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ABSTRACT

In many machine learning tasks, input features with varying degrees of predic-
tive capability are usually acquired at some cost. For example, in human activity
recognition (HAR) and mobile health (mHealth) applications, monitoring perfor-
mance should be achieved with a low cost to gather different sensory features, as
maintaining sensors incur monetary, computation, and energy cost. We propose an
adaptive feature selection method that dynamically selects features for prediction
at any given time point. We formulate this problem as an `0 minimization problem
across time, and cast the combinatorial optimization problem into a stochastic
optimization formulation. We then utilize a differentiable relaxation to make the
problem amenable to gradient-based optimization. Our evaluations on four activity
recognition datasets show that our method achieves a favorable trade-off between
performance and the number of features used. Moreover, the dynamically selected
features of our approach are shown to be interpretable and associated with the
actual activity types.

1 INTRODUCTION

Acquiring predictive features is critical for building trustworthy machine learning systems, but this
often comes at a daunting cost. Such a cost can be in the form of energy needed to maintain an
ambient sensor (Ardywibowo et al., 2019; Yang et al., 2020), time needed to complete an experiment
(Kiefer, 1959), or manpower required to monitor a hospital patient (Pierskalla & Brailer, 1994).
Therefore, it becomes important not only to maintain good performance in the specified task, but also
a low cost to gather these features.

Indeed, existing Human Activity Recognition (HAR) methods typically use a fixed set of sensors,
potentially collecting redundant features to discriminate contexts (Shen & Varshney, 2013; Aziz
et al., 2016; Ertuǧrul & Kaya, 2017; Cheng et al., 2018). Classic feature selection methods such as
the LASSO and its variants can address the performance-cost trade-off by optimizing an objective
penalized by a term that helps promote feature sparsity (Tibshirani, 1996; Friedman et al., 2010,
2008; Zou & Hastie, 2005). Such feature selection formulations are often static, that is, a fixed set
of features are selected a priori. However, different features may offer different predictive power
under different contexts. For example, a health worker may not need to monitor a recovering patient
as frequently compared to a patient with the declining condition; an experiment performed twice
may be redundant; or a smartphone sensor may be predictive when the user is walking but not when
the user is in a car. By adaptively selecting which sensor(s) to observe at any given time point, one
can further reduce the inherent cost for prediction and achieve a better trade-off between cost and
prediction accuracy.

In addition to cost-efficiency, an adaptive feature selection formulation can also lead to more in-
terpretable and trustworthy predictions. Specifically, the predictions made by the model are only
based on the selected features, providing a clear relationship between input features and model
predictions. Existing efforts on interpreting models are usually based on some post-analyses of the
predictions, including the approaches in (1) visualizing higher level representations or reconstructions
of inputs based on them (Li et al., 2016; Mahendran & Vedaldi, 2015), (2) evaluating the sensitivity
of predictions to local perturbations of inputs or the input gradients (Selvaraju et al., 2017; Ribeiro
et al., 2016), and (3) extracting parts of inputs as justifications for predictions (Lei et al., 2016).
Another related but orthogonal direction is model compression of training sparse neural networks
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with the goal of memory and computational efficiency (Louizos et al., 2017; Tartaglione et al., 2018;
Han et al., 2015). All these works require collecting all features first and provide post-hoc feature
relevance justifications or network pruning.

Recent efforts on dynamic feature selection adaptively assign features based on immediate statis-
tics (Gordon et al., 2012; Bloom et al., 2013; Ardywibowo et al., 2019; Zappi et al., 2008), ignoring
the information a feature may have on future predictions. Others treat feature selection as a Markov
Decision Process (MDP) and use Reinforcement Learning (RL) to solve it (He & Eisner, 2012;
Karayev et al., 2013; Kolamunna et al., 2016; Spaan & Lima, 2009; Satsangi et al., 2015; Yang
et al., 2020). However, solving the RL objective is not straightforward. Besides being sensitive to
hyperparameter settings in general, approximations such as state space discretization and greedy
approximations of the combinatorial objective were used to make the RL problem tractable.

To this end, we propose a dynamic feature selection method that can be easily integrated into existing
deep architectures and trained from end to end, enabling task-driven dynamic feature selection. To
achieve this, we define a feature selection module that dynamically selects which features to use at
any given time point. We then formulate a sequential combinatorial optimization that minimizes the
trade-off between the learning task performance and the number of features selected at each time point.
To make this problem tractable, we cast this combinatorial optimization problem into a stochastic
optimization formulation. We then adopt a differentiable relaxation of the discrete feature selection
variables to make it amenable to stochastic gradient descent based optimization. It therefore can be
plugged-in and jointly optimized with state-of-the-art neural networks, achieving task-driven feature
selection over time. To show our method’s ability to adaptively select features while maintaining
good performance, we evaluate it on four time-series activity recognition datasets: the UCI Human
Activity Recognition (HAR) dataset (Anguita et al., 2013), the OPPORTUNITY dataset (Roggen
et al., 2010), the ExtraSensory dataset (Vaizman et al., 2017), as well as the NTU-RGB-D dataset
(Shahroudy et al., 2016).

Several ablation studies and comparisons with other dynamic and static feature selection methods
demonstrate the efficacy of our proposed method. Specifically, our dynamic feature selection is able
to use as low as 0.28% of the sensor features while still maintaining good human activity monitoring
accuracy. Moreover, our dynamically selected features are shown to be interpretable with direct
correspondence with different contexts and activity types.

2 METHODOLOGY

2.1 THE `0-NORM MINIMIZATION PROBLEM

Many regularization methods have been developed to solve simultaneous feature selection and model
parameter estimation (Tibshirani, 1996; Zou & Hastie, 2005; Tibshirani, 1997; Sun et al., 2014;
Simon et al., 2011). The ideal penalty for the purpose of feature selection is the `0-norm of the model
coefficients for all predictors. This norm is equivalent to the number of nonzero terms in all the
model coefficients. Given a dataset D containing N independent and identically distributed (iid)
input-output pairs {(x1,y1), . . . , (xN ,yN )} with each xi containing P features, a hypothesis class
of predictor functions f(·;θ), and a loss function L(ŷ,y) between prediction ŷ and true output y,
the `0-norm regularized optimization problem can be written as follows:

min
θ

1

N

( N∑
i=1

L(f(xi;θ),yi)

)
+ λ‖θ‖0, (1)

where ‖θ‖0 =
∑P

j=1 I[θj 6= 0] penalizes the number of nonzero model coefficients.

In the models that linearly transform the input features xi, penalizing the weights relating to each
feature in xi enables sparse feature subset selection. However, such a selection is static, as it does
not adaptively select features that are appropriate for a given context. Moreover, the optimization
above is computationally prohibitive as it involves combinatorial optimization to select the subset of
nonzero model coefficients corresponding to the input features.

In the following, we formulate our adaptive dynamic feature selection problem when learning
with multivariate time series. Coupled with training recurrent neural networks, this adaptive feature
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selection problem is transformed into a sequential context-dependent feature subset selection problem,
to which we devise a stochastic relaxation to make the problem tractable.

2.2 DYNAMIC FEATURE SELECTION VIA SEQUENTIAL CONTEXT-DEPENDENT FEATURE
SUBSET SELECTION

Instead of finding a subset of nonzero model coefficients, an equivalent formulation can be derived by
directly selecting the feature subset. Without loss of generality, let z be a binary vector that indicates
whether each feature is selected or not. Then, the original `0-norm optimization formulation can be
equivalently written as follows:

min
θ,z

1

N

( N∑
i=1

L(f(xi ◦ z;θ),yi)
)
+ λ‖z‖0. (2)

Compared to the original problem, the penalty on the number of selected features is through the
`0-norm of z. This formulation is more flexible, as z can be made dependent on corresponding input
features, output labels, or any contextual information, allowing us to formulate our dynamic feature
selection problem when learning with multivariate time series data. Specifically, let the input-output
pairs (xi,yi) be a pair of time series data of length Ti. At each time t, our model predicts the output
yt
i , as well as the next feature set to select zti . This optimization problem can be formulated as:

min
θ,z

1

N

( N∑
i=1

Ti∑
t=1

L(f(x0:t−1
i ◦ z0:t−1i ;θ),yt

i)

)
+ λ

N∑
i=1

Ti∑
t=1

‖zti‖0. (3)

Here, we are tasked to find a set of parameters θ and feature sets zti for each sample i at each time
point t to optimize the trade-off between model performance and the number of selected features. The
model then uses the parameters and the previously observed features X t

i , x0:t−1
i ◦ z0:t−1i to infer

the next output yt
i . However, the above formulation remains intractable, as it involves combinatorial

optimization to select the feature subsets at each time point, in addition to the joint optimization of the
model parameters and variable selection. Naively, one may also need to solve a separate optimization
problem to find zti for each time point during the run time. In the following section, we derive a
relaxation based on stochastic optimization parameterizing zti ’s to make the above problem tractable.

2.3 RELAXATION THROUGH STOCHASTIC OPTIMIZATION

Instead of finding the exact feature subsets indexed by zti that achieve the optimal regularized
objective, one can treat these zti ’s as binary random variables and seek to optimize the distribution
π(z|φ) that generates these random variables. For the ease of exposition, we first focus on the
relaxation of the non-adaptive formulation in (1) as follows:

min
θ,φ

E(xi,yi)∼D

[
Ez∼π(z|φ)

[
L(f(xi ◦ z;θ),yi) + λ‖z‖0

]]
. (4)

Note that the solution to this problem is equivalent to the original one, as the original combinatorial
problem can be recovered by setting π(z|φ) = Bern(φ), a Bernoulli distribution parameterized by
φ, and restricting φ ∈ {0, 1}. Using this relaxation, the regularization term can now be evaluated
analytically:

Ez∼π(z|φ)
[
‖z‖0

]
= Ez∼Bern(φ)

[
‖z‖0

]
=

P∑
j=1

π(z|φ)j =
P∑

j=1

φj , (5)

On the other hand, the outer expectation in (4) can be approximated using minibatches. Relaxation
of binary random variables has been adopted in Louizos et al. (2017) for network architecture
sparsification, and in Yamada et al. (2019); Balın et al. (2019) for static feature selection. Here, we
extend the above relaxation for time series data, where unlike previous works, the binary random
variables are parameterized locally and are context-dependent, and features are selected adaptively
across time. We first note that our adaptive feature selection formulation in (3) allows each time point
to have its own feature selection distribution πt

i(z|φ) , π(z|X
t−1
i ,φ) conditioned on previously

selected observed features X t−1
i as defined above. Let πi(z|φ) be the set of πt

i(z|φ) for all
t ∈ {1, . . . , Ti}. The stochastic relaxation of the adaptive feature selection formulation can be written
as follows:

min
θ,φ

E(xi,yi)∼D

[
Ezi∼πi(z|φ)

[ Ti∑
t=1

L(f(X t−1
i ;θ),yt

i)

]
+ λ

Ti∑
t=1

P∑
j=1

πt
i(z|φ)j

]
. (6)
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2.4 MODEL PARAMETERIZATION AND DIFFERENTIABLE RELAXATION

The difficulty in solving the above problem using gradient descent is that the discrete random variables
zti ’s are not directly amenable to stochastic reparameterization techniques. An effective and simple to
implement formulation that we adopt is the Gumbel-Softmax reparameterization (Jang et al., 2016;
Maddison et al., 2016), which relaxes a discrete valued random variable z parameterized by φ to
a continuous random variable z̃. Firstly, we can parameterize π(z|X t−1

i ,φ) using a vector-valued
function σ(X t−1

i ,φ) of the previous observations X t−1
i , with φ now being the parameters of σ(·).

The distribution can now be rewritten as π(z|X t−1
i ,φ) = Bern(σ(X t−1

i ,φ)). With this, the discrete
valued random variables zti can be relaxed into continuous random variables z̃ti as follows:

z̃ti =
1

1 + exp (−(logσ(X t−1
i ,φ) + L)/τ)

. (7)

Here, L = log u− log(1− u) is a logistic distribution, where u ∼ Unif(0, 1), and τ is a temperature
parameter. For low values of τ , z̃ti approaches a sample of a binary random variable, recovering the
original discrete problem, while for high values, z̃ti will equal 1

2 . With this, we are able to compute
gradient estimates of z̃ti and approximate the gradient of zti as∇θ,φzti ≈ ∇θ,φz̃ti . This enables us to
backpropagate through the discrete random variables and train the selection parameters along with
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Figure 1: The proposed Gated Recurrent Unit
(GRU) based architecture for our adaptive mon-
itoring model specification. Here, features at any
given time are selected based on the previous ob-
servations summarized by ht−1.

the model parameters jointly using stochas-
tic gradient descent. Meanwhile, at test time,
we sample binary random variables from the
learned probabilities.

2.5 MODEL SPECIFICATION

To complete our formulation, we specify the
model architecture that we use. We have imple-
mented our adaptive dynamic feature selection
with a Gated Recurrent Unit (GRU) (Cho et al.,
2014a), a type of Recurrent Neural Network
(RNN) (Graves et al., 2013), as shown in Fig-
ure 1. Here, we have the previous observations X t−1

i being summarized by the hidden state ht−1
i . For

adaptive feature selection, the selection distribution is made dependent on ht−1
i using a sigmoid of its

linear transformation by a weight matrix W as follows: σ(X t−1
i ,φ) = SIGMOID(Wht−1

i ), such that
φ = {W}. We note that such a module can be easily integrated into many existing deep architectures
and trained from end to end, allowing for task-driven feature selection. For example, the module
can be applied to Recurrent Convolutional Neural Networks (RCNN) (Liang & Hu, 2015) to selec-
tively determine which convolutional patches/channels to use, or to general feedforward networks to
selectively deactivate certain neurons/channels to reduce computation. We have demonstrated this
ability by applying it to an Independent RNN (Li et al., 2018) benchmarked on the NTU-RGB-D
dataset (Shahroudy et al., 2016), as detailed in Appendix A.4.

With the model specified, our method can be applied to existing human activity recognition datasets.
Specifically, we are now able to train a prediction model and dynamic feature selection policy offline,
and test it on a withheld testing set. The application of our model to online learning is subject to
future work.

3 RELATED WORK

Existing HAR systems typically use a fixed set of sensors, potentially collecting redundant features
for easily discriminated contexts. Methods that attempt to find a fixed or static feature set often
rank feature sets using metrics such as Information Gain (Shen & Varshney, 2013), or relevancy
ranking through a filtering strategy (Aziz et al., 2016; Ertuǧrul & Kaya, 2017; Cheng et al., 2018).
However, static feature selection can potentially result in collecting redundant information for highly
discriminable contexts.

Work on dynamic feature selection can be divided into Reinforcement Learning (RL) based and non-
RL approaches. Non-RL based approaches vary from assigning certain features to certain activities
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(Gordon et al., 2012), pre-defining feature subsets for prediction (Bloom et al., 2013; Strubell et al.,
2015), optimizing the trade-off between prediction entropy and the number of selected features
(Ardywibowo et al., 2019), to building a metaclassifier for sensor selection (Zappi et al., 2008).
These methods all use immediate rewards to perform feature selection. For predicting long activity
sequences, this potentially ignores the information that a feature may have on future predictions, or
conversely, overestimate the importance of a feature given previous observations.

Among the RL based approaches, some methods attempt to build an MDP to decide which feature to
select next or whether to stop acquiring features and make a prediction (He & Eisner, 2012; Karayev
et al., 2013; Kolamunna et al., 2016). These methods condition the choice of one feature on the
observation generated by another one, instead of choosing between all sensors simultaneously. Spaan
& Lima (2009) and Satsangi et al. (2015) formulated a Partially Observable MDP (POMDP) using
a discretization of the continuous state to model the policy. Yang et al. (2020) formulate an RL
objective by penalizing the prediction performance by the number of sensors used. Although using a
desirable objective, the method employs a greedy maximization process to approximately solve the
combinatorial optimization. Moreover, they do not integrate easily with existing deep architectures.

Attention is another method worth noting, as it is able to select the most relevant segments of a
sequence for the current prediction (Vaswani et al., 2017). Attention modules have been recently
used for activity recognition (Ma et al., 2019). However, like most attention methods, it requires all
of the features to be observed before deciding which features are the most important for prediction.
Moreover, the number of instances attended to is not penalized. Finally, soft attention methods
typically weight the inputs, instead of selecting the feature subset. Indeed, our experiments on naively
applying attention for dynamic feature selection show that it always selects 100% of the features at
all times.

Sparse regularization has previously been formulated for deep models, e.g., Liu et al. (2015); Louizos
et al. (2017); Frankle & Carbin (2018), but their focus has primarily been in statically compressing
model sizes or reducing overfitting, instead of dynamically selecting features for prediction. In
particular, `1 regularization is a common method to promote feature sparsity (Tibshirani, 1996;
Friedman et al., 2010, 2008; Zou & Hastie, 2005).

Selection or skipping along the temporal direction to decide when to memorize vs update model
state has been considered in Hu et al. (2019); Campos et al. (2018); Neil et al. (2016). These works
either are not context dependent or do not consider energy efficiency or ineterpretability. Additionally,
skipping time steps may not be suitable for continuous monitoring tasks including HAR, where
we are tasked to give a prediction at every time step. Nevertheless, our dynamic/adaptive feature
selection is orthogonal to temporal selection/skipping and we leave exploring the potential integration
of these two directions as our future research.

Finally, there have been many formulations that propose to solve the issue of backpropagation through
discrete random variables (Jang et al., 2016; Maddison et al., 2016; Tucker et al., 2017; Grathwohl
et al., 2017; Yin & Zhou, 2018). REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al., 2017)
employ REINFORCE and introduce relaxation-based baselines to reduce sample variance of the
estimator. However, these baseline functions increase the computation and cause potential conflict
between minimizing the sample variance of the gradient estimate and maximizing the expectation
objective. Augment-REINFORCE-Merge is a self-control gradient estimator that does not need
additional baselines (Yin & Zhou, 2018). It provides unbiased gradient estimates that exhibit low
variance, but its direct application to autoregressive or sequential setups is not addressed by Yin &
Zhou (2018) and leads to approximate gradients. Moreover, an exact sequential formulation will
require prohibitive computation, squared in sequence length forward passes.

4 EXPERIMENTS

Benchmark Datasets and Performance Evaluation We evaluate our model on four different
datasets: the UCI Human Activity Recognition (HAR) using Smartphones Dataset (Anguita et al.,
2013), the OPPORTUNITY Dataset (Roggen et al., 2010), the ExtraSensory dataset (Vaizman et al.,
2017), and the NTU-RGB-D dataset (Shahroudy et al., 2016). Although there are many other human
activity recognition benchmark datasets (Chen et al., 2020), we choose the above datasets to better
convey our message of achieving feature usage efficiency and interpretability using our adaptive
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feature selection framework with the following reasons. First, the UCI HAR dataset is a clean dataset
with no missing values, allowing us to benchmark different methods without any discrepancies in data
preprocessing confounding our evaluations. Second, the OPPORTUNITY dataset contains activity
labels that correspond to specific sensors. An optimal adaptive feature selector should primarily
choose these sensors under specific contexts with clear physical meaning. Finally, the ExtraSensory
dataset studies a multilabel classification problem, where two or more labels can be active at any
given time, while the NTU-RGB-D dataset is a complicated activity recognition dataset with over 60
classes of activities using data from 25 skeleton joints. These datasets allow us to benchmark model
performance in a complex setting. For all datasets, we randomly split data both chronologically
and by different subjects. More details for each dataset and its corresponding experiment setup is
provided under its own subheading in the following and also in Appendix A. Due to the page limit,
our implementation details and results on the NTU-RGB-D dataset are available in Appendix A
and B.

We investigate several aspects of our model performance on these benchmarks. To show the effect
in prediction accuracy when our selection module is considered, we compare its performance to
a standard GRU network (Cho et al., 2014b). To show the effect of considering dynamic feature
selection, we compare a nonadaptive `0 formulation that statically selects features by solving (4)
(Louizos et al., 2017). The performance of our `0 regularized formulation is also benchmarked
with an `1 regularized formulation. To benchmark the performance of our differentiable relaxation-
based optimization strategy, we implement the Straight-Through estimator (Hinton et al., 2012) and
Augment-REINFORCE-Merge (ARM) gradient estimates (Yin & Zhou, 2018) as alternative methods
to optimize our formulation. As stated in the previous section, the fully sequential application of
ARM was not addressed in the original paper, and will be prohibitively expensive to compute exactly.
Hence, we combine ARM and Straight-Through (ST) estimator (Hinton et al., 2012) as another
approach to optimize our formulation. More specifically, we calculate the gradients with respect to
the Bernoulli variables with ARM, and use the ST estimator to backpropagate the gradients through
the Bernoulli variables to previous layers’ parameters. We also have tested different values for the
temperature hyperparameter τ in Appendix D, where we observe that the settings with the temperature
parameters below 1 generally yield the best results with no noticeable performance difference.

To further show the importance of considering the sparse regularized formulation, we compare with
an attention-based feature selection, selecting features based on the largest attention weights. Because
attention yields feature attention weights instead of feature subsets, we select features by using a hard
threshold α of the attention weights and scaling the selected features by 1− α for different values
of α. Indeed, without this modification, we observe that an attention-based feature selection would
select 100% of the features at all times.

Finally, we have attempted to implement the dynamic feature selection method by Yang et al. (2020)
as a distinctly different benchmark. However, without any implementation details provided by the
authors, we were not able to reproduce their results.

UCI HAR Dataset We first test our proposed method on performing simultaneous prediction and
adaptive feature selection on the UCI HAR dataset (Anguita et al., 2013). This dataset consists of 561
smartphone sensor measurements including various gyroscope and accelerometer readings, with the
task of inferring the activity that the user performs at any given time. There are six possible activities
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Figure 2: UCI HAR Dataset results: (a) Prediction and features selected of the proposed model
λ = 1. (b) Feature selection vs. accuracy trade-off curve comparison. (c) Heatmap of sensor feature
activations under each activity of the UCI HAR dataset. Only active features are shown out of the
561 features in total.
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Table 1: Comparison of various optimization techniques for our model on the UCI HAR dataset.
*Accuracies and average number of features selected are in (%).

Method Accuracy Feat. Selected
Gumbel-Softmax λ = 1 97.18 0.28
ARM λ = 1 (Yin & Zhou, 2018) 95.73 11.67
ST-ARM λ = 1 (Yin & Zhou, 2018; Hinton et al., 2012) 92.79 1.92
Straight Through λ = 1 (Hinton et al., 2012) 89.38 0.31
L1 Regularization λ = 1 90.43 19.48
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Figure 3: OPPORTUNITY Dataset results: (a) Prediction and features selected of the proposed model
λ = 1. (b) Prediction and features selected of the proposed model on a set of activity transitions. (c)
Feature selection vs. Error trade-off curve comparison.
that a subject can perform: walking, walking upstairs, walking downstairs, sitting, standing, and
laying.

We first compare various optimization methods, using stochastic gradients by differential relaxation
using Gumbel-Softmax reparametrization, ARM, ST-ARM, Straight-Through gradients, and an `1
regularized formulation to solve adaptive feature selection. The results are provided in Table 1. As
shown, Gumbel-Softmax achieves the best prediction accuracy with the least number of features.
Utilizing either the Straight Through estimator, ARM, or ST-ARM for gradient estimation cannot
provide a better balance between accuracy and efficiency compared with the Gumbel-Softmax
relaxation-based optimization. Indeed, the performance of the ST estimator is expected, as there is a
mismatch between the forward propagated activations and the backward propagated gradients in the
estimator. Meanwhile, we attribute the lower performance of the ARM and ST-ARM optimizer to
its use in a sequential fashion, which was not originally considered. The lower performance of the
`1 regularized formulation is expected, as `1 regularization is an approximation to the problem of
selecting the optimal feature subset. In the following experiments, we have seen similar trends and
only report the results from the Gumbel-Softmax based optimization.

Benchmarking results of different models are given in Table 2. As shown, our adaptive feature
selection model is able to achieve a competitive accuracy using only 0.28% of the features, or on
average about 1.57 sensors at any given time. We also observe that both the attention and our adaptive
formulation is able to improve upon the accuracy of the standard GRU, suggesting that feature
selection can also regularize the model to improve accuracy. Although the attention-based model
yields the best accuracy, this comes at a cost of utilizing around 50% of the features at any given time.
We also have checked the average accuracy of our model on a time-aligned testing set to show that
our model is stable for long-term predictions in Appendix E.

We study the effect of the regularization weight λ by varying it from λ ∈ {1, 0.1, 0.01, 0.005, 0.001}.
We compare this with the attention model by varying the threshold α used to select features from
α ∈ {0.5, 0.9, 0.95, 0.99, 0.995, 0.999}, as well as the nonadaptive model by varying its λ from
λ ∈ {1000, 100, . . . 0.01, 0.005, 0.001}. A trade-off curve between the number of selected features
and the performance for the three models can be seen in Figure 2(b). As shown in the figure, the
accuracy of the attention model suffers increasingly with smaller feature subsets, as attention is
not a formulation specifically tailored to find sparse solutions. On the other hand, the accuracy of
our adaptive formulation is unaffected by the number of features, suggesting that selecting around
0.3% of the features on average may be optimal for the given problem. It further confirms that our
adaptive formulation selects the most informative features given the context. The performance of
Table 2: Comparison of various models for adaptive monitoring on three activity recognition datasets.
*Accuracy metrics and average number of features selected are all in (%).

Method UCI HAR OPPORTUNITY ExtraSensory
Accuracy Features Accuracy Features Accuracy F1 Features

Adaptive (Ours) λ = 1 97.18 0.28 84.26 15.88 91.14 55.06 11.25
Attention α = 0.5 98.38 49.94 83.42 54.20 90.37 53.29 54.73

Nonadaptive λ = 1 (Louizos et al., 2017) 95.49 14.35 81.63 49.57 91.13 53.18 42.32
No selection (GRU) (Cho et al., 2014b) 96.67 100 84.16 100 91.14 53.53 100
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the nonadaptive model is consistent for feature subsets of size 10% or greater. However, it suffers a
drop in accuracy for extremely small feature subsets. This shows that for static selection, selecting a
feature set that is too large would result in collecting many redundant features for certain contexts,
while selecting a feature set that is too small would be insufficient for maintaining accuracy.

An example of dynamically selected features can be seen in Figure 2(a). We plot the prediction of
our model compared to the true label and illustrate the features that are used for prediction. We
also plot a heatmap for the features selected under each activity in Figure 2(c). Although these
features alone may not be exclusively attributed as the only features necessary for prediction under
specific activities, such a visualization is useful to retrospectively observe the features selected by
our model at each time-point. Note that mainly 5 out of the 561 features are used for prediction at
any given time. Observing the selected features, we see that for the static activities such as sitting,
standing, and laying, only sensor feature 52 and 63, features relating to the gravity accelerometer,
are necessary for prediction. On the other hand, the active states such as walking, walking up, and
walking down requires 3 sensor features: sensor 65, 508, and 556, which are related to both the
gravity accelerometer and the body accelerometer. This is intuitively appealing as, under the static
contexts, the body accelerometer measurements would be relatively constant, and unnecessary for
prediction. On the other hand, for the active contexts, the body accelerometer measurements are
necessary to reason about how the subject is moving and accurately discriminate between the different
active states. Meanwhile, we found that measurements relating to the gyroscope were unnecessary
for prediction.

UCI OPPORTUNITY Dataset We further test our proposed method on the UCI OPPORTUNITY
Dataset (Roggen et al., 2010). This dataset consists of multiple different label types for human
activity, ranging from locomotion, hand gestures, to object interactions. The dataset consists of 242
measurements from accelerometers and Inertial Measurement Units (IMUs) attached to the user, as
well as accelerometers attached to different objects with which the user can interact.

We use the mid-level gesture activities as the target for our models to predict, which contain gestures
related to specific objects, such as opening a door and drinking from a cup. A comparison of the
accuracy and the percentage of selected features by different models is given in Table 2, while
example predictions and a trade-off curve are constructed and shown in Figures 3(a), 3(b), and 3(c),
with a similar trend as the results on the UCI HAR dataset. Notably, the trade-off for the nonadaptive
models remains constant for λ ∈ {0.0001, 0.001, . . . , 1}, with a sharp decrease in accuracy for
λ ≥ 10.

A heatmap for the selected features under each activity is shown in Figure 4. Here, the active sensor
features across all activities are features 40 and 42, readings of the IMU attached to the subject’s
back, feature 82, readings from the IMU attached to the left upper arm (LUA), and features 230 and
239, location tags that estimate the subject’s position. We posit that these general sensor features are
selected to track the subject’s overall position and movements, as they are also predominantly selected
in cases with no labels. Meanwhile, sensors 5, 6, and 16, readings from the accelerometer attached to
the hip, LUA, and back, are specific to activities involving opening/closing doors or drawers.

Interestingly, sensors attached to specific objects, such as accelerometers on doors and cups, are
unnecessary for prediction. We attribute this to the severe amount of missing values of these
sensors. Indeed, the sensors that have the least amount of missing values are the body sensors
and the localization tags. We hypothesize that the model prefers these sensors for their consistent
discriminative power on multiple activity types compared to the object specific sensors. In addition
to these object specific sensors, 5 IMUs, 9 accelerometers, and 2 localization tags can be completely
turned off without significantly affecting prediction performance on this task.
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ExtraSensory Dataset We further test our proposed method on the ExtraSensory Dataset (Vaizman
et al., 2017). This is a multilabel classification dataset, where two or more labels can be active at any
given time. It consists of 51 different context labels, and 225 sensor features. We frame the problem
as a multilabel binary classification problem, where we have a binary output for each label indicating
whether it is active. A comparison of the accuracy and selected features by different models tested
can be seen in Table 2. Our method is again competitive with the standard GRU model using less
than 12% of all the features.

A trade-off curve is shown in Figure 5(b), where we see a similar trend for both adaptive and attention
models. However we were unable to obtain a feature selection percentage lower than 25% for the
nonadaptive model even with λ as large as 104. We believe that this is because at least 25% of
statically selected features are needed; otherwise the nonadaptive model will degrade in performance
catastrophically, similar to the OPPORTUNITY dataset results. A heatmap and detailed discussion of
the features that our model dynamically selected can be found in Appendix C.

The results on these three datasets along with the results on the NTU-RGB-D dataset in Appendix B
indicate that our adaptive monitoring framework provides the best trade-off between feature efficiency
and accuracy, while the features that it dynamically selects are also interpretable and associated with
the actual activity types.

5 CONCLUSIONS

We propose a novel method for performing adaptive feature selection by sequential context-dependent
feature subset selection, which is cast into a stochastic optimization formulation by modifying the
`0 regularized minimization formulation. To make this problem tractable, we perform a stochastic
relaxation along with a differentiable reparamaterization, making the optimization amenable to
gradient-based optimization with auto-differentiation. We apply this method to human activity
recognition by implementing our method to Recurrent Neural Network-based architectures. We
benchmark our model on four different activity recognition datasets and have compared it with
various adaptive and static feature selection benchmarks. Our results show that our model maintains
a desirable prediction performance using a fraction of the sensors or features. The features that our
model selected were shown to be interpretable and associated with the activity types.
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A IMPLEMENTATION DETAILS

Here, we provide the implementation details for the reported results in each benchmark dataset. In
general, the added computation and memory incurred by our adaptive monitoring framework are
insignificant, as it consists of only an additional fully connected layer used to infer the next feature
set. This would only add extra H × P parameters and multiply-add operations, where H is the
number of hidden neurons and P is the number of input features. This additional computational
burden is insignificant compared to the memory and computational cost of the main network, which
are typically of order higher than O(HP ).

A.1 UCI HAR DATASET

The UCI HAR dataset consists of a training set and a testing set. To implement our adaptive feature
selection and other baseline methods, we divide the training set into a separate validation set consisting
of 2 subjects. We preprocess the data by normalizing it with the mean and standard deviation. We
then divide the instances of each subject into segments of length 200.

The base model we utilize is a one-layer GRU with 2800 neurons for the hidden state. We use the
cross-entropy of the predicted vs. actual labels as the performance measure. We use a temperature of
0.05 for the Gumbel-Softmax relaxation. We optimize this with a batch size of 10 using the RMSProp
optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 3000 epochs. We
then save both the latest model and the best model validated on the validation set.

A.2 OPPORTUNITY DATASET

The OPPORTUNITY dataset consists of multiple demonstrations of different activity types. We first
extract the instances into segments containing no missing labels for the mid-level gestures. Segments
of length smaller than 100 are padded using the observed values at the next time-points in the instance.
We then normalize the data such that its values are between -1 and 1. The authors of the dataset
recommended removing some features that they believed are not useful, however we find that this
does not affect performance and instead use the entire feature set. We have also experimented with
interpolating the missing values but also find that it does not affect performance compared to imputing
the missing values with zeros. Using this, we randomly shuffle the segments and assign 80% for
training, 10% for validation, and 10% for testing.

The base model we utilize is a two-layer GRU with 256 neurons for each layer’s hidden state. The
cross-entropy of the predicted vs. actual labels is adopted as the performance measure. We use a
temperature of 0.05 for the Gumbel-Softmax relaxation. We do not include the cross-entropy loss for
the time points with missing labels. We also scale the total performance loss of the observed labels
for each batch by #timepoints

#labelled timepoints . We optimize this loss with a batch size of 100 using the RMSProp
optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 3000 epochs. We
then save both the latest model and the best model validated on the validation set.

A.3 EXTRASENSORY DATASET

The ExtraSensory dataset consists of multiple demonstrations of human behavior under different
activities, where two or more activity labels can be active at the same time. We first extract the
instances into segments containing no missing labels for the middle level gestures. Segments of
length smaller than 70 are padded using the observed values at the next time-points in the instance.
We then normalize the data such that its values are in between -1 and 1. We have experimented
with interpolating the missing values but also find that it does not affect performance compared to
imputing the missing values with zeros. Using this, we randomly shuffle the segments and assign
70% for training, 10% for validation, and 20% for testing.

The base model we utilize is a one-layer GRU with 2240 neurons for its hidden state. We use a
temperature of 0.05 for the Gumbel-Softmax relaxation. We use the binary cross-entropy of the
predicted vs. actual labels as the performance measure, where the model outputs a binary decision
for each label, representing whether each label is active or not. We do not include the performance
loss for the missing labels and scale the total performance loss of the observed labels for each batch
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by #timepoints×#total labels
#observed labels in labelled timepoints . We optimize this scaled loss with a batch size of 100 using the

RMSProp optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 10000
epochs. We then save both the latest model and the best model validated on the validation set.

A.4 NTU-RGB-D DATASET

We first preprocess the NTU-RGB-D dataset to remove all the samples with missing skeleton data.
We then segment the time-series skeleton data across subjects into 66.5% training, 3.5% validation,
and 30% testing sets. The baseline model that we have implemented for the NTU-RGB-D dataset is
the Independent RNN (Li et al., 2018). This model consists of stacked RNN modules with several
additional dropout, batch normalization, and fully connected layers in between. Our architecture
closely follows the densely connected independent RNN of Li et al. (2018). To incorporate feature
selection using either our adaptive formulation or an attention-based formulation, we add an additional
RNN to the beginning of this model. This RNN takes as input the 25 different joint features and is
tasked to select the joints to use for prediction further along the architecture pipeline. Since the joints
are in the form of 3D coordinates, our feature selection method is modified such that it selects either
all 3 of the X, Y, and Z coordinates of a particular joint, or none at all. Our architecture can be seen
in Figure 6.

Similar as the baseline method presented in Li et al. (2018), we have trained this architecture using a
batch size of 128 and a sequence length of 20 using the Adam optimizer with a patience threshold of
100 iterations. We then save both the latest model and the best model validated on the validation set.
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Figure 6: Our modified densely connected independent RNN architecture for adaptive feature
selection.

B RESULTS AND DISCUSSION OF THE NTU-RGB-D DATASET

We have tested our proposed method on the NTU-RGB-D dataset (Shahroudy et al., 2016). This
dataset consists of 60 different activities performed by either a single individual or two individuals.
The measurements of this dataset are in the form of skeleton data consisting of 25 different 3D
coordinates of the corresponding joints of the participating individuals.

We compare our method with three different baselines shown in Table 3: the standard independent
RNN, a soft attention baseline, and a thresholded attention baseline. We see that our method maintains
a competitive accuracy compared to the baseline using less than 50% of the features. On the other
hand, because the thresholded attention formulation is not specifically optimized for feature sparsity,
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Figure 7: Heatmap of sensor feature activations under each activity state of the NTU-RGB-D dataset.

we see that it performs significantly worse compared to the other methods. Meanwhile, the soft-
attention slightly improves upon the accuracy of the base architecture. However, as also indicated by
our other experiments, soft-attention is not a dynamic feature selection method, and tends to select
100% of the features at all times.

A heatmap for the features selected under each activity is shown in Figure 7. Here, we can see
that there are two distinct feature sets used for two different types of interactions: single person
interactions and two person interactions. Indeed, since the two person activities require sensor
measurements from two individuals, the dynamic feature selection would need to prioritize different
features to observe their activities as opposed to single person activities.

Table 3: Comparison of various methods for activity recognition on the NTU-RGB-D dataset.
*Accuracies and average number of features selected are in (%).

Method Accuracy Features Selected
Adaptive 80.54 49.65
Thresholded attention 40.07 52.31
Soft attention 83.28 100
No selection 83.02 100
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C RESULTS AND DISCUSSION OF THE EXTRASENSORY DATASET
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Figure 8: Heatmap of sensor feature activations under each activity state of the ExtraSensory dataset.

A heatmap of the features selected under each activity state can be seen in Figure 8. As shown,
there are four groups of sensor features that are used across activities: the phone magnetometer
(57-71), watch accelerometer magnitude (85-88), watch accelerometer direction (101-105), and
location (138-147). For two particular states, ‘on a bus’ and ‘drinking alcohol’, phone accelerometer
measurements (5-52) become necessary for prediction. Some states such as ‘at home’, ‘at main
workplace’, and ‘phone in pocket’ are notably sparse in sensor feature usage. We believe that these
states are static, and do not require much sensor usage to monitor effectively. Other sensors such
as the phone gyroscope, phone state, audio measurements and properties, compass, and various
low-frequency sensors are largely unnecessary for prediction in this dataset.

D EFFECTS OF THE HYPERPARAMETER τ ON MODEL PERFORMANCE

We observe the effects of the temperature hyperparameter in (7) on our model’s performance. To
do this, we have tested several hyperparameter values in our experiment with the UCI HAR dataset.
The results of our tests can be seen in Figure 9. In general, the settings with the temperature
parameters below 1 generally yield the best results with no noticeable performance difference. Once
the temperature is set to above 1, we observe a sharp increase in errors. We attribute this to the
mismatch between training and testing setups, where in testing, discrete binary values are sampled
while in training, the samples are reduced to an equal weighting between the features.

E MODEL PERFORMANCE AND STABILITY ACROSS TIME

We show the average accuracy over every 1000 seconds of running the model on the testing subjects
in the UCI HAR dataset in Table 4. Based on the performance of the model across time, the model is
shown to be stable for long-term predictions. In general, there is no clear temporal degradation in the
testing performance for this dataset. Instead, the change of prediction errors is mostly dependent on
the underlying activity types.

Table 4: The average model performance across time averaged across time-aligned testing subjects.

Time 0-999 1000-1999 2000-2999 3000-3999
Error (%) 3.49 2.93 6.46 4.06
Std. Dev. 1.89 1.23 1.05 1.67

16



Under review as a conference paper at ICLR 2021

10 2 10 1 100 101

Temperature

10

20

30

40

50

60

70

Er
ro

r (
%

)

Figure 9: The effect of the temperature hyperparameter τ on the performance of the model.

F UNION OF ALL FEATURES SELECTED BY THE ADAPTIVE MODEL

Here, in addition to showing the average number of selected features, we compute the percentage of
all features considered by our model across the full time-length. In other words, the results presented
here show the union of selected features across the time horizon. In Section 4, we chose to present the
average number of selected features as it directly reflects the number of required sensors for accurate
HAR. Hence, it clearly shows the benefits of our proposed dynamic/adaptive feature selection with
respect to the power usage for sensor data collection. From Table 5, it is clear that the percentage of
all the features considered across the full time-length is also significantly low for each of the three
benchmark datasets, which further validates the potential of our dynamic feature selection even when
additional operational cost of turning on/off sensors needs to be considered.

Table 5: The percentage of the union of selected features across three benchmark datasets.

Dataset (%) Union
UCI HAR 3.56
OPPORTUNITY 19.83
ExtraSensory 26.66

17



Under review as a conference paper at ICLR 2021

DYNAMIC FEATURE SELECTION FOR EFFICIENT AND
INTERPRETABLE HUMAN ACTIVITY RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

In many machine learning tasks, input features with varying degrees of predic-
tive capability are usually acquired at some cost. For example, in human activity
recognition (HAR) and mobile health (mHealth) applications, monitoring perfor-
mance should be achieved with a low cost to gather different sensory features, as
maintaining sensors incur monetary, computation, and energy cost. We propose an
adaptive feature selection method that dynamically selects features for prediction
at any given time point. We formulate this problem as an `0 minimization problem
across time, and cast the combinatorial optimization problem into a stochastic
optimization formulation. We then utilize a differentiable relaxation to make the
problem amenable to gradient-based optimization. Our evaluations on four activity
recognition datasets show that our method achieves a favorable trade-off between
performance and the number of features used. Moreover, the dynamically selected
features of our approach are shown to be interpretable and associated with the
actual activity types.

1 INTRODUCTION

Acquiring predictive features is critical for building trustworthy machine learning systems, but this
often comes at a daunting cost. Such a cost can be in the form of energy needed to maintain an
ambient sensor [1, 2], time needed to complete an experiment [3], or manpower required to monitor a
hospital patient [4]. Therefore, it becomes important not only to maintain good performance in the
specified task, but also a low cost to gather these features.

Indeed, existing Human Activity Recognition (HAR) methods typically use a fixed set of sensors,
potentially collecting redundant features to discriminate contexts [5, 6, 7, 8]. Classic feature selection
methods such as the LASSO and its variants can address the performance-cost trade-off by optimizing
an objective penalized by a term that helps promote feature sparsity [9, 10, 11, 12]. Such feature
selection formulations are often static, that is, a fixed set of features are selected a priori. However,
different features may offer different predictive power under different contexts. For example, a health
worker may not need to monitor a recovering patient as frequently compared to a patient with the
declining condition; an experiment performed twice may be redundant; or a smartphone sensor may
be predictive when the user is walking but not when the user is in a car. By adaptively selecting which
sensor(s) to observe at any given time point, one can further reduce the inherent cost for prediction
and achieve a better trade-off between cost and prediction accuracy.

In addition to cost-efficiency, an adaptive feature selection formulation can also lead to more inter-
pretable and trustworthy predictions. Specifically, the predictions made by the model are only based
on the selected features, providing a clear relationship between input features and model predictions.
Existing efforts on interpreting models are usually based on some post-analyses of the predictions,
including the approaches in (1) visualizing higher level representations or reconstructions of inputs
based on them [13, 14], (2) evaluating the sensitivity of predictions to local perturbations of inputs or
the input gradients [15, 16], and (3) extracting parts of inputs as justifications for predictions [17].
Another related but orthogonal direction is model compression of training sparse neural networks
with the goal of memory and computational efficiency [18, 19, 20]. All these works require collecting
all features first and provide post-hoc feature relevance justifications or network pruning.

Recent efforts on dynamic feature selection adaptively assign features based on immediate statis-
tics [21, 22, 1, 23], ignoring the information a feature may have on future predictions. Others treat
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feature selection as a Markov Decision Process (MDP) and use Reinforcement Learning (RL) to solve
it [24, 25, 26, 27, 28, 2]. However, solving the RL objective is not straightforward. Besides being
sensitive to hyperparameter settings in general, approximations such as state space discretization and
greedy approximations of the combinatorial objective were used to make the RL problem tractable.

To this end, we propose a dynamic feature selection method that can be easily integrated into existing
deep architectures and trained from end to end, enabling task-driven dynamic feature selection. To
achieve this, we define a feature selection module that dynamically selects which features to use at
any given time point. We then formulate a sequential combinatorial optimization that minimizes
the trade-off between the learning task performance and the number of features selected at each
time point. To make this problem tractable, we cast this combinatorial optimization problem into
a stochastic optimization formulation. We then adopt a differentiable relaxation of the discrete
feature selection variables to make it amenable to stochastic gradient descent based optimization. It
therefore can be plugged-in and jointly optimized with state-of-the-art neural networks, achieving
task-driven feature selection over time. To show our method’s ability to adaptively select features
while maintaining good performance, we evaluate it on four time-series activity recognition datasets:
the UCI Human Activity Recognition (HAR) dataset [29], the OPPORTUNITY dataset [30], the
ExtraSensory dataset [31], as well as the NTU-RGB-D dataset [32].

Several ablation studies and comparisons with other dynamic and static feature selection methods
demonstrate the efficacy of our proposed method. Specifically, our dynamic feature selection is able
to use as low as 0.28% of the sensor features while still maintaining good human activity monitoring
accuracy. Moreover, our dynamically selected features are shown to be interpretable with direct
correspondence with different contexts and activity types.

2 METHODOLOGY

2.1 THE `0-NORM MINIMIZATION PROBLEM

Many regularization methods have been developed to solve simultaneous feature selection and model
parameter estimation [9, 12, 33, 34, 35]. The ideal penalty for the purpose of feature selection is the
`0-norm of the model coefficients for all predictors. This norm is equivalent to the number of nonzero
terms in all the model coefficients. Given a dataset D containing N independent and identically
distributed (iid) input-output pairs {(x1,y1), . . . , (xN ,yN )} with each xi containing P features, a
hypothesis class of predictor functions f(·;θ), and a loss function L(ŷ,y) between prediction ŷ and
true output y, the `0-norm regularized optimization problem can be written as follows:

min
θ

1

N

( N∑
i=1

L(f(xi;θ),yi)

)
+ λ‖θ‖0, (1)

where ‖θ‖0 =
∑P

j=1 I[θj 6= 0] penalizes the number of nonzero model coefficients.

In the models that linearly transform the input features xi, penalizing the weights relating to each
feature in xi enables sparse feature subset selection. However, such a selection is static, as it does
not adaptively select features that are appropriate for a given context. Moreover, the optimization
above is computationally prohibitive as it involves combinatorial optimization to select the subset of
nonzero model coefficients corresponding to the input features.

In the following, we formulate our adaptive dynamic feature selection problem when learning
with multivariate time series. Coupled with training recurrent neural networks, this adaptive feature
selection problem is transformed into a sequential context-dependent feature subset selection problem,
to which we devise a stochastic relaxation to make the problem tractable.

2.2 DYNAMIC FEATURE SELECTION VIA SEQUENTIAL CONTEXT-DEPENDENT FEATURE
SUBSET SELECTION

Instead of finding a subset of nonzero model coefficients, an equivalent formulation can be derived by
directly selecting the feature subset. Without loss of generality, let z be a binary vector that indicates
whether each feature is selected or not. Then, the original `0-norm optimization formulation can be
equivalently written as follows:

2
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min
θ,z

1

N

( N∑
i=1

L(f(xi ◦ z;θ),yi)
)
+ λ‖z‖0. (2)

Compared to the original problem, the penalty on the number of selected features is through the
`0-norm of z. This formulation is more flexible, as z can be made dependent on corresponding input
features, output labels, or any contextual information, allowing us to formulate our dynamic feature
selection problem when learning with multivariate time series data. Specifically, let the input-output
pairs (xi,yi) be a pair of time series data of length Ti. At each time t, our model predicts the output
yt
i , as well as the next feature set to select zti . This optimization problem can be formulated as:

min
θ,z

1

N

( N∑
i=1

Ti∑
t=1

L(f(x0:t−1
i ◦ z0:t−1i ;θ),yt

i)

)
+ λ

N∑
i=1

Ti∑
t=1

‖zti‖0. (3)

Here, we are tasked to find a set of parameters θ and feature sets zti for each sample i at each time
point t to optimize the trade-off between model performance and the number of selected features. The
model then uses the parameters and the previously observed features X t

i , x0:t−1
i ◦ z0:t−1i to infer

the next output yt
i . However, the above formulation remains intractable, as it involves combinatorial

optimization to select the feature subsets at each time point, in addition to the joint optimization of the
model parameters and variable selection. Naively, one may also need to solve a separate optimization
problem to find zti for each time point during the run time. In the following section, we derive a
relaxation based on stochastic optimization parameterizing zti ’s to make the above problem tractable.

2.3 RELAXATION THROUGH STOCHASTIC OPTIMIZATION

Instead of finding the exact feature subsets indexed by zti that achieve the optimal regularized
objective, one can treat these zti ’s as binary random variables and seek to optimize the distribution
π(z|φ) that generates these random variables. For the ease of exposition, we first focus on the
relaxation of the non-adaptive formulation in (1) as follows:

min
θ,φ

E(xi,yi)∼D

[
Ez∼π(z|φ)

[
L(f(xi ◦ z;θ),yi) + λ‖z‖0

]]
. (4)

Note that the solution to this problem is equivalent to the original one, as the original combinatorial
problem can be recovered by setting π(z|φ) = Bern(φ), a Bernoulli distribution parameterized by
φ, and restricting φ ∈ {0, 1}. Using this relaxation, the regularization term can now be evaluated
analytically:

Ez∼π(z|φ)
[
‖z‖0

]
= Ez∼Bern(φ)

[
‖z‖0

]
=

P∑
j=1

π(z|φ)j =
P∑

j=1

φj , (5)

On the other hand, the outer expectation in (4) can be approximated using minibatches. To extend
the above relaxation for time series data, we first note that our adaptive feature selection formulation
in (3) allows each time point to have its own feature selection distribution πt

i(z|φ) , π(z|X
t−1
i ,φ)

conditioned on previous observationsX t−1
i . Letπi(z|φ) be the set ofπt

i(z|φ) for all t ∈ {1, . . . , Ti}.
The stochastic relaxation of the adaptive feature selection formulation can be written as follows:

min
θ,φ

E(xi,yi)∼D

[
Ezi∼πi(z|φ)

[ Ti∑
t=1

L(f(X t−1
i ;θ),yt

i)

]
+ λ

Ti∑
t=1

P∑
j=1

πt
i(z|φ)j

]
. (6)

2.4 MODEL PARAMETERIZATION AND DIFFERENTIABLE RELAXATION

The difficulty in solving the above problem using gradient descent is that the discrete random variables
zti ’s are not directly amenable to stochastic reparameterization techniques. An effective and simple
to implement formulation that we adopt is the Gumbel-Softmax reparameterization [36, 37], which
relaxes a discrete valued random variable z parameterized by φ to a continuous random variable
z̃. Firstly, we can parameterize π(z|X t−1

i ,φ) using a vector-valued function σ(X t−1
i ,φ) of the

previous observations X t−1
i , with φ now being the parameters of σ(·). The distribution can now be

rewritten as π(z|X t−1
i ,φ) = Bern(σ(X t−1

i ,φ)). With this, the discrete valued random variables zti
can be relaxed into continuous random variables z̃ti as follows:

z̃ti =
1

1 + exp (−(logσ(X t−1
i ,φ) + L)/τ)

. (7)
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Here, L = log u− log(1− u) is a logistic distribution, where u ∼ Unif(0, 1), and τ is a temperature
parameter. For low values of τ , z̃ti approaches a sample of a binary random variable, recovering the
original discrete problem, while for high values, z̃ti will equal 1

2 . With this, we are able to compute
gradient estimates of z̃ti and approximate the gradient of zti as∇θ,φzti ≈ ∇θ,φz̃ti . This enables us to
backpropagate through the discrete random variables and train the selection parameters along with
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Figure 1: The proposed Gated Recurrent Unit
(GRU) based architecture for our adaptive mon-
itoring model specification. Here, features at any
given time are selected based on the previous ob-
servations summarized by ht−1.

the model parameters jointly using stochas-
tic gradient descent. Meanwhile, at test time,
we sample binary random variables from the
learned probabilities.

2.5 MODEL SPECIFICATION

To complete our formulation, we specify the
model architecture that we use. We have imple-
mented our adaptive dynamic feature selection
with a Gated Recurrent Unit (GRU) [38], a type
of Recurrent Neural Network (RNN) [39], as
shown in Figure 1. Here, we have the previous
observations X t−1

i being summarized by the hidden state ht−1
i . For adaptive feature selection, the

selection distribution is made dependent on ht−1
i using a sigmoid of its linear transformation by

a weight matrix W as follows: σ(X t−1
i ,φ) = SIGMOID(Wht−1

i ), such that φ = {W}. We note
that such a module can be easily integrated into many existing deep architectures and trained from
end to end, allowing for task-driven feature selection. For example, the module can be applied to
Recurrent Convolutional Neural Networks (RCNN) [40] to selectively determine which convolu-
tional patches/channels to use, or to general feedforward networks to selectively deactivate certain
neurons/channels to reduce computation. We have demonstrated this ability by applying it to an
Independent RNN [41] benchmarked on the NTU-RGB-D dataset [32], as detailed in Appendix A.4.

3 RELATED WORK

Existing HAR systems typically use a fixed set of sensors, potentially collecting redundant features
for easily discriminated contexts. Methods that attempt to find a fixed or static feature set often
rank feature sets using metrics such as Information Gain [5], or relevancy ranking through a filtering
strategy [6, 7, 8]. However, static feature selection can potentially result in collecting redundant
information for highly discriminable contexts.

Work on dynamic feature selection can be divided into Reinforcement Learning (RL) based and
non-RL approaches. Non-RL based approaches vary from assigning certain features to certain
activities [21], pre-defining feature subsets for prediction [22, 42], optimizing the trade-off between
prediction entropy and the number of selected features [1], to building a metaclassifier for sensor
selection [23]. These methods all use immediate rewards to perform feature selection. For predicting
long activity sequences, this potentially ignores the information that a feature may have on future
predictions, or conversely, overestimate the importance of a feature given previous observations.

Among the RL based approaches, some methods attempt to build an MDP to decide which feature to
select next or whether to stop acquiring features and make a prediction [24, 25, 26]. These methods
condition the choice of one feature on the observation generated by another one, instead of choosing
between all sensors simultaneously. Spaan and Lima [27] and Satsangi et al. [28] formulated a
Partially Observable MDP (POMDP) using a discretization of the continuous state to model the
policy. Yang et al. [2] formulate an RL objective by penalizing the prediction performance by
the number of sensors used. Although using a desirable objective, the method employs a greedy
maximization process to approximately solve the combinatorial optimization. Moreover, they do not
integrate easily with existing deep architectures.

Attention is another method worth noting, as it is able to select the most relevant segments of a
sequence for the current prediction [43]. Attention modules have been recently used for activity
recognition [44]. However, like most attention methods, it requires all of the features to be observed
before deciding which features are the most important for prediction. Moreover, the number of
instances attended to is not penalized. Finally, soft attention methods typically weight the inputs,
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instead of selecting the feature subset. Indeed, our experiments on naively applying attention for
dynamic feature selection show that it always selects 100% of the features at all times.

Sparse regularization has previously been formulated for deep models, e.g., [45, 18, 46], but their
focus has primarily been in statically compressing model sizes or reducing overfitting, instead of
dynamically selecting features for prediction. In particular, `1 regularization is a common method to
promote feature sparsity [9, 10, 11, 12].

Finally, there have been many formulations that propose to solve the issue of backpropagation
through discrete random variables [36, 37, 47, 48, 49]. REBAR [47] and RELAX [48] employ
REINFORCE and introduce relaxation-based baselines to reduce sample variance of the estimator.
However, these baseline functions increase the computation and cause potential conflict between
minimizing the sample variance of the gradient estimate and maximizing the expectation objective.
Augment-REINFORCE-Merge is a self-control gradient estimator that does not need additional base-
lines [49]. It provides unbiased gradient estimates that exhibit low variance, but its direct application
to autoregressive or sequential setups is not addressed by Yin and Zhou [49] and leads to approximate
gradients. Moreover, an exact sequential formulation will require prohibitive computation, squared in
sequence length forward passes.

4 EXPERIMENTS

Benchmark Datasets and Performance Evaluation We evaluate our model on four different
datasets: the UCI Human Activity Recognition (HAR) using Smartphones Dataset [29], the OPPOR-
TUNITY Dataset [30], the ExtraSensory dataset [31], and the NTU-RGB-D dataset [32]. Although
there are many other human activity recognition benchmark datasets [50], we choose the above
datasets to better convey our message of achieving feature usage efficiency and interpretability using
our adaptive feature selection framework with the following reasons. First, the UCI HAR dataset
is a clean dataset with no missing values, allowing us to benchmark different methods without any
discrepancies in data preprocessing confounding our evaluations. Second, the OPPORTUNITY
dataset contains activity labels that correspond to specific sensors. An optimal adaptive feature
selector should primarily choose these sensors under specific contexts with clear physical meaning.
Finally, the ExtraSensory dataset studies a multilabel classification problem, where two or more labels
can be active at any given time, while the NTU-RGB-D dataset is a complicated activity recognition
dataset with over 60 classes of activities using data from 25 skeleton joints. These datasets allow us
to benchmark model performance in a complex setting. Due to the page limit, our implementation
details and results on the NTU-RGB-D dataset are available in Appendix A and B.

We investigate several aspects of our model performance on these benchmarks. To show the effect
in prediction accuracy when our selection module is considered, we compare its performance to a
standard GRU network [51]. To show the effect of considering dynamic feature selection, we compare
a nonadaptive `0 formulation that statically selects features by solving (4) [18]. The performance of
our `0 regularized formulation is also benchmarked with an `1 regularized formulation. To benchmark
the performance of our differentiable relaxation-based optimization strategy, we implement the
Straight-Through estimator [52] and Augment-REINFORCE-Merge (ARM) gradient estimates [49]
as alternative methods to optimize our formulation. As stated in the previous section, the fully
sequential application of ARM was not addressed in the original paper, and will be prohibitively
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Figure 2: UCI HAR Dataset results: (a) Prediction and features selected of the proposed model
λ = 1. (b) Feature selection vs. accuracy trade-off curve comparison. (c) Heatmap of sensor feature
activations under each activity of the UCI HAR dataset. Only active features are shown out of the
561 features in total.
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expensive to compute exactly. Hence, we combine ARM and Straight-Through (ST) estimator [52]
as another approach to optimize our formulation. More specifically, we calculate the gradients with
respect to the Bernoulli variables with ARM, and use the ST estimator to backpropagate the gradients
through the Bernoulli variables to previous layers’ parameters.

To further show the importance of considering the sparse regularized formulation, we compare with
an attention-based feature selection, selecting features based on the largest attention weights. Because
attention yields feature attention weights instead of feature subsets, we select features by using a hard
threshold α of the attention weights and scaling the selected features by 1− α for different values
of α. Indeed, without this modification, we observe that an attention-based feature selection would
select 100% of the features at all times.

Finally, we have attempted to implement the dynamic feature selection method by Yang et al. [2]
as a distinctly different benchmark. However, without any implementation details provided by the
authors, we were not able to reproduce their results.

Table 1: Comparison of various optimization techniques for
our model on the UCI HAR dataset. *Accuracies and average
number of features selected are in (%).

Method Accuracy Feat. Selected
Gumbel-Softmax λ = 1 97.18 0.28
ARM λ = 1 [49] 95.73 11.67
ST-ARM λ = 1 [49, 52] 92.79 1.92
Straight Through λ = 1 [52] 89.38 0.31
L1 Regularization λ = 1 90.43 19.48

UCI HAR Dataset We first test our
proposed method on performing si-
multaneous prediction and adaptive
feature selection on the UCI HAR
dataset [29]. This dataset consists of
561 smartphone sensor measurements
including various gyroscope and ac-
celerometer readings, with the task of
inferring the activity that the user per-
forms at any given time. There are six
possible activities that a subject can perform: walking, walking upstairs, walking downstairs, sitting,
standing, and laying.

We first compare various optimization methods, using stochastic gradients by differential relaxation
using Gumbel-Softmax reparametrization, ARM, ST-ARM, Straight-Through gradients, and an `1
regularized formulation to solve adaptive feature selection. The results are provided in Table 1. As
shown, Gumbel-Softmax achieves the best prediction accuracy with the least number of features.
Utilizing either the Straight Through estimator, ARM, or ST-ARM for gradient estimation cannot
provide a better balance between accuracy and efficiency compared with the Gumbel-Softmax
relaxation-based optimization. Indeed, the performance of the ST estimator is expected, as there is a
mismatch between the forward propagated activations and the backward propagated gradients in the
estimator. Meanwhile, we attribute the lower performance of the ARM and ST-ARM optimizer to
its use in a sequential fashion, which was not originally considered. The lower performance of the
`1 regularized formulation is expected, as `1 regularization is an approximation to the problem of
selecting the optimal feature subset. In the following experiments, we have seen similar trends and
only report the results from the Gumbel-Softmax based optimization.

Benchmarking results of different models are given in Table 2. As shown, our adaptive feature
selection model is able to achieve a competitive accuracy using only 0.28% of the features, or on
average about 1.57 sensors at any given time. We also observe that both the attention and our adaptive
formulation is able to improve upon the accuracy of the standard GRU, suggesting that feature
selection can also regularize the model to improve accuracy. Although the attention-based model
yields the best accuracy, this comes at a cost of utilizing around 50% of the features at any given time.

We study the effect of the regularization weight λ by varying it from λ ∈ {1, 0.1, 0.01, 0.005, 0.001}.
We compare this with the attention model by varying the threshold α used to select features from
α ∈ {0.5, 0.9, 0.95, 0.99, 0.995, 0.999}, as well as the nonadaptive model by varying its λ from
λ ∈ {1000, 100, . . . 0.01, 0.005, 0.001}. A trade-off curve between the number of selected features

Table 2: Comparison of various models for adaptive monitoring on three activity recognition datasets.
*Accuracy metrics and average number of features selected are all in (%).

Method UCI HAR OPPORTUNITY ExtraSensory
Accuracy Features Accuracy Features Accuracy F1 Features

Adaptive (Ours) λ = 1 97.18 0.28 84.26 15.88 91.14 55.06 11.25
Attention α = 0.5 98.38 49.94 83.42 54.20 90.37 53.29 54.73

Nonadaptive λ = 1 [18] 95.49 14.35 81.63 49.57 91.13 53.18 42.32
No selection (GRU) [51] 96.67 100 84.16 100 91.14 53.53 100
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Figure 3: OPPORTUNITY Dataset results: (a) Prediction and features selected of the proposed model
λ = 1. (b) Prediction and features selected of the proposed model on a set of activity transitions. (c)
Feature selection vs. Error trade-off curve comparison.
and the performance for the three models can be seen in Figure 2(b). As shown in the figure, the
accuracy of the attention model suffers increasingly with smaller feature subsets, as attention is
not a formulation specifically tailored to find sparse solutions. On the other hand, the accuracy of
our adaptive formulation is unaffected by the number of features, suggesting that selecting around
0.3% of the features on average may be optimal for the given problem. It further confirms that our
adaptive formulation selects the most informative features given the context. The performance of
the nonadaptive model is consistent for feature subsets of size 10% or greater. However, it suffers a
drop in accuracy for extremely small feature subsets. This shows that for static selection, selecting a
feature set that is too large would result in collecting many redundant features for certain contexts,
while selecting a feature set that is too small would be insufficient for maintaining accuracy.

An example of dynamically selected features can be seen in Figure 2(a). We plot the prediction of
our model compared to the true label and illustrate the features that are used for prediction. We also
plot a heatmap for the features selected under each activity in Figure 2(c). Note that mainly 5 out
of the 561 features are used for prediction at any given time. Observing the selected features, we
see that for the static activities such as sitting, standing, and laying, only sensor feature 52 and 63,
features relating to the gravity accelerometer, are necessary for prediction. On the other hand, the
active states such as walking, walking up, and walking down requires 3 sensor features: sensor 65,
508, and 556, which are related to both the gravity accelerometer and the body accelerometer. This
is intuitively appealing as, under the static contexts, the body accelerometer measurements would
be relatively constant, and unnecessary for prediction. On the other hand, for the active contexts,
the body accelerometer measurements are necessary to reason about how the subject is moving and
accurately discriminate between the different active states. Meanwhile, we found that measurements
relating to the gyroscope were unnecessary for prediction.

UCI OPPORTUNITY Dataset We further test our proposed method on the UCI OPPORTUNITY
Dataset [30]. This dataset consists of multiple different label types for human activity, ranging from
locomotion, hand gestures, to object interactions. The dataset consists of 242 measurements from
accelerometers and Inertial Measurement Units (IMUs) attached to the user, as well as accelerometers
attached to different objects with which the user can interact.

We use the mid-level gesture activities as the target for our models to predict, which contain gestures
related to specific objects, such as opening a door and drinking from a cup. A comparison of the
accuracy and the percentage of selected features by different models is given in Table 2, while
example predictions and a trade-off curve are constructed and shown in Figures 3(a), 3(b), and 3(c),
with a similar trend as the results on the UCI HAR dataset. Notably, the trade-off for the nonadaptive
models remains constant for λ ∈ {0.0001, 0.001, . . . , 1}, with a sharp decrease in accuracy for
λ ≥ 10.
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Figure 5: ExtraSensory Dataset results: (a) Prediction and features selected of the proposed model.
(b) Feature selection vs. Error trade-off curve comparison.

A heatmap for the selected features under each activity is shown in Figure 4. Here, the active sensor
features across all activities are features 40 and 42, readings of the IMU attached to the subject’s
back, feature 82, readings from the IMU attached to the left upper arm (LUA), and features 230 and
239, location tags that estimate the subject’s position. We posit that these general sensor features are
selected to track the subject’s overall position and movements, as they are also predominantly selected
in cases with no labels. Meanwhile, sensors 5, 6, and 16, readings from the accelerometer attached to
the hip, LUA, and back, are specific to activities involving opening/closing doors or drawers.

Interestingly, sensors attached to specific objects, such as accelerometers on doors and cups, are
unnecessary for prediction. We attribute this to the severe amount of missing values of these
sensors. Indeed, the sensors that have the least amount of missing values are the body sensors
and the localization tags. We hypothesize that the model prefers these sensors for their consistent
discriminative power on multiple activity types compared to the object specific sensors. In addition
to these object specific sensors, 5 IMUs, 9 accelerometers, and 2 localization tags can be completely
turned off without significantly affecting prediction performance on this task.

ExtraSensory Dataset We further test our proposed method on the ExtraSensory Dataset [31].
This is a multilabel classification dataset, where two or more labels can be active at any given time. It
consists of 51 different context labels, and 225 sensor features. We frame the problem as a multilabel
binary classification problem, where we have a binary output for each label indicating whether it is
active. A comparison of the accuracy and selected features by different models tested can be seen in
Table 2. Our method is again competitive with the standard GRU model using less than 12% of all
the features.

A trade-off curve is shown in Figure 5(b), where we see a similar trend for both adaptive and attention
models. However we were unable to obtain a feature selection percentage lower than 25% for the
nonadaptive model even with λ as large as 104. We believe that this is because at least 25% of
statically selected features are needed; otherwise the nonadaptive model will degrade in performance
catastrophically, similar to the OPPORTUNITY dataset results. A heatmap and detailed discussion of
the features that our model dynamically selected can be found in Appendix C.

The results on these three datasets along with the results on the NTU-RGB-D dataset in Appendix B
indicate that our adaptive monitoring framework provides the best trade-off between feature efficiency
and accuracy, while the features that it dynamically selects are also interpretable and associated with
the actual activity types.

5 CONCLUSIONS

We propose a novel method for performing adaptive feature selection by sequential context-dependent
feature subset selection, which is cast into a stochastic optimization formulation by modifying the
`0 regularized minimization formulation. To make this problem tractable, we perform a stochastic
relaxation along with a differentiable reparamaterization, making the optimization amenable to
gradient-based optimization with auto-differentiation. We apply this method to human activity
recognition by implementing our method to Recurrent Neural Network-based architectures. We
benchmark our model on four different activity recognition datasets and have compared it with
various adaptive and static feature selection benchmarks. Our results show that our model maintains
a desirable prediction performance using a fraction of the sensors or features. The features that our
model selected were shown to be interpretable and associated with the activity types.
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A IMPLEMENTATION DETAILS

Here, we provide the implementation details for the reported results in each benchmark dataset.

A.1 UCI HAR DATASET

The UCI HAR dataset consists of a training set and a testing set. To implement our adaptive feature
selection and other baseline methods, we divide the training set into a separate validation set consisting
of 2 subjects. We preprocess the data by normalizing it with the mean and standard deviation. We
then divide the instances of each subject into segments of length 200.

The base model we utilize is a one-layer GRU with 2800 neurons for the hidden state. We use the
cross-entropy of the predicted vs. actual labels as the performance measure. We use a temperature of
0.05 for the Gumbel-Softmax relaxation. We optimize this with a batch size of 10 using the RMSProp
optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 3000 epochs. We
then save both the latest model and the best model validated on the validation set.

A.2 OPPORTUNITY DATASET

The OPPORTUNITY dataset consists of multiple demonstrations of different activity types. We first
extract the instances into segments containing no missing labels for the mid-level gestures. Segments
of length smaller than 100 are padded using the observed values at the next time-points in the instance.
We then normalize the data such that its values are between -1 and 1. The authors of the dataset
recommended removing some features that they believed are not useful, however we find that this
does not affect performance and instead use the entire feature set. We have also experimented with
interpolating the missing values but also find that it does not affect performance compared to imputing
the missing values with zeros. Using this, we randomly shuffle the segments and assign 80% for
training, 10% for validation, and 10% for testing.

The base model we utilize is a two-layer GRU with 256 neurons for each layer’s hidden state. The
cross-entropy of the predicted vs. actual labels is adopted as the performance measure. We use a
temperature of 0.05 for the Gumbel-Softmax relaxation. We do not include the cross-entropy loss for
the time points with missing labels. We also scale the total performance loss of the observed labels
for each batch by #timepoints

#labelled timepoints . We optimize this loss with a batch size of 100 using the RMSProp
optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 3000 epochs. We
then save both the latest model and the best model validated on the validation set.

A.3 EXTRASENSORY DATASET

The ExtraSensory dataset consists of multiple demonstrations of human behavior under different
activities, where two or more activity labels can be active at the same time. We first extract the
instances into segments containing no missing labels for the middle level gestures. Segments of
length smaller than 70 are padded using the observed values at the next time-points in the instance.
We then normalize the data such that its values are in between -1 and 1. We have experimented
with interpolating the missing values but also find that it does not affect performance compared to
imputing the missing values with zeros. Using this, we randomly shuffle the segments and assign
70% for training, 10% for validation, and 20% for testing.

The base model we utilize is a one-layer GRU with 2240 neurons for its hidden state. We use a
temperature of 0.05 for the Gumbel-Softmax relaxation. We use the binary cross-entropy of the
predicted vs. actual labels as the performance measure, where the model outputs a binary decision
for each label, representing whether each label is active or not. We do not include the performance
loss for the missing labels and scale the total performance loss of the observed labels for each batch
by #timepoints×#total labels

#observed labels in labelled timepoints . We optimize this scaled loss with a batch size of 100 using the
RMSProp optimizer, setting the learning rate to 10−4 and the smoothing constant to 0.99 for 10000
epochs. We then save both the latest model and the best model validated on the validation set.
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A.4 NTU-RGB-D DATASET

We first preprocess the NTU-RGB-D dataset to remove all the samples with missing skeleton data.
We then segment the time-series skeleton data across subjects into 66.5% training, 3.5% validation,
and 30% testing sets. The baseline model that we have implemented for the NTU-RGB-D dataset is
the Independent RNN [41]. This model consists of stacked RNN modules with several additional
dropout, batch normalization, and fully connected layers in between. Our architecture closely follows
the densely connected independent RNN of [41]. To incorporate feature selection using either our
adaptive formulation or an attention-based formulation, we add an additional RNN to the beginning
of this model. This RNN takes as input the 25 different joint features and is tasked to select the joints
to use for prediction further along the architecture pipeline. Since the joints are in the form of 3D
coordinates, our feature selection method is modified such that it selects either all 3 of the X, Y, and
Z coordinates of a particular joint, or none at all. Our architecture can be seen in Figure 6.

Similar as the baseline method presented in [41], we have trained this architecture using a batch
size of 128 and a sequence length of 20 using the Adam optimizer with a patience threshold of 100
iterations. We then save both the latest model and the best model validated on the validation set.
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Figure 6: Our modified densely connected independent RNN architecture for adaptive feature
selection.

B RESULTS AND DISCUSSION OF THE NTU-RGB-D DATASET

We have tested our proposed method on the NTU-RGB-D dataset [32]. This dataset consists of 60
different activities performed by either a single individual or two individuals. The measurements
of this dataset are in the form of skeleton data consisting of 25 different 3D coordinates of the
corresponding joints of the participating individuals.

We compare our method with three different baselines shown in Table 3: the standard independent
RNN, a soft attention baseline, and a thresholded attention baseline. We see that our method maintains
a competitive accuracy compared to the baseline using less than 50% of the features. On the other
hand, because the thresholded attention formulation is not specifically optimized for feature sparsity,
we see that it performs significantly worse compared to the other methods. Meanwhile, the soft-
attention slightly improves upon the accuracy of the base architecture. However, as also indicated by
our other experiments, soft-attention is not a dynamic feature selection method, and tends to select
100% of the features at all times.
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A heatmap for the features selected under each activity is shown in Figure 7. Here, we can see
that there are two distinct feature sets used for two different types of interactions: single person
interactions and two person interactions. Indeed, since the two person activities require sensor
measurements from two individuals, the dynamic feature selection would need to prioritize different
features to observe their activities as opposed to single person activities.

Table 3: Comparison of various methods for activity recognition on the NTU-RGB-D dataset.
*Accuracies and average number of features selected are in (%).

Method Accuracy Features Selected
Adaptive 80.54 49.65
Thresholded attention 40.07 52.31
Soft attention 83.28 100
No selection 83.02 100
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Figure 7: Heatmap of sensor feature activations under each activity state of the NTU-RGB-D dataset.
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Figure 8: Heatmap of sensor feature activations under each activity state of the ExtraSensory dataset.

C RESULTS AND DISCUSSION OF THE EXTRASENSORY DATASET

A heatmap of the features selected under each activity state can be seen in Figure 8. As shown,
there are four groups of sensor features that are used across activities: the phone magnetometer
(57-71), watch accelerometer magnitude (85-88), watch accelerometer direction (101-105), and
location (138-147). For two particular states, ‘on a bus’ and ‘drinking alcohol’, phone accelerometer
measurements (5-52) become necessary for prediction. Some states such as ‘at home’, ‘at main
workplace’, and ‘phone in pocket’ are notably sparse in sensor feature usage. We believe that these
states are static, and do not require much sensor usage to monitor effectively. Other sensors such
as the phone gyroscope, phone state, audio measurements and properties, compass, and various
low-frequency sensors are largely unnecessary for prediction in this dataset.
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