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Abstract

Many subfields of machine learning share a common stumbling block: evaluation.
Advances in machine learning often evaporate under closer scrutiny or turn out to
be less widely applicable than originally hoped. We conduct a meta-review of 107
survey papers from computer vision, natural language processing, recommender
systems, reinforcement learning, graph processing, metric learning, and more,
organizing a wide range of surprisingly consistent critique into a concrete taxonomy
of observed failure modes. Inspired by measurement and evaluation theory, we
divide failure modes into two categories: internal and external validity. Internal
validity pertains to evaluation on a learning problem in isolation, such as improper
comparisons to baselines or overfitting from test set re-use. External validity
relies on relationships between different learning problems, for instance, whether
progress on a learning problem translates to progress on seemingly related tasks.

1 Introduction

Most empirical papers in machine learning follow the benchmarking paradigm for evaluation. There
is a myriad of datasets and tasks in the literature, and what it means for a machine to “learn” has in-
terpretations from mirroring human-like intelligence to solving a specific practical task. Nevertheless,
whether a new method has merit is usually determined by evaluating a trained model on a held-out
test set and comparing its performance to prior work. If the new model improves over the relevant
baselines, the method represents an algorithmic contribution. Since the benchmark itself is often only
a challenge problem specifically constructed for research, the underlying assumption is that the new
method will also yield performance improvements on real-world problems similar to the benchmark.

Benchmarking was popularized in machine learning in the 1980s through the UCI dataset repository
and challenges sponsored by DARPA and NIST [24, 35, 55, 81]. Since then, benchmark evaluations
have become the core of most empirical machine learning papers. The impact of benchmarking is
illustrated by the ImageNet competition [31, 131], which seeded much of the excitement in machine
learning since 2010. Winning entries such as AlexNet [77] and ResNets [57] have become some of
the most widely cited papers across all sciences.

Evaluating algorithmic progress with benchmarks is a double-edged sword. On the one hand,
benchmarks come with a clearly defined performance metric that enables objective assessments of
different algorithms. On the other hand, summarizing a new algorithm with a single performance
number creates an illusion of simplicity that ignores the many underlying assumptions in the learning
problem posed as a benchmark. Indeed, an increasing number of machine learning papers take a
critical perspective on recent algorithmic advancements and find important flaws in current evaluation
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Figure 1: Our framework for benchmark-based evaluations of machine learning algorithms and
associated validity concerns. In the benchmark paradigm, papers which propose a new algorithmic
idea demonstrate its effectiveness by comparing to results of prior work on a specific learning problem
(the benchmark). The underlying assumption is that the benchmark is representative for a broader
task and hence the performance improvements will transfer to real-world applications. This chain of
reasoning relies on multiple steps with various potential validity issues.

practices. For instance, most claimed advances from the past few years of recommender systems
research failed to improve over established baselines and evaporate under closer scrutiny [25, 125].
Given the key role benchmarking plays in machine learning, such evaluation flaws threaten to
undermine the perceived algorithmic gains in recent years.

In this paper, we provide a systematic taxonomy of failures in the benchmarking paradigm in order
to put current evaluation practices on solid foundations. Our taxonomy draws from 107 analysis
papers which study specific machine learning evaluations; we describe further how we arrived at
this taxonomy in Appendix 6. Despite the diversity of tasks and algorithms, we find that the same
evaluation failures repeat across diverse areas such as computer vision, natural language processing,
recommender systems, reinforcement learning, graph processing, metric learning, and more. Based
on lessons from evaluation theory [92], we divide the failure modes into two categories:

• Internal validity refers to issues that arise within the context of a single benchmark.
• External validity asks whether progress on a benchmark transfers to other problems.

Figure 1 illustrates our taxonomy of evaluation failures in machine learning. Our taxonomy can serve
as a resource for machine learning researchers and practitioners to check for evaluation issues in their
own disciplines. Since many failure modes occur in several fields, insights from one field will transfer
to others. Additionally, our paper contributes insights to the ongoing discussion around evaluation
practices in machine learning. Finally, our taxonomy of external validity criteria offers a starting
point for research in this area. The relationships between different datasets and learning problems are
not yet well understood; more work is needed to understand the scope of current benchmarks.

Next we introduce our framework for evaluation validity in machine learning, which organizes the
common failures modes described in Sections 3 and 4. Section 5 then discusses limitations of the
benchmarking paradigm itself before we conclude in Section 6. An overview of the papers that
inform this survey can be found in Appendices D and E.

2 A conceptual framework for machine learning evaluations
Empirical machine learning evaluations are ultimately tied to datasets. A key question is to what
extent the datasets used to measure algorithm performance (e.g., ImageNet [31, 131] or GLUE
[158]) represent the problem a paper claims to address (e.g., image classification or natural language
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Figure 2: An example of a task hierarchy and associated learning problems. Tasks are abstract
problem statements formulated independently from datasets and exist at various levels of granularity,
giving rise to a hierarchy. In contrast, a learning problem combines a specific dataset and a particular
metric to instantiate one or more tasks. Many learning problems can attempt to instantiate the same
task, and the relationships between different learning problems is the focus of external validity.

understanding). To make this distinction clear from the beginning, we define two different kinds
of problem statements. These two notions for “learning from data” distinguish between concrete
problems defined via datasets and abstract problems defined via formal or informal semantics.

2.1 Two kinds of problem statements: learning problems vs. tasks
Learning problems. A learning problem comprises a dataset of (input, output) pairs and an associated
evaluation metric for scoring proposed solutions (functions from the input to the output space). A
learning problem is fully defined by these two parts and requires no further reference to external
semantics or data; e.g., the ILSVRC-2012 dataset (ImageNet) with top-1 accuracy as metric.

Tasks. A task is a problem statement defined abstractly, either via natural language or in a formal
way. A task does not necessarily have a single true definition and we do not aim to establish any
task definitions. Tasks can exist at varying granularities, e.g., from “dog vs. cat classification” to
“animal classification” to “image classification”, which naturally gives rise to a hierarchy (see Figure
2). Tasks are omnipresent in the machine learning literature as a way to frame contributions. For the
purpose of evaluation, tasks are usually instantiated by learning problems. As an example, MNIST,
CIFAR-10, and ImageNet all instantiate the “image classification” task.

Given these definitions, a benchmark is a learning problem framed as an indicator of progress on some
task. Benchmarks usually come with a leaderboard, competition, or other context that establishes the
current state of the art. For example, improving accuracy on ImageNet can be considered as making
improvements on the image classification task in the context of the ILSVRC competition [131].

2.2 Internal and external validity in machine learning evaluations
The distinction between learning problems and tasks also separates validity issues in machine learning
into internal issues, i.e., issues arising within the context of a single learning problem, and external
issues, i.e., issues stemming from the relationship between a learning problem and broader tasks.

Internal validity. In the evaluation literature, internal validity is about consistency within the specified
context of the experimental setup [92]. In machine learning evaluations, we use internal validity
to refer to validity properties within a learning problem. If these properties are not satisfied, then
the experimental measurement itself is invalid. Examples of internal validity problems in machine
learning are comparisons to insufficient baselines or overfitting from test set re-use, both of which
invalidate claimed improvements over the state-of-the-art on a given learning problem.

External validity. External validity is about the ability to extrapolate – to make valid conclusions
for contexts outside the experimental parameters [92]. In machine learning, we use external validity
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to refer to connections between specific learning problems and the broader tasks they are meant to
represent. This goes beyond test set performance on an individual learning problem and is anchored to
expectations for performance on one learning problem to transfer to other related learning problems.
For instance, external validity issues can arise from limitations of the benchmark dataset or a mismatch
in the evaluation metrics of interest.

Internal validity criteria are well known in the field. But despite the seeming simplicity of these
failure modes, their recurrence across different areas indicates that machine learning currently has not
yet identified nor implemented mechanisms needed for rigorous evaluation. The in-depth study of
external validity criteria has only begun recently as more research datasets and concrete applications
have become available. Since many popular machine learning benchmarks do not represent real
applications but instead are constructed solely for the purpose of comparing learning algorithms,
investigating the external validity of these benchmarks is particularly important.

3 Internal validity

In this section, we provide examples of recurring internal validity issues that arise within the
benchmarking paradigm. In particular, we discuss implementation variations, errors in test set
construction, overfitting from test set reuse, and comparisons to inadequate baselines.

3.1 Implementation variations

Different implementations of the same algorithm or metric should behave as close to identical as
possible. Variations in behaviour can cause variations in performance, making comparisons difficult
if it is unclear which implementation is being referred to. This can result in situations where multiple
implementations of ostensibly the same algorithm are effectively distinct methods. We describe
specific cases of implementation variations leading to internal validity failures here, and continue
with more examples in Appendix B.1.

Algorithms. Ancillary details of an algorithm implementation, often dubbed “tricks”, can significantly
affect performance. These details are often undocumented in the paper, so subsequent implementa-
tions of the algorithm are coded differently. Consider the variation observed by [59] for algorithms
in deep reinforcement learning (deep RL): across three implementations of Trusted Region Policy
Optimization (TRPO) [134], and three implementations of Deep Deterministic Policy Gradients
(DDPG), the best codebase was several factors better than the next best. On OpenAI HalfCheetah-v1
[19], the best TRPO codebase found by [59] achieved an average reward of nearly 2,000 versus 500,
and the best DDPG implementation reached a best average reward of 4,500 versus 1,500.

Combining “tricks” employed in various implementations may produce a new, superior algorithm.
For example, a collection of different tricks was sufficient in 2018 for a four percentage point
top-1 accuracy increase on ImageNet for the ResNet-50 architecture [58], leapfrogging newer and
supposedly improved models, like SE-ResNeXt-50. One of the tweaks was first found in a particular
implementation of ResNet before adoption by subsequent papers, highlighting that these changes are
not broadly documented. Along the same lines, [11] found in 2021 that using an appropriate scaling
of the architectural dimensions and image resolution, along with a bag of tricks such as those from
[58], can actually outperform the more recent EfficientNets [147].

Metrics. Unexpected differences in metric scores caused by implementation variations hinder
proper comparisons. In machine translation, the widely-used BLEU score [111] depends on certain
parameters which are often unspecified, such as the maximum n-gram length. Further, researchers
can silently manipulate the score with changes like adding or removing tokenization, or lowercasing
text [115]. Tweaking all these levers in unison results in BLEU score variations of as much as 1.8
BLEU [115] (for context, the gap between the #1 and #2 for one MT dataset as tracked by Papers with
Code is 0.14 BLEU [110]). The use of a standardized library such as SACREBLEU [115] to ensure
reproducible parameters can help alleviate issues with metric implementations.

Libraries. Research code relies on frameworks and libraries to implement common functions. If these
libraries aren’t coded correctly, evaluation is undermined. Between the Python Image Library (PIL),
PyTorch, OpenCV, and TensorFlow, only PIL correctly downsamples a circle without introducing
aliasing artifacts [112]. Consequently, implementations of the Frechet Inception Distance (FID) [63],
which is used to evaluate generative models, would report different scores for the same models [112].
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3.2 Errors in test set construction
Even if implementations of algorithms are reliable, flaws in a test set’s construction can distort the
performance reported on a given learning problem in a few different ways.

Label Errors. Several researchers have long articulated concern for the correctness of data labels as
an indicator of internal validity [17, 105]. However, it remains unclear how much such errors impact
performance measurement, if at all, especially for deep learning [139]. A subset of label errors are
due to more conceptually consistent disagreements between annotators [27] or dataset bias [146];
these types of errors are more appropriately construed as external validity issues, and are described
further in Section 4.4.

Label Leakage. At times, data features accidentally contain direct information about the target
variable in a way that makes the learning problem redundant [70]. For instance, a bank account
number could be included as a feature to predict the individual has an open account.

Test set size. Evaluating a model on a finite-sized test set always leaves uncertainty about the actual
performance on the underlying distribution the test set is sampled from. If a test set is too small to
detect performance differences between two models, random variation in the test set scores can lead
to misinterpreting one method as superior to another [16, 22]. In Appendix B.2 we provide more
technical details about appropriate test set sizes.

Contaminated Data. Flaws in the dataset construction process may lead to unintentional inclusions
of examples that cause problems during evaluation. For example, [8] find that 10% of the images
from the CIFAR-100 [76] test set have duplicates in the training set. After deduplication, model
performance drops by as much as 14% (relative), demonstrating that the contaminated data leads
to overestimation of model performance. Similarly, cross-validation or testing on time-series must
be handled with care so as to not include future data in the training set [23]. Examples which are
not drawn from the distribution of interest can also distort apparent model performance. Machine
translation models perform worse on test sets with more translation artifacts [80]. Models perform
up to twice as well on test sets that exclude certain kinds of poor translations as they do on test sets
which don’t filter these examples out.

3.3 Overfitting from test set reuse
When evaluating a model on a test set, we are not interested in performance on the specific test
examples, but more generally in performance on similar data. Formally, we hope that the model gen-
eralizes to data from the same distribution. The connection between the test set and its corresponding
data distribution is only guaranteed if the test set is not reused frequently. This is a core assumption
in test set evaluations and is commonly recognized in lecture notes and textbooks [56, 100].

Researchers routinely undermine this assumption by repeatedly reusing popular test sets for model
selection, raising concerns about the validity of benchmark results. However, even decade-long
test set reuse has surprisingly resulted in little-to-no overfitting on popular benchmarks such as
MNIST, CIFAR-10, ImageNet, SQuAD, the Netflix Prize, and more than 100 Kaggle classification
competitions [97, 123–125, 128, 163]. While these findings are good news for the benchmark
paradigm, they also illustrate that our understanding of common evaluation practices is still limited.
An active line of research investigates the question of overfitting from test set reuse, also known as
adaptive overfitting [5, 9, 14, 37, 42, 91, 175]. Note that the cited experimental studies of overfitting
mostly focus on classification. Regression benchmarks may be more affected by test set reuse.

3.4 Comparison to inadequate baselines
Finally, reliably tracking progress on a learning problem requires comparing new methods to existing
baselines. In practice, many subtle considerations must be addressed to make proper comparisons.
We highlight the biggest recurring themes here; Appendix B.4 contains additional discussion.

3.4.1 Implementing and tuning simple methods
Researchers in machine learning often employ newer, more complex methods, such as those using
deep neural networks, to solve a given task, without leveraging simpler methods such as linear models
or random search. Attention to smaller details and thorough feature engineering can often make a
huge difference for these simple baselines:

• In graph learning, logistic regression combined with simple feature engineering provided compara-
ble performance to neural networks while being orders of magnitude faster [67, 162].
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• In recommender systems, [25, 125] found that a well-tuned vanilla matrix factorization baseline
with some feature engineering outperformed all newer methods, both neural and non-neural, on
recommendation results and collaborative filtering tasks.

• In reinforcement learning, where simple linear or RBF policies were able to solve an array of
continuous control tasks [118].

• In information retrieval, where a non-neural method from 2004 is superior to all neural approaches
developed through 2019 [164].

• In few-shot classification, where a linear layer on top of a supervised classifier’s features provides
competitive performance on meta-learning benchmarks [151].

• On tabular clinical prediction datasets, where standard logistic regression was found to be on par
with deep recurrent models [10].

• And in adversarial robustness, where early-stopping with standard projected gradient descent was
found to give performance on par with newer alternatives [127].

• On 3D reconstruction tasks, simple clustering and retrieval in the embedding space outperforms
state of the art reconstruction networks [149].

Random search is also frequently overlooked, even though it forms a strong, simple, baseline
where applicable. One particularly prominent case is in deep RL, where simple random search,
combined with a handful of minor modifications, outperforms many deep RL algorithms on a variety
of MuJoCo continuous control tasks [90]. Similarly, for hyperparameter tuning, [79] found that
random search combined with early stopping outperformed all existing approaches. And in neural
architecture search, [78, 166] found that random search with early stopping and weight sharing found
solutions comparable to leading strategies using deep learning. It should be noted that recent NeurIPS
competitions found that Bayesian optimization is superior to random search in many settings [155].

3.4.2 Controlling for algorithmic details
Implementations of algorithms often contain details to improve performance which are not described
in the text. For example, extensively tuning hyperparameters is often key to achieving optimal
performance for a proposed method. Unfortunately, baselines are often not tuned as carefully, inflating
apparent gains for the proposed method. Ignoring these consequential details leads to misattributions
of why one algorithm is better than another, affecting future research directions. For instance, a
series of recent papers have attempted to benchmark a variety of deep metric learning algorithms,
controlling for aspects such as network architecture, optimizer, image augmentations, hyperparameter
compute budget, etc. [41, 101, 129]. After controlling for these factors, the performance difference
for the best methods were marginal at best, and the papers concluded that the majority of perceived
gains could instead be attributed to newer methods using significantly better backbone architectures
(e.g., ResNet50 instead of GoogleNet) and unequal hyperparameter compute budgets. These results
very closely mirror results from a variety of other settings, such as deep semi-supervised learning
algorithms [108], graph neural networks [36, 140], domain generalization [53], and generative
adversarial networks [88]. Inconsistencies in backbone architectures and unequal tuning budgets was
a common, recurring failure mode across these papers.

We now highlight a particular example where failing to control for algorithmic details led to a
significant misattribution of a method’s performance gains. According to [39], deep policy-gradient
algorithm Proximal Policy Optimization (PPO) [135] contains several refinements, such as improved
initialization methods and reward scaling and clipping, over its predecessor, Trusted Region Policy
Optimization (TRPO) [134]. These “code-level optimizations” [39] are a modular addition, and
removing these tricks from PPO results in it performing worse than TRPO with them. The improve-
ment from adding the code-level optimizations is larger than switching the underlying algorithm,
even though PPO still outperforms TRPO when both (or neither) have the code-level optimizations.

3.4.3 Human baselines
Finally, when used for user studies, human baselines are often poorly computed. Based on the
context and expertise of the annotator, there are fundamental inconsistencies in human performance,
leading to local perceptions of performance that are far from universal. A study measuring human
performance on ImageNet using five labellers (three with more training) found errors of 8.1%, 5.3%,
4.3%, 3.8%, and 2.7% [139]. According to the authors of SQuAD 1.1 [121], a natural language
question and answering dataset, the human accuracy baseline is likely an underestimate due to using
only a single human [120]. Furthermore, assessor ability can impact human baselines — for instance,
expert translators agree more and can identify more errors on machine translation benchmarks [152].
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Figure 3: Learning problem transfer can happen to varying extents. Progress on learning problem A
may transfer to learning problem B universally (left). However, progress may also plateau (middle)
or there may be no correlation between performance on the two learning problems (right).
4 External validity
Developing tailored algorithms for specific learning problems is usually not the end goal of machine
learning research; rather, the hope is that the ideas and contributions will apply to broader scenarios.
How much one expects progress to transfer is a subjective judgment based on factors such as the
learning problems involved, the domain knowledge required, and the details of the algorithm itself.
We refer to this as external validity, as it involves relationships between two or more learning
problems. In this section, we first discuss and define two sub-types of transfer that occur within
external validity, then provide examples where evaluation issues have arisen.

4.1 Types of transfer
Algorithm transfer. The claim that a certain algorithm “generalizes well to other problems” is a claim
about algorithm transfer: the correlation between (i) the relative performance of an algorithm over
one or more baselines on one learning problem to (ii) the relative performance of the same algorithm
over a one or more baselines on another learning problem. Consider ResNets [57] when they were
introduced: adding residual connections (allowing for a deeper net) lead to better performance on
ImageNet than VGG [142], a baseline algorithm. On CIFAR-10, ResNets also outperform VGG, an
appropriate baseline choice, so we say that ResNets transfer well from ImageNet to CIFAR-10.

Learning problem transfer. Now we introduce learning problem transfer: the correlation of perfor-
mance trends over all algorithms for one learning problem with performance trends over all algorithms
for another learning problem. Whereas algorithm transfer is about the relative performance of a
specific algorithm between learning problems, learning problem transfer asks about the relative
progress of algorithms in general between learning problems. For example, as models have improved
on the ImageNet benchmark, the same models are used on the CIFAR-10 benchmark, and show
continued progress there also. If algorithms never transferred well between learning problems, then
progress on one learning problem would never transfer to another. This is visualized in Figure 3
(right), which illustrates low or no correlation between performance on two learning problems. If the
correlation weakens over time, this is the “diminishing returns” scenario shown in the middle subplot.
And if there is strong positive correlation, then the picture is similar to the first subplot.

Achieving progress in machine learning requires progress on “friendly” learning problems which
exhibit strong learning problem transfer; otherwise, researchers would have to start from scratch on
every novel learning problem. How can we predict how performance will correlate between two
learning problems? There are some common patterns in the literature that allow us to more concretely
grapple with learning problem transfer. The community has developed specific out-of-distribution
(OOD) test sets for certain problems, such as image corruptions in image classification [60], heuristics-
based counterexamples within language inference [94], and a number of "in-the-wild" distribution
shifts [6, 61, 62, 74, 124, 159]. Cast in terms of our framework, these OOD benchmarks alter the data
distribution of the learning problem, but otherwise remain very close to the original learning problem
in the task hierarchy. On the other hand, one may consider transfer of progress between learning
problems that are further apart in the task hierarchy, such as from image classification on ImageNet
to image segmentation on COCO. In general, as Figure 2 illustrates, the closer two learning problems
are in one’s conception of the task hierarchy, the greater one may expect positive transfer of progress.

Leaving a more fine-grained discussion of the various of categories of transfer to Appendix A.2, we
now explore examples from the literature pointing out failures of learning problem transfer. Since

7



a learning problem is defined as a dataset plus a metric, a failure in transfer can be attributed to
either a misalignment in the datasets or a misalignment in the metrics. Such a misalignment reflects
the inconsistencies that arise when boiling down an idealized task into concrete learning problems.
Resolving these inconsistencies in either the dataset or the metric may require re-annotating the
data or collecting new data; therefore, misalignments are usually baked into the benchmark once
the dataset has been constructed and the design choices locked in. All future modeling work on the
benchmark inherits the same misalignment problems, underscoring the need for a better understanding
of the external validity of commonly used benchmarks.

4.2 Metrics misalignment
We use metric to mean any algorithm or procedure which, given a model and a dataset, returns a
number or score which is interpreted as the performance of the model on that dataset. This definition
encompasses not only mathematically defined metrics like accuracy, precision, and recall, but also
metrics parameterized by models (Frechet Inception Distance [63], BERT [111], BLEURT [137]),
and metrics which involve humans in the loop, like human evaluations of machine translation (Direct
Assessment [144], Relative Ranking [51]).

A metric which fails to adequately distinguish between two algorithms that perform differently fails
to capture what it means to do well on the learning problem. For example, a good representation
learning algorithm should cluster items of the same class together tightly and separate clusters of
different classes widely. Papers for representation learning usually report the F1, Recall@K, and
Normalized Mutual Information (NMI) metrics. However, all three metrics fail to reward algorithms
which have a greater separation between different classes [101]. Even more egregiously, NMI returns
higher scores for datasets with more classes, regardless of the algorithm’s performance [101].

Researchers may prefer to measure an idealized metric whose use is precluded by practical considera-
tions like money or time, and therefore substitute another metric instead to form a proxy learning
problem. For example, many have argued that human evaluation is the ‘gold standard’ for machine
translation [50, 69, 87], but waiting for humans to evaluate translations takes much longer and is
much more expensive than computing BLEU [111], an automatic metric. In certain cases, human
rankings of translations contradict the BLEU ordering [38, 171].

4.3 Comparisons to human performance
Comparing algorithms to humans requires more nuance than any one given learning problem provides.
Matching a human baseline on a specific learning problem does not automatically imply human-level
performance on other similar similar problems without more evidence. For one, instantiating a
task into some learning problem often strips out context which meaningfully affects evaluation. In
translation, for example, the work of human translators tends to be evaluated as a complete text,
whereas machine translation competitions compare hypothesis sentences to reference sentences,
meaning that erroneous translations which are apparent only in context are missed [152].

Further, claims to “super-human” performance on a given learning problem is related to but does not
always translate to “human-like” reasoning or ability [44] – for instance, contemporaneous models
suffer performance drops with only small changes of the learning problem that don’t affect humans
as badly (e.g. models [64] on CIFAR-10 [76]). Claimed improvements by themselves are thus only
applicable to the given learning problem, and aren’t sufficient to prove machine superiority on the
broader task or application.

4.4 Dataset misalignment
Specific decisions made about data collection and curation are increasingly acknowledged as highly
consequential to model outcomes [113, 132]. Any failure to transfer from one learning problem to
another learning problem or broader task is often tied to the data choices involved. Because of the
cost and effort involved in annotation and data collection, these decisions can have a broader impact
than failures contained to a single modeling paper. In the next two subsections, we explore how
specific choices in dataset curation can hinder an algorithm’s ability to transfer. Refer to Appendix
B.5 for additional discussion and examples.

4.4.1 Reliance on simple, inappropriate heuristics
We found several examples where gaps in the data collection process lead to models performing well
on a given learning problem by relying on data quirks which do not characterize the overall task. For
instance, [107] discovered that sub-par clinical performance of X-ray image classification models
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was in part due to an unintended correlated variable in the training data: classifiers trained to predict
whether an X-ray image presented a collapsed lung were failing disproportionately on new positive
diagnoses. It was discovered that a majority of the positive training images actually contained visible
chest drains, a treatment for the condition. Thus, models achieved a high accuracy on the learning
problem by identifying whether a chest drain was present, but completely sidestepped the original
purpose of the task. After removing the spurious feature, by filtering out chest drain images, model
performance dropped significantly, by over 20% on clinically relevant subsets of the data.

More examples of models exploiting simple dataset-level heuristics abound. The authors of [49]
found that on the Visual Question-Answering dataset [4], models could exploit strong label imbalance
on certain questions. For example, for a question beginning with “Do you see a...”, a model always
outputting “yes” – without considering the rest of the question or the actual image – can achieve an
accuracy of 87%; correcting this imbalance in the test set led to accuracy drops of up to 12% among
yes/no questions for these models. Similarly, models trained on part of a reading comprehension
task (either questions only or passages only) achieve a surprisingly high accuracy [71]. In another
case, a benchmark for equation verification (determining if an equation statement is true or false)
was revealed to include false axioms and data generation rules that biased the results towards an
overwhelming number of false statements [28].

Landmark studies found that language models regularly exploit such “spurious patterns” across a
wide range of NLP tasks [46, 72]. On the MNLI natural language inference benchmark, the presence
of a negation operator (e.g. “not”, “no”, etc.) dictates the label probability to a greater degree than
the actual input prompts [94]. Similarly, the authors of [104] find that BERT models trained on
comprehension datasets (e.g. ARCT [54]) exploit the presence of negation operators, and removing
such cues drops the model to random chance accuracy. These correlates were discovered by using
humans to augment the training data to be consistent with counterfactual labels. When evaluated on
these counterfactual subsets, model performance drops by as much as 30% in multiple cases.

4.4.2 Sensitivity to real-world distribution shift
There are also many cases where an algorithm is expected to perform in a broader variety of scenarios
than it is trained on. In such cases, the inability to transfer is not caused by exploiting specific obvious
heuristics as much as it is caused by a failure to extrapolate to different real-world data distributions.
For example, most models trained on ImageNet were found to experience a considerable drop in
accuracy when exposed to images that contained a larger amount of natural variation, such as changes
in pose, lighting, object composition, etc. [148]. Similarly, models trained for the original SQuAD
dataset performed poorly when evaluated on data collected from different source domains, such as
Amazon crowd reviews and Reddit posts [97].

In the medical domain, models developed in one institution for diagnosing pneumonia in radiographs
or classifying pathology tissue slides may not translate to other hospitals for practical reasons such as
differences in equipment and patient populations [74, 167]. Similarly, [73] find in a learning problem
transfer analysis from ImageNet to chest X-ray classification on CheXpert [68] that, while ImageNet
pre-training helps models achieve higher performance on CheXpert, models with higher ImageNet
accuracy are not likely to provide higher CheXpert performance.

4.4.3 Dataset Bias & Disagreement
At times, the misalignment perceived between the learning problems is the result of various forms of
data bias [146]. Some data sources can omit or under-represent certain sub-populations and as a result,
evaluation measurements will disguise failures for these under-represented population subgroups
[119]. For example, facial recognition benchmarks drastically under-represent darker and female
faces [96], making it difficult to perceive when models fail to perform acceptably for this subgroup
[7, 20]. Furthermore, inappropriate stereotyped associations can be perpetuated by the systematic use
of offensive, incorrect or exclusionary labels for certain mistreated subgroups [116, 145]. At times,
societal discrimination can also lead to false labels being more common in one group than another
[99]. Discrepancies between learning problem datasets may also arise from inherent contextual
differences - data sourced from differing geographies or cultural context [29, 138], in addition to
annotators with inherently differing viewpoints regarding ground truth [27, 48].

4.5 Evaluation quantification

The aforementioned examples of metric and dataset mislignment suggest that reliably measuring
progress in machine learning requires evaluating on multiple learning problems associated with a
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Figure 4: A histogram of the number of datasets used for evaluation by each paper in our sample
pool (left), and a similar histogram for the number of metrics (right). Most of the papers (>65%)
evaluate on 3 datasets or fewer, and a similar fraction (>65%) evaluate on 2 or fewer metrics.

particular task. If a proposed method provides gains in a variety of different contexts, one can be
more confident in the performance on future learning problems instantiating the task.

To better understand community practices around benchmarking and provide some context around
our analysis and framework, we annotated a random sample of machine learning benchmarking
papers with the number of distinct datasets and the number of distinct metrics each paper used for
evaluation. Concretely, we randomly sampled 140 papers from the past five years (2016–2021)
of NeurIPS, ICML, EMNLP, and CVPR, and filtered out papers which were not applicable to the
benchmarking paradigm (37 papers). The results of our analysis for the remaining 103 papers are
presented in Figure 4. On average, papers evaluated on an average of 4.1 datasets and 2.2 metrics.
Overall, most of the papers in our sample (>65%) evaluate on 3 datasets or fewer, and a similar
fraction (>65%) evaluate on 2 metrics or fewer. Although we cannot recommend a “correct” number
of learning problems to evaluate on, as this is a domain-specific consideration based on the task and
specific learning problems, our data provides evidence that many papers evaluate on a small number
of datasets and metrics, which indicates that studying alignment between these learning problems
can be a helpful guide for future research. We provide more detail about our paper collection and
annotation procedure, as well as confidence intervals for our mean estimates, in Appendix C.

5 Broad critiques of benchmarks & competitive testing
Researchers have described several limitations to the benchmarking paradigm in machine learning.
Most obviously, the use of benchmarks to assess progress in the field creates a competitive testing
dynamic that emphasizes outcomes rather than proper scientific inquiry [66]. The absence of
community norms like reproducibility guidance [34, 114], documentation standards [98] or statistical
significance testing [16] makes relying on outcomes-based approaches to evaluate progress even more
questionable [13]. Behavior-based alternatives to the benchmarking paradigm, such as test suites
[1, 126, 170], for example, can re-orient ML evaluation away from its current focus on the competitive
determination of “state of the art”, and more towards an exploratory and descriptive probing of model
capabilities [65, 106, 143, 161, 169]. Furthermore, the learning problems we embody as benchmarks
go a long way in focusing community attention on a set of specific applications and tasks, not all
of which are ideal or value-aligned. For instance, the lack of consideration for other aspects of
performance in ML evaluation, such as model efficiency, privacy or fairness, plays a big role in
disincentivizing researchers from paying attention to such issues [40, 136].

6 Conclusion
The benchmarking paradigm has served as a valuable guide for progress in the past. However, the
next phase of machine learning innovation and deployment will require more sophisticated evaluation
practices than comparing one-dimensional performance numbers on a single test set. We hope that
our taxonomy offers a starting point for both experimental and theoretical research in this area, and
that the field will invest in a more robust understanding of the evaluation practices that inform our
shared perception of progress.
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