
Spotlighter: Revisiting Prompt Tuning from a Representative Mining View

Anonymous EMNLP submission

Abstract
CLIP’s success has demonstrated that prompt001
tuning can achieve robust cross-modal semantic002
alignment for tasks ranging from open-domain003
recognition to fine-grained classification. How-004
ever, redundant or weakly relevant feature com-005
ponents introduce noise and incur unnecessary006
computational costs. In this work, we pro-007
pose Spotlighter, a lightweight token-selection008
framework that simultaneously enhances accu-009
racy and efficiency in prompt tuning. Spot-010
lighter evaluates each visual token’s activa-011
tion from both sample-wise and semantic-wise012
perspectives and retains only the top-scoring013
tokens for downstream prediction. A class-014
specific semantic memory bank of learned pro-015
totypes refines this selection, ensuring seman-016
tic representativeness and compensating for017
discarded features. To further prioritize infor-018
mative signals, we introduce a two-level rank-019
ing mechanism that dynamically weights to-020
ken–prototype interactions. Across 11 few-shot021
benchmarks, Spotlighter outperforms CLIP by022
up to 11.19% in harmonic mean accuracy and023
achieves up to 0.8K additional FPS, with only024
21 extra parameters. These results establish025
Spotlighter as an effective and scalable baseline026
for prompt tuning. Our code will be available.027

1 Introduction028

Recent advances in vision-language models have029

demonstrated remarkable capabilities in prompt030

tuning, particularly through approaches like031

CLIP (Radford et al., 2021) that achieve robust032

cross-modal semantic alignment. These meth-033

ods have demonstrated impressive performance034

in tasks such as open-domain recognition (Cheng035

et al., 2024), fine-grained categorization (Zhu et al.,036

2022), and long-tailed distribution scenarios (Liu037

et al., 2022), leading to breakthroughs in practi-038

cal applications, including intelligent surveillance039

and medical image analysis. The superior perfor-040

mance of vision-language models primarily origi-041

nates from their ability to learn discriminative joint042

Figure 1: Comparison with other methods. (a) Learn-
able prompts or adapters are applied to learn multimodal
complex semantic information. (b) Activated and Rep-
resentative tokens improve inference efficiency by miti-
gating noise and redundant features.

embeddings that enable precise cross-modal align- 043

ment, a fundamental driver of continual model en- 044

hancement. 045

The alignment between visual and textual fea- 046

ture spaces enables effective classification, with 047

ongoing research continuously enhancing represen- 048

tation quality through techniques like prompt learn- 049

ing (Zhu et al., 2023; Xu et al., 2025) and feature 050

enhancement (Sun et al., 2023; Choi et al., 2025). 051

However, existing methods face two primary chal- 052

lenges: (1) Feature noise interference: Redundant 053

or weakly relevant components within the aligned 054

features introduce noise, undermining the contri- 055

bution of semantically critical information (Zhu 056

et al., 2025). (2) Computational efficiency bot- 057

tleneck: Full-scale feature interactions across the 058

entire representation space result in unnecessary 059

computational burdens and higher costs in practi- 060

cal applications (khattak et al., 2023). 061

To address these challenges, prior works (Huang 062

et al., 2023; Yang et al., 2025) have proved that dur- 063

ing CLIP’s encoding process for effective image- 064

text alignment, the model inherently captures a 065

mixture of semantic signals. Since the image and 066

text encoders operate independently, they are de- 067

signed to cover a wide range of possible semantics. 068

This results in varied importance across different 069

parts of the feature representation concerning spe- 070
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cific classification goals. Crucially, only a subset071

of these features contributes meaningfully to cross-072

modal alignment, while the rest may introduce re-073

dundancy. Therefore, performing the sample-level074

evaluation of feature importance enables us to se-075

lectively emphasize critical features and suppress076

irrelevant ones, enhancing accuracy and efficiency.077

Existing approaches (khattak et al., 2023; Li et al.,078

2024a; Khattak et al., 2023a) employ global learn-079

able text-image prompts or lightweight adapters in080

frozen layers to capture semantic information, as081

shown in Fig.1(a), yet have not thoroughly explored082

the synergistic optimization between features rep-083

resentations and computational efficiency, leaving084

this as an open area for further research.085

Based on the above analysis, we revisit cross-086

modal feature alignment in few-shot image classi-087

fication and propose a simple yet effective model,088

Spotlighter, which achieves a favorable balance be-089

tween accuracy and computational efficiency. The090

key idea is to identify and retain sparse but highly091

representative feature tokens while discarding re-092

dundant ones. Specifically, we evaluate each to-093

ken’s cross-modal semantic relevance from both094

sample-wise and semantic-wise perspectives, quan-095

tified as an activation score. Only a few highly096

activated tokens are retained for prediction, while097

the rest are discarded as redundant. To guide this098

selection, we introduce a semantic memory bank099

that stores a set of class-specific semantic proto-100

types. These prototypes help refine class bound-101

aries during token activation, ensuring that the se-102

lected features are both semantically representa-103

tive and capable of compensating for potentially104

missing information from discarded regions. Fur-105

thermore, recognizing the varying contributions of106

activated features to classification, we introduce a107

two-level ranking mechanism over the prototypes.108

This mechanism dynamically adapts to the acti-109

vation distribution of each sample, allowing the110

model to prioritize more informative features. The111

final representative features for prediction are then112

formed by fusing features with their corresponding113

prototypes according to their activation levels.114

Extensive experiments conducted across 11115

benchmark datasets demonstrate the effectiveness116

of our proposed method. Compared to CLIP (Rad-117

ford et al., 2021) and CLIPFit (Li et al., 2024a), our118

approach achieves consistent improvements in both119

harmonic mean accuracy (HM) and computational120

speed, with an improvement of 11.19% / 3.86% in121

HM score and 0.8K/3.8K more FPS, respectively. 122

Remarkably, these gains come at the cost of only 21 123

additional parameters, highlighting the efficiency 124

and scalability of our design. 125

Our main contributions are lies in: 126

• We investigate the role of representative fea- 127

ture mining in prompt tuning, highlighting 128

its dual benefits in improving both prediction 129

accuracy and computational efficiency. 130

• We propose Spotlighter, which selects the 131

most activated tokens and enhance them via a 132

semantic memory bank to form a compact yet 133

informative representative feature set. 134

• With only 21 additional parameters, our 135

method boosts accuracy by 11.19% and in- 136

ference speed by 0.8K FPS over CLIP, estab- 137

lishing a strong, scalable baseline for prompt 138

tuning. 139

2 Related Works 140

2.1 Pre-trained Vision-Language Models 141

Large Language Models (LLMs) like GPT- 142

3 (Brown et al., 2020), GPT-4 (Achiam et al., 2023), 143

LLaMA (Touvron et al., 2023), and Deepseek (Lu 144

et al., 2024) exhibit robust zero-shot transfer capa- 145

bilities in NLP tasks. Nowadays,modern vision- 146

language models (VLMs), enhanced by natural 147

language supervision, excel in zero-shot/few-shot 148

learning through large-scale image-text pretrain- 149

ing, as seen in contrastive learning-based models 150

like ALIGN (Li et al., 2021) and CLIP (Radford 151

et al., 2021). Leveraging their formidable language- 152

aligned visual representations and strong general- 153

ization, these models excel in diverse downstream 154

tasks, such as object detection (Zhang et al., 2022; 155

Gu et al., 2021) and semantic segmentation (Zhou 156

et al., 2023; Li et al., 2024b). However, VLMs face 157

significant challenges in degrading critical seman- 158

tic information due to the redundant or weakly rel- 159

evant components within the aligned features (Zhu 160

et al., 2023; Khattak et al., 2023b). Spotlighter en- 161

hances semantics and boosts efficiency through the 162

hierarchical removal of useless components. 163

2.2 Prompt Tuning 164

Prompt learning adapts pre-trained models to down- 165

stream few-shot tasks via prompt-based reformu- 166

lation, mitigating domain gaps and leveraging 167

prior knowledge. Early approaches (Zhou et al., 168

2022a,b; Yao et al., 2023) relied on manually 169
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crafting templates based on prior human knowl-170

edge. Later, MaPLe (khattak et al., 2023), Prompt-171

SRC (Khattak et al., 2023a) concentrate on align-172

ing visual-textual prompts jointly while adapter-173

based approaches (Zhang et al., 2022; Farina et al.,174

2025; Lu et al., 2025; Kim et al., 2024; Li et al.,175

2024a) extend via context-aware prompt tuning176

using lightweight adapters in transformer layers.177

Despite their success, these models often opti-178

mize prompts at coarse granularity, missing sub-179

tle visual cues and limiting cross-category gen-180

eralization. To solve this problem, ArGue (Tian181

et al., 2024), LLaMP (Chiang et al., 2024), Text-182

trefiner (Xie et al., 2024) and SAR (Jung and Lee,183

2025) fill semantic gaps caused by noise through ex-184

ternal LLMs or internal knowledge injection. How-185

ever, these methods require substantial memory186

consumption. We enhance semantic information187

through multi-level feature tokenization while re-188

ducing large-scale feature interactions.189

3 Method190

3.1 Overview191

Vision-Language Models (VLMs), such as CLIP,192

leverage aligned image-text representations learned193

in a shared embedding space, offering advantages194

in few-shot image classification tasks. Building195

on prior work, we adopt CLIP as our foundational196

model, with a key overview below. CLIP consists197

of an image encoder, labeled as EI , and a text en-198

coder referred to as ET . Let D = {(xi, ti)}b
i=1199

represents the sampled batch, where xi denotes the200

image input, ti denotes the associated caption and201

b is the batch size. Both encoders employ a feature202

extraction backbone followed by a projection layer203

that maps multi-modal inputs to a unified embed-204

ding space. The image encoder encodes image xi205

into FI , and text ti into FT , i.e.,206

FI = EI(xi), FT = ET(ti). (1)207

i During the training phase, a contrastive loss is em-208

ployed to maximize the cosine similarity between209

them for alignment. When testing, after getting210

the image feature FI for image xi, the class c it211

belongs to is calculated by:212

p(c) = exp(cos(Tc, FI)/τ)∑K
j=1 exp(cos(Tj , FI)/τ)

, (2)213

where τ is a temperature parameter for scaling the214

softmax function, Tj is text embedding of class j215

and cos(·, ·) denotes the cosine similarity function. 216

It is worth noting that CLIP aligns images and text 217

by encoding them separately, but many features are 218

noisy or redundant, thus extracting only the most 219

relevant cross-modal features is necessary. 220

3.2 Spotlighter 221

To address the aforementioned challenges, we pro- 222

pose a plug-and-play method that selects a compact 223

set of highly representative tokens. This strategy 224

aims to suppress noise from redundant features 225

and mitigate the computational overhead in the 226

representative mining process. Our method, Spot- 227

lighter, identifies activated tokens by leveraging a 228

well-established paradigm from classical computer 229

vision: intermediate-layer activations in visual net- 230

works naturally encode semantically salient and 231

fine-grained visual concepts localized in specific 232

image regions (Zeiler and Fergus, 2014; Selvaraju 233

et al., 2017; Kim et al., 2022). To enhance this 234

capability, we introduce a Semantic Memory Bank, 235

which facilitates the selection of representative to- 236

kens enriched with deeper semantic information. 237

By integrating feature activation with representa- 238

tive token extraction, Spotlighter captures rich se- 239

mantics in a compact representation. An overview 240

of the proposed framework is illustrated in Figure 2, 241

and will be discussed below in detail. 242

Feature Activation. To distill the most represen- 243

tative features across visual and textual modalities, 244

we first evaluate each token’s activation level in 245

cross-modal semantic alignment for a given sam- 246

ple. These activation scores reflect the information 247

distribution critical for prediction. To obtain reli- 248

able activation scores, we compute them at both the 249

sample and semantic levels. The sample-level score 250

reveals cross-modal alignment between image-text 251

pairs (Selvaraju et al., 2017; Wang et al., 2020), 252

derived by computing the similarity between visual 253

features FI and textual features FT . For semantic- 254

level activation scores, we focus on capturing fine- 255

grained semantic boundaries to enhance the repre- 256

sentativeness of activated features. To achieve this, 257

we construct a set of prototypes (Snell et al., 2017) 258

for each semantic category, stored in a Semantic 259

Memory Bank (SMB) U ∈ Rk×c, where k is the 260

number of prototypes and c denotes the number of 261

classes. During training, we match each image fea- 262

ture FI against all semantic prototypes U in SMB 263

3



Figure 2: Overview of SpotLighter. The visual and textual features first compute sample-wise activations via a
similarity matrix, which are fused with semantic-wise activations from prototype matching in the semantic memory
bank. The combined activations yield k tokens with the highest scores that are further refined through score-based
stratification and processed by TIRM to obtain representative tokens.

to identify the most relevant semantic category Uc ,264

Uc = argmax exp(cos(FI , Uj))∑C
j=1 exp(cos(FI , Uj))

. (3)265

We then compute semantic-level activation scores266

by comparing each prototype against both visual267

and textual similarity. The final activation score268

is obtained by aggregating both sample-level and269

semantic-level activation scores. Experimental ev-270

idence confirms that highly activated tokens offer271

more discriminative signals for sample prediction.272

We preserve only the most k activated tokens tokact273

as classification evidence while treating the remain-274

ing features as redundant noise. Notably, we contin-275

uously update the Semantic Memory Bank through-276

out the training process. Firstly, we assign each of277

tokact to the corresponding prototype stored in U278

by a softmax function to get the probability:279

Di,j = exp(cos(tokact
i , Uj))∑K

j=1 exp(cos(tokact
i , Uj))

. (4)280

Then, we assign by the highest probability as:281

Uj =
{

i

∣∣∣∣ argmax
k

Di,k = j

}
. (5)282

Later, we will update the prototype in the Bank: 283

Uj = β · Uj + (1 − β)
∑
i∈Uj

Di,j · tokact
i , (6) 284

with β representing the momentum coefficient. To 285

further ensure the effectiveness of the activated 286

tokens, we calculate the similarity between the final 287

U of each class and sample-wise activation tokens: 288

Llocal = CE
(
coslocal(U, tokact), y

)
. (7) 289

This local loss minimizes feature selection subjec- 290

tivity through activation values, enhancing cross- 291

modal knowledge transfer to compensate for lim- 292

ited pre-training interaction. 293

Extraction of Representative Tokens. To com- 294

pensate for potential semantic loss from discarded 295

inactive regions, we fuse activated features with 296

their corresponding semantic prototypes to ob- 297

tain representative features for image classification. 298

Given varying predictive contributions among acti- 299

vated features, we first perform dynamic matching 300

between semantic prototypes and the sample’s ac- 301

tivated features, then stratify them into two tiers 302

based on activation scores, as toklev1 and toklev2. 303
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To guide the model toward category-essential fea-304

tures, we progressively feed the prototypes and305

their matched activated tokens toklev1 and toklev2306

respectively into the Image Representative Map-307

ping Module (IRM) and the Text Representative308

Mapping Module (TRM), generating two sets of309

discriminative cross-modal representations. In310

IRM, the activated tokens toklevi (i = 1, 2) serve311

as both the key K and the value V , while the cor-312

responding prototypes U serve as the query Q:313

T = MultiHead(LN(U), LN(toklevi ), LN(toklevi )) + U ,
(8)314315

Û = FFN(LN(T )) + T , (9)316

where MultiHead (·) and FFN (·) follow the stan-317

dard transformer, respectively representing multi-318

head attention and feed-forward neural network.319

Subsequently, the fused token Û is concatenated320

with the tokact and processed through a trans-321

former layer to obtain representative visual tokens322

[tokrep
v , toklevi ] = θi([Û , toklevi ], (10)323

where [·, ·] refers to the concatenation of each token324

and θ is the pre-trained transformer layer. Mean-325

while, for TRM, we begin by matching each origi-326

nal text token tokori
t with corresponding activated327

tokens using Eq.4 to get probability Wi,j . Follow-328

ing this, we generate the final representative text329

tokens tokrep
t for activated token i and utilize a330

residual-connected linear layer to fuse dual feature331

streams, where α is the coefficient hyperparameter:332

tokrep
i,t = α · Linear([tokori

t,i ,

k∑
j=1

Wi,j · toklevi
j ]) + tokori

t,i .

(11)333

Notably, for text features, we employ only a sim-334

ple linear layer, with detailed implementation and335

rationale provided in the Appendix H. Then we con-336

catenate the tokens achieved by Level-1 and Level-337

2 as tokrep
v and tokrep

t . Moreover, we posit that338

the set of high-activation-score features contains339

more discriminative information for classification.340

Thus, we formulate Llow
cls and Lhigh

cls to ensure inde-341

pendent classification capability for both feature342

sets, while reconstructing the Lgra
cls = Llow

cls +Lhigh
cls343

to prioritize high-representative features. The way344

to calculate loss is similar to Eq.12.345

3.3 Training and Inference346

Throughout the training process, we maintain the347

conventional CLIP architecture while employing348

contrastive loss as our fundamental classification 349

objective, mathematically expressed as: 350

Lcls = − log exp(cos(tokrep
v , tokrep

t )/τ)∑C

j=1 exp(cos(tokrep
v , tokrep

t,i )/τ)
. (12) 351

Beyond the standard contrastive loss formula- 352

tion, we augment our module with a textual regu- 353

larization loss and a visual KL loss, respectively: 354

Ltext
reg = |tokori

t − tokrep
t |, (13) 355

356
Lvisual

KL = KL(tokrep
v , tokori

v ), (14) 357

where KL(·, ·) represents Kullback-Leibler diver- 358

gence and tokori
t,v is the original text and visual 359

tokens achieved by pre-trained models. The Ltext
reg 360

can mitigate overfitting in VLMs fine-tuning with 361

limited training data, while Lvisual
KL ensures useful 362

image tokens exhibiting strong alignment with the 363

original pre-trained feature space. Then the total 364

loss can be calculated: 365

L = Lcls +λ1 ∗Lgra
cls +λ2 ∗Ltext

reg +λ3 ∗(Lvisual
KL +Llocal),

(15) 366

where λ1, λ2, λ3 are hyper-parameters used to bal- 367

ance the various loss terms. In all, we only need to 368

train the parameters in Eq. 9 and Eq. 11, thus 369

improving training efficiency. 370

During inference, we compute the final predic- 371

tion scores using the fused cross-modal representa- 372

tions from both visual and textual features: 373

y = arg max
i

exp(cos(tokrep
t , tokrep

r )/τ)∑C

j=1 exp(cos(tokrep
t , tokrep

r )/τ)
. (16) 374

Unlike existing approaches that rely on redundant 375

remaining tokens after alignment, our method sim- 376

ply performs inference by the most representa- 377

tive tokens, thus mitigating noise-induced semantic 378

degradation while reducing high-dimensional fea- 379

ture interactions in the representation space. 380

4 Experiments 381

4.1 Experimental Settings 382

Datasets. We employ the conventional approach 383

used in previous studies (Zhou et al., 2022a; 384

khattak et al., 2023) to conduct the base-to- 385

new and few-shot on 11 benchmarks, i.e., Ima- 386

geNet (Deng et al., 2009), Caltech (Fei-Fei et al., 387

2007), OxfordPets (Parkhi et al., 2012), Stan- 388

fordCars (Krause et al., 2013), Flowers (Nils- 389

back and Zisserman, 2008), Food101 (Bossard 390

et al., 2014), FGVCAircraft (Maji et al., 2013), 391
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Table I: Comparison with other methods on base-to-new generalization with 16-shot.

Method
Average ImageNet Caltech101 OxfordPets

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp 82.69 63.22 71.66 76.47 68.78 71.92 98.00 89.81 93.73 93.67 95.29 94.47
PromptSRC 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30
MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
CLIPFit 83.72 74.84 79.03 76.20 70.17 73.06 98.30 93.70 95.94 95.23 97.13 96.17
PromptKD 84.11 78.28 81.09 77.63 70.96 74.15 98.31 96.29 97.29 93.42 97.44 95.39
CoOp w/ TextRefiner 79.74 74.32 76.94 76.84 70.54 73.56 98.13 94.43 96.24 95.27 97.65 96.45
PromptKD w/ TextRefiner 85.22 79.64 82.33 77.51 71.43 74.38 98.52 96.52 97.51 95.60 97.90 96.74

CoOp w/ Spotlighter 81.74 75.80 78.66 76.74 70.68 73.58 98.13 94.51 96.29 97.40 97.73 97.56
PromptKD w/ Spotlighter 85.65 80.46 82.89 77.62 71.71 74.55 98.86 96.74 97.79 96.48 97.75 97.11

Method
StanfordCars Flowers102 Food101 FGVCAircraft

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
PromptSRC 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15
MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
CLIPFit 78.80 73.87 76.26 96.83 73.53 83.59 90.60 91.33 90.96 42.47 33.47 37.43
PromptKD 80.48 81.78 81.12 98.69 81.91 89.52 89.43 91.27 90.34 43.61 39.68 41.55
CoOp w/ TextRefiner 71.40 70.90 71.15 95.92 74.33 83.76 90.88 91.43 91.15 35.35 35.87 35.61
PromptKD w/ TextRefiner 80.91 81.83 81.37 99.30 82.91 90.37 91.42 92.71 92.06 45.01 40.12 42.42

CoOp w/Spotlighter 70.09 69.97 70.03 95.10 74.47 83.53 93.63 91.51 92.56 39.00 36.54 37.72
PromptKD w/Spotlighter 81.62 82.15 81.88 99.36 83.47 90.72 91.86 92.93 92.39 46.35 40.68 43.33

Method
SUN397 DTD EuroSAT UCF101

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46
PromptSRC 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74
MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
CLIPFit 81.97 78.17 80.02 81.97 63.50 71.56 93.33 71.07 80.69 85.23 77.30 81.07
PromptKD 82.53 80.88 81.70 82.86 69.15 75.39 92.04 71.59 80.54 86.23 80.11 83.06
CoOp w/ TextRefiner 80.96 76.49 78.66 75.35 58.09 65.60 74.57 72.82 73.68 82.52 75.01 78.59
PromptKD w/ TextRefiner 83.02 80.50 81.74 83.91 71.01 76.92 92.99 79.22 85.55 89.20 81.90 85.39

CoOp w/ Spotlighter 81.78 75.17 78.48 76.04 58.69 66.18 85.01 82.13 83.85 86.27 82.47 84.34
PromptKD w/ Spotlighter 83.15 81.06 82.09 83.94 71.92 77.47 93.17 84.51 88.63 89.72 82.16 85.77

EuroSAT (Helber et al., 2019), UCF101 (Soomro392

et al., 2012), DTD (Cimpoi et al., 2014), and393

SUN397 (Xiao et al., 2010). For cross-dataset gen-394

eralization, we experiment on ImageNet-V2 (Recht395

et al., 2019), ImageNet-Sketch (Wang et al.,396

2019), ImageNet-A (Hendrycks et al., 2021b) and397

ImageNet-R (Hendrycks et al., 2021a). Meanwhile,398

the Implementation Details will be discussed in399

Apeendix C.400

Baselines. We compare with many state-of-the-401

art (SOTA) method, including CLIP (Radford402

et al., 2021), CoOp (Zhou et al., 2022b), Prompt-403

SRC (Zhu et al., 2023), MaPLe (khattak et al.,404

2023), CLIPFit (Li et al., 2024a), PromptKD (Li405

et al., 2024c) and TextRefiner (Xie et al., 2024).406

Table II: Comparison with other methods on the few-
shot learning setting with average accuracy. We plug
our method in PrompKD.

Method Shot
1 2 4 8 16

CLIP 45.12 54.63 65.24 66.87 71.70
CoOP 68.09 70.13 73.59 76.45 79.01

PromptSRC 72.32 75.28 78.35 80.69 82.87
MaPLe 61.79 65.28 70.66 73.82 78.55
CLIPFit 72.32 74.39 77.18 79.03 81.27

PromptKD 72.47 75.19 78.46 79.56 81.09

w/ Spotlighter 72.53 75.76 78.80 81.81 85.65

4.2 Comparison with State-of-art Methods 407

Base-to-Novel Generalization. Table I presents 408

the quantitative results of various methods in the 409

base-to-novel generalization setting on 11 datasets. 410
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Table III: Comparison with other methods on cross-
domain generalization with 16-shot.

Method Source Target

ImageNet -V2 -Sketch -A -R

CLIP 66.73 60.83 46.15 47.77 73.96
CoOpOp 71.02 64.07 48.75 50.63 76.18
PromptSRC 71.27 64.35 49.55 50.90 77.80

CoOp 71.51 64.20 47.99 49.71 75.21
w/ Spotlighter 72.12 66.17 49.32 49.81 76.59
MaPLe 70.72 64.05 49.15 50.90 76.98
w/ Spotlighter 72.17 69.62 50.18 69.83 83.56

Table IV: Comparison of inference efficiency among
existing methods on the ImageNet Dataset.

Method Params FPS HM
CoOp 2048 9768.21 71.92
CoCoOp 35K 20.45 73.10
CLIPFit 44K 8380.91 73.06
LLaMP 5.2M 1473.46 74.48
PromptKD 2.5M 12943.34 74.15

CoOp w/ Spotlighter +21 +886.61 +1.66
PromptKD w/ Spotlighter +21 +1813.52 +0.35

Our method demonstrates significant capability411

in consistently enhancing the performance of ex-412

isting approaches across all evaluation metrics413

(Base, New, and HM), outperforming compet-414

ing methods. Notably, Spotlighter significantly415

boosts CoOp’s generalization capability on novel416

classes, achieving a remarkable accuracy improve-417

ment from 63.22% to 75.80%. With PromptKD,418

Spotlighter achieves the best accuracy to 85.65%419

on the base while improving the Novel to 80.46%.420

This verifies that after filtering out weakly relevant421

tokens, our model can reduce noise introduction422

while enhancing relevant semantic information, im-423

proving the model’s generalization capability.424

Few-shot Classification. In the few-shot scenario,425

our method also performs well. Following CLIP,426

we used 1/2/4/8/16-shot settings for training and427

calculated the accuracy on 11 datasets. Table II428

shows when compared with other methods, Spot-429

lighter displays overall consistent improvement430

among all settings, demonstrating robustness and431

efficacy even in challenging low-data regimes.432

Cross-Datasets Generalization. Extending be-433

yond standard benchmarks, we assess Spotlighter’s434

cross-domain generalization on four established435

datasets. The results shown in Table III verify436

that in cross-data scenarios, Spotlighter can still437

show the best results after few-shot training on Im-438

ageNet, especially for ImageNet-A having 18.93%439

Table V: Ablation experiments on different optimization
losses on ImageNet.

Lcls Llocal Llow
cls Lhigh

cls Ltext
reg Lvisual

kl Base Novel HM

✓ 76.50 67.88 71.93
✓ ✓ 76.58 70.62 73.48
✓ ✓ ✓ 76.16 69.75 72.81
✓ ✓ ✓ ✓ 76.24 69.88 72.92
✓ ✓ ✓ ✓ ✓ 76.13 70.31 73.10
✓ ✓ ✓ ✓ ✓ 76.47 70.32 73.27

✓ ✓ ✓ ✓ ✓ 76.98 71.16 73.96
✓ ✓ ✓ ✓ ✓ 77.25 71.34 74.18
✓ ✓ ✓ ✓ ✓ ✓ 77.62 71.71 74.55

Table VI: Effects of toklev1 and toklev2 in Inference.

Method Base Novel HM FPS
toklev1 75.28 70.16 72.63 221.57K
toklev2 75.47 70.29 72.79 216.32K

toklev_1+2 77.62 71.71 74.55 131.25K

improvement. This demonstrates through progres- 440

sive refinement, even a limited set of representative 441

tokens can retain sufficient semantic information. 442

Efficiency. We further conduct a comparative anal- 443

ysis of inference efficiency, benchmarked on a sin- 444

gle NVIDIA 4090 GPU using the officially released 445

implementation. As shown in Table IV, when plug- 446

ging in Spotlighter, other methods achieve faster 447

inference speeds. Notably, with only 21 additional 448

parameters, Spotlighter not only attains the best 449

performance in HM at the fastest inference speed. 450

This efficiency gain is primarily due to using a com- 451

pact set of semantically rich representative tokens, 452

which substantially reduces the scale of feature in- 453

teractions across the representation space, leading 454

to a notable reduction in computational overhead. 455

4.3 Ablation Experiments 456

Effects of Different Losses. In the training pro- 457

cess, we introduced a variety of training losses, 458

shown in Eq.15. Table V investigates the influence 459

of these factors on the model’s generalization ca- 460

pability. The introduced Llocal ensures the preser- 461

vation of semantic information in useful tokens, 462

while Ltext
reg and Lvisual

kl incorporate knowledge 463

from original tokens and constrain fine-grained in- 464

formation utilization. Additionally, Llow
cls and Lhigh

cls 465

enhance cross-modal interaction. Empirical results 466

show that combining multiple training objectives 467

effectively balances adaptability and generalization, 468

leading to improved overall performance. 469

Effects of the Activated and Representative To- 470

kens. To boost salient tokens’ information density 471
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Figure 3: Visualization of the effect of the activated
and representative tokens on the ImageNet dataset in
few-shot learning via t-SNE.

Table VII: Comparison of baseline methods with and
without Spotlighter in an average of 16 datasets.

Method Base Novel HM

PromptKD 84.11 78.28 81.09
w/ Spotlighter 85.65+1.54 80.46+2.18 82.89+1.80

CLIPFit 83.72 74.84 79.03
w/ Spotlighter 85.17+1.45 78.62+3.78 81.76+2.73

MaPLe 82.28 75.14 78.55
w/ Spotlighter 83.29+1.01 77.45+2.31 80.26+1.71

during aggressive pruning, we enhance the acti-472

vated tokens to get representative tokens with Ima-473

geNet t-SNE (Selvaraju et al., 2017) visualizations.474

From Fig.3, we can observe that with Spotlighter,475

CLIPFit can have a much clearer separation of dif-476

ferent class image features and more correct text477

features embedding in high-dimensional feature478

space, which contingents upon more granular strat-479

ification. Additionally, representative tokens can480

have better distinguishing capability.481

Effects of the Two-Level Feature Activation. We482

stratify activated tokens by activation scores into483

Level-1 and Level-2 subsets, yielding more rep-484

resentative tokens for finer alignment and richer485

semantics. From Table VI and Table V, we observe486

that using only Level-1 or Level-2 tokens improves487

efficiency but sacrifices semantic coverage either488

in loss or inference. Therefore, unifying levels for489

better cross-modal interaction is necessary.490

Effects on Different Backbones. To systemati-491

cally examine the plug-and-play functionality of492

Spotlighter and demonstrate broad applicability,493

we implement the approach across multiple repre-494

sentative frameworks. Shown in Table VII, all four495

methods exhibit significant improvement, confirm-496

ing effectiveness and versatility.497

Effects of Different Activated Token Numbers.498

The token count hyperparameter k controls the499

number of activated and representative tokens. In500

Fig.4, we analyze the impact of different numbers.501

The results show that when the number is small,502

Figure 4: The impact of different activated and repre-
sentative tokens.

Table VIII: Effects of the semantic action tokens.

Method Base Novel HM
Spotlighter w/o Semantic Action 77.52 71.43 74.35

Spotlighter w Semantic Action 77.62 71.71 74.55

chosen tokens can obtain limited information, but 503

when the number increases, too many tokens de- 504

crease speed and obtain noise. 505

Effects of the Semantic Activation. When com- 506

puting activated tokens, we add the activation 507

scores of the sample and the semantics. We ob- 508

serve from Table VIII that empowered by Semantic 509

Activation Tokens, the sampled acquire richer and 510

more discriminative semantic representations. This 511

is because the prototypes store the most salient 512

information of each image category and are contin- 513

uously refined through updates. Their integration 514

with individual samples mitigates the effects of 515

sample-level variance and information sparsity, ul- 516

timately leading to higher-quality activated tokens. 517

5 Conclusion 518

We introduce Spotlighter, a plug-and-play frame- 519

work that revisits few-shot image classification 520

from the perspective of representative token mining. 521

By progressively selecting and categorizing infor- 522

mative tokens, Spotlighter effectively filters noise 523

and reduces redundant feature interactions. Lever- 524

aging both activated tokens and representative to- 525

kens, the model enhances fine-grained cross-modal 526

alignment with minimal parameter overhead. Ex- 527

tensive experiments across 11 benchmarks and di- 528

verse generalization settings show that Spotlighter 529

consistently improves accuracy and efficiency over 530

strong baselines. Our work highlights the impor- 531

tance of token-level selection and structured refine- 532

ment for efficient and robust few-shot learning with 533

vision-language models. 534
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Supplementary Material of824

Spotlighter: Revisiting Prompt Tuning from a825

Representative Mining View826

A Limitations827

Spotlighter is primarily designed for fine-tuning828

vision-language models in image classification and829

may not generalize well to other vision tasks such830

as object detection or image segmentation, where831

dense or spatially localized predictions are required.832

This limitation partly stems from the reduced num-833

ber of final tokens, which may omit fine-grained834

spatial details essential for those tasks. Moreover,835

the effectiveness of our method relies on the pres-836

ence of sufficiently discriminative representative837

tokens; performance degrades when such tokens838

are sparse or class boundaries are highly entangled,839

particularly in ultra-fine-grained settings. In future840

work, we plan to extend Spotlighter to dense pre-841

diction tasks by incorporating spatial-aware token842

selection and hierarchical refinement. We also aim843

to investigate adaptive token filtering strategies that844

dynamically adjust to data complexity and class845

granularity.846

B Dataset Statistics847

To rigorously assess the effectiveness and general-848

ization ability of our method, we performed ex-849

tensive experiments on 11 standard benchmark850

datasets spanning multiple visual domains (Ta-851

ble IX). The selected datasets cover diverse recog-852

nition tasks including: ImageNet (Deng et al.,853

2009) for object classification; Caltech (Fei-Fei854

et al., 2007) for natural object recognition; Ox-855

fordPets (Parkhi et al., 2012) for fine-grained pet856

classification; StanfordCars (Krause et al., 2013)857

for vehicle categorization; Flowers (Nilsback and858

Zisserman, 2008) for flower species identification;859

Food101 (Bossard et al., 2014) for food classifi-860

cation; FGVCAircraft (Maji et al., 2013) for air-861

craft recognition; EuroSAT (Helber et al., 2019) for862

satellite imagery analysis; UCF101 (Soomro et al.,863

2012) for action recognition; DTD (Cimpoi et al.,864

2014) for texture classification; and SUN397 (Xiao865

et al., 2010) for scene understanding.In distribu-866

tion shift experiments,we also introduce ImageNet-867

V2 (Recht et al., 2019), ImageNet-Sketch (Wang868

et al., 2019), ImageNet-A (Hendrycks et al., 2021b)869

and ImageNet-R (Hendrycks et al., 2021a).These870

datasets are all to improve ImageNet test reliabil-871

ity. This comprehensive evaluation across multiple872

(a) Aggregation Coefficient . (b) Momentum Coefficient.

Figure 5: The impact of different aggregation coefficient
and momentum coefficient.

domains effectively demonstrates our approach’s 873

robustness and versatility in various scenarios. 874

C Implementation Details 875

We adopt ViT-B/16 CLIP model to conduct all of 876

our experiments. We report both base and novel 877

class accuracies along with their harmonic mean 878

(HM) (Xian et al., 2017), with all metrics averaged 879

across three independent runs. To ensure a fair com- 880

parison, final performance metrics are computed as 881

the mean over three different random seeds. The 882

experimental settings remain consistent with the 883

original papers while the only modification is in 884

the number of training epochs where CoOp is re- 885

duced to 15 epochs, while ClipFit and PromptKD 886

are reduced to 30 epochs. The number of fusion 887

coefficient α is 0.2 and momentum coefficient β is 888

0.8 respectively. For the hyper-parameters in the 889

loss, we set λ1, λ2, λ3 to 0.02, 20, 0.1 supported 890

by empirical findings and fixed in different datasets 891

to facilitate downstream tasks. 892

D Effects of Coefficient α and β 893

Hyperparameters α and β control original informa- 894

tion retention and filtered knowledge preservation, 895

respectively. In Fig.5a, accuracy on base classes re- 896

mains stable with increasing α, while novel classes 897

peak then decline, suggesting overfitting from fine- 898

grained feature dependence. Meanwhile, increas- 899

ing β yields gentle rise-then-fall trends for both 900

Base and Novel, confirming the discriminative to- 901

ken selection. 902

E Hyperparameter Analysis of 903

Optimization Objectives. 904

Our systematic investigation of the balancing hyper- 905

parameters in Eq.15 reveals important insights into 906

the method’s behavior. Through controlled experi- 907

ments where we varied individual parameters while 908
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Table IX: The detailed statistics of datasets used in our work.

Datasets Classes Training Size Validation Size Testing Size Tasks Hand-crafted Prompt

ImageNet 1,000 1.28M N/A 50,000 General object recognition "a photo of a [CLASS]."
Caltech 100 4,128 1,649 2,465 General object recognition "a photo of a [CLASS]."
EuroSAT 10 13,500 5,400 8,100 Satellite image recognition "a centered satellite photo of [CLASS]."
SUN397 397 15,880 3,970 19,850 Scene recognition "a photo of a [CLASS]."
DTD 47 2,820 1,128 1,692 Texture recognition "[CLASS] texture."
UCF101 101 7,639 1,808 3,783 Action recognition "a photo of a person doing [CLASS]."
FGVCAircraft 100 3,334 3,333 3,333 Fine-grained aircraft recognition "a photo of a [CLASS], a type of aircraft."
OxfordPets 37 2,944 736 3,669 Fine-grained pets recognition "a photo of a [CLASS], a type of pet."
StanfordCars 196 6,509 1,635 8,041 Fine-grained car recognition "a photo of a [CLASS], a type of flowers."
Flowers 102 4,093 1,633 2,463 Fine-grained flowers recognition "a photo of a [CLASS]."
Food101 101 50,500 20,200 30,300 Fine-grained food recognition "a photo of a [CLASS], a type of food."

ImageNetV2 1000 N/A N/A 10,000 Improve ImageNet test reliability "a photo of a [CLASS]."
ImageNet-Sketch 1000 N/A N/A 50,899 Improve ImageNet test reliability "a photo of a [CLASS]."
ImageNet-A 1000 N/A N/A 7,500 Improve ImageNet test reliability "a photo of a [CLASS]."
ImageNet-R 1000 N/A N/A 30,000 Improve ImageNet test reliability "a photo of a [CLASS]."

Table X: Ablation experiments on different backbones.

Backbone Parameters Base Novel HM

ViT-B/16 151M 85.64 80.37 83.01
ViT-L/14 427M 85.68 81.29 83.43

Table XI: The method chosen for Image/Text Represen-
tative Mapping Module.

Method Base Novel HM FPS
liner+liner 76.27 70.98 73.53 135.19K
trans+trans 77.64 71.75 74.58 86.89K

original 77.62 71.71 74.50 131.25K

fixing others, we observe that the method demon-909

strates consistent performance across a wide range910

of configurations, highlighting its robustness and911

broad applicability to different pre-trained models,912

shown in Fig.6. However, the performance analysis913

also identifies critical limitations that tremendous914

values of λ1,2,3 lead to noticeable degradation in915

model performance. This suggests that while the916

balancing terms are essential for proper alignment,917

pushing them too far can be counterproductive. The918

performance drop likely stems from two interre-919

lated factors: first, excessive alignment may force920

the model to capture artifactual correlations in the921

training data, leading to overfitting; second, overly922

strong regularization can constrain the model’s ca-923

pacity to learn meaningful feature representations.924

These findings emphasize the importance of finding925

an appropriate balance in parameter settings, where926

sufficient alignment is achieved without compro-927

mising the model’s learning capability. The demon-928

strated robustness across parameter variations fur-929

ther confirms the method’s reliability for practical930

deployment scenarios.931

F More Few-shot Learning Results 932

We adopted the few-shot evaluation protocol 933

from (Radford et al., 2021), evaluating our 934

method’s ability to acquire task-specific knowl- 935

edge through 1,2,4,8 and 16-shot learning scenarios 936

while measuring classification accuracy. In Fig.7, 937

we further conducted a visual comparison between 938

our method and CLIPFit, demonstrating superior 939

performance across all 11 datasets. 940

G Effects of Different Backbones of CLIP 941

The choice of backbone networks with varying 942

parameter sizes significantly influences model per- 943

formance. To systematically evaluate our method’s 944

compatibility with different architectures, we con- 945

duct extensive experiments across multiple back- 946

bone networks (Table X). The results reveal a con- 947

sistent trend: model performance scales positively 948

with increasing network capacity, demonstrating 949

our approach’s strong adaptability to different archi- 950

tectural scales. Notably, performance gains exhibit 951

diminishing returns while smaller networks show 952

limited capability due to constrained feature extrac- 953

tion capacity; the performance improvement be- 954

comes more pronounced as network size increases. 955

This pattern suggests that our method effectively 956

leverages the enhanced representational power of 957

larger networks to capture richer feature hierarchies 958

while maintaining stable performance across differ- 959

ent architectural scales. 960

H Design of Image/Text Representative 961

Mapping Module. 962

We derive the final representative tokens through 963

the Image/Text Mapping Module. In Table XI, 964

we contrast the methodological designs employed 965

for alignment. We observe that while employing 966
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(a) (b) (c)

Figure 6: The effect of different loss balance parameters λ1, λ2, and λ3 on the model classification accuracy.

Figure 7: Performance of few-shot learning across 11 datasets compared with CLIPFit (Li et al., 2024a). The result
demonstrates that our method shows better performance than CLIPFit, even with fewer parameters and fewer tokens.

simple linear layers for multimodal processing im-967

proves computational efficiency, it leads to notice-968

able accuracy degradation. Conversely, adopting969

full transformer architectures yields marginal accu-970

racy gains over current methods while significantly971

compromising computational efficiency. This oc-972

curs because text tokens inherently encode simpler973

information compared to visual tokens. Overly974

complex architectures (e.g., transformers) prove975

less effective for processing such straightforward976

patterns, where lightweight linear layers suffice.

Table XII: Effects of whether to recalculate score.

Method Base Novel HM
Spotlighter w/o recaculate 77.53 71.67 74.48

Spotlighter w recaculate 77.62 71.71 74.55

977

I Effects of whether to recalculate 978

activation score. 979

During the secondary classification of activated 980

tokens, we rematch them with prototypes and re- 981

compute their activation scores to choose the new 982

top-k. Alternatively, one could directly stratify the 983

top-k activated tokens without recalibration. The 984

Table XII demonstrates that recalibration yields su- 985

perior performance compared to direct selection. 986

This improvement stems from the progressively en- 987

riched semantic information encapsulated in the up- 988

dated prototypes. By rematching and recomputing 989

activated tokens against these refined prototypes, 990

we more accurately identify tokens with the highest 991

semantic density. 992
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