T as latent449

variables (their Eq. 6). Because direct Monte Carlo sampling of T is intractable in Hawkes models,450

they employ importance sampling to simulate within-bin timestamps that match the observed counts,451

thereby maximizing the (binned) likelihood (see their Sec. 2).452

Our goal and methodology differ. Leveraging the link between INAR and linear autoregressive models,453

Theorem 3.1 establishes an explicit linear structural representation for discretized multivariate Hawkes454

processes. This connection enables causal discovery directly over binned variables—including the455

identification of latent confounder subprocesses—with identifiability guarantees (Propositions 3.3456

and 3.5; Theorems F.2 and F.3). In contrast to likelihood maximization based on simulated event times,457

our framework uses time-aware rank constraints on cross-covariances to recover causal structure. To458

the best of our knowledge, prior work has not provided a direct, theoretically grounded reduction459

from Hawkes processes to linear structural models for the purpose of causal discovery.460

A.0.2 Detailed Relation to Rank-Based Latent Discovery in i.i.d. Models461

Huang et al. [21] (and related works by Xie et al. [51] and Dong et al. [13]) study latent structure462

discovery under i.i.d. assumptions and continuous variables. Our problem differs substantively: we463

aim to recover causal structure among observed and latent subprocesses in multivariate Hawkes464

processes, where each subprocess is a point process and inference is performed on discretized465

representations.466

Different Data Domain and Causal Assumptions. Huang et al. [21] (and Xie et al. [51]) assume467

a latent hierarchical structure, specifically: (i) there are no direct causal links among observed468

variables, and all dependencies among observed variables arise exclusively from their latent con-469

founder variables; and (ii) observed variables cannot cause latent variables, i.e., endogenous latent470

confounders are ruled out (see Eq. 1 and Definition 1 in [21], and Eq. 1, 2 and Definition 1 in [51]).471

Neither assumption is needed in our framework. We allow both direct observed-to-observed edges472

(see Proposition Proposition 3.3 in our paper) and the existence of endogenous latent confounder473

subprocesses that can be caused by observed subprocesses (see Theorem F.2 in our paper).474

Cardinality Requirements vs. Hawkes Density. Huang et al. [21], Xie et al. [51], and Dong et475

al. [13] rely on a cardinality condition of the form |children| > |parents| for certain latent sets (cf.476

Definition 4 in [21], Condition 1 in [51], Definition 5 in [13]). This is generally incompatible with477

discretized Hawkes processes, whose autoregressive representation is inherently dense (Eq. 2 in our478

paper): if a latent L1 causes O2, then each discretized variable O(n)
2 is influenced by many lags of L1479

(potentially hundreds or thousands in practice), making the required |children| > |parents| condition480

fail systematically. Our method avoids such cardinality assumptions: leveraging the separable481

excitation (Assumption 1), we place lagged observed variables on both sides of carefully chosen482

cross-covariance blocks so that rank deficiency reliably signals latent confounders (lines 199–216;483

Proposition 3.5; Theorem F.3).484

Time-Aware vs. i.i.d. Causal Discovery. The above i.i.d. methods do not exploit temporal order485

and, in principle, can test variables at time n as putative parents of variables at time n − 1. Our486

procedure is explicitly time-aware: candidate parents for t = n are restricted to appropriate lags487
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(Propositions 3.3 and 3.5; Theorems F.2 and F.3), aligning identification with Hawkes dynamics. This488

distinction mirrors PC [44] (i.i.d.) vs. PCMCI [38] (time series).489

B Multivariate Hawkes Process Details490

Before introducing multivariate Hawkes process, we first describe the temporal point process and491

counting process briefly. A temporal point process is a random process whose realization consists of a492

list of discrete events in time {T1, T2, . . . } taking values in [0,∞). Another equivalent representation493

is the counting process, N1 = {N1(t)|t ∈ [0,∞)}, where N1(t) records the number of events before494

time t and N1(0) = 0. A multivariate point process with l types of events is represented by l counting495

processes {Ni}li=1 on a probability space (Ω,F ,P). Ni = {Ni(t)|t ∈ [0,∞)}, where Ni(t) is496

the number of type-i events occurring before time t and Ni(0) = 0. U = {1, . . . , l} (sometimes497

abbreviated as [l]) represents the set of event types. Ω = [0,∞)×U is the sample space. F = F(t) is498

a filtration, that is, a non-descreasing family of σ-algebras which for each time point t ∈ R, represent499

the set of event sequences the processes can realize before time t. P is the probability measure. Point500

processes can be characterized by the conditional intensity function, which models patterns of interest,501

such as self-triggering or self-correcting behaviors [53]. The conditional intensity function is defined502

as the expected instantaneous rate of type-i events occurring at time t, given the event history:503

λi(t) = lim
h→0

E[Ni(t+ h)−Ni(t)|H(t)]
h

, (3)

where H(t) = {(tk, i)|tk < t, i ∈ U} collects historical events of all types before time t. The504

multivariate Hawkes process is a class of multivariate point processes characterized by a self-505

triggering pattern as defined in Definition 2.1.506

C Identifying Intermediate Latent Subprocesses507

(a) (b)

Figure 5: Example of an intermediate latent subprocess on the directed path from O2 to O1. (a)
The summary causal graph, where L1 is the intermediate latent subprocess. (b) The corresponding
window causal graph with two effective lag variables.

As shown in the summary causal graph in Fig. 5a, L1 is an intermediate latent subprocess on the508

directed path fromthe observed subprocess O2 to O3. According to Proposition 3.3, L1 is not509

identifiable and its effect is attributed to O2, leading to the inference that O2 is the parent cause of510

O3. This is because the influence of L1 is indistinguishable from that of O2 and can be effectively511

merged into O2.512

Consider now the corresponding window causal graph shown in Fig. 5b. The observed variable513

set is given by Ov := {O(j)
i }

j∈{n−m,...,n}
i∈{1,2,3} , where m = 3 exceeds the number of effective lag514

variables (which is 2 in this example). Instead of conditioning on all three lagged variables515

{O(n−1)
2 , O

(n−2)
2 , O

(n−3)
2 } of O2, we exclude O

(n−1)
2 and condition only on {O(n−2)

2 , O
(n−3)
2 }.516

In this case, O(n)
3 becomes d-separated from the remaining variables in Ov. This property arises517

because, due to the presence of the intermediate latent subprocess L1, O(n−1)
2 no longer has a direct518
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influence on O
(n)
3 . The following corollary formalizes a general method for identifying the number519

of intermediate latent subprocesses that may exist between an observed subprocess and each of its520

inferred observed parent causes.521

Corollary C.1 (Identifying Intermediate Latent Subprocesses). Let OG := {Oi}pi=1 denote the ob-522

served subprocesses, with the corresponding observed variable set Ov := {O(j)
i }

j∈{n−m,...,n}
i∈{1,2,...,p} .523

Consider an observed subprocess O1 and its inferred observed parent cause set PG ⊆ OG .524

For any O2 ∈ PG , let h be the largest value such that the lagged variable set Pv :=525

{O(j)
i }

j∈{n−m,...,n−1}
Oi∈PG

\{O(j)
2 }j∈{n−h,...,n−1} d-separates O

(n)
1 from the remaining variables526

Ov\{Pv ∪O
(n)
1 }. Equivalently, h is the largest value such that:527

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O(n)
1 }

)
= |Pv|.

This is equivalent to stating that the shortest directed path from O2 to O1 that does not pass through528

any other observed subprocess consists of h latent subprocesses.529

Remark C.2. In Corollary C.1, O1 and O2 may refer to the same subprocess in cases where Propo-530

sition 3.3 infers that O1 has a self-loop. In such cases, Corollary C.1 can be used to determine531

whether this self-loop represents a direct self-excitation or is mediated through intermediate latent532

subprocesses.533

Proof. Let OG := {Oi}pi=1 and Ov := {O(j)
i }

j∈{n−m,...,n}
i∈{1,2,...,p} . Consider an observed subprocess O1534

and its inferred parent cause set PG . For any O2 ∈ PG , assume the shortest directed path from O2 to535

O1 consists of h latent subprocesses. This implies that the lagged variables {O(j)
2 }j∈{n−h,...,n−1} do536

not influence O
(n)
1 , while the variables {O(j)

2 }j∈{n−m,...,n−h} do.537

Thus, the variable set Pv = {O(j)
i }

j∈{n−m,...,n−1}
Oi∈PG

\ {O(j)
2 }j∈{n−h,...,n−1} is the minimal set that538

d-separates O(n)
1 from the remaining variables. By Lemma 3.2, this implies:539

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O(n)
1 }

)
= |Pv|.

This completes the proof.540

D Rank Faithfulness for the Hawkes Process541

Assumption 2 (Rank Faithfulness for the Hawkes Process). A probability distribution p is rank542

faithful to the graph G if every rank constraint on any sub-covariance matrix that holds in p is entailed543

by every linear structural model (as defined in Eq. 1) with respect to G and the excitation function544

ϕij(s) = aijw(t), ∀i, j ∈ {1, . . . , l}.545

The rank faithfulness assumption is widely adopted in the causal discovery literature for i.i.d. data546

[46, 21]. In our setting, it concerns only the excitation function coefficients aij , and prior studies547

have shown that violations of this assumption occur only in degenerate cases of Lebesgue measure548

zero. Specifically, it fails only in rare pathological scenarios, such as when multiple aij coefficients549

involving those of latent subprocesses are exactly equal across different subprocesses in a manner550

that induces rank deficiency—situations that are highly unlikely to arise in practical applications.551

To empirically assess the robustness of our method to potential violations of rank faithfulness, we552

conduct a sensitivity analysis where, for each synthetic graph, we choose the exponential excitation553

function ϕij(s) = αije
−βs and deliberately assign identical aij values to two randomly selected554

edges, thereby artificially increasing the risk of the violation of rank faithfulness. The results,555

reported in Table 3 in Appendix Q.3, demonstrate that our method remains robust even under such556

perturbations.557
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(a) (b)

Figure 6: Illustration of self-Looped observed subprocesses under latent confounder influence. (a)
Summary causal graph where O1, O2, O3, and O4 are observed subprocesses, and L1 is a latent
confounder subprocess. All subprocesses have self-loops. (b) Corresponding window causal graph
for (a), illustrating the discretized causal mechanisms among O1, O2, and L1, with two effective lag
variables.

E Accounting for Self-Looped Observed Subprocesses under Latent558

Confounder Influence559

Consider Fig. 6, where O1 and O2 also have self-loops. As shown in Fig. 6b, these self-loops560

introduce additional indirect effects, where the lagged latent variables {L(j)
1 }j∈{n−m,...,n−1} prop-561

agate their influence to the current variables O(n)
1 and O

(n)
2 through the observed lagged variables562

{O(j)
i }

j∈{n−m,...,n−1}
i∈{1,2} .563

Fortunately, since these lagged variables are observed, they can be explicitly incorporated into the564

structural equations and, correspondingly, into the covariance matrix. Considering the window565

graph in Fig. 6b with m effective lag variables, the structural equations for the observed variables566

{O(j)
i }

j∈{n−m,...,n}
i∈{1,2} can be written as:567



O
(n)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n)
2

O
(n−1)
2

· · ·
O

(n−m)
2


= E



L
(n−1)
1

· · ·
L

(n−m)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n−1)
2

· · ·
O

(n−m)
2


+



ϵ
(n)
o1 + θ

(0)
o1

ϵ
(n−1)
o1 + θ

(0)
o1

· · ·
ϵ
(n−m)
o1 + θ

(0)
o1

ϵ
(n)
o2 + θ

(0)
o1

ϵ
(n−1)
o2 + θ

(0)
o1

· · ·
ϵ
(n−m)
o2 + θ

(0)
o1


, (4)

E =



ao1l1

∫∆

0
w(s)ds · · · ao1l1

∫m∆

(m−1)∆
w(s)ds 1

1· · · 1 0
0· · · 0

0
0· · · 0 1

0· · · 0 0
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 1 0

0· · · 0

ao2l1

∫∆

0
w(s)ds · · · ao2l1

∫m∆

(m−1)∆
w(s)ds 0

0· · · 0 1
1· · · 1

0
0· · · 0 0

0· · · 0 1
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 0 0

0· · · 1


.

m

m

(5)

It is straightforward to see that the rank of the coefficient matrix E is 2m + 1. Accordingly, by568

including these observed lagged variables in the cross-covariance matrix, we obtain:569

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , {O(j)

i }j∈{n−m,...,n}
i∈{3,4} ∪{O(j)

i }j∈{n−m,...,n−1}
i∈{1,2}

)
= 2m+ 1,
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where 2m corresponds to the observed lagged variables of O1 and O2, and 1 corresponds to the latent570

confounder subprocess L1. For a formal proof, see Proposition 3.5 and Appendix K. This result571

implies the presence of a latent confounder subprocess L1, such that the set {L1, O1, O2} forms the572

parent cause set of {O1, O2}. Conditioning on this set renders {O1, O2} locally independent of O3573

and O4.574

F Surrogate-Based Recovery of Latent Structure575

Proposition 3.5 allows us to infer the existence of a latent confounder from its observed effects.576

This raises an important question: How can we systematically infer the remaining causal relations577

involving the inferred latent subprocesses? This challenge is illustrated by the four summary graphs578

in Fig. 7. In the following, we show how the observed effects can serve as surrogates for their579

associated latent confounders, enabling the recovery of the remaining causal structure.580

(a) (b) (c) (d)

Figure 7: Illustrative examples of interactions among inferred latent confounder and the remaining
observed subprocesses. In (a)–(c), assume L1 has been inferred via its observed effects {O1, O2}.
(a) O3 causes L1. (b) Both L1 and O3 cause O4. (c) L1 causes L4, where L4 can be inferred from
{O3, O4}. (d) L1 serves as the latent confounder of both latent confounder L2 and L3.

Definition F.1 (Observed Effects as Surrogates). For each latent subprocess L1 inferred from its581

observed effects {O1, O2}, we define one of its observed effects, denoted as De(L1) := O1, to582

serve as an observed surrogate of L1. This surrogate is chosen such that there exists a directed583

path from L1 to De(L1) that does not pass through any other observed subprocesses. We further584

define Sib(De(L1)) as the set of observed siblings of De(L1), containing all known other observed585

subprocesses affected by L1 through paths that also do not pass through other observed subprocesses.586

For any observed subprocess O1, we adopt the unified notation De(O1) = O1, and correspondingly,587

Sib(De(O1)) = ∅. Moreover, Sib(De(L1)) represents the minimal set of observed subprocesses588

required to isolate the local influence of L1 on the rest of the system, except through De(L1).589

Theorem F.2 (Identifying Parent Cause Set with Latent Confounder Involved). Consider a590

PO-MHP with excitation function ϕij(s) = aijw(s) and rank faithfulness. The system591

NG := OG ∪ LG consists of observed subprocesses OG := {Oi}pi=1, and inferred la-592

tent confounder processes LG whose parent cause sets are yet to be identified. Let Ov :=593

{O(j)
i }

j∈{n−m,...,n}
i∈{1,...,p} denote the corresponding observed variable set. For a subprocess N1 ∈ NG594

and a candidate parent cause set P ′
G ⊆ NG , when either N1 is latent, or P ′

G contains la-595

tent subprocesses, or both, the following condition holds: P ′
G is the minimal set such that596

rank (ΣAv,Bv ) = |Av|−1, where Av := {De(N1)
(j),De(Li)

(j)}j∈{n−m,...,n}
Li∈P′

G
∪{O(j)

i }j∈{n−m,...,n−1}
Oi∈P′

G
∪597

{O(j)
i }j∈{n−m,...,n}

Oi∈Sib(De(N1))∪{Sib(De(Li))}Li∈P′
G

and Bv = Ov\
(
De(N1)

(n) ∪ {De(Li)
(n)}Li∈P′

G

)
, if and598

only if P ′
G is a subset of the parent cause set of N1 such that: conditioning on SG := P ′

G ∪ De(N1) ∪599

{De(Li)}Li∈P′
G
∪Sib(De(N1))∪{Sib(De(Li))}Li∈P′

G
renders Ni locally independent ofNG\SG; for600

each Li ∈ P ′
G , the latent confounder Li with observed effects {De(N1),De(Li)} satisfies Defini-601

tion 3.4; and, all possible observed surrogates of Ni in OG have been identified so as to be added602

into the observed sibling set.603

With Theorem F.2 (and Proposition 3.3), we can identify arbitrary causal relations among both604

observed and inferred latent subprocesses. This naturally raises a final question: How can we further605

infer new latent subprocesses that are causally related to inferred latent subprocesses, as in Fig. 7d?606

As shown in the following theorem, the observed surrogate of a latent subprocess can still be leveraged607

for such inference.608
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Theorem F.3 (Identifying Latent Confounder from Latent Confounder ). Consider a PO-MHP609

with excitation function ϕij(s) = aijw(s) and rank faithfulness. The system NG := OG ∪ LG610

consists of observed subprocesses OG := {Oi}pi=1, and inferred latent confounder processes LG611

whose parent cause sets remain unidentified by Theorem F.2. Let Ov := {O(j)
i }

j∈{n−m,...,n}
i∈{1,...,p}612

denote the corresponding observed variable set. For any two subprocesses N1, N2 ⊆ NG (ei-613

ther observed or latent), rank (ΣAv,Bv
) = |Av| − 1, where Av := {De(Ni)

(j)}j∈{n−m,...,n}
i∈{1,2} ∪614

{O(j)
i }j∈{n−m,...,n}

Oi∈Sib(De(N1))∪Sib(De(N2))
, and Bv := Ov\{De(N1)

(n),De(N2)
(n)} , if and only if there exits615

a latent confounder subprocess L1 in the parent cause set of {N1, N2} such that: conditioning616

on P ′
G := L1 ∪ {Ni}i∈{1,2} ∪ {Sib(De(Ni))}i∈{1,2} renders {N1, N2} locally independent of617

NG\P ′
G; L1 with {De(N1),De(N2)} satisfies Definition 3.4; and all possible observed surrogates618

of {N1, N2} in OG have been identified so as to be added into the observed sibling set.619

Theorem F.2 and Theorem F.3 are extensions of Proposition 3.3 and Proposition 3.5, respectively.620

These extend the framework by replacing latent subprocesses with their observed surrogates when621

evaluating the rank of the relevant sub-covariance matrices.622

G Proof of Theorem 3.1623

Proof. To prove Theorem 3.1, we proceed in three steps. First, we define the multivariate INAR624

sequence (Definition G.1) and show that it admits a linear autoregressive model representation625

(Proposition G.3). Then, in Theorem G.5, we establish that this multivariate INAR counting process626

converges weakly to a multivariate Hawkes process as the bin size ∆→ 0, with the correspondence627

between the parameters of both models made explicit. The details are as follows:628

Step 1: Definition of the Multivariate INAR model. We begin by introducing the multivariate629

INAR model, adapted from Definition 20 in the paper B. Hawkes forests in [29].630

Definition G.1 (Multivariate integer-valued autoregressive model [29]). An multivariate integer-631

valued autoregressive time series(multivariate INAR) is a sequence of N0-valued random variables632

Xv = {X(n)
1 , X

(n)
2 , . . . , X

(n)
l }n∈N0

with X
(0)
i = 0, defined as:633

X
(n)
i =

l∑
j=1

n∑
k=1

X
(n−k)
j∑
h=1

ξ
(θ

(k)
ij )

h + ϵ
(n)
i , i ∈ {1, . . . , l}, n ∈ N0, (6)

where the reproduction coefficients θ
(k)
ij ≥ 0 with the subcritical matrix [

∑n
k=1 θ

(k)
ij ](i,j)∈{1,...,l},634

and the immigration coefficients θ(0)i ≥ 0. ϵ(n)i
iid∼ Pois(θ(0)i ) and ξ

(θ
(k)
ij )

h
iid∼ Pois(θ(k)ij ) are mutually635

independent and also independent of ϵ(n)i .636

Remark G.2. Definition G.1 follows Definition 20 in paper B. Hawkes Forests in [29], but with637

adapted notation to match Theorem 3.1. Key correspondences include: d→ l, i→ j, j → i, l→ h,638

(Xn)n∈Z → Xv, X(j)
n → X

(n)
i , ξ(i,j,k)n,l → ξ

(θ
(k)
ij )

h , ϵ(j)n → ϵ
(n)
i , αi,j,k → θ

(k)
ij , α0,j → θ

(0)
i . We639

also restrict indices to n ∈ N0 to match our Hawkes process formulation (Definition 2.1); this is640

purely notational and does not affect the model semantics, as the indices are used to describe relative641

positions within the time series.642

Step 2: Linear autoregressive representation of the INAR model. The multivariate INAR643

sequence admits an equivalent linear autoregressive representation, as shown in Proposition G.3,644

corresponding to Proposition 3.1 in [27]. The current variable X
(n)
i is expressed as a weighted sum645

of all lag variables Xn−k
j , plus a constant term θ

(0)
i and a stationary white-noise term ε

(n)
i .646

Proposition G.3. Let Xv be a l-dimensional INAR sequence as in Definition G.1 with immigration647

coefficients θ(0)i ≥ 0, reproduction coefficients θ(k)ij ≥ 0, and X
(0)
i = 0. Then648

ε
(n)
i := X

(n)
i − θ

(0)
i −

l∑
j=1

n∑
k=1

θki,jX
(n−k)
j , n ∈ N0, (7)
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defines a white-noise sequence, i.e., (ε(n)i ) is stationary, E[ε(n)i ] = 0, i ∈ {1, . . . , l}, n ∈ N0.649

Moreover, let the l × l noise matrices unu
⊤
n′ := [ε

(n)
i ε

(n)
j ](i,j)∈{1,...,l} and reproduction-coefficient650

matrices Ak := [θ
(k)
ij ](i,j)∈{1,...,l}, we have:651

E[unu
⊤
n′ ] =

{
diag

(
(Il×l −

∑n
k=1 Ak)

−1
)
, n = n′,

0l×l, n ̸= n′.
(8)

Remark G.4. Proposition G.3 is adapted from Proposition 3.1 of [27], which also appears as Proposi-652

tion 6 of the same paper in the author’s doctoral thesis [29]. The original formulation uses full vector653

and matrix notation; here, we present each dimension separately for consistency with our notation.654

Moreover, we adapted notations as in Remark G.2.655

Step 3: Convergence of the INAR to a Hawkes process. Finally, we show that the multivariate656

INAR process converges to a multivariate Hawkes process as ∆→ 0. The corresponding parameters657

of the INAR and the Hawkes process are also stated in the below theorem.658

Theorem G.5 (Multivariate INAR converging to multivariate Hawkes process [29]). Let NG1 =659

{Ni}li=1 be a stationary multivariate Hawkes process with background intensities {µi}li=1, and660

piecewise-continuous excitation functions {ϕij(s) ≥ 0,∀s ∈ (0,∞)}li=1. For bin width ∆ ∈ (0, δ),661

let Xv = {X(n)
1 , X

(n)
2 , . . . , X

(n)
l )n∈N0

be an multivariate INAR sequence with:662

θ
(0)
i = ∆µi, θ

(k)
ij =

∫ k∆

(k−1)∆

ϕij(s)ds,

and X
(0)
i = 0. From the sequences Xv, we define a family of point processes NG2 = {N∆

i }li=1,663

where for each N∆
i ,664

N∆
i (t) :=

∑
n:n∆≤t

X
(n)
i , t ∈ [0,∞). (9)

Then, NG2 converges weakly to NG1 in distribution, as ∆→ 0.665

Remark G.6. Theorem G.5 is a simplified version of Theorem 25 in [29]. The original proof proceeds666

via convergence of Hawkes forests (constructed via branching random walks), showing that the667

Hawkes process is a limit of INAR-based approximating forests. The convergence of Hawkes668

process and INAR comes from the convergence of Hawkes forest and the approximating forest with669

corresponding parameters. We adapt it here with a direct correspondence between Hawkes and670

INAR parameters, and restrict domains to t ∈ [0,∞) and n ∈ N0 for consistency and clarification.671

Typically, Hawkes process results hold for both domains [31, Remark 2], since variable t and n is672

used only to calibrate relative positions. Moreover, besides the notation changes in Remark G.2,673

we adopt: NF → NG1, NF(∆) → NG2, the reproduction intensities hi,j = wi,jmi,j → excitation674

function ϕij .675

Remark G.7. The constant δ in the Theorem G.5 comes from the moment structure of the INAR676

sequence. For details, see Theorem 2 in [28] and Corollary 24 in paper B. Hawkes forests in [29].677

In summary: The linear autoregressive representation of the multivariate INAR model is estab-678

lished in Proposition G.3, based on the model definition provided in Definition G.1. The convergence679

of the multivariate INAR process to the multivariate Hawkes process, along with the correspondence680

of their parameters, is presented in Theorem G.5. Together, these results validate the discrete-time681

linear formulation stated in Theorem 3.1. This completes the proof.682

683

H Proof of Lemma 3.2684

Proof. The proof of Lemma 3.2 is based on Proposition 2.2 and Theorem 2.4 from [47], which we685

restate here for completeness.686
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Proposition H.1 (Rank Characterization of Conditional Independence [47]). Let X ∼ N (µ,Σ)687

be a multivariate normal random vector, and let A, B, and C be disjoint subsets of indices. Then688

the conditional independence statement XA ⊥⊥ XB | XC holds if and only if the cross-covariance689

matrix ΣA∪C,B∪C has rank |C|.690

Although this result was originally established for linear acyclic models with independent Gaussian691

noise, it relies solely on second-order properties (variance and covariance) of the data and leverages692

path analysis rooted in the independence of noise terms. Consequently, this result remains valid for693

linear models with arbitrary noise distributions, since the argument applies to any distribution with694

finite second moments.695

Theorem H.2 (Conditional Independence in Directed Graphical Models [47]). In a directed graph G,696

a set C d-separates A and B if and only if the conditional independence statement XA ⊥⊥ XB | XC697

holds for every distribution that is Markov with respect to G.698

Combining the two results, we obtain the following: For any linear acyclic causal model with disjoint699

variable sets Av, Bv, and Cv, the set Cv d-separates Av and Bv in the associated causal graph if700

and only if:701

rank(ΣAv∪Cv,Bv∪Cv
) = |Cv|.

This equivalence confirms that the d-separation criterion in the causal graph corresponds to a rank702

condition on the cross-covariance matrix ΣAv∪Cv,Bv∪Cv .703

Since the window causal graph in PO-MHP is a DAG with linear causal relations and serially704

uncorrelated white noise, the above rank condition applies directly to the window causal graph in the705

PO-MHP framework. This completes the proof.706

I Proof of Proposition 3.3707

Proof. For any subprocess O1, we prove the equivalence of the four statements step by step.708

(1)⇔ (2): If PG is the parent cause set of O1 in the summary graph, by construction of the window709

causal graph, it equivalent to that the corresponding lagged variable set Pv contains all direct parent710

variables of O(n)
1 . This follows from the fact that, in the window graph, directed edges exist from the711

effective lag variables of each parent subprocess to O
(n)
1 . Moreover, by definition of the parent cause712

set, PG is minimal with this property.713

(2)⇔ (3): If Pv contains all direct parents of O(n)
1 in the window graph, by the Markov property714

of DAGs, Pv d-separates O(n)
1 from all other observed variables in Ov\

(
Pv ∪ {O(n)

1 }
)

. Reversly,715

if Pv d-separates O(n)
1 from all other observed variables in Ov\

(
Pv ∪ {O(n)

1 }
)

, by the Granger716

causality-events in the future cannot causally influence events in the past, Pv should contain all direct717

parents of O(n)
1 in the window graph. Moreover, by definition of the parent cause set, PG is minimal718

with this property.719

(3) ⇔ (4): By applying Lemma 3.2, the d-separation between O
(n)
1 and the rest of the variables,720

conditioned on Pv , is equivalent to the rank constraint:721

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O(n)
1 }

)
= |Pv|.

(4)⇔ (1): Assume the rank condition holds for Pv . By Lemma 3.2, this implies that Pv d-separates722

O
(n)
1 from all other variables in the window graph. Translating back to the summary graph, this723

implies that PG is the minimal parent cause set of O1, as no smaller set can block all paths to O1.724

Thus, all statements are equivalent. This completes the proof.725
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J Preliminaries for Proofs of Proposition 3.5 and Theorems F.2 and F.3726

To establish this result, we rely on the concepts of trek separation (t-separation) and d-separation727

introduced by [47], which provide powerful tools for analyzing latent structures in linear causal728

models.729

Definition J.1 (Trek [47]). A trek in the DAG G from variable Vi to variable Vj is an ordered pair of730

directed paths (P1,P2) where P1 has sink Vi, P2 has sink Vj , and both P1 and P2 have the same731

source Vk. The common source Vk is called the top of the trek, denoted top(P1,P2). Note that one732

or both of P1 and P2 may consist of a single variable, that is, a path with no edges. A trek (P1,P2)733

is simple if the only common variable among P1 and P2 is the common source top(P1,P2). We let734

T (Vi, Vj) and S(Vi, Vj) denote the sets of all treks and all simple treks from Vi to Vj , respectively.735

Definition J.2 (T-separation [47]). Let Av , Bv , CA, and CB be four subsets of total variable set Vv .736

We say the ordered pair (CA, CB) t-separates Av from Bv if, for every trek (τ1; τ2) from a variable737

in Av to a variable in Bv , either τ1 contains a variable in CA or τ2 contains a variable in CB.738

Theorem J.3 (Trek separation for directed graphical models [47]). The sub-matrix
∑

A,B has rank739

less than equal to r for all covariance matrices consistent with the graph G if and only if there740

exist subsets CA,CB ⊂ VG with |CA| + |CB | ≤ r such that (CA,CB) t-separates A from B.741

Consequently,742

rank(ΣA,B) ≤ min{|CA|+ |CB | : (CA,CB) t-separates A from B}

and equality holds for generic covariance matrices consistent with G.743

Corollary J.4 (T-separation and D-separation [47]). A set C d-separates A and B in G if and only if744

there is a partition C = CA ∪CB such that (CA,CB) t-separates A ∪C from B ∪C.745

Therefore, when CA and CB are disjoint, the combined set CA ∪CB also serves as a d-separator746

between A and B. Moreover, since the window graph in the Hawkes process is a DAG with linear747

relations, the above results can be directly applied after suitable adaptation to the Hawkes process748

setting.749

K Proof of Proposition 3.5750

Proof. We prove both directions of the equivalence.751

(⇐) If such a latent confounder L1 exists, the rank condition holds. Suppose there exists a752

latent confounder L1 that is one common parent cause in the parent cause set of {O1, O2}, and that753

L1 together with {O1, O2} makes them locally independent of other subprocesses.754

Given that L1 and its paths to O1 and O2 satisfy Definition 3.4, the contribution of L1 to both O1755

and O2 in the window graph occurs through the same number of latent intermediates, resulting in756

an aligned contribution across time lags. In this setup, the influence of L1 will appear as a shared757

component across the observed variables {O(j)
i }

i∈{1,2}
j∈{n−m,...,n}.758

Consider the window graph with m considered effective lag variables. Following the logic of trek759

separation, in the window graph with m effective lag variables, the minimal choke set CA that760

t-separates O(n)
1 , O

(n)
2 from the rest is given by:761

CA := {L(j)
1 }j∈{n−m,...,n−1} ∪ {O

(n)
i }

j∈{n−m,...,n−1}
i∈{1,2} .

It is equivalent to that CA is the minimal set that d-separates {O(n)
1 , O

(n)
2 } from the762

Ov\{O(n)
1 , O

(n)
2 }.763

Thus, by Theorem J.3, the generic rank of the cross-covariance matrix is bounded above by |CA| =764

2m+m = 3m, where 2m comes from observed lag variables of {O1, O2} and m comes from latent765

lag variables of L1. However, due to the structure of the excitation function ϕij(s) = aijw(s), the766

latent subprocess L1 contributes effectively as a single shared component across all its lag variables,767

reducing the effective rank from m to 1.768
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To explain this, we first write the structural equations for the observed variables {O(j)
i }

j∈{n−m,...,n}
i∈{1,2}769

as the linear regression on those check points as:770 

O
(n)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n)
2

O
(n−1)
2

· · ·
O

(n−m)
2


= E



L
(n−1)
1

· · ·
L

(n−m)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n−1)
2

· · ·
O

(n−m)
2


+



ϵ
(n)
o1 + θ

(0)
o1

ϵ
(n−1)
o1 + θ

(0)
o1

· · ·
ϵ
(n−m)
o1 + θ

(0)
o1

ϵ
(n)
o2 + θ

(0)
o1

ϵ
(n−1)
o2 + θ

(0)
o1

· · ·
ϵ
(n−m)
o2 + θ

(0)
o1


, (10)

E =



ao1l1

∫∆

0
w(s)ds · · · ao1l1

∫m∆

(m−1)∆
w(s)ds 1

1· · · 1 0
0· · · 0

0
0· · · 0 1

0· · · 0 0
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 1 0

0· · · 0

ao2l1

∫∆

0
w(s)ds · · · ao2l1

∫m∆

(m−1)∆
w(s)ds 0

0· · · 0 1
1· · · 1

0
0· · · 0 0

0· · · 0 1
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 0 0

0· · · 1


.

m

m

(11)

It is straightforward to see that the rank of the coefficient matrix E is 2m+ 1, because the two row771

corresponding to O
(n)
1 and O

(n)
2 in E are linearly dependent (proportional to each other).772

Furthermore, the cross-covariance matrix of {O(j)
i }

j∈{n−m,...,n}
i∈{1,2} and Ov\{O(n)

1 , O
(n)
2 }, i.e.,773

Σ{O(j)
i }j∈{n−m,...,n}

i∈{1,2} , Ov\{O(n)
1 ,O

(n)
2 } can be written as ECAC

⊤
AF

⊤ where E and F are coefficient774

matrix by regressing variables on those choke points. The rank(CAC
⊤
AF

⊤) has full column rank,775

because F calculated from regressing all the rest variables Ov\{O(n)
1 , O

(n)
2 } on CA and without776

blocking lagged variables, no shrinkage of rank occurs. Consequently, the rank of the cross-covariance777

matrix rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O(n)

1 ,O
(n)
2 }

)
= rank

(
ECAC

⊤
AF

⊤) = rank(E) = 2m+1778

(The following theorem proofs also adopt a similar way).779

Thus, the total rank becomes:780

rank = 2m (from observed lags of O1 and O2) + 1 (from L1) = 2m+ 1.

(⇒) If the rank condition holds, there exists a latent confounder L1 satisfying the claimed781

properties. Conversely, assume the observed rank condition:782

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O(n)

1 ,O
(n)
2 }

)
= 2m+ 1.

By construction of the window graph (Eq. 2), if there were no latent confounder between O1 and783

O2, the rank would be at most 2m, corresponding to the observed lag variables of O1 and O2.784

The observed rank being strictly 2m+ 1 thus implies the presence of an additional latent variable785

influencing both O1 and O2.786

Due to the rank faithfulness assumption (Assumption 2), such a rank elevation uniquely corresponds787

to a latent subprocess L1 acting as a parent cause of both O1 and O2. Furthermore, for the rank788

increment to be exactly one, the causal paths from L1 to O1 and O2 must satisfy the symmetric path789

situation (Definition 3.4): i.e., the paths only involve intermediate latent subprocesses of the same790

depth without self-loops, ensuring that the contribution of L1 introduces a single additional rank791

component shared by both O1 and O2 at the same temporal lag level.792
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Finally, by construction, conditioning on P ′
G := L1 ∪ {O1, O2} removes all causal influence from793

L1, rendering {O1, O2} locally independent of the remaining observed subprocesses.794

This completes the proof.795

L Proof of Theorem F.2796

Proof. We prove both directions of the equivalence.797

(⇐) If such a parent cause set P ′
G exists, the rank condition holds. Assume that P ′

G is the798

minimal set of subprocesses such that:799

• P ′
G is a subset of the parent cause set of N1.800

• Conditioning on SG := P ′
G ∪De(N1)∪ {De(Li)}Li∈P′

G
∪Sib(De(N1))∪ {Sib(De(Li))}Li∈P′

G
801

renders N1 locally independent of all other subprocesses in the system.802

• All possible observed surrogates of Ni in OG have been identified.803

• For each Li ∈ P ′
G , the relationship between Li and its observed effects {De(N1),De(Li)} satisfies804

Definition 3.4.805

In this setup, the lagged variables of De(N1) and De(Li), as well as the lagged and current806

variables of their observed siblings Sib(De(N1)) and Sib(De(Li))Li∈P′
G

, appear in both Av807

and Bv. The rank contribution from these observed variables is deterministically: |Ov1| :=808 ∣∣∣∣∣{De(N1)
(j),De(Li)

(j)}j∈{n−m,...,n−1}
Li∈P′

G
∪ {O(j)

i }j∈{n−m,...,n−1}
Oi∈P′

G
∪ {O(j)

i }j∈{n−m,...,n}
Oi∈Sib(De(N1))∪{Sib(De(Li))}Li∈P′

G

∣∣∣∣∣.809

The remaining part of Av, i.e., Av\Ov1, consists of the current variables810

{De(N1)
(n),De(Li)

(n)}Li∈P′
G

.811

Given the symmetric path structure (Definition 3.4), each latent confounder Li ∈ P ′
G contributes812

exactly one shared latent component, as the influence propagates through symmetric, acyclic paths.813

Due to the specific excitation function ϕij(s) = aijw(s), this results in precisely one rank contribution814

per latent subprocess, regardless of the number of lagged variables.815

Thus, the latent contribution adds exactly:816

|Ov2| :=
∣∣∣{Li}Li∈P′

G

∣∣∣ = ∣∣∣De(Li)
(n)}Li∈P′

G

∣∣∣
rank-one components.817

Combining both observed and latent contributions, the total rank becomes:818

|Ov1|+ |Ov2| = |Ov1|+ |Ov2|+ 1 (from De(N1)
(n))− 1 = |Av| − 1.

(⇒) The rank condition implies the claimed causal structure and local independence. Assume819

that P ′
G is the minimal set such that:820

rank (ΣAv,Bv
) = |Av| − 1

By the theory of trek separation (Theorem J.3), such a rank deficiency implies that the information821

flow between Av and Bv must pass through a set of choke points, corresponding to the candidate822

parent causes in P ′
G .823

If no latent confounders existed, or if P ′
G were not part of the parent cause set of N1, the rank would824

be exactly |Ov1|, solely contributed by the lagged variables of observed surrogates and both the825

current and lagged variables of their siblings.826

Since all possible observed surrogates of Ni in OG have been identified, the extra deficiency of rank827

(i.e., |Ov2|) thus directly implies the existence of latent subprocesses contributing shared rank-one828

components. By the rank faithfulness, this observed rank pattern is only consistent with the existence829

of latent subprocesses {Li}Li∈P′
G

that act as confounders between De(N1) and their respective830

observed effects, and these latent subprocesses are members of the parent cause set of N1.831
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For the rank deficit per latent subprocess to be exactly one, the contribution from each latent832

subprocess must propagate through symmetric acyclic paths, consistent with Definition 3.4, ensuring833

a single rank-one component contribution per latent subprocess. Moreover, the inclusion of the834

observed surrogates and their siblings ensures that no alternative paths can explain the dependency835

patterns. Thus, P ′
G must be the subset of parent causes, satisfying the conditional local independence836

of N1 given SG .837

Therefore, the rank condition is both necessary and sufficient to identify P ′
G as the subset of parent838

causes of N1, considering both observed and latent subprocesses. This completes the proof.839

M Proof of Theorem F.3840

Proof. We prove both directions of the equivalence.841

(⇐) If such a latent confounder L1 exists, the rank condition holds. Assume there exists a latent842

confounder subprocess L1 such that:843

• L1 is a common parent cause of {N1, N2}.844

• Conditioning on P ′
G := L1 ∪N1, N2 ∪Sib(De(Ni))i∈{1,2} renders {N1, N2} locally independent845

of the rest of the system NG\P ′
G .846

• All possible observed surrogates of {N1, N2} in OG have been identified.847

• L1 and its observed effects {De(N1),De(N2)} satisfy Definition 3.4.848

By the Definition 3.4, the causal influence from L1 to {De(N1),De(N2)} is symmetric and only849

propagates through the same number of intermediate latent subprocesses without self-loops. Under850

this condition, the contributions of L1 to the observed surrogates {De(N1),De(N2)} appear as a851

rank-one component across the lagged variables of these subprocesses, aligned in time.852

Thus, in the window graph, the latent influence from L1 will introduce exactly one additional rank853

component across the observed variable set Av beyond the rank contribution from the observed854

lagged variables themselves.855

Formally, following the arguments for Proposition 3.5, the rank of ΣAv,Bv
is determined by the856

minimal set of choke points that t-separate Av from Bv in the window graph. Given the assumed857

structure:858

• The lagged variables of {De(N1),De(N2)} and both the current and lagged vari-859

ables of their observed siblings, denoted as Ov1 := {De(Ni)
(j)}j∈{n−m,...,n−1}

i∈{1,2} ∪860

{O(j)
i }

j∈{n−m,...,n}
Oi∈Sib(De(N1))∪Sib(De(N2))

, appear in both Av and Bv, contributing deterministically861

|Ov1| to the rank.862

• The influence from L1 propagates symmetrically to both De(N1) and De(N2) through acyclic863

paths composed exclusively of latent subprocesses, per Definition 3.4. As a result, due to the864

excitation function ϕij(s) = aijw(s), the total rank contribution from L1 is exactly one.865

Therefore, the total rank becomes:866

rank (ΣAv,Bv ) = |Ov1|+ 1 = |Av| − 1

(⇒) If the rank condition holds, such a latent confounder L1 must exist. Now assume the867

observed rank condition:868

rank (ΣAv,Bv ) = |Av| − 1

We know that parent cause sets of all inferred latent confounder processes in NG remain unidentified869

even after applying Theorem F.2. In the absence of any new latent confounder, the maximum870

possible rank would be |Ov1|, corresponding solely to the contributions of the lagged variables871

of {De(N1),De(N2)} and both the current and lagged variables of their observed siblings. The872

observed rank being exactly |Ov1|+1 = |Av|−1 implies the existence of an additional latent source873

influencing both N1, N2 and their observed surrogates.874
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Due to the rank faithfulness, this increment must be attributed to a unique latent subprocess L1875

that acts as a confounder for N1 and N2. Moreover, the fact that the rank increment is only one876

implies that the paths from L1 to N1, N2 must satisfy the symmetric and acyclic conditions in877

Definition 3.4, ensuring that the influence of L1 is captured as a rank-one shared component at the878

observed surrogates level.879

Moreover, the inclusion of the observed surrogates and their siblings ensures that all other880

possible paths and confounding structures are blocked, enforcing P ′
G := L1 ∪ {N1, N2} ∪881

{Sib(De(Ni))}i∈{1,2} in ensuring local independence and all possible observed surrogates of882

{N1, N2} in OG have been identified.883

Thus, the rank pattern is both necessary and sufficient to imply the existence of L1 and the claimed884

causal and conditional independence structure. This completes the proof.885

N Proof of Theorem 4.1886

Proof. We prove the theorem by considering the two cases separately: (i) the system contains no887

latent subprocesses, and (ii) the system contains latent subprocesses that satisfy Definition 3.4.888

Case (i): No latent subprocesses. In this case, the system consists solely of observed subprocesses889

OG . Since there are no latent confounders, Phase I alone is sufficient for identifiability. This890

follows directly from Proposition 3.3, which ensures that for each observed subprocess, its parent891

cause set can be uniquely identified by checking the rank condition of the relevant cross-covariance892

matrices. Specifically, since all subprocesses are observed and no latent subprocesses confound their893

relationships, the rank condition provides a unique solution. Thus, the entire causal graph can be894

identified solely through Phase I.895

Case (ii): Presence of latent subprocesses satisfying Definition 3.4. In the general case where896

latent subprocesses exist, the algorithm relies on the synergy between Phase I and Phase II.897

• Phase I iteratively identifies the parent cause set for each subprocess (including both observed and898

previously discovered latent subprocesses) whose parent cause set is fully contained in the current899

set of known subprocesses. By Proposition 3.3 and Theorem F.2, this identification is guaranteed900

when no latent confounders intervene or when latent confounders are already represented by their901

observed surrogates.902

• Phase II handles the discovery of new latent confounder subprocesses by systematically applying903

Proposition 3.5 and Theorem F.3. The identifiability is guaranteed under the condition that all904

latent confounders and their associated observed effects satisfy Definition 3.4. This condition905

ensures that each latent confounder contributes a unique, identifiable rank-1 pattern in the cross-906

covariance matrix of its observed surrogates and their siblings, enabling its detection through the907

rank conditions established in the theorems.908

Termination and completeness. The algorithm alternates between Phase I and Phase II. Since909

each iteration either identifies a new parent cause set or discovers a new latent subprocess, and given910

the finite number of subprocesses (including latent ones), the algorithm must eventually terminate.911

By construction:912

• All observed subprocesses will eventually have their parent cause sets identified through Phase I.913

• All latent subprocesses satisfying Definition 3.4 will be identified through Phase II and incorporated914

into the active set for further investigation.915

• The recursive application of the identification theorems ensures that no causal relationships (either916

between observed, latent, or between observed and latent) will remain unidentified under the917

conditions.918

• If Definition 3.4 fails for any latent, the algorithm terminates without fabricating that latent or any919

edges it would entail, thereby returning only the identifiable portion of the causal graph (sound920

abstention).921

Thus, under excitation function ϕij(s) = aijw(s) and rank faithfulness, the entire causal graph922

consisting of both observed subprocesses and latent confounders can be identified. This completes923

the proof.924
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O Details of identification algorithm925

O.1 Phase I926

The detailed algorithm for Phase I is in Algorithm 2.927

Algorithm 2 Identifying Causal Relations
Input: Partial causal graph G, Active subprocess set AG , Observed subprocess set OG
Output: Partial causal graph G, Active subprocess set AG
1: repeat
2: Select a subprocess N1 from AG .
3: for Len = 1 to |AG ∪ OG | do
4: repeat
5: Select subset P ′

G ⊆ AG ∪ OG such that |P ′
G | = Len.

6: if (AG ∪ OG ,P ′
G , N1) satisfies Proposition 3.3 and Theorem F.2 then

7: AG = AG\N1, and update G.
8: Return to line 2.
9: end if

10: until All subsets of AG ∪ OG with size Len selected.
11: end for
12: until AG is not updated or |AG | ≤ 1.
13: return: G, AG

O.2 Phase II928

The detailed algorithm for Phase II is in Algorithm 3.929

Algorithm 3 DiscoveringNewLatentComponentProcesses
Input: Partial causal graph G, Active subprocess set AG , Observed subprocess set OG
Output: Partial causal graph G, Active subprocess set AG
1: Initialize cluster set C := ∅ and the group size Len = 2.
2: repeat
3: Select a subset YG from AG such that |YG | = Len.
4: if (AG ∪ OG ,YG) satisfies Proposition 3.5 and Theorem F.3 then
5: Add YG into C.
6: end if
7: until All subset of AG with size Len selected.
8: Merge all the overlapping sets in C.
9: for each merged set Ci ∈ C do

10: Introduce a new latent subprocess Lj .
11: AG = AG ∪ Lj\Ci, and update G.
12: end for
13: return: G, AG

P Computational Complexity of the Algorithm930

In this section, we analyze the computational complexity of our two-phase iterative algorithm,931

which alternates between: (1) inferring causal relationships among discovered subprocesses and (2)932

identifying new latent subprocesses. Let n denote the number of processes in the active process set933

AG and m denote the number of subprocesses in the augmented process set TG := AG ∪ OG at the934

start of each phase. Assume each test is an oracle test.935

Phase I: Inferring Causal Relationships936

For each component process N1 ∈ AG , we evaluate subsets of TG starting from subsets of size 1 up937

to the size of TG , stopping when the test result is positive. In the worst case, for each N1, we need to938

25



evaluate all subsets of TG , which requires
∑m

k=1

(
m
k

)
tests. For one subprocess N1 ∈ AG , if its parent939

cause set is found, AG is updated. After that, the algorithm will restart to go over all the subprocesses940

in AG to make sure no parent cause set of subprocesses in AG can be found. In the worst case, the941

algorithm find parent cause set for the last component process in AG each time. The complexity of942

Phase I is upper bounded by: O
(
n!

∑m
k=1

(
m
k

))
.943

Phase II: Identifying New Latent Subprocesses944

In this phase, we test all subsets of AG of size 2. Since there are
(
n
2

)
such subsets, the complexity of945

Phase II is upper bounded by: O
((

n
2

))
.946

Overall Complexity947

The total complexity of the algorithm depends on the number of (both observed and latent) sub-948

processes and the structural density of the causal graph, as these factors determine the number of949

iterations required for the algorithm to run. Combining the two phases, for each iteration, the overall950

complexity is approximately upper bounded by: O
(
n!

∑m
k=1

(
m
k

)
+

(
n
2

))
.951

In practical scenarios, the structural density of the causal graph and sparsity of dependencies may952

reduce the number of required iterations and tests, leading to improved efficiency compared to this953

worst-case analysis.954

Q More Details of Experiments955

Q.1 Synthetic Data Generation and Implementation956

We evaluate our method on two types of synthetic data: event sequences generated by the Hawkes957

process in Eq. (1), and discrete-time data generated directly from the discrete-time model in Eq. (2)958

Hawkes Process Data: We generate event sequences using the tick library [2], an efficient frame-959

work for simulating multivariate Hawkes processes. The excitation function is set as exponential960

kernel ϕij(s) = αije
−βs, where β is fixed at 1. αij is sampled uniformly from [0.8, 0.99] except for961

Case 1. Because of the cycles between N2 and N3 of Case 1, large αij may lead to nonstationarity.962

Thus, we sample αij uniformly from [0.40, 0.80] specifically for Case 1. To ensure stationarity963

and avoid explosive behavior, we verify the spectral radius of the integrated excitation matrix after964

generating αij . To discretize the sequences for our method, we select the time bins of length 0.1 and965

consider 600 effective lag time bins as discretized lag variables for the calculation sub-covariance966

matrix. The sample size corresponds to the number of discrete data points.967

Discrete-Time Series Data: To assess our method under ideal discrete-time conditions (i.e., exactly968

satisfying Theorem 3.1), we generate data directly from Eq. (2). The excitation function is set as969

exponential kernel ϕij(s) = αije
−βs. The coefficients αij and decay parameter β are set as above.970

Similar to the Hawkes data, we verify the spectral radius to ensure stationarity. The noise terms are971

drawn from independent Gaussian distributions. We set the number of effective lag variables to 200.972

The sample size corresponds to the number of discrete data points.973

Preprocessing and Rank Deficiency Testing: For each trial, we standardize the discretized data to974

ensure fair comparison. To test for rank deficiency, we use canonical correlation analysis (CCA) [49],975

following the procedure in [21]. We use the grid search to find the best rank test threshold. We also976

conduct a empirical sensitivity analysis for test threshold. The result is in Appendix Q.3. A threshold977

of 0.10 provides a good balance across multiple scenarios.978

Data Usage for Baselines: For Hawkes process-based methods (SHP [37], THP [6], and NPHC [1]),979

we use the raw Hawkes process data produced by the tick library. For rank-based methods designed980

for i.i.d. data with linear relations (Hier. Rank [21] and RLCD [13]), we use the discretized Hawkes981

process data.982

We run all the experiments on a personal PC (CPU).983

Q.2 Evaluation Metrics984

We evaluate the accuracy of causal structure recovery using the standard F1-score, which combines985

precision and recall.986
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Causal relationships among both latent and observed subprocesses are represented by an adjacency987

matrix, where each entry is either 1 or 0, indicating the presence or absence of a directed edge,988

respectively. Specifically, AdjG(i, j) = 1 denotes a directed edge from the j-th subprocess to the i-th989

subprocess, while AdjG(i, j) = 0 indicates no such edge.990

We measure the similarity between the estimated and ground-truth adjacency matrices using the991

F1-score. First, we compute precision, defined as992

precision =
true positives

total inferred positives
,

which represents the proportion of correctly inferred edges among all predicted edges. Next, we993

calculate recall, defined as994

recall =
true positives

total ground-truth positives
,

which captures the proportion of correctly inferred edges relative to the true causal edges. The995

F1-score, given by996

F1-score = 2 · precision× recall
precision + recall

,

harmonizes precision and recall to provide a balanced measure of structural recovery.997

Practical Considerations998

In practice, the indices of latent subprocesses in the estimated (summary) graph may not correspond999

to those in the ground truth. To address this, following Huang et al. [21], we permute the latent1000

subprocess indices in the estimated graph and select the permutation that minimizes the difference1001

from the true graph. When the number of estimated latent subprocesses is smaller than the true1002

number, we add isolated latent nodes to balance the comparison. Conversely, if the estimate exceeds1003

the true number, we select the subset that best matches the true latent subprocesses.1004

Additionally, since our inferred summary graph simplifies the underlying causal structure, by omitting1005

intermediate latent subprocesses and redundant edges as formalized in our theorems and Definition 3.4,1006

we adjust the ground-truth adjacency matrix to this idealized representation before comparison. This1007

ensures a fair evaluation of causal discovery.1008

For baselines designed for i.i.d. data with linear relations (i.e., Hier. Rank [21] and RLCD [13]),1009

their output graphs capture relationships among discretized variables, rather than subprocesses. To1010

enable fair comparison, we regard an edge N1 → N2 as correctly identified if more than half of the1011

considered variables associated with N1 have inferred edges to those of N2.1012

Q.3 Additional Experimental Results1013

Comparisons on Cases 5 and 6 Fig. 8 shows the F1-score comparisons for Cases 5 and 6, which1014

correspond to intricate latent confounder structures illustrated in Fig.7c and Fig.7d. These cases1015

involve interactions between latent confounders. The results indicate that our method maintains1016

strong performance even under these challenging causal configurations.1017

Sensitivity to Time Discretization Interval We evaluate the sensitivity of our method to the1018

choice of the discretization interval ∆ with decay parameter β = 1 in the exponential excitation1019

function ϕij(s) = αije
−βs. As shown in Table 1, when ∆ is set to 0.01 or 0.05, our method1020

achieves consistently high F1-scores across all cases, confirming that the discretized representation1021

sufficiently preserves the temporal dynamics of the underlying Hawkes process. Even at ∆ = 0.1,1022

the performance remains stable. However, when ∆ increases to 0.3, we observe a sharp drop in1023

performance, highlighting that overly coarse discretization leads to significant loss of temporal1024

resolution, impairing the estimation of causal structures. The result shows the need to choose a small1025

bin width ∆ relative to the typical support of the excitation function [27, 30].1026
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Figure 8: F1-score comparisons on the remaining two causal graphs (Cases 5 and 6), involving latent
confounder interactions. Case 5 and Case 6 correspond to the causal structures in Figs. 7c and 7d,
respectively.

Sensitivity to Rank-Test Threshold We evaluate the sensitivity of our method to the threshold τ1027

used in the rank test (i.e., the cutoff deciding rank deficiency). We vary τ ∈ {0.01, 0.05, 0.10, 0.20}1028

and assess three representative cases. Each experiment uses 30k Hawkes samples generated by the1029

tick library under an exponential excitation function ϕij(s) = αije
−βs with β = 1 and time interval1030

∆ = 0.1; results are averaged over ten runs. As shown in Table 2, in the fully observed setting1031

(Case 1) precision remains 1.00 while recall decreases as τ increases, whereas in latent settings1032

(Cases 2–3) a moderately larger threshold improves precision because of the attenuation of causal1033

influences through the latent subprocesses. Overall, a threshold of 0.10 provides a good balance1034

across different scenarios.1035

Robustness to Violations of Rank Faithfulness To test robustness under violations of rank faithful-1036

ness, we randomly select two edges in each synthetic graph and assign them identical coefficients αij1037

for the exponential excitation function ϕij(s) = αije
−βs in every run. This manipulation introduces1038

potential linear dependencies in the cross-covariance matrix, which could challenge rank-based1039

methods. As presented in Table 3, despite the induced degeneracy, our method maintains strong1040

performance, especially as the sample size increases. These results suggest that our approach is1041

robust to moderate violations of rank faithfulness in practical scenarios.1042

Table 1: Performance of our method under varying ∆ values using 80k Hawkes process samples
generated by the tick library with decay parameter β = 1 in the exponential excitation function.
Case 1–3 correspond to Figs. 1b, 2a, and 7a, respectively. Results are averaged over ten runs.
Performance remains stable and high when ∆ ≤ 0.1, but degrades significantly at ∆ = 0.3 due to
the loss of fine-grained temporal information.

Precision Recall F1-Score
∆ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

0.01 0.98 0.91 0.84 0.92 0.93 0.83 0.93 0.92 0.84
0.05 1.00 0.96 0.83 0.84 0.98 0.82 0.90 0.97 0.82
0.10 1.00 0.91 0.86 0.87 0.93 0.83 0.93 0.92 0.84
0.30 0.50 0.55 0.50 0.17 0.63 0.33 0.25 0.59 0.40

Evaluation on a larger and more complex causal graph We further evaluate our method on a1043

larger causal graph with 14 subprocesses, as shown in Fig. 9. Table 4 reports the F1-scores averaged1044

over ten runs. Despite the increased complexity, our method successfully recovers the underlying1045

causal structure with high accuracy.1046

Scalability and Runtime Profiling We profile runtime on three representative synthetic graphs1047

(Cases 1–3) and two real-world settings. All runs were executed on an AMD EPYC 9454 CPU. The1048

first real-world setting follows our main paper: a five-alarm subgraph (Alarm_ids=0–3 with one1049

latent Alarm_id=7) from device_id = 8. The second merges all devices into a single multivariate1050

event sequence with all 18 alarms to gauge scaling with graph size. We observe that Case 1 is fastest as1051

no latent confounders are present and Phase I suffices. Case 2 introduces latent confounders, requiring1052
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Table 2: Sensitivity to the rank-test threshold τ . Each entry is averaged over ten runs on 30k
samples generated with an exponential kernel (β = 1). Case 1–3 correspond to Figs. 1b, 2a, and 7a,
respectively. Overall, a threshold of 0.10 provides a good balance across different scenarios.

Precision Recall F1

Threshold τ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

0.01 1.00 0.42 0.57 0.80 0.53 0.50 0.88 0.47 0.53
0.05 1.00 0.62 0.62 0.64 0.73 0.54 0.77 0.67 0.57
0.10 1.00 0.66 0.72 0.60 0.75 0.65 0.74 0.71 0.68
0.20 1.00 0.76 0.68 0.47 0.85 0.63 0.62 0.80 0.65

Table 3: Performance of our method when, in each run, two edges in each graph are randomly
assigned identical coefficients αij for the exponential excitation function, increasing the risk of rank
deficiency. Hawkes process samples are generated by the tick library. Case 1–3 correspond to
Figs. 1b, 2a, and 7a, respectively. Results are averaged over ten runs. Despite these perturbations, our
method maintains strong performance, demonstrating robustness to such violations.

Precision Recall F1-Score
#Samples Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

30k 0.87 0.60 0.72 0.87 0.75 0.71 0.87 0.67 0.71
50k 0.92 0.83 0.76 0.84 0.82 0.73 0.87 0.82 0.74
80k 0.95 0.84 0.83 0.90 0.83 0.80 0.92 0.83 0.81

Figure 9: Illustration of a larger causal graph consisting of 14 subprocesses, used to evaluate scalability
and robustness.

Table 4: Performance of our method on the larger causal graph in Fig. 9, using Hawkes process data
generated by the tick library. Results are averaged over ten runs. The method consistently recovers
the causal structure with improving accuracy as sample size increases.

Sample Size Precision Recall F1-score
30k 0.65 0.52 0.58
50k 0.71 0.58 0.64
80k 0.80 0.71 0.75
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both phases in the first iteration and increasing runtime. Case 3 is slowest among synthetic cases1053

because the latent confounder is itself caused by an observed subprocess, triggering an additional1054

iteration to identify its observed parent. For real data, merging all devices markedly increases runtime1055

as the sequence spans all 18 alarms and may deviate from a homogeneous Hawkes mechanism. A1056

phase-wise complexity breakdown is provided in Appendix P, which offers further insight into the1057

scalability of the algorithm.1058

Table 5: Runtime across synthetic and real-world settings.

Graph Type Runtime (s)
Case 1 227.80
Case 2 1036.01
Case 3 2603.95
Real Dataset (Alarm_ids=0–3, device_id = 8) 1364.71
Real Dataset (all devices merged; 18 alarms) 20914.29

Q.4 Analysis of Real-world Dataset Results1059

We evaluate our method on a real-world cellular network dataset [37], which includes expert-validated1060

ground-truth causal relationships. The dataset comprises 18 distinct alarm types and∼35,000 recorded1061

alarm events collected over eight months from an operational telecommunication network. This1062

benchmark has been widely used in prior work (e.g., the PCIC 2021 causal discovery track and [37]),1063

where performance for many methods is available and top F1-scores are reported up to ≈ 0.6.1064

For our evaluation, we focus on a subgraph involving five alarm types (Alarm_ids=0–3 and 7),1065

where Alarm_id=7 is manually excluded and treated as a latent subprocess. Both Alarm_id=11066

and Alarm_id=3 are observed effects of this latent subprocess, providing an opportunity to assess1067

our method’s ability to infer latent confounders. The ground-truth causal subgraph is shown in1068

Figure 10. Compared with our inferred causal graph, the ground truth contains an additional edge1069

from Alarm_id=1 to Alarm_id=3. However, as noted in Definition 3.4, causal edges between1070

observed effects of a latent confounder are permissible in our framework.1071

During inference, using Proposition 3.3 and Theorem F.2, we correctly identify Alarm_ids=0,1,31072

as the parent causes of Alarm_id=2, and Alarm_ids=1,3 as the parent causes of Alarm_id=0.1073

The parent cause sets of Alarm_id=1 and Alarm_id=3 cannot be fully explained by the observed1074

subprocesses alone. This necessitates the existence of a latent confounder influencing both, leading1075

to the successful identification of Alarm_id=7 as a latent subprocess.1076

Figure 10: Ground-truth causal subgraph from the metropolitan cellular network dataset. Alarm_id=7
is treated as a latent subprocess.

Baselines and protocol. We compare against representative Hawkes-based methods (SHP [37],1077

THP [6], NPHC [1]), two rank-based latent-variable methods originally for i.i.d. data (Hier. Rank [21],1078

RLCD [13]), and a time-series method for exogenous latents (LPCMCI [16]). Following our1079

rebuttal, LPCMCI is newly included. For fairness, all baselines are run on the same sub-dataset1080

(Alarm_ids=0–3 and 7 from device_id = 8) used by our method, with each method evaluated over1081

ten runs and averaged.1082

Results on the sub-dataset. Our method achieves the best F1-score when the data conforms to a1083

single multivariate Hawkes process (per-device setting). Table 6 reports the average F1-scores.1084
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Table 6: F1-scores on the cellular network sub-dataset (Alarm_ids=0–3 and 7, device_id = 8) where
Alarm_id=7 is manually excluded and treated as a latent subprocess; averages over 10 runs.

Algorithm F1-score
SHP 0.49
THP 0.48
NPHC 0.42
Hier. Rank 0.00
RLCD 0.39
LPCMCI 0.43
Ours 0.76

Merged-devices analysis. For completeness, we also merge events from all 55 devices into a single1085

multivariate sequence with all 18 alarm types and analyze it with our method. This setting violates the1086

assumption that samples share the same generative mechanism (devices can be heterogeneous), and it1087

yields a much lower F1-score (0.17). This illustrates why per-device analysis is more compatible1088

with our assumptions, whereas merged-device data can confound structure learning.1089

Dataset description. The dataset records 34,838 alarm events from a metropolitan cellular network1090

[37], covering 18 alarm types and 55 devices. Each record contains:1091

• Alarm ID: one of 18 alarm types,1092

• Device ID: one of 55 devices,1093

• Start Timestamp: time when the alarm was triggered,1094

• End Timestamp: time when the alarm was resolved.1095

For causal analysis, we sort events by alarm type and use the start timestamp as the event time,1096

yielding a temporally ordered sequence suitable for inference.1097

R Limitations1098

Our method recovers the causal structure of the discretized time-series representation of a multivariate1099

Hawkes process; the correspondence to the underlying continuous-time (PO-)MHP holds in the limit1100

as ∆→ 0. When the observational resolution is coarse (large finite ∆), this approximation may not1101

fully capture the continuous-time dynamics. We therefore recommend choosing ∆ small relative to1102

the typical support of the excitation kernel and provide a sensitivity analysis in Table 1.1103
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referenced.1163
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4. Experimental result reproducibility1171

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1172
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Justification: Details of the algorithm are in Appendix O and we explain the experimental1176

setup in detail in Appendix Q.1177
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to make their results reproducible or verifiable.1184
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one good way to accomplish this, but reproducibility can also be provided via detailed1190

instructions for how to replicate the results, access to a hosted model (e.g., in the case1191

of a large language model), releasing of a model checkpoint, or other means that are1192

appropriate to the research performed.1193

• While NeurIPS does not require releasing code, the conference does require all submis-1194

sions to provide some reasonable avenue for reproducibility, which may depend on the1195

nature of the contribution. For example1196
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