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Abstract

Large language models (LLMs) have demon-001
strated impressive instruction following capa-002
bilities, while still struggling to accurately man-003
age the length of the generated text, which is004
a fundamental requirement in many real-world005
applications. Existing length control methods006
involve fine-tuning the parameters of LLMs,007
which is inefficient and suboptimal for practi-008
cal use. In this paper, we propose a novel itera-009
tive sampling framework for text length control,010
integrating the Metropolis-Hastings algorithm011
with an importance sampling acceleration strat-012
egy. This framework efficiently and reliably013
regulates LLMs to generate length-constrained014
text without modifying the underlying param-015
eters, thereby preserving the original capabili-016
ties of LLMs. Experimental results demonstrate017
that our framework achieves almost 100% suc-018
cess rates of length control on LLAMA3.1 for019
tasks such as length-controlled abstractive sum-020
marization and length-constrained instruction021
following, with minimal additional computa-022
tional overhead. This also highlights the signif-023
icant potential of our method for precise length024
control across a broader range of applications,025
without compromising the versatility of LLMs.026

1 Introduction027

Recent advancement of pre-trained large language028

models (LLMs) has significantly improved the per-029

formance of various natural language processing030

tasks (Vaswani, 2017; Devlin, 2018; Brown, 2020).031

LLMs such as GPT-4 (Achiam et al., 2023) and032

LLAMA (Touvron et al., 2023a,b; Dubey et al.,033

2024) exhibit exceptional capabilities to follow in-034

structions (Ouyang et al., 2022), allowing them to035

generate text aligning closely with user intentions.036

Applications such as dialogue generation (Yi et al.,037

2024), code completion (Jiang et al., 2024), and038

reasoning (Plaat et al., 2024) have benefited greatly039

from these advances, establishing LLMs as the core040

component in building general AI systems.041

Despite the strong generative capability, LLMs 042

still struggle to precisely manage the length of gen- 043

erated text (Wang et al., 2024; Huang et al., 2024; 044

Li et al., 2024), due to inherent architectural lim- 045

itations such as subword tokenization (Sennrich, 046

2015; Devlin, 2018) and autoregressive decoding 047

(Sutskever, 2014; Vaswani, 2017; Brown, 2020). 048

This issue is critical because length control is a 049

fundamental requirement in many real-world appli- 050

cations. For example, summarization tasks often 051

require outputs of specific lengths to balance infor- 052

mativeness and conciseness (Fan et al., 2017; Liu 053

et al., 2018, 2022; Jie et al., 2024). In addition, 054

LLM-based chatbots favor longer responses due to 055

the length bias introduced in pairwise preference 056

optimization (Singhal et al., 2023), which under- 057

mines the fairness of model evaluation (Dubois 058

et al., 2024a; Yuan et al., 2024) and degrades the 059

user experience in practical conversations. 060

To address the issue of length control, various 061

methods have been proposed, including fine-tuning 062

based on specifically designed length instructions 063

(Yuan et al., 2024; Wang et al., 2024; Li et al., 2024) 064

and reinforcement learning with length feedback 065

(Stiennon et al., 2020; Jie et al., 2024). However, 066

we argue that it is necessary to design length control 067

methods tailored for black-box LLMs for the fol- 068

lowing reasons: (1) Fine-tuning LLMs specifically 069

for length control requires extensive computational 070

resources and can degrade their general-purpose 071

utility (Lin et al., 2024). Worse still, not all LLMs 072

are open source. The fine-tuning methods cannot 073

be applied to black-box LLMs. (2) Length control 074

has been actually considered in the instruction tun- 075

ing phase of LLMs (Wang et al., 2022; Taori et al., 076

2023). As such, a superior and more efficient so- 077

lution is to activate the inherent length-following 078

capabilities within LLMs rather than undertaking a 079

costly retraining process. 080

We propose a novel framework for black-box 081

LLMs that operates length control without the need 082
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for parameter training. The length controlled gener-083

ation can be viewed as sampling from a target distri-084

bution, which is influenced simultaneously by the085

length constraint and language probability. How-086

ever, it is intractable to directly sample from this087

distribution, and we utilize an iterative sampling088

framework called Metropolis-Hastings (Metropolis089

et al., 1953; Hastings, 1970), which is a classic090

and prevalent Markov chain Monte Carlo (MCMC)091

method specially suited for this complex scenario.092

In detail, our framework initiates from the original093

output of LLM and iteratively produces candidate094

outputs conditioned on the previous ones via a pro-095

posal distribution. The acceptance or rejection of096

these candidates is determined by their comparative097

advantage over previous candidates, which is quan-098

tified as an acceptance distribution that involves:099

the alignment with the target length, the generative100

probability density of the LLM, and the probabil-101

ity density of the proposal distribution. Further-102

more, we leverage importance sampling (Kahn and103

Marshall, 1953; Owen and Zhou, 2000) in the pro-104

posal distribution to accelerate the iteration process,105

where candidates with lengths closer to the desired106

target are more likely to be sampled. We treat the107

LLM as an immutable component, enabling the in-108

tegration of effective length control mechanisms109

across the broadest possible spectrum of LLMs.110

We assess the effectiveness of our method on111

several tasks, including the abstract text summa-112

rization task with precise length control and the113

instruction following task with maximum length114

constraint. Experimental results demonstrate that115

our black-box approach significantly improves ex-116

isting LLMs in length control and achieves the state-117

of-the-art performance without compromising the118

quality of generated contents. Specifically, in the119

case of the LLAMA3.1 model (Dubey et al., 2024),120

our method achieves success rates close to 100%121

of the length control in only five iterations at most,122

highlighting its efficiency and practicality. Our123

contributions are summarized as follows:124

1. We propose a novel framework for black-125

box LLMs, offering more flexible and general126

length control compared to existing methods.127

2. We introduce an innovative integration of the128

classic Metropolis-Hastings algorithm with129

modern LLMs, thereby enhancing the effi-130

ciency and precision of length control.131

3. We achieve remarkable length control perfor-132

mance in advanced LLMs, showcasing the ro-133

bustness and effectiveness of our framework.134

2 Related Work 135

2.1 Instruction Following 136

LLMs are endowed with powerful instruction fol- 137

lowing capabilities in the supervised fine-tuning 138

stage (Ouyang et al., 2022; Zhou et al., 2024). De- 139

spite being able to understand human instructions 140

and handle a broad spectrum of tasks, LLMs still 141

leave a large room for improvement in their instruc- 142

tion following capabilities (Liu et al., 2023). In 143

addition to training stronger instruction following 144

capabilities (Rafailov et al., 2024b,a), it is also im- 145

portant to better utilize and activate the power of 146

LLMs (Wei et al., 2022; Yao et al., 2023). 147

2.2 Length Control 148

Controlling the output length is a crucial skill in 149

text generation, particularly for tasks where lengths 150

vary significantly. Early length controllable gener- 151

ation methods focus on the abstractive summariza- 152

tion task. For example, some methods discretize 153

lengths into bins with specialized tokens (Fan et al., 154

2017), introduce length constraint factors to convo- 155

lutional blocks (Liu et al., 2018), or optimize out- 156

put quality through minimum risk training (Makino 157

et al., 2019). In addition, length control signals can 158

be incorporated in positional encodings (Takase 159

and Okazaki, 2019), attention units (Yu et al., 2021; 160

Liu et al., 2022), and natural language instructions 161

(Yuan et al., 2024; Wang et al., 2024; Jie et al., 162

2024; Li et al., 2024). These methods require the 163

length training, which is inefficient when applied 164

to LLMs and has the potential to damage general 165

abilities. In contrast, our framework controls the 166

generated length during the inference stage. 167

3 Methodology 168

3.1 Overall Framework: Metropolis-Hastings 169

As illustrated in Figure 1, we introduce how to ap- 170

ply the Metropolis-Hastings framework (Metropo- 171

lis et al., 1953; Hastings, 1970) to the length con- 172

trol scenario. Given the probability distribution of 173

LLMs P (y|x) and the score of length constraint 174

f(y), our target distribution π(y|x) is derived as: 175

π(y|x) = f(y)P (y|x)∫
f(y)P (y|x)dy , (1) 176

where x is the human instruction and y is the re- 177

sponse of the target LLM. We cannot directly sam- 178

ple y from the target distribution π(y|x) because: 179

(1) f(y) is a deterministic function designed to 180
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Figure 1: The overall sampling process of our Metropolis-Hastings framework. The iteration starts by sampling an
initial state from the distribution of LLM y0 ∼ P (y|x), and ends at y7, which maximizes the target combination of
length constraints and probability densities π(y|x) ∝ f(y)P (y|x). During each iteration, a new candidate content yi
is generated based on the previous one yi−1 via the proposal distribution p(yi|yi−1, x). The generated candidate yi
will be either accepted or rejected considering the degree to which the target objectives are satisfied. We enhance the
original proposal distribution by incorporating length constraints, yielding the importance distribution q(yi|yi−1, x),
which increases the acceptance rate of candidates and significantly improves the iteration efficiency.

evaluate length constraints, rather than a probabil-181

ity distribution, which is not suitable for sampling;182

and (2) the integral of the normalization constant183

Z =
∫
f(y)P (y|x)dy is intractable.184

The Markov chain Monte Carlo algorithms can185

handle the problem by starting from an initial state186

y0 ∼ P (y|x), iteratively generating a collection187

of states [y1, . . . , yn] with a transition distribution188

P (yi|yi91, x), and approaching the target distri-189

bution π(y|x) = lim
n→∞

P (y0|x)
n∏

i=1
P (yi|yi91, x).190

Therefore, yn can be considered as sampled from191

the target distribution π(y|x) when n → ∞.192

The Metropolis-Hastings algorithm designs the193

transition probability as a combination of two steps:194

P (yi|yi91, x) = p(yi|yi91, x)A(yi91 → yi), (2)195

where p(yi|yi91, x) is the proposal distribution that196

generates a new candidate yi given the previous197

one yi−1. The acceptance distribution A(yi91→yi)198

provides the probability of accepting the proposed199

candidate yi. To ensure convergence, π(y|x) must200

be the unique stationary distribution of the Markov201

chain. Thus the Metropolis-Hastings algorithm fur-202

ther requires the transition probability P (yi|yi91, x)203

to fulfill the detailed balance condition, which is a204

sufficient condition for the stationary distribution, 205

π(yi91|x)P (yi|yi91, x) = π(yi|x)P (yi91|yi, x).
(3) 206

Based on eqs. (2) and (3), the acceptance distribu- 207

tion is derived to satisfy the following constraint: 208

A(yi91 → yi)

A(yi → yi91)
=

π(yi|x)p(yi91|yi, x)
π(yi91|x)p(yi|yi91, x)

=
f(yi)P (yi|x)p(yi91|yi, x)

f(yi91)P (yi91|x)p(yi|yi91, x)
,

(4) 209

where the normalization constant Z cancels, mak- 210

ing subsequent calculations convenient. In addi- 211

tion, the most popular choice of A(yi91 → yi) in 212

Metropolis-Hastings that satisfies eq. (4) is: 213

min

(
1,

f(yi)P (yi|x)p(yi91|yi, x)
f(yi91)P (yi91|x)p(yi|yi91, x)

)
. (5) 214

The sampling process of Metropolis-Hastings is 215

illustrated in algorithm 1. During each iteration 216

loop, a new candidate yi is generated from the pre- 217

vious one yi91. Whether to accept or reject the 218

new candidate is determined by the acceptance dis- 219

tribution A(yi91 → yi), where the randomness is 220

achieved with a uniform distribution u ∼ U(0, 1). 221

In the black-box setting where direct access 222

to the internal probability outputs of LLM is not 223
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Algorithm 1 Metropolis-Hastings Algorithm

1: Initialize the start state y0 ∼ P (y|x)
2: for i = 0 to n do
3: Propose: yi ∼ p(yi|yi91, x)
4: Calculate: A(yi91→yi) // eq. (5)
5: Randomize: u ∼ U(0, 1)
6: if u > A(yi91→yi) then
7: yi = yi91 // Reject
8: end if // else Accept
9: end for

10: Return yn

available, the following key components of the224

Metropolis-Hastings algorithm require careful and225

specialized designs: (1) the length constraint score226

f(y) (§3.2), which serves as a quantitative metric227

to assess the degree to which the generated sam-228

ples adhere to predefined length requirements; (2)229

the probability distribution of LLM P (y|x) (§3.3),230

which estimates the likelihood of the LLM gener-231

ating the specific sample y; and (3) the proposal232

distribution p(yi|yi91, x) (§3.4), which requires tai-233

lored construction to effectively generate candidate234

samples and efficiently explore the solution space,235

ensuring adherence to the length constraint while236

achieving sufficiently high generation quality.237

3.2 Length Constraint Score f(y)238

Given a word counter Len(·), such as the NLTK239

word tokenization function (Bird et al., 2009), the240

deviation of the LLM generated contents y from241

the target length ℓ can be quantitatively measured242

using the Manhattan distance, which is:243

D(y, ℓ) = | Len(y)− ℓ|. (6)244

Considering the target of our sampling process,245

the combination of f(y)P (y|x), we observe a re-246

semblance to the constrained optimization problem,247

where log f(y) can be interpreted as a constraint248

and logP (y|x) serves as an objective to be maxi-249

mized. Our target is similar to a Lagrangian func-250

tion f(y)P (y|x) ∝ logP (y|x) + λ log f(y) with251

the Lagrange multiplier λ = 1. Furthermore, our252

sampling process can be seen as analogous to exte-253

rior optimization, where the proposed candidates yi254

are always unable to satisfy the constraints during255

each iteration prior to the termination of the loop.256

Therefore, the constraint function f(y) needs to257

incentivize candidates that approximate the length258

constraint, and terminate the iterations with a sig-259

nificantly large reward when the length constraint260

is satisfied. Thus our length constraint score is de- 261

fined as follows. For an exact target length ℓ > 0: 262

f(y) =
1

D(y, ℓ)
. (7) 263

For an interval of target length [ℓ1, ℓ2]: 264

f(y) =



1

D(y, ℓ1)
, y < ℓ1

+∞, ℓ1 ≤ y ≤ ℓ2
1

D(y, ℓ2)
, y > ℓ2

, (8) 265

where 0 < ℓ1 < ℓ2 ≤ +∞ and ℓ2 can be +∞. 266

3.3 Probability Distribution of LLM P (y|x) 267

We can obtain the responses generated by black- 268

box LLMs such as GPT-4 (Achiam et al., 2023), 269

i.e., sampling from their distributions y ∼ P (y|x), 270

Prompt Template: y0 ∼ P (y|x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {y0}

271

which is easily accomplished with a simple instruc- 272

tion. However, we are unable to access their inter- 273

nal parameters or underlying probability distribu- 274

tions. Consequently, it is intractable to verify the 275

probability density P (y|x) of specific samples y. 276

To address this issue, we employ the LLM-as-a- 277

Judge approach (Chiang et al., 2023; Zheng et al., 278

2023; Dubois et al., 2024b) as a solution. Lever- 279

aging the advanced understanding, reasoning, and 280

mathematical capabilities of the model, we require 281

LLMs to score samples generated by themselves, 282

thus implicitly estimating their probability density 283

distributions. Besides, we predefine a series of per- 284

spectives to unify the scoring mode for our tasks. 285

For the abstractive summarization task, we mea- 286

sure the information coverage, linguistic fluency, 287

conciseness, logical coherence, and faithfulness 288

of the generated summaries. For instruction fol- 289

lowing, we measure the response with helpfulness, 290

relevance, accuracy, depth, creativity, and level of 291

detail. Denoting the score function as ϕ(y|x), we 292

get the estimated probability distribution as: 293

P (y|x) ≃ ϕ(y|x)∫
ϕ(y|x)dy . (9) 294

Similarly to the eq. (4), we can cancel the calcu- 295

lation of the normalization constant
∫
ϕ(y|x)dy. 296
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Since the eq. (4) requires the calculation of the297

ratio P (yi|x) ÷ P (yi91|x), where yi and yi91 are298

both sampled from the target LLM, we can further299

refine the scoring function by employing a pairwise300

comparison function Φ(yi, yi91|x) that301

P (yi|x)
P (yi91|x)

≃ Φ(yi, yi91|x) ≃
ϕ(yi|x)
ϕ(yi91|x)

, (10)302

where the pairwise score can discern subtle differ-303

ences between the sample pair (yi, yi91) at adjacent304

iteration steps. In addition, the pairwise function305

will produce scores with less fluctuation than the306

absolute one ϕ(y|x) (Zheng et al., 2023).307

3.4 Proposal Distribution p(yi|yi91, x)308

The proposal distribution p(yi|yi91, x) plays a piv-309

otal role, as it directly influences the efficiency and310

quality of the sampling process. Since the prob-311

ability distribution of LLM, P (y|x), is estimated312

by itself (§3.3), requiring LLMs to further approxi-313

mate the probability density of the proposal distri-314

bution p(yi|yi91, x) not only introduces additional315

complexity, but also amplifies the estimation er-316

rors. Therefore, we impose a symmetry constraint317

(Chib and Greenberg, 1995; Haario et al., 2001)318

on the design of the proposal distribution, which is319

q(yi|yi91, x) = q(yi91|yi, x). And the acceptance320

distribution (eq. (5)) reduces to321

A(yi91→yi) = min

(
1,

f(yi)P (yi|x)
f(yi91)P (yi91|x)

)
.

(11)322

Therefore, we specifically design time-unbiased in-323

structions to make LLM satisfy the symmetry con-324

straints as much as possible. The detailed prompt325

template for LLMs is as follows:326

Prompt Template: yi ∼ p(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {yi91}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANT]: Answer: {yi}
327

where yi and yi91 are equivalent and interchange-328

able in the semantics of this template.329

However, this preliminary Metropolis-Hastings330

framework, constructed with the current proposal331

function p(yi|yi91, x), is not efficient due to fol- 332

lowing reasons. (1) Intuitively, when generating 333

new candidates, the length signal remains the initial 334

one ("using ℓ words or less"). Without introducing 335

updated length signals, LLM may remain trapped 336

in its own errors, unable to converge to improved 337

solutions. (2) From a theoretical perspective, the 338

sampling efficiency and quality will be maximized 339

when the proposal function p(yi|yi91, x) aligns 340

closely with the target distribution π(y|x) (Gel- 341

man et al., 1997). This means that the sampling 342

efficiency decreases as this discrepancy increases. 343

Therefore, we apply the importance sampling 344

strategy (Kahn and Marshall, 1953; Owen and 345

Zhou, 2000) to improve the proposal distribution. 346

We define an importance distribution q(yi|yi91, x) 347

that complies with length constraints, serving as a 348

replacement for the proposal distribution to facili- 349

tate accelerated sampling. Equations (5) and (11) 350

can be further derived when yi ∼ q(yi|yi91, x): 351

A(yi91→yi)=
p(yi|yi91, x)
q(yi|yi91, x)

min

(
1,

π(yi|x)
π(yi91|x)

)
≤ min

(
1,

f(yi)P (yi|x)
f(yi91)P (yi91|x)

)
,

(12) 352

where p(yi|yi91,x)
q(yi|yi91,x) ≤1 and eq. (11) becomes an up- 353

per bound of A(yi91 → yi). By simply replac- 354

ing line 3 in algorithm 1 with yi ∼ q(yi|yi91|x) 355

and calculating the acceptance rate with the upper 356

bound eq. (12), we can significantly accelerate the 357

sampling process. Although calculating this upper 358

bound may lead to higher acceptance rates, poten- 359

tially compromising generation quality, the remark- 360

able capabilities of LLMs fortunately mitigate this 361

risk to an almost negligible level. In addition, the 362

detailed template for the importance distribution is: 363

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {yi91}

[USER]: The generated answer is too (long /
short) at {Len(y)} words.
Please (delete / add) {D(y, ℓ)} words appro-
priately based on the previous response:

[ASSISTANT]: Answer: {yi}
364

It should be noted that our method can perform 365

parallel sampling as long as the corresponding LLM 366
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Models Samplers ACC↑ L1↓ L2↓ ROUGE-1 ROUGE-2 ROUGE-L

LLAMA2
INST 4.1% 11.42 15.20 0.37 0.13 0.24

OURS 81.6% 0.24 0.64 0.36 0.12 0.24

QWEN2.5
INST 3.2% 8.64 10.83 0.33 0.10 0.21

OURS 86.4% 0.18 0.72 0.33 0.10 0.21

LLAMA3
INST 9.1% 4.78 6.10 0.39 0.14 0.25

OURS 78.6% 0.29 0.66 0.38 0.14 0.25

LLAMA3.1
INST 7.7% 3.88 5.10 0.38 0.13 0.24

OURS 100.0% 0.00 0.00 0.38 0.13 0.24

GPT-3.5
INST 5.1% 8.29 13.69 0.36 0.12 0.23

OURS 95.0% 0.14 1.11 0.36 0.12 0.23

GPT-4
INST 15.7% 2.10 2.67 0.36 0.12 0.23

OURS 99.2% 0.01 0.12 0.36 0.12 0.23

Table 1: Results of the length control on the CNN/DailyMail dataset. INST is the baseline response with length-
guided instructions. OURS represents our iterative sampling framework.

supports it, further improving the control efficiency.367

4 Experiments368

4.1 Experimental Setup369

Datasets For exact length control, we utilize the370

CNN/DailyMail dataset (CNNDM, Nallapati et al.371

(2016)), where the length instruction ℓ is extracted372

from the references. For length-interval control, we373

use the Alpaca-Eval-LI (ALPACA) and MT-Bench-374

LI (MTBENCH) datasets (Yuan et al., 2024), which375

are derived from the Alpaca-Eval dataset (Dubois376

et al., 2024b) and the MT-Bench dataset (Zheng377

et al., 2023). The length interval instructions are378

already provided in the dataset, where ℓ1 = 0 and379

ℓ2 is the length of the reference response.380

LLMs We evaluate the effectiveness of our frame-381

work in the latest LLMs, including Llama-2-7B382

(LLAMA2, Touvron et al. (2023b), Qwen-2.5-383

7B (QWEN2.5, Team (2024)), Llama-3/3.1-8B384

(LLAMA3/3.1, Dubey et al. (2024)), and GPT-385

3.5/4 (Achiam et al., 2023). For white-box LLMs386

like LLAMA, we use them as black-box models,387

where the maximum iteration trial is 5 with a beam388

size of 16. For black-box models based on APIs389

like GPT-4, we set the maximum iteration trial as390

15 without parallel sampling.391

Evaluation Metrics We use several metrics to392

estimate the effect of the length control. ACCuracy393

measures the ratio of generated contents that are394

fully in accordance with the length constraint.395

Given N generated contents, L1 measures the396

average Manhattan distance 1
N

∑
y | Len(y) − ℓ|397

and L2 measures the average Euclidean distance398 √
1
N

∑
y | Len(y)− ℓ|2. For quality evaluation of399

the summary task, we use the classic score ROUGE400

Models Samp. ACC↑ L1↓ L2↓ WIN.↑
ALPACA-EVAL-LI

LLAMA3
INST 92.2% 1.48 9.12 76.5%

OURS 99.8% 0.02 0.05 83.5%

LLAMA3.1
INST 91.6% 2.47 15.64 71.6%

OURS 99.8% 0.06 1.69 76.7%

GPT-3.5
INST 91.5% 1.16 4.92 57.0%

OURS 100.0% 0.00 0.00 65.3%

GPT-4
INST 37.2% 21.38 37.61 30.2%

OURS 99.2% 0.02 0.17 92.0%

MT-BENCH-LI

LLAMA3
INST 78.8% 2.80 7.73 41.1%

OURS 100.0% 0.00 0.00 42.1%

LLAMA3.1
INST 80.4% 10.15 60.71 35.2%

OURS 98.8% 0.73 7.12 42.9%

GPT-3.5
INST 87.9% 2.51 9.46 24.6%

OURS 98.6% 0.09 0.73 27.3%

GPT-4
INST 54.7% 13.99 29.16 27.4%

OURS 98.8% 0.05 0.41 63.7%

Table 2: Results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset.

(Lin, 2004). For the instruction following tasks, 401

we use the length-instructed WINrate (Yuan et al., 402

2024), where responses are compared pairwise 403

with baselines. The winner is determined by both 404

the quality of the responses provided by LLM-as- 405

a-Judge (Zheng et al., 2023), and the adherence to 406

the length constraints. If the response exceeds the 407

length constraint, it is automatically lost. 408

4.2 Main Results 409

The detailed comparisons between the baselines 410

and our framework are demonstrated in Tables 1 411

and 2. Table 1 presents the results of length con- 412
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Trials ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
QWEN2.5
0 3.2% 8.64 10.83 0.33/0.10/0.21
1 25.4% 3.58 5.80 0.33/0.10/0.21
2 52.8% 0.96 2.07 0.33/0.10/0.21
3 70.6% 0.51 1.55 0.33/0.10/0.21
4 79.1% 0.29 1.16 0.33/0.10/0.21
5 86.4% 0.18 0.72 0.33/0.10/0.21

LLAMA3.1
0 7.7% 3.88 5.10 0.38/0.13/0.24
1 86.4% 0.18 0.55 0.38/0.13/0.24
2 99.2% 0.04 0.28 0.38/0.13/0.24
3 99.8% 0.01 0.03 0.38/0.13/0.24
4 100.0% 0.00 0.00 0.38/0.13/0.24
5 100.0% 0.00 0.00 0.38/0.13/0.24

Table 3: Analysis of the iteration trial on the CNNDM
dataset, where the beam size is 16.

trol experiments conducted on the CNN/DailyMail413

dataset. Our method (denoted as OURS) demon-414

strates significant improvements over the baseline415

instruction method (INST) across all evaluated mod-416

els and length-related metrics. Specifically, we417

achieve near-perfect or perfect accuracy (ACC),418

with values exceeding 95% for the most advanced419

LLMs (LLAMA3.1, GPT-3.5, and GPT-4), while420

the baselines struggle with accuracy values below421

16%. Furthermore, our approach exhibits substan-422

tially lower errors of L1 and L2, indicating precise423

adherence to the target lengths. For example, on424

LLAMA3.1, our framework achieves an accuracy425

of 100%, demonstrating flawless length control.426

Similarly, we attain a 99.2% accuracy on GPT-4,427

reducing the L1 and L2 errors to 0.01 and 0.12,428

respectively. Beyond the significant improvement429

in length control, our method introduces almost430

no degradation in generation quality, where the431

ROUGE metrics remain almost the same to the432

instruction-based baselines.433

Table 2 evaluates the performance of our method434

on Alpaca-Eval-LI and MT-Bench-LI datasets. Al-435

though these two datasets are relatively easier com-436

pared to the exact length control task, the perfor-437

mance improvement (with an accuracy increase of438

at least 7.6%) brought about by our method com-439

pared to the baseline is significant, confirming the440

consistent superiority of our framework across dif-441

ferent benchmarks. In addition, the LLM judged442

pairwise WINrate of our approach improves. These443

results highlight the effectiveness of our iterative444

Beams ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
QWEN2.5

0 3.2% 8.64 10.83 0.33/0.10/0.21
1 24.6% 2.41 4.02 0.33/0.10/0.21
2 38.7% 1.75 3.69 0.33/0.10/0.21
4 57.1% 0.82 1.93 0.32/0.10/0.21
8 72.6% 0.46 1.49 0.32/0.10/0.20
16 86.4% 0.18 0.72 0.33/0.10/0.21

LLAMA3.1
0 7.7% 3.88 5.10 0.38/0.13/0.24
1 93.3% 0.14 0.88 0.37/0.13/0.24
2 98.9% 0.02 0.12 0.37/0.13/0.24
4 99.7% 0.01 0.05 0.38/0.14/0.25
8 100.0% 0.00 0.00 0.38/0.13/0.24
16 100.0% 0.00 0.00 0.38/0.13/0.24

Table 4: Analysis of the beam size on the CNNDM
dataset, where the iteration trial is 5.

Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 7.7% 3.88 5.10 0.38/0.13/0.24
RAND 38.8% 1.18 1.85 0.38/0.14/0.24
MH 40.2% 1.47 3.20 0.36/0.13/0.23
MH+IS 93.3% 0.14 0.88 0.37/0.13/0.24

Table 5: Ablation study of LLAMA3.1 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

sampling framework in achieving robust and accu- 445

rate length control across diverse LLMs. 446

4.3 Analyses 447

We analyze the hyperparameters of our framework, 448

the number of iteration trials and the beam size, 449

which are illustrated in Tables 3 and 4. Both hy- 450

perparameters are used to expand and explore the 451

sampling space, with larger iteration trials demand- 452

ing greater time overhead and larger beam sizes 453

incurring higher space costs. As the sampling 454

space reduces, we can observe that the influence 455

of length control progressively decreases. In par- 456

ticular, this reduction is non-linear, with the rate 457

of decline accelerating significantly. Considering 458

both LLAMA3.1 and QWEN2.5, the marginal ef- 459

fect of expanding the sampling space decreases 460

more rapidly for the stronger model. In addition, 461

comparing the two tables, we can observe that the 462

iteration trial number contributes more to the con- 463

trol effect than the beam size. With a smaller sam- 464

pling space of 2 beams × 5 trials, the accuracy 465

(38.7% of QWEN2.5 and 98.9% of LLAMA3.1) 466
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Task Samp. STEPS↓ ACC↑ L1↓ L2↓

CNNDM

RAND 18.6 95.3% 0.06 0.35
MH 17.1 96.0% 0.34 1.85

MH+IS 2.4 100.0% 0.00 0.00

ALPACA

RAND 0.6 98.0% 0.21 1.71
MH 0.9 95.3% 0.32 2.67

MH+IS 0.1 100.0% 0.00 0.00

MTBENCH

RAND 3.0 97.9% 0.33 3.26
MH 3.3 96.7% 0.42 4.88

MH+IS 0.8 99.5% 0.06 0.85

Table 6: Convergence steps on LLAMA3.1.

outperforms the situation with 16 beams × 1 trial467

(25.4% of QWEN2.5 and 86.4% of LLAMA3.1).468

4.4 Ablation Study469

Table 5 presents an ablation study evaluating the470

performance of different sampling strategies for471

LLAMA3.1 on the CNN/DailyMail dataset. We472

examine four sampling strategies: (1) INST is the473

instruction following baseline without iterations;474

(2) RAND extends the baseline to resample at each475

iteration and retains the best one; (3) MH is our476

initial version of the Metropolis-Hastings frame-477

work that resamples with the proposal distribution478

y ∼ p(yi|yi−1, x) during each iteration; and (4)479

MH+IS is our complete method which replaces the480

proposal distribution with the importance distribu-481

tion q(yi|yi−1, x). We set the beam size to 1, be-482

cause sampling a batch of initial states y0∼P (y|x)483

is actually the RAND method and we want to elimi-484

nate this influence. Experimental results show that485

with the powerful instruction following capabilities486

of LLMs, random sampling of more candidates can487

achieve good control effects. However, the origi-488

nal Metropolis-Hastings method does not make the489

process more efficient and is sometimes even worse490

than random sampling. By replacing the proposal491

distribution with an importance sampling strategy,492

our method achieves significant improvements.493

4.5 Convergence Study494

Furthermore, we analyze the accurate convergence495

speed of different sampling methods in Tables 6496

and 7. We set the beam size to 1 as in section 4.4497

and the maximum iteration step for each case is498

100 for LLAMA3.1 and 15 for GPT-4. We report499

the average iteration STEPS required to satisfy the500

length constraints, which excludes the first sam-501

pling step y0 ∼ P (y|x). We observe that differ-502

Task Samp. STEPS↓ ACC↑ L1↓ L2↓

CNNDM

RAND 2.6 93.8% 0.06 0.29
MH 2.5 91.4% 0.09 0.58

MH+IS 1.0 98.0% 0.02 0.14

ALPACA

RAND 2.5 77.3% 2.52 6.54
MH 3.0 93.6% 3.02 8.67

MH+IS 0.4 98.2% 0.09 0.81

MTBENCH

RAND 1.3 83.7% 2.57 7.89
MH 1.8 78.3% 4.09 14.71

MH+IS 0.1 99.8% 0.01 0.09

Table 7: Convergence steps on GPT-4.

ent models have different convergence steps for 503

different tasks. In general, precise length control 504

tasks are more difficult and require more iterations. 505

Even so, we achieve an almost perfect control ef- 506

fect with only 2.4 iteration steps on average for 507

LLAMA3.1. We even only need an average of 0.1 508

iterations for LLAMA3.1 to perform perfect control 509

on the Alpaca-Eval-LI dataset. For GPT-4, we only 510

need 1.0 iterations at most on average to obtain 511

good control results. Therefore, our framework can 512

achieve extremely effective length control perfor- 513

mance with acceptable time overhead. 514

5 Conclusion 515

We propose a novel length controllable sampling 516

framework for black-box models and verify the 517

effectiveness with experiments and analyses. Our 518

study confirms that an almost perfect length con- 519

trol can be achieved on LLMs, which is of great 520

significance to improve their instruction following 521

ability. In addition, although our framework per- 522

forms well, its sampling efficiency and generation 523

effect are affected by the capabilities of LLM it- 524

self. Fortunately, with the rapid development of 525

LLMs, this concern will gradually disappear. Its 526

worth noting that we do not directly compare with 527

the length training methods, because (1) the black- 528

box models are not trainable, and (2) the training 529

methods are based on specific datasets and possess 530

some data bias, which is contrary to the objective 531

of a more generalized length control. We hope to 532

explore more efficient and general length control 533

schemes in our future studies. 534

Limitations 535

Despite the promising results demonstrated in our 536

experiments, our method has some limitations that 537

merit further discussion: 538
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• Inference Overhead:539

Our approach introduces additional inference over-540

head due to the iterative nature of the method. Al-541

though the experimental results show that satisfac-542

tory results can often be achieved in 2 iterations for543

advanced models such as LLAMA3.1. However,544

more iteration steps are required for more difficult545

scenarios or weaker LLMs. This additional compu-546

tational cost may present challenges for large-scale547

batch generation tasks where inference speed is548

critical. Future research could explore optimiza-549

tion techniques to reduce the number of iterations550

required or design lightweight variants to better551

suit the high-throughput applications.552

• Dependency on Instruction Following Abilities:553

The performance of our method is highly depen-554

dent on the instruction following capabilities of555

the underlying model. For state-of-the-art LLMs556

such as LLAMA3.1 and GPT-4, fewer iterations557

are typically sufficient to achieve satisfactory re-558

sults. However, when applied to models with less559

robust instruction-following abilities, the number560

of iterations required may increase significantly,561

potentially affecting efficiency. Addressing this562

limitation could involve developing methods to en-563

hance instruction alignment for less capable models564

or incorporating external mechanisms to mitigate565

the dependency on instruction following abilities.566

Considering our experiments, the limitations are:567

• Baselines: We do not directly compare with train-568

ing methods for length control because: (1) our569

framework is dedicated to black-box LLMs, which570

is not trainable; (2) length instructions have already571

been incorporated in the supervised fine-tuning572

stage of LLMs, which means LLMs themselves are573

length trainable baselines; (3) the training methods574

are based on specific datasets and possess some575

data bias, which is contrary to the objective of a576

more generalized length control; and (4) large-scale577

training of length instructions on LLMs such as578

LLAMA3.1 requires a lot of computing resources579

that we cannot currently afford.580

• Models: Currently, we only test the most widely581

used LLMs. Due to the limitations of computing582

resources and costs, we are unable to test white-box583

models with larger parameters (such as 70B), nor584

can we afford the test of other API-based black-box585

LLMs on a large scale.586

Ethics Statement 587

This research focuses on controlling the output 588

length of LLMs to address practical usability and 589

fairness concerns in various applications, such as 590

summarization, dialogue systems, and content gen- 591

eration. By enabling precise length control, this 592

work aims to enhance user experience, ensure rele- 593

vance, and reduce unintended biases introduced by 594

excessively verbose or overly concise outputs. 595

We recognize the potential ethical risks associ- 596

ated with the misuse of controlled generation, such 597

as the creation of misleading or harmful content 598

tailored to specific lengths. To mitigate such risks, 599

our methodology emphasizes transparency, repro- 600

ducibility, and alignment with ethical guidelines 601

in AI development. Additionally, we advocate for 602

integrating robust content moderation mechanisms 603

in downstream applications to safeguard against 604

unintended consequences. 605

This research was conducted following estab- 606

lished ethical standards, ensuring that the datasets 607

used respect privacy and are free of harmful biases 608

to the best of our ability. Future work will further 609

explore the societal implications of this technology, 610

ensuring its responsible and equitable deployment. 611
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A Prompt Templates841

A.1 Initial States842

For the abstractive summarization task with exact843

length constraints, we randomly choose an exam-844

ple (xc, yc, ℓc) from the training set as an one-shot845

demonstration for LLMs, because the chat LLMs846

are not specifically trained for the output mode of847

summary tasks. The detailed template is:848

Prompt Template: y0 ∼ P (y|x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: {xc}
Based on the previous document, provide a
high-quality summary in exactly {ℓc} words:

[ASSISTANT]: Summary: {yc}

[USER]: Document: {x}
Based on the previous document, provide a
high-quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: {y0}
849

For instruction following tasks with length inter-850

vals, we directly use zero-shot with the template:851

Prompt Template: y0 ∼ P (y|x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {y0}

852

A.2 Probability Densities of Current States853

We demonstrate the detailed {Criteria} of eval-854

uation for different tasks. For abstractive summa-855

rization: we score the generated summaries in 5856

dimensions on a scale of 1-10.857

1. Information Coverage: Does the summary in-858

clude the most important and critical informa-859

tion from the document?860

2. Linguistic Fluency: Are the sentences in the861

summary fluent, natural, and grammatically cor-862

rect?863

3. Conciseness: Does the summary avoid redun-864

dancy while retaining key information?865

4. Logical Coherence: Is the summary well-866

structured with clear and logical flow?867

5. Faithfulness: Does the summary accurately re- 868

flect the facts in the original document without 869

adding false or misleading information? 870

The evaluation {Criteria} for the general in- 871

struction following task is of 6 dimensions: 872

1. Helpfulness: Does the response directly ad- 873

dress the instruction and provide meaningful 874

assistance? 875

2. Relevance: Does the response stay on topic and 876

avoid unnecessary or unrelated information? 877

3. Accuracy: Is the information in the response 878

factually correct and free of errors? 879

4. Depth: Does the response demonstrate a deep 880

understanding of the topic, including nuanced 881

explanations where relevant? 882

5. Creativity: Does the response display original- 883

ity, creativity, or a unique approach to address- 884

ing the instruction? 885

6. Level of Detail: Is the response sufficiently 886

detailed, providing comprehensive and thorough 887

explanations where necessary? 888

Following the setting of MT-Bench, we set a 889

special evaluation {Criteria} for math-related in- 890

struction following tasks such as reasoning, math 891

and coding, which is described below. 892

1. Correctness: Is the answer logically sound, fac- 893

tually accurate, and free from errors? 894

2. Helpfulness: Does the response directly ad- 895

dress the instruction and provide meaningful 896

assistance? 897

3. Clarity: Is the response well-structured and 898

easy to understand? 899

4. Efficiency: Does the response provide an opti- 900

mal solution without unnecessary complexity? 901

5. Completeness: Does the response fully cover 902

the instruction’s requirements and edge cases? 903

6. Robustness: Can the response handle ambigu- 904

ity or complexity in the instruction? 905

We formalize the output to facilitate the extrac- 906

tion of key information, where the {Format} is 907
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#### Response 1:
1. Information Coverage:: [Score]/10
2. Linguistic Fluency: [Score]/10
. . . . . .
**Overall Score:** [Total Score]/50
#### Response 2:
1. Information Coverage:: [Score]/10
2. Linguistic Fluency: [Score]/10
. . . . . .
**Overall Score:** [Total Score]/50
### Conclusion:
- **Better Response:** [Response 1/Re-
sponse 2].
- **Score Ratio (Response 1 ÷ Response
2):** [Ratio, rounded to two decimal places].

908

We calculate the eq. (10) via909

P (yi|x)
P (yi91|x)

≃ ϕ(yi|x)
ϕ(yi91|x)

=
Score of Response 1

Score of Response 2
.

(13)910

Therefore, the prompt templates for estimating the911

target probability density are:912

Prompt Template: Φ(yi, yi−1|x)

[SYSTEM]: You are a powerful evaluator for
abstractive summarization.

[USER]: I need to compare and evaluate the
quality of two summaries generated for a
given document. Please provide a quantita-
tive assessment of their performance based
on the criteria below.
Document: {x}
Summary 1: {yi}
Summary 2: {yi−1}
Evaluation Criteria (each scored on a scale
of 1-10, with 10 being the best): {Criteria}
Instructions:
* Score each summary based on the above
criteria.
* Calculate an overall score for each sum-
mary as the sum of all criteria scores (maxi-
mum 50).
* Conclude by identifying which summary
is better overall.
* Calculate a score ratio of Summary 1 to
Summary 2 (Summary 1 Score ÷ Summary
2 Score).
Output Format: {Format}

913

where we force LLMs to score the responses of the 914

adjacent steps generated by itself. By extracting 915

the score ratio from {Format}, we can estimate 916

the fraction of the target distribution. 917

For instruction following tasks, we use the pair- 918

wise template derived from the Alpaca-Eval, which 919

emphasizes that the length of the generated content 920

and the position of the presentation should not be a 921

bias in scoring. 922

Prompt Template: Φ(yi, yi−1|x)

[SYSTEM]: You are a highly efficient assis-
tant, who evaluates and selects the best large
language model (LLMs) based on the quality
of their responses to a given instruction.
This process will be used to create a leader-
board reflecting the most accurate and
human-preferred answers.

[USER]: I require a leaderboard for various
large language models. I’ll provide you with
an instruction given to these models and their
corresponding responses. Your task is to as-
sess these responses, provide a quantitative
assessment of their performance based on
the criteria below, and select the model that
produces the best output from a human per-
spective. Avoid any position biases and en-
sure that the order in which the responses
were presented does not influence your deci-
sion.
Instruction: {x}
Response 1: {yi}
Response 2: {yi−1}
Tasks:
* Score each response based on the above
criteria.
* Calculate an overall score for each response
as the sum of all criteria scores (maximum
60).
* Conclude by identifying which response is
better overall.
* Calculate a score ratio of Response 1 to
Response 2 (Response 1 Score ÷ Response
2 Score).
Output Format: {Format}

923

A.3 Propose New States 924

Proposal Distribution For the abstractive sum- 925

marization task, the prompt template for sampling 926

from the proposal distribution p(yi|yi91, x) is: 927
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Prompt Template: yi ∼ p(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: {x}
Based on the previous document, provide a
high-quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: {yi−1}

[USER]: Please generate a new summary
based on the previous one:

[ASSISTANT]: Summary: {yi}
928

The template for instruction following task is:929

Prompt Template: yi ∼ p(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer:\n{yi−1}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANT]: Answer: \n {yi}
930

Importance Distribution We split the impor-931

tance distribution into two segments. When the can-932

didate length is far from the target length D(y, ℓ) >933

3, we use a looser objective so that LLMs can934

have more opportunities for semantic organization,935

which is beneficial for the quality of generation.936

The template for abstractive summarization is:937

Prompt Template: yi ∼ q(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {x} \n\n Based
on the previous document, provide a high-
quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: \n {yi−1}

[USER]: The generated summary is too
(long / short) at {Len(y)} words.
Please improve it to be exactly {ℓ} words
by (focusing on the core ideas and removing
some redundant details / adding some details
and maintaining clarity and relevance):

[ASSISTANT]: Summary: \n {yi}
938

The prompt template for instruction following is: 939

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer: \n {yi−1}

[USER]: The generated answer is too long
at {Len(y)} words. Please improve it to be
exactly {ℓ} words or less by focusing on the
core contents and removing any unhelpful,
irrelevant, or inaccurate parts:

[ASSISTANT]: Answer: \n {yi}
940

When the candidate length is close to the target 941

length D(y, ℓ) ≤ 3, we force an accurate length 942

control such that LLMs are required to add or delete 943

an exact number of words. The prompt template 944

for abstractive summarization is: 945

Prompt Template: yi ∼ q(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {x} \n\n Based
on the previous document, provide a high-
quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: \n {yi−1}

[USER]: Please (delete / add) {D(y, ℓ)}
words appropriately based on the previous
summary:

[ASSISTANT]: Summary: \n {yi}
946

The prompt template for instruction following is: 947

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer: \n {yi−1}

[USER]: The generated answer is too long
at {Len(y)} words. Please delete {D(y, ℓ)}
words appropriately based on the previous
response:

[ASSISTANT]: Answer: \n {yi}
948
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Models Top-K Top-P Temp. Rep.
QWEN2.5 20 0.8 0.7 1.05
LLAMA2 50 0.9 0.6 1.00
LLAMA3 50 0.9 0.6 1.00
LLAMA3.1 50 0.9 0.6 1.00

Table 8: Generation configurations of LLMs.

Trials ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
LLAMA3
0 9.1% 4.78 6.10 0.39/0.14/0.25
1 48.3% 0.98 1.80 0.38/0.14/0.24
2 64.8% 0.58 1.05 0.38/0.13/0.24
3 68.4% 0.44 0.85 0.38/0.13/0.24
4 72.3% 0.36 0.75 0.38/0.14/0.25
5 78.6% 0.29 0.66 0.38/0.14/0.25

Table 9: Analysis of the iteration trial on the CNNDM
dataset, where the beam size is 16.

B Experimental Details949

Our experiments are implemented on the Hugging-950

face Transformers package1. All LLMs we used951

are the chat version trained with supervised fine952

tuning, where LLAMA2 and QWEN2.5 have 7B pa-953

rameters while LLAMA3 and LLAMA3.1 have 8B954

parameters. The generation configurations of each955

model are set by default, as demonstrated in table 8.956

There is no training stage of our framework, and957

the inference is performed on an NVIDIA A100958

80GB GPU with a random seed of 0.959

For the CNN/Daily Mail dataset, we randomly960

choose 1000 samples from the 3.0 version of the961

test set, since the instruction following task con-962

tains 1042 samples (802 from Alpaca-Eval-LI and963

240 from MT-Bench-LI).964

C Analyses965

We demonstrate the hyperparameter analyses in966

Tables 9 and 10. Similar to the observation in §4.3,967

the marginal effect of LLAMA3 as the sampling968

space grows is between QWEN2.5 and LLAMA3.1.969

For ablation studies in QWEN2.5 (Table 11) and970

LLAMA3 (Table 12), our sampling framework out-971

performs other methods. However, since the in-972

struction following capabilities of these models are973

not as powerful as LLAMA3.1, their improvement974

may not be as significant.975

1https://github.com/huggingface/transformers

Beams ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
LLAMA3

0 9.1% 4.78 6.10 0.39/0.14/0.25
1 36.4% 1.63 2.51 0.39/0.14/0.25
2 47.2% 1.08 2.10 0.38/0.14/0.25
4 55.8% 0.72 1.25 0.38/0.14/0.25
8 67.2% 0.47 0.93 0.38/0.14/0.25
16 78.6% 0.29 0.66 0.38/0.14/0.25

Table 10: Analysis of the beam size on the CNNDM
dataset, where the iteration trial is 5.

Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 3.2% 8.64 10.83 0.33/0.10/0.21
RAND 17.7% 3.54 5.23 0.33/0.10/0.21
MH 14.1% 4.73 7.65 0.32/0.10/0.21
MH+IS 24.6% 2.41 4.02 0.33/0.10/0.21

Table 11: Ablation study of QWEN2.5 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 9.1% 4.78 6.10 0.39/0.14/0.25
RAND 30.7% 3.05 5.49 0.38/0.14/0.25
MH 30.1% 4.07 5.98 0.38/0.13/0.24
MH+IS 36.4% 1.63 2.51 0.39/0.14/0.25

Table 12: Ablation study of LLAMA3 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

D Generated Cases 976

The generated cases of LLAMA3.1 on the Alpaca- 977

Eval-LI dataset are demonstrated in table 13. 978

15

https://github.com/huggingface/transformers


LLAMA3.1 INST LLAMA3.1 OURS

Answer the following instruction using 46 words or less.
Is the US border open to Canada?

Number of Words: 48 Number of Words: 44

The US border with Canada is open, but with restric-
tions. Land and sea borders are open for essential
travel, while air travel requires a valid visa or elec-
tronic travel authorization. Some restrictions may
apply, so it’s best to check the official government
websites for the latest information.

The US-Canada border is open, but with re-
strictions. Travelers must provide proof of
COVID-19 vaccination, a negative test, or re-
covery from the virus. Additionally, some land
ports of entry may be closed or have limited
hours, so it’s best to check before traveling.

Answer the following instruction using 50 words or less.
Write me a top 10 list of the funniest ways to die.

Number of Words: 110 Number of Words: 48

Please note that this is a dark humor list and not meant
to be taken seriously. Here’s a list of the funniest ways
to die (in a fictional context):
1. Dying from laughing too hard at a dad joke.
2. Choking on a chicken nugget.
3. Falling into a giant pile of pillows.
4. Getting hit by a runaway inflatable unicorn.
5. Accidentally hugging a cactus.
6. Dying from a massive sneeze.
7. Getting stuck in a giant toilet.
8. Falling off a unicycle while riding a unicycle.
9. Dying from eating too much wasabi.
10. Being attacked by a swarm of bees while trying
to get a selfie.

Here’s a list of humorous ways to die:
1. Laughing too hard.
2. Choking on a whoopee.
3. Drowning in Jell-O.
4. Falling into feathers.
5. Being crushed by cats.
6. Overdosing on laughter.
7. Sneezing from feather.
8. Excessive flatulence.
9. Cheese coma.
10. Snoring loudly.

Answer the following instruction using 128 words or less.
Who made Berlin?
Number of Words: 151 Number of Words: 125

Berlin, the capital city of Germany, has a complex and
multifaceted history. The city’s origins date back to
the 13th century when it was a small trading post on
the Spree River. Over time, Berlin grew and became
a significant center for trade, culture, and politics.
In 1237, the Margraviate of Brandenburg was
founded, and Berlin became its capital. In 1415, the
Hohenzollern dynasty took control of the city, and
Berlin continued to grow and prosper. Throughout
the centuries, Berlin was influenced by various cul-
tures and empires, including the Prussian Empire, the
German Empire, and the Weimar Republic.
The city’s modern history is marked by significant
events, including World War I and II, the division
of Germany during the Cold War, and the fall of the
Berlin Wall in 1989. Today, Berlin is a vibrant and
diverse city, known for its rich history, cultural attrac-
tions, and thriving arts scene.

Berlin, the capital of Germany, has a complex
and evolving history. The area has been inhab-
ited since the Stone Age, with various tribes
and cultures contributing to its development.
The city of Berlin as we know it today began
to take shape in the 13th century, when it was
a small trading post on the Spree River. In
1237, the Margraviate of Brandenburg was es-
tablished, and Berlin became the capital. Over
the centuries, the city grew and was influenced
by various rulers, including the Hohenzollern
dynasty, which played a significant role in
shaping modern Berlin.
In 1871, Berlin became the capital of Germany,
and it continued to grow and evolve through-
out the 20th century, experiencing significant
changes under the Weimar regime, and the
post-war period.

Table 13: Generated cases of LLAMA3.1 on the Alpaca-Eval-LI dataset.
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