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ABSTRACT

Monocular 3D object detection aims to recognize and localize objects in 3D space
from a single image. Recent researches have conducted remarkable advance-
ments, while all of them follow a typical output representation in LiDAR-based
3D detection. However, in this paper, we argue that the existing discrete output
representation is not suitable for monocular 3D detection. Specifically, monocu-
lar 3D detection has only two-dimensional information input while is required to
output three-dimensional detections. This characteristic indicates that monocular
3D detection is inherently different from other typical detection tasks that have
the same dimensional input and output. The dimension gap causes a large lower
bound for the error of estimated depth. Therefore, we propose to reformulate the
existing discrete output representation as a spatial probability distribution accord-
ing to depth. This probability distribution considers the uncertainty caused by the
absent depth dimension, allowing us to accurately and comprehensively represent
objects in 3D space. Extensive experiments exhibit the superiority of our output
representation. As a result, we have applied our method to 12 SOTA monocu-
lar 3D detectors, consistently boosting their average precision (AP) by ∼ 20%
relative improvements. The source code will be publicly available soon.

1 INTRODUCTION

Monocular 3D object detection is an important topic and has drawn much attention from the com-
puter vision and autonomous driving community. It enables cars and robots to perceive the world in
3D using only a single camera. However, reasoning 3D box from monocular imagery is extremely
challenging due to its inherent ill-posed nature. Towards boosting the accuracy, prior works have
done much attempts, including utilizing estimated depth maps Wang et al. (2019); Ma et al. (2020);
Reading et al. (2021), geometry natures Mousavian et al. (2017); Zhou et al. (2021); Zhang et al.
(2021), and network designs Brazil & Liu (2019); Li et al. (2020).

All prior monocular works employ the typical output representation emerging in earlier detection
tasks Zhou et al. (2019); Shi et al. (2020); Lang et al. (2019), i.e., 2D box detections with corre-
sponding 3D boxes, where the 3D boxes are regarded as final results. However, this discrete output
representation ignores an inherent huge gap between monocular 3D detection and other detection
tasks. As shown in Table 1, we summarize the input/output of different detection tasks and their
dimensions in the source domain. For monocular 3D detection, it is required to reason high dimen-
sional 3D boxes, while it has only low dimensional information input. This gap does not exist in
the other two detection tasks, and our quantitative experiments prove that exactly the dimension gap
results in low detection accuracy in monocular 3D detection.

Table 1: Differences in three detection tasks. ”Dim.” in the table refers to the dimension.

Tasks Input Output Input/Output Dim. Dim. Gap

2D detection 2D image 2D boxes 2D/2D %

LiDAR-based 3D detection 3D point cloud 3D boxes 3D/3D %

Monocular 3D detection 2D image 3D boxes 2D/3D "
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Please note, the ”2D” and ”3D” mentioned in the table refer to the data dimension from the source
domain, but not the data representation. It is because changing the data representation (e.g., range-
view and pseudo-LiDAR) does not change the entropy.

Figure 1: Depth error. We show mean depth
errors of three SOTA monocular detectors in
the given depth range and exhibit the theoret-
ical lower bound.

Figure 2: We convert a discrete output
as a spatial probability distribution, and
then sample points as detection candidates
from the distribution.

The absent dimension is the depth, meaning that the network is forced to predict depth in 3D space
from 2D visual features. To analysis the depth error brought by the dimension gap, we show error
curves of recent SOTA monocular 3D detectors Brazil & Liu (2019); Ma et al. (2021); Reading
et al. (2021) in Figure 1. The depth errors increase exponentially with the growth of depth. We
also show a theoretical lower bound, which is quadratically increasing (See Section 3.2 for detailed
derivation). Both depth errors in SOTA detectors and the theoretical lower bound indicate that
estimated depths cannot be accurate for objects which are not close. Taking KITTI dataset as an
example, the theoretical lower bound for depth error is around 1.48 meters and 3.33 meters for
objects 40 meters and 60 meters away, respectively. Although more and more advancements are
shown in monocular 3D detection, the lower bound is hard to be broken.

From the perspectives of the inherent dimension gap and the resulting large depth errors, we argue
that the existing representation of a discrete depth prediction is suboptimal for monocular 3D de-
tection. Large depth errors mean that the predicted depths have large uncertainty, and the resulting
discrete 3D box predictions cannot accurately and comprehensively represent the object status in 3D
space. Therefore, in this paper we aim to reformulate the output representation for monocular 3D
detection to take the inherent dimension gap and depth uncertainty into consideration.

Our reformulation consists of two steps: First, as shown in Figure 2, we transform each discrete
detection output as a spatial probability distribution using the normal distribution, where the stan-
dard deviation increases with the growth of depth. Second, we sample multiple 3D boxes from the
spatial distribution while considering the depth uncertainty and regard them as new detection re-
sults. In other words, instead of outputting only one discrete 3D box, we transform the 3D box to a
continuous spatial probability distribution in 3D space and then produce more predictions via sam-
pling. Our method considers the underlying absent depth dimension, utilizing depth uncertainty in
output representation for monocular 3D detection, therefore consistently and considerably boosting
the performance for most detectors.

We summarize our main contributions as below:

• We rethink the underlying mechanism of monocular 3D object detection, arguing that it is
inherently different from other detection tasks. Based on our analysis, we reformulate the
discrete output representation as a spatial probability distribution, which is more reasonable
for monocular 3D detection.

• We have applied our method to 12 recent SOTA monocular 3D detectors, consistently
boosting their average precision (AP) by ∼ 20% relative improvements. It is worthy
to note that our method can be easily adapted to any monocular 3D detector, which does
not bring extra costs.
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2 RELATED WORK

2.1 LIDAR 3D OBJECT DETECTION

Current LiDAR-based methods Zheng et al. (2021); Shi et al. (2019b); Lang et al. (2019); Shi &
Rajkumar (2020); Yang et al. (2020); Shi et al. (2020); He et al. (2020) are the main steam and widely
deployed in the industry due to their high accuracy. Generally speaking, LiDAR-based methods can
be categorized into two types of methods: voxel-based methods Zhou & Tuzel (2018) and point-
based methods Qi et al. (2018); Shi et al. (2019a) . For voxel-based methods, they typically divide
the raw point cloud into voxel grids, extracting a unified feature representation for each voxel. In
this way, the irregular and unordered point clouds are formed as ordered and CNN-friendly data
representations, i.e., voxel grids. Therefore CNNs can easily extract features from such voxels and
then regress required 3D box parameters. On the other hand, point-based methods directly extract
features from the raw point cloud using light fully connected networks Qi et al. (2017a;b). This
manner does not damage the 3D information, while usually cost more time due to a large number
of points. Both types of methods can be further divided into one-stage Yan et al. (2018); Lang
et al. (2019); Zheng et al. (2020) and two-stage methods Yang et al. (2019); Shi et al. (2020), where
the two-stage methods usually use RoI features to refine initial detections in the first stage, thus
producing better results. In sum, thanks to the precise 3D measurements, LiDAR-based methods
take the predominant place in 3D detection in terms of detection accuracy.

2.2 MONOCULAR 3D OBJECT DETECTION

Despite the high accuracy, LiDAR-based methods have disadvantages of heavy costs. In light of
the low deployment overhead, monocular-based methods have been popular. Early methods usually
use projection geometry constraints or semantic prior. Mono3d Chen et al. (2016) first proposes an
energy minimization approach, to place object candidates on the ground plane, then score each can-
didate via several intuitive potentials encoding semantic segmentation, contextual information, size
and location priors and object shape. This pipeline is rather complex, and Deep3DBox Mousavian
et al. (2017) introduces a simple yet effective method. With the help of a mature 2D detector, it only
needs to regress the orientation and dimension of objects, and the most difficult object 3D location
is estimated by 2D-3D projection constraints. RoI-10D Manhardt et al. (2019) introduces an end-to-
end monocular 3D object detection method, with a novel loss formulation by lifting 2D detection,
orientation, and scale estimation into 3D space. Later methods recognize the importance of instance
depth estimation. For instance, M3D-RPN Brazil & Liu (2019) designs depth-aware convolutional
layers which enable location specific feature development. Following this line of thought, D4LCN
Ding et al. (2020) uses estimated depth maps to generate dynamic convolution kernels to extract fea-
tures in different 3D locations. And more recently, CaDDN Reading et al. (2021) utilizes estimated
categorical pixel-wise depth distribution to project features to the 3D space. Another stream of using
estimated depth maps is to convert the input data representation. Pseudo-LiDAR Wang et al. (2019)
converts depth maps estimated by an off-the-shelf depth estimator to point clouds, mimicking the
real LiDAR signal. PatchNet Ma et al. (2020) directly concatenate the RGB image patch with 3D
coordinates of transformed depth, i.e., x, y, z, and obtain better results. Some methods explore the
main challenge in monocular 3D detection. Monodle Ma et al. (2021) attempts to analyze which
type of error accounts for the poor accuracy, and they find the localization error is the main rea-
son. However, they do not consider the influence of depth on other parameters in location, and our
experiments show that the instance depth in the location is the main reason for low detection rates.

2.3 OUTPUT REPRESENTATION IN 2D AND 3D DETECTION

Current 2D detection Ren et al. (2015); Redmon & Farhadi (2018) commonly adopts the same output
data representation, i.e., the 2D box coordinates and corresponding confidence, where the confidence
usually denotes the classification score. For 3D detection, existing methods use a similar represen-
tation. Typically, for LiDAR-based 3D detectors Lang et al. (2019); Shi et al. (2020), the output
3D box is parameterized by location (x, y, z), dimension (h,w, l), orientation (θ), and confidence
(C). Most monocular-based 3D detectors Brazil & Liu (2019); Li et al. (2020) follow this output
representation. Many monocular-based 3D detectors Mousavian et al. (2017); Wang et al. (2019);
Ma et al. (2020) predict independent 2D boxes, lifting each 2D box prediction to a 3D box by pre-
dicting required 3D parameters. Therefore, the final confidence in monocular 3D detectors refers to
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the 2D classification score from 2D box Ma et al. (2020) or the score combing 2D score with the
difficulty of lifting process from 2D to 3D Simonelli et al. (2019). Current monocular methods all
do not consider the depth uncertainty brought by the dimension gap in the output representation.

3 WHAT MAKES MONOCULAR 3D DETECTION CHALLENGING?

3.1 DILEMMA IN MONOCULAR 3D DETECTION

Figure 3: The performance gap in monocular 3D
detection. We show the performance of different
SOTA detectors on train and val set, respectively.
We can see that when eliminating the influence of
depth (replace depth prediction with the ground-
truth depth), the 3D detection performance (in-
cluding BEV and 3D AP) is largely boosted, even
showing the similar tendency compared to 2D de-
tection. Note that when using the ground-truth
depth in val set, we adjust the x, y in the location
to fit the new depth.

Most prior works do not pay much attention
to the dimension gap between input and out-
put. Considering the other two maturer detec-
tion tasks: 2D detection and LiDAR-based 3D
detection, they all have the same dimensional
information with respect to input and output,
namely, 2D to 2D for 2D detection and 3D to
3D for LiDAR-based 3D detection. Neverthe-
less, monocular 3D detection has only 2D in-
formation while is required to output precise
3D information. The absent dimension is ex-
actly the depth, which is the reason why pre-
dicting precise depth is very challenging.

Benefit from the deep learning technology, a
network is allowed to be trained using massive
labeled data, to learn the underlying mecha-
nism for the target task and then conduct pre-
dictions on unseen data. Unfortunately, on the
physical level, it is impossible to reason accu-
rate depth from a single image due to the di-
mension gap, therefore the generalization abil-
ity of monocular depth estimation is largely
limited. We conduct experiments to demon-
strate this point. As shown in Figure 3, we show
the performance of different state-of-the-art monocular detectors on train and val set. We can ob-
serve that the 3D detection accuracy (including BEV (bird’s-eye-view) and 3D AP) on train set is
high (higher than 60 AP) while the accuracy on val set data is extremely low (lower than 20 AP).
As expected, when removing the influence of estimated depth (replace depth prediction with the
ground-truth depth), the 3D detection performance is largely boosted. The improved 3D detection
accuracy on val set is comparable to the accuracy on train set. It indicates that the dimension gap is
the main obstacle for monocular 3D detection.

3.2 MONOCULAR DEPTH ESTIMATION ERROR LOWER BOUND

In this section, we discuss the error lower bound of estimated depth for monocular imagery. The
camera captures and represents the current scene using an image, quantifying the scene with pixels.

Assume that the calibrated camera system has the intrinsics parameters A =

[
fx 0 cx
0 fy cy
0 0 1

]
. We

denote all points on the image and in the 3D space as Q and P , where Q ∈ R2 and P ∈ R3, respec-
tively. Two different 3D points may be projected into one pixel, thus we use the depth offset within
one pixel to denote the depth error lower bound. This error also can be regarded as a quantified
error. We have two points: p1 = [x1, y1, z1]

T , p2 = [x1, y2, z2]
T , z2 > z1, and p1, p2 ∈ P . We

know that Q = AP according to camera projection. The corresponding points onto the image are
denoted by q1 = [u1, v1]

T , q2 = [u2, v2]
T , q1, q2 ∈ Q. Such two points have one pixel offset in

terms of the projections on the image. To calculate the depth error, we follow a basic assumption in
the autonomous driving scenario, namely, the ground plane is rather flat. It means that y1 ≈ y2 = c
as the inclined angle for the ground plane is low, where c denotes the distance from the camera to
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the ground plane. Thus we use the vertical pixel offset to represent the depth error, we obtain:

v2 − v1 =
fy ∗ y2 + cy ∗ z2

z2
− fy ∗ y1 + cy ∗ z1

z1
= 1 (1)

We have:

δz = z2 − z1 =
z1

2

fyc− z1
<
z1

2

fyc
(2)

We can see that this theoretical depth error lower bound increases quadratically with the growth of
depth, which indicates that the depth estimation by monocular imagery has an immanent drawback.
Thus monocular 3D detection always shows poor accuracy for far objects.

4 REFORMULATE OUTPUT REPRESENTATION FOR MONOCULAR 3D
DETECTION

4.1 WHY NOT USING PREVIOUS DETECTION OUTPUT REPRESENTATION?

Considering the dimension gap in monocular 3D detection, i.e., the absent depth dimension in the
lifting process from 2D to 3D, we rethink the detection output representation, with raising a question:
the discrete representation adopted by previous works is indeed suitable? Unfortunately, we give a
negative answer. We list our main reasons as below: (i) Different dimensional information for
input. Given only 2D information, the monocular 3D detection task is required to output precise
3D information. The discrete and unique output cannot precisely reflect the uncertainty in the lifted
prediction process. (ii) Extensive 3D outdoor space. It is very challenging to reason a discrete yet
accurate 3D box in the extremely extensive 3D outdoor space. The ill-posed monocular imagery
further enhances the difficulty of this challenge. (iii) The high reliance on safety in the autonomous
driving scenario. To avoid collision with other obstacles and better planning, the ego-car/robot
should detect as many precise locations of objects as possible in the current scene, i.e., pursuing a
higher recall, while current discrete representation is hard to achieve this goal.

4.2 SPATIAL PROBABILITY DISTRIBUTION IN OUTPUT REPRESENTATION

Based on the above analysis, we propose to reformulate the output representation for monocular 3D
detection. Focusing on handling the absent depth dimension, we transform the discrete detection
output as a spatial probability distribution in the depth range. Considering the known fact: since the
precise instance depth is unachievable, we can use the spatial probability distribution to more com-
prehensively represent the 3D object. This representation also provides more valuable information
such as location uncertainty nearby the object for downstream tasks, e.g., tracking and planning.

Specifically, for a discrete monocular 3D object prediction parameterized by the location (x, y, z),
dimension (h,w, l), orientation (θ), and confidence (C), we first convert the depth z to the normal
distribution N(z, σ). Since this probability distribution is to reflect the relative uncertainty of the
depth prediction in 3D space, we use the relative probability to represent the depth uncertainty and
thus the final depth confidence is as follows:

t(s) = e−
(s−z)2

σ2 , σ = e
z
λ (3)

where s denotes any depth and t(s) refers to the relative depth confidence. With the growth of depth,
the standard deviation in the normal distribution is becoming larger as the depth is more and more
difficult to be predicted. Combing with the original confidence (typically the classification), the final
confidence for the object at depth s is: Cs = C · t(s). Also, due to the projection relationship, the
location x, y should be changed to fit the new depth s. Therefore the location of object at new depth
s is (xz s,

y
z s, s). Other parameters (dimension and orientation) do not change. We term this spatial

probability distribution for location the location distribution.

The location distribution has serval advantages. First, it is naturally suitable for monocular 3D
detectors as it directly expresses the uncertainty of the predicted depth into the output. Second, it
is more comprehensively and accurately to describe the obstacles status, while prior methods using
the discrete output representation can be overconfident on a less accurate prediction. Third, this
output representation is flexible, which is also compatible with the previous representation (when λ
in Equation 3 is set to −∞).
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4.3 SAMPLING STRATEGY

Figure 4: Two sampling strategies in the
location distribution.

By using the location distribution for each discrete
original output, we have a series of probabilities repre-
sentation for objects. Then, we sample locations from
the location distribution as new detection results, to
evaluate the results. We propose two sampling strate-
gies and show them in Figure 4.

• Depth-shift-based Sampling. We first define a
depth shift set prior and then use the depth shift from
the set for each original detection output. Each depth
shift can associate with one location in the location dis-
tribution. For the object with the original depth z, the
new detection results are:

Locnew = f(z + ds), ds ∈ Ds (4)

As shown in Equation 4, Locnew denotes new locations and Ds refers to the depth shift set, and f
refers to the function of sampling locations according to depth.

• Probability-shift-based Sampling. Similar to depth-shift-based sampling, we use a prior proba-
bility set to sample locations.

Locnew = g(ps), ps ∈ Ps (5)

As shown in Equation 5, Ps refers to the probability shift set, and g refers to the function of sampling
locations according to the relative depth probability. Our experiments show that both sampling
strategies bring significant improvements for the original detector.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

For the λ in Equation 3, we use 80 for KITTI Geiger et al. (2012) and 160 for Waymo Sun et al.
(2020) as Waymo dataset covers larger depth ranges. We use the set [±2,±1,±0.5, 0] meters for
depth-interval-based sampling and the set [0.7, 0.8, 0.9, 1.0] for probability-shift-based sampling.
The depth-interval-based sampling strategy is employed by default. We re-implement the baseline
detectors using officially released codes for validation. We employ CaDDN Reading et al. (2021)
for most ablation studies. Also, considering that close objects are accurate enough in terms of depth
estimation, we do not transform the output representation for objects within 10 meters.

5.2 DATASET AND METRICS

We conduct experiments in KITTI Geiger et al. (2012) and Waymo Sun et al. (2020) dataset. KITTI
dataset is the widely employed benchmark for monocular 3D detection. Specifically, KITTI pro-
vided 7481 samples for training and 7518 samples for testing, where the training set is publicly
available and labels in the test keep secret. To make fair comparisons, we adopt the commonly used
training/validation dataset split introduced in Chen et al. (2017), which divides the public available
data into a new training set including 3712 samples and a validation set including 3769 samples. We
conduct experiments on the KITTI validation set and official test set under two core tasks: bird’s eye
view (BEV) and 3D object detection in three difficulties. Difficulties of objects are subdivided into
easy, moderate, and hard in terms of the occlusion level, truncation, and bounding box height. We
provide performances under AP40 metrics Simonelli et al. (2019) to evaluate the proposed method.

Recently, some large public datasets for autonomous driving are released, where the Waymo Open
Dataset Sun et al. (2020) is a typical one. Waymo dataset consists of 798 training sequences and
202 validation sequences. Different from KITTI, it provides 3D box labels in the 360◦ field of view
(FOV), while we only use the front view for the monocular task, and we use the same data processing
strategy proposed in CaDDN Reading et al. (2021).
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Table 2: Performance of using our representation on different SOTA monocular detectors. We only
change the output representation. All methods are evaluated on KITTI val set with metric AP |R40

.

Approaches APBEV /AP3D (IoU=0.7)|R40 Relative
ImprovementsEasy Moderate Hard

MonoGRNet Qin et al. (2019) 19.58/11.85 12.73/7.52 10.08/5.73
22%-47%MonoGRNet+Ours 23.95/15.63 17.11/10.70 13.51/8.45

Improvements +4.37/+3.78 +4.38/+3.18 +3.43/+2.72

M3D-RPN Brazil & Liu (2019) 20.57/14.36 15.46/10.95 11.76/8.58
16%-29%M3D-RPN+Ours 23.86/17.42 19.15/13.70 15.19/10.87

Improvements +3.29/+3.06 +3.69/+2.75 +3.43/+2.29

Pseudo-LiDAR Wang et al. (2019) 37.77/25.19 21.31/12.72 17.92/10.22
9%-28%Pseudo-LiDAR +Ours 41.00/27.98 25.67/15.73 21.87/13.13

Improvements +3.23/+2.79 +4.36/+3.01 +3.95/+2.91

RTM3D Li et al. (2020) 20.72/13.02 15.78/10.60 13.84/9.25
30%-53%RTM3D+Ours 26.99/18.19 22.10/15.70 20.28/14.17

Improvements +6.27/+5.17 +6.32/+5.10 +6.44/+4.92

D4LCN Ding et al. (2020) 31.82/22.85 22.43/16.02 17.05/12.21
13%-26%D4LCN +Ours 35.81/26.48 26.70/19.59 21.09/15.34

Improvements +3.99/+3.63 +4.27/+3.57 +4.04/+3.13

KM3D Li & Zhao (2021) 25.07/16.01 17.85/11.68 15.60/10.57
22%-48%KM3D +Ours 30.64/21.46 24.13/17.27 21.74/15.59

Improvements +5.57/+5.45 +6.28/+5.59 +6.14/+5.02

PatchNet Ma et al. (2020) 43.97/32.56 25.43/17.71 20.73/13.98
6%-28%PatchNet +Ours 46.72/36.69 29.79/21.19 25.65/17.90

Improvements +2.75/+4.13 +4.36/+3.48 +4.92/+3.92

GrooMeD-NMS Kumar et al. (2021) 27.25/19.60 19.65/14.28 15.87/11.25
18%-32%GrooMeD-NMS +Ours 32.19/23.94 25.77/19.07 20.54/14.85

Improvements +4.94/+4.34 +6.12/+4.79 +4.67/+3.60

MonoFlex Zhang et al. (2021) 28.28/20.02 21.56/15.19 18.79/12.95
19%-42%MonoFlex +Ours 33.57/24.83 27.48/20.62 24.48/18.44

Improvements +5.29/+4.81 +5.92/+5.43 +5.69/+5.49

CaDDN Reading et al. (2021) 30.98/23.19 21.18/15.84 19.14/13.42
15%-35%CaDDN +Ours 35.66/27.25 26.97/20.23 24.89/18.13

Improvements +4.68/+4.06 +5.79/+4.39 +5.75/+4.71

Monodle Ma et al. (2021) 25.26/17.37 20.51/14.34 17.93/12.83
17%-35%Monodle +Ours 29.47/22.52 25.23/19.57 22.52/17.29

Improvements +4.21/+5.15 +4.72/+5.23 +4.59/+4.46

LPCG Peng et al. (2021) 40.24/31.15 30.55/23.42 27.32/20.60
13%-31%LPCG +Ours 44.93/36.07 36.63/29.56 33.72/26.97

Improvements +4.69/+4.92 +6.08/+6.14 +6.40/+6.37

Table 3: Comparisons on Waymo. ”Rel. Imp.” in the table refers to relative improvements.

Represen-
tations

3D mAP 3D mAPH
Overall 0−30m 30−50m 50m−∞ Overall 0−30m 30−50m 50m−∞

Previous 5.19 19.08 2.26 0.15 5.00 18.52 2.14 0.14

Ours 6.66 23.27 3.67 0.25 6.40 22.52 3.45 0.23
Rel. Imp. 28.33% 21.96% 62.39% 66.67% 28.00% 21.60% 61.21% 64.29%

5.3 COMPARISONS ON KITTI AND WAYMO DATASET

As shown in Table 2, we provide the results on KITTI val set on 12 SOTA monocular 3D detectors.
We can see that the performance of original methods is largely boosted by employing our output
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representation. For instance, we improve the AP of M3D-RPN Brazil & Liu (2019) by 15.99%-
29.17% relative improvements and boost the AP of MonoFlex Zhang et al. (2021) by 18.71%-
42.39% relative improvements, which are rather impressive results. The consistent improvements
on most SOTA detectors demonstrate the effectiveness and robustness of our method. We show
results on KITTI test set in Table 4, and we set a new state-of-the-art with a considerable margin.

To further demonstrate the robustness of the proposed method, we conduct experiments on Waymo
dataset, which is a new large dataset for the research of autonomous driving. We exhibit the results
in Table 3, we can see that our method brings significant improvements.

Table 4: Comparisons on KITTI testing set. We use LPCG as the baseline detector, and our method
outperforms other methods with a considerable margin.

Approaches APBEV (IoU=0.7)|R40 AP3D (IoU=0.7)|R40

Easy Moderate Hard Easy Moderate Hard

MonoGRNet Qin et al. (2019) 18.19 11.17 8.73 15.74 9.61 4.25
MonoPSR Ku et al. (2019) 18.33 12.58 9.91 10.76 7.25 5.85
AM3D Ma et al. (2019) 25.03 17.32 14.91 16.50 10.74 9.52
M3D-RPN Brazil & Liu (2019) 21.02 13.67 10.23 14.76 9.71 7.42
MonoPair Chen et al. (2020) 19.28 14.83 12.89 13.04 9.99 8.65
D4LCN Ding et al. (2020) 22.51 16.02 12.55 16.65 11.72 9.51
RTM3D Li et al. (2020) 19.17 14.20 11.99 14.41 10.34 8.77
PatchNet Ma et al. (2020) 22.97 16.86 14.97 15.68 11.12 10.17
Kinematic3D Brazil et al. (2020) 26.69 17.52 13.10 19.07 12.72 9.17
Neighbor-Vote Chu et al. (2021) 27.39 18.65 16.54 15.57 9.90 8.89
MonoRUn Chen et al. (2021) 27.94 17.34 15.24 19.65 12.30 10.58
MonoRCNN Shi et al. (2021) 25.48 18.11 14.10 18.36 12.65 10.03
DDMP-3D Wang et al. (2021) 28.08 17.89 13.44 19.71 12.78 9.80
Monodle Ma et al. (2021) 24.79 18.89 16.00 17.23 12.26 10.29
CaDDN Reading et al. (2021) 27.94 18.91 17.19 19.17 13.41 11.46
Ground-Aware Liu et al. (2021a) 29.81 17.98 13.08 21.65 13.25 9.91
GrooMeD-NMS Kumar et al. (2021) 26.19 18.27 14.05 18.10 12.32 9.65
MonoEF Zhou et al. (2021) 29.03 19.70 17.26 21.29 13.87 11.71
MonoFlex Zhang et al. (2021) 28.23 19.75 16.89 19.94 13.89 12.07
AutoShape Liu et al. (2021b) 30.66 20.08 15.95 22.47 14.17 11.36
DD3D Park et al. (2021) 30.98 22.56 20.03 23.22 16.34 14.20
LPCG Peng et al. (2021) 35.96 24.81 21.86 25.56 17.80 15.38

Ours 39.74 28.84 26.08 29.15 21.24 19.18
Improvements +3.78 +4.03 +4.22 +3.59 +3.44 +3.80

5.4 EFFECTIVENESS ANALYSIS

Figure 5: P-R curves of using previous represen-
tation and ours on KITTI test set. Solid lines: pre-
vious; dashed lines: ours.

Our output representation shows promising im-
provements in terms of performance numbers.
Here we give a more intuitive interpretation for
the improvements via the P-R (precision-recall)
curve. In Figure 5, we show P-R curves of a
monocular 3D detector that uses different out-
put representations. We can see that our method
does not have impacts on the high precision
and low recall regions, while works on low
precision and high recall regions. Therefore,
our method mostly boosts the recall to improve
the performance of the monocular 3D detector,
consequently improving the safety of the sys-
tem equipped with monocular 3D detectors.

5.5 ABLATION STUDIES

We perform ablation studies to investigate the impact of each component on our method.
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Table 5: Ablation for different sampling number
on the location distribution.

Sampling
Number

APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

Baseline(1) 30.98/23.19 21.18/15.84 19.14/13.42
3 34.54/26.35 25.51/19.15 21.18/16.75
5 35.43/27.17 26.63/19.92 24.18/17.99
7 35.68/27.25 26.99/20.24 24.91/18.14
9 35.66/27.25 26.97/20.23 24.89/18.13

Table 6: Ablation for depth uncertainty. ”Un.” in
the table refers to uncertainty and ”L-D” denotes
location distribution.

Un. L-D APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

30.98/23.19 21.18/15.84 19.14/13.42
X 9.74/8.34 9.79/7.86 9.74/7.38

X X 35.68/27.25 26.99/20.24 24.91/18.14

• Impact of Sampling Numbers. When sampling locations from the location distribution, the
sampling number also has impacts on the accuracy. We show the results in Table 5, and we can
know that a proper sampling number is preferred.

• Impact of Depth Uncertainty. In Table 6, we show the influence of depth uncertainty in the
location distribution. If the confidence of sampled locations are not weighted by the uncertainty, the
performance of the original method is largely downgraded, demonstrating the importance of depth
uncertainty in monocular 3D detection.

Table 7: Ablation for sampling strategies.

Sampling
Strategies

APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

Probability shift 35.76/27.56 26.93/20.45 24.25/18.29
Depth shift 35.68/27.25 26.99/20.24 24.91/18.14

• Impact of Sampling Strategy. We use
the proposed two sampling strategies, namely,
depth-shift-based and probability-shift-based.
As shown in Table 7, both two sampling strate-
gies bring significant improvements for the
original method, which demonstrate the effec-
tiveness of our method.

• Impact of Location Distribution. In this paper we only transform spatial probability for estimated
depth. To make a comprehensive comparison, we also apply this transformation on other location
parameters, i.e., x and y. We show the results in Table 8. We can see that imposing probability
transformation into other parameters which can be well inferred by known dimension is unnecessary
(x and y are usually denoted by the projection on the image and then recovered by depth).

5.6 PERFORMANCE ON PEDESTRIAN AND CYCLIST

We also perform experiments on other categories., and provide the results in Table 9. We can see
that our method also boosts the performance for other categories. It is worthy to note that the
improvements on the pedestrian are not impressive like other categories. It is because the orientation
estimation is another main challenge for the pedestrian whose shape and appearance are deformable.

Table 8: Ablation for probability distribution.

Probability
Distribution

APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

None 30.98/23.19 21.18/15.84 19.14/13.42
xy only 30.47/22.91 20.93/15.48 18.21/13.20

Depth + xy 35.20/26.92 26.02/19.52 23.73/17.37
Depth only 35.68/27.25 26.99/20.24 24.91/18.14

Table 9: Performance on other categories.

Represen-
tations Categories APBEV /AP3D (IoU=0.5)|R40

Easy Moderate Hard

Previous Pedestrian 13.78/11.64 10.25/8.80 8.07/6.74
Ours 14.23/12.00 10.78/8.87 8.61/7.04

Previous Cyclist 2.86/2.74 1.65/1.39 1.25/1.21
Ours 4.94/4.50 2.56/2.30 2.07/1.93

6 CONCLUSION

In this paper, we review previous detection tasks, argue that the monocular 3D detection task is
inherently different from other tasks. For monocular 3D detection, it lacks the depth dimension,
thus performing worse on unseen data. We further use a depth error lower bound for monocular
imagery to demonstrate this point. Therefore we propose to reformulate the previous discrete output
representation as the spatial probability distribution to take depth estimation uncertainty into con-
sideration. We also propose two sampling strategies to sample locations from location distribution.
As a result, experiments exhibit that our output representation brings very promising improvements
for most SOTA detectors. Additionally, considering the inherent depth uncertainty, we can use some
network designs to further boosting the detection accuracy in future work.
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