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Abstract

The prevalence of foundation models in scientific applications motivates the need1

for interpretable representations and search of scientific concepts. In this work, we2

present a novel approach using sparse autoencoders (SAEs) to disentangle dense3

embeddings from large language models, offering a pathway towards more inter-4

pretable scientific foundation models. By training SAEs on embeddings of over5

425,000 scientific paper abstracts spanning computer science and astronomy, we6

demonstrate their effectiveness in extracting interpretable features while maintain-7

ing semantic fidelity. Our method reveals and analyzes SAE features that directly8

correspond to scientific concepts, and introduces a novel method for identifying9

‘families’ of related concepts at varying levels of abstraction. To illustrate the10

practical utility of our approach, we demonstrate how interpretable features from11

SAEs can precisely steer semantic search over scientific literature, allowing for12

fine-grained control over query semantics. This work not only bridges the gap13

between the semantic richness of dense embeddings and the interpretability needed14

for scientific applications, but also offers new directions for improving literature re-15

view and scientific discovery. For use by the scientific community, we open-source16

our embeddings, trained sparse autoencoders, and interpreted features, along with17

a web app for interactive literature search.18

1 Introduction19

Foundation models have revolutionised natural language processing and are increasingly impacting20

scientific domains, enabling the representation of complex scientific concepts in rich semantic spaces21

(Devlin et al., 2018; Brown et al., 2020). Dense neural vector embeddings capture nuanced semantic22

relationships, enhancing downstream applications such as scientific information retrieval (IR) and23

semantic search (Reimers et al., 2019; Gao et al., 2022; Wang et al., 2024). However, the power of24

these representations comes at a cost: reduced interpretability and limited user control (Cao et al.,25

2023a). In scientific applications, where explainability is critical, these challenges pose a barrier to26

embeddings-based tools for literature reviews and scientific discovery.27

To address these limitations, recent research has explored methods to disentangle and interpret the28

information encoded in dense representations (Trifonov et al., 2018). Sparse autoencoders (SAEs)29

have emerged as a promising solution for extracting interpretable features from high-dimensional30

representations (Ng et al., 2011; Makhzani et al., 2013). By learning to reconstruct inputs as31

linear combinations of features in a higher-dimensional sparse basis, SAEs can disentangle complex32

representations into individually interpretable components. This approach has shown success in33

analysing and steering generative models (Conmy et al., 2024; Lee, 2024; Cunningham et al., 2023b),34

but its application to dense text embeddings remains unexplored.35
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Figure 1: Training and feature labelling process for our sparse autoencoder (SAE). The SAE is trained
to minimise reconstruction loss on embeddings from astronomy and computer science paper abstracts.
Each feature corresponds to a column in the decoder matrix, representing a direction in embedding
space. Feature interpretation involves two steps: (1) An Interpreter language model identifies topics
present in text that activates each feature but absent in non-activating text. (2) A separate Predictor
language model assesses feature interpretability by stating its confidence that the feature will activate
on unseen text, with confidence correlated with ground truth activations to quantify interpretability.

In this work, we present the first application of SAEs to dense text embeddings derived from language36

foundation models, focusing on scientific literature. We demonstrate that this approach offers new37

possibilities for searching, understanding, and manipulating scientific concept spaces. By applying38

our method to embeddings from two diverse scientific domains - computer science and astronomy -39

we showcase its potential for cross-domain applicability in scientific AI. In a direct demonstration40

of their utility for scientific exploration, we show how SAE features can be used to steer scientific41

literature search results, building on previous work applying similar techniques to decoder-only42

transformers and diffusion models for guided generation (Elhage et al., 2022b; Daujotas, 2024). By43

causally manipulating features in the SAE’s hidden representation of an embedding vector, we can44

perform precise adjustments of the semantic meaning of scientific concepts upon reconstruction.45

Our research makes the following key contributions towards more interpretable scientific foundation46

models. We train SAEs with varying sizes on embeddings from a large corpus of scientific papers47

across two domains, demonstrating their effectiveness in learning interpretable document-level48

features from dense representations of scientific text. We conduct a comprehensive analysis of the49

learned features through the lens of scientific concepts, examining their interpretability, behaviour50

across different model capacities, and semantic properties. To extend this analysis, we introduce the51

concept of SAE “feature families”, clusters of related features that allow for multi-scale analysis and52

manipulation of scientific concepts, and examine how features “split” across levels of abstraction.53

Finally, we demonstrate the practical utility of our approach by applying these interpretable features to54

enhance scientific semantic search, allowing for fine-grained control over query semantics in scientific55

literature exploration. We develop and open-source this as a tool that implements our SAE-enhanced56

semantic search system for scientific literature, as well as open-sourcing the underlying SAEs.57

2 Background and Related work58

While dense embeddings have dramatically improved performance across various NLP tasks, they59

present significant challenges in terms of interpretability.60

2.1 Embeddings and Representation Learning61

The evolution of word representations in NLP has progressed from simple one-hot encodings to62

sophisticated dense vector embeddings, culminating in contextual models like BERT (Devlin et al.,63
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2018) and sentence-level embeddings like Sentence-BERT (Reimers et al., 2019). While these dense64

embeddings have significantly improved NLP performance, particularly in semantic search and65

information retrieval (Gao et al., 2021), they present challenges in interpretability and fine-grained66

control due to their high-dimensional, continuous nature (Liu et al., 2019). This opacity is particularly67

problematic in applications requiring explainability or precise semantic manipulation. Moreover,68

dense embeddings face challenges such as the "curse of dense retrieval" (Reimers et al., 2022), where69

performance degrades rapidly with increasing index size, and difficulties in fine-tuning search results70

(Cao et al., 2023b; Turian et al., 2010).71

2.2 Sparse autoencoders72

In large language models, the superposition hypothesis suggests that dense neural networks are highly73

underparameterised, and perform computations involving many more concepts than neurons (Elhage74

et al., 2022a). Because these semantic concepts, or features, are quite sparse, models compensate75

encoding multiple features within the same set of neurons. However, this also leads to complex,76

overlapping representations that are difficult to interpret on a single-neuron basis. Similarly, in77

embedding spaces, features are not represented monosemantically in individual dimensions. Instead,78

each feature is typically distributed across multiple dimensions, and conversely, each dimension may79

contribute to the representation of multiple features. This distributed representation allows embedding80

models to efficiently encode a large number of features in a relatively low-dimensional space, but it81

also makes the embeddings challenging to interpret directly.82

To address this challenge, sparse autoencoders (SAEs) have emerged as a promising solution. SAEs83

learn to reconstruct inputs using a sparse set of features in a higher-dimensional space, potentially84

disentangling superposed features (Elhage et al., 2022b; Olshausen et al., 1997). By encouraging this85

disentanglement, SAEs aim to reveal more interpretable and semantically meaningful representations,86

demonstrating efficacy in uncovering interpretable features in large language model activations87

(Donoho, 2006; Gao et al., 2024). In a well-trained SAE, individual features in the hidden dimension88

align with the underlying sparse, semantically meaningful features.89

2.2.1 Architecture and training90

Sparse autoencoders (SAEs) are neural network models designed to learn compact, interpretable91

representations of high-dimensional data while enforcing sparsity in the hidden layer activations. The92

architecture of an SAE consists of an encoder network that maps the input to a hidden representation,93

and a decoder network that reconstructs the input from this representation.94

Let x ∈ Rd be an input vector, and h ∈ Rn be the hidden representation, where typically n ≫ d.95

The encoder and decoder functions are defined as:96

Encoder : h = fθ(x) = σ(Wex+ be) (1)
Decoder : x̂ = gϕ(h) = Wdh+ bd (2)

where We ∈ Rn×d and Wd ∈ Rd×n are the encoding and decoding weight matrices, be ∈ Rk and97

bd ∈ Rd are bias vectors, and σ(·) is a non-linear activation function (e.g., ReLU or sigmoid). The98

parameters θ = {We,be} and ϕ = {Wd,bd} are learned during training.99

The training objective of our SAE combines three main components: a reconstruction loss, a sparsity
constraint, and an auxiliary loss. The overall loss function is given by:

L(θ, ϕ) = 1

d
∥x− x̂∥22 + λLsparse(h) + αLaux(x, x̂)

where λ > 0 and α > 0 are hyperparameters controlling the trade-off between reconstruction fidelity,100

sparsity, and the auxiliary loss.101

For the sparsity constraint, we use a k-sparse constraint: only the k largest activations in h are102

retained, while the rest are set to zero (Makhzani et al., 2013; Gao et al., 2024). This approach avoids103

issues such as shrinkage, where L1 regularisation can cause feature activations to be systematically104

lower than their true values, potentially leading to suboptimal representations shrinkage, (Wright105

et al., 2024; Rajamanoharan et al., 2024). We also use an auxiliary loss, similar to the “ghost grads”106

technique (Jermyn et al., 2023), to model the reconstruction error using the top kaux dead latents,107

where we typically set kaux = 2k (Gao et al., 2024); see Appendix A for details.108

3



2.2.2 Structure in SAE features109

State-of-the-art automated interpretability techniques have resulted in the discovery of a large volume110

of highly interpretable, monosemantic features in SAEs trained over language models (Cunningham111

et al., 2023a; Bricken et al., 2023). With features being the base unit of interpretability for SAEs,112

recent work has focused on understanding the geometric structure of features. Bricken et al. (2023)113

report feature splitting in geometrically close groups of semantically related features, where number114

of learned features in the cluster increases with model size. They also report the existence of universal115

features which re-occur between independent SAEs and which have highly similar activation patterns.116

Templeton (2024) find feature splitting also occurs in SAEs trained over production-scale models,117

with larger SAEs also exhibiting novel features for concepts that are not represented in smaller SAEs.118

Makelov et al., 2024 report over-splitting of binary features. Engels et al., 2024 find clusters of SAE119

features that represent inherently multi-dimensional, non-linear subspaces.120

2.3 Language foundation models in science121

A number of domain-specific large language models have been developed for question-answering122

in specific areas of science, such as medicine or astronomy (Rasmy et al., 2021; Taylor et al., 2022;123

Nguyen et al., 2023). Neural vector embeddings from language models have also been leveraged to124

enhance scientific question answering and literature search (Kinney et al., 2023; Iyer et al., 2024;125

Lála et al., 2023). Recent work has also demonstrated the ability of language models to complete126

problem-solving and knowledge synthesis tasks relevant to scientific research (AI4Science et al.,127

2023; Romera-Paredes et al., 2024), and even generate novel research hypotheses (Si et al., 2024).128

Some research has suggested that some latent scientific knowledge in models exists in structured129

representations, and that these representations may be leveraged for scientific discovery (Tshitoyan130

et al., 2019; Qu et al., 2024). However, it has also been demonstrated that language models can131

exhibit human-like biases or generate false information, limiting their usefulness as scientific tools132

(Birhane et al., 2023); here, improved interpretability and steerability could unlock capabilities.133

3 Training SAEs and automated labelling134

3.1 Training and automated interpretability methods135

We trained top-k Sparse Autoencoders (SAEs) on embeddings of arXiv paper abstracts from astro-136

physics (astro-ph, 272,000 papers) and computer science (cs.LG, 153,000 papers) domains, using137

OpenAI’s text-embedding-3-small model. We experimented with various hyperparameters, fo-138

cusing primarily on SAEs with k = 16, 32, and 64 active latents. To interpret the learned features,139

we employed an automated two-step process using large language models: an Interpreter to generate140

feature labels, and a Predictor to assess interpretation confidence. We evaluated SAEs based on their141

reconstruction ability and feature interpretability, using metrics such as normalised mean squared142

error and Pearson correlation. Detailed training procedures, hyperparameters, and evaluation metrics143

are provided in Appendix A.144

SAE Performance: We observe precise power-law scalings for sparse autoencoder (SAE) perfor-145

mance as a function of the number of total latents n, active latents k, and compute C used for146

training. The normalised mean squared error (MSE) scales as L(n) = cn−α for fixed k, where α147

ranges from 0.12 to 0.18, increasing with k, while c generally decreases (Figure 2, left panel). For148

compute scaling, we calculate the number of training FLOPs C at each step for each SAE. We find149

L(C) = aCb, where a generally increases with k (3.84 for k = 16 to 8.03 for k = 64) and b ranges150

from -0.11 to -0.16, becoming more negative as k increases from 16 to 64 (Figure 2, right panel).151

Both relationships show high accuracy with R-squared values above 0.93. Detailed fits are provided152

in Appendix A.153

Interpretability of SAE features: The most direct way to evaluate the interpretability of features is154

to look at the distribution of automated interpretability scores. Specifically: given a feature label from155

our interpreter model, how well can a predictor model predict the feature’s activation on unseen text?156

We show in Figure 3 that the Pearson correlation between predictor model confidence of a feature157

firing and the ground-truth firing is quite high, with median correlations ranging from 0.65 to 0.71158

for cs.LG and 0.85 to 0.98 for astro-ph. We note that Pearson correlation increases as k and n159

4



1043 × 103 4 × 103 6 × 103

N (Hidden Dimensions)

10 1

2 × 10 1

No
rm

al
ise

d 
M

SE

astro.ph
cs.LG

16

32

64

128

2 × 101

3 × 101

4 × 101

6 × 101

k

0 1 2 3 4 5
FLOPS 1e11

10 1

100

No
rm

al
ise

d 
M

SE

y = 3.84 × x 0.11

y = 5.25 × x 0.13

y = 8.03 × x 0.16

y = 2.8 × x 0.13

n=3072
n=6144
n=9216
n=12288

16

32

64

128

k

Figure 2: Scaling laws for sparse autoencoder performance. Left: Normalised mean squared error
(MSE) as a function of the number of total latents n for different values of active latents k. The
power-law scaling is evident for each k. Right: Reconstruction loss as a function of compute (FLOPs)
for different k values, demonstrating the compute-optimal model size scaling.
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decrease, likely due to models learning coarser-grained features that are easier for the interpreter to160

identify.161

4 Constructing feature families through graph-based clustering162

We find that our SAEs trained over arXiv paper embeddings recover a wide range of scientifically163

relevant features. These features cover both scientific concepts, from niche to broad and multi-164

disciplinary, and also more abstract semantic artifacts, such as humorous writing or critiques of165

scientific theories. Features and activating examples can be found in Appendix C. In the remainder166

of this work, we focus primarily on features that correspond directly to scientific concepts from167

the literature. Our analysis of feature evolution and grouping provides insights into how scientific168

concepts are represented and related within foundation models, potentially informing the development169

of more interpretable and efficient scientific AI systems.170

To understand how features evolve across different SAE capacities and to identify meaningful171

groupings of related features, we studied two distinct phenomena: feature splitting and feature172

families. Feature splitting – the tendency of features appearing in larger SAEs to “split” the direction173

spanned by a feature from a smaller SAE, and activate on granular sub-topics of the smaller SAE’s174

feature – has been observed in previous work on sparse autoencoders (e.g. Bricken et al., 2023).175

Examples of feature splitting, as well as features recurring across SAEs, can be found in Figures 16176

and 17a/17b.177
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In contrast, feature families exist within a single SAE, and exhibit a clear hierarchical structure with178

a dense “parent” feature and several sparser “child” features; we suggest that the “parent” feature179

encompasses a broader, more abstract concept that is shared among the “child” features. An example180

feature family from cs.LG can be seen in Figure 4.181

4.1 Feature splitting182

We investigated how features in smaller SAEs relate to features in larger SAEs through a nearest183

neighbour approach. For each pair of SAEs (i.e. SAE16 and SAE32) with n1 and n2 features184

respectively, we calculated an n1 × n2 similarity matrix S where Sij = wT
i wj/∥wi∥∥wj∥. Here,185

wi and wj are decoder weight vectors for features in the smaller and larger SAE, respectively. For186

each feature in the larger SAE, we identified the most similar feature in the smaller SAE, allowing us187

to trace how features potentially “split” or become more refined as model capacity increases.188

Our results are shown in Figure 9. We find that increasing both number of active latents k and the189

latent dimension n reduces the similarity between nearest neighbours in differently sized SAEs. This190

agrees with intuition: larger models with more capacity (higher k and n) can learn more fine-grained191

and specialised features, leading to greater differentiation from features in smaller models.192

Qualitatively, matching features from small to large SAEs, we find both recurrent features and novel193

features. Recurrent features appear with extremely high Sij and activation similarity across one194

or more model pairs, and have highly similar auto-generated interpretations, suggesting semantic195

closeness; these are much more common for lower k (see Figure 16). In contrast, novel features have196

distinct semantic meaning from their nearest-neighbour match, and activate similarly on some but not197

all documents; novel features thus split the semantic space covered by their nearest-neighbour match198

from a smaller SAE. However, some novel features share little semantic or activation overlap with199

their nearest-neighbour feature, as in Fig. 17b, indicating smaller SAEs may not sufficiently cover200

the feature space; see E.1 in the Appendix for more details.201

4.2 Feature families202

Feature family identification To identify feature families, we developed a graph-based approach203

using co-activation patterns across the dataset. We consider only highly interpretable features (F1204

≥ 0.8, Pearson ≥ 0.8).205

We first compute co-occurrence matrix C and activation similarity matrix D. For all data points206

k, Cij =
∑

k AikAjk, Dij =
∑

k BikBjk where Aik = 1 if feature i is active on example k (0207

otherwise), and Bik = hk,i if feature i is active on example k with hidden vector hk (0 otherwise).208

We normalise the co-occurrence matrix by feature activation frequencies and apply a threshold to209

focus on significant relationships: Cnorm
ij =

Cij

fi+ϵ where fi =
∑

k Aik is the activation frequency210

of feature i and ϵ is a small constant for numerical stability. We then apply a threshold τ to obtain211

Cthresh
ij (hereafter just C). We construct a maximum spanning tree (MST) from C, capturing the212

strongest relationships between features while avoiding cycles. We convert the MST to a directed213

graph, with edges pointing from higher-density to lower-density features, representing a hierarchy214

from more general to more specific concepts. We identify feature families via depth-first-search215

in this directed graph, starting from root nodes (i.e., no incoming edges) and recursively exploring216

hierarchical sub-families.217

We iterate this process, removing parent features after each iteration to re-form the MST and218

reveal overlapping, finer-grained feature families. We de-duplicate families with high set overlap219

( |F1∩F2|
|F1∪F2| > 0.6). In practice, we choose τ = 0.1 and use n = 3 iterations.220

Feature family interpretability To evaluate the interpretability of feature families and their rele-221

vance to scientific concept understanding, we analysed their collective properties and the effectiveness222

of high-level descriptions in capturing their behaviour in scientific contexts. For each family, we223

generated a “superfeature” description using GPT-4o, based on the individual feature descriptions224

within that family. We then uniformly sampled high-activating examples across all activations of child225

features, and assessed the interpretability of the superfeature using a prediction task, where GPT-4o226

predicted whether test abstracts would activate the superfeature. We compared these predictions to227

ground truth activations to compute Pearson correlation and F1 scores. Additionally, we calculated228
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Figure 5: Co-occurrence matrix C organised by a subset of 5 feature families each. Features in
families are ordered by firing density, and the right-most feature is the parent. The un-filled block
structure reflects the hierarchical nature of the feature family: all children co-occur with the parent,
but few children fire with each other. Visually, this supports our clustering approach.

several metrics to characterise the structure and coherence of the feature families. Table 1 presents229

the mean values of these metrics across all families for both the astro-ph and cs.LG datasets.230

Matrix structure We conjecture that feature families are equivalent to diagonal blocks in some231

permutation of the co-occurrence matrix C and activation similarity matrix D. If feature families are232

indeed meaningful clusters in the graph, then in C and D in-block elements should co-activate much233

more strongly than off-diagonal elements. We also argue that due to the hierarchical nature of feature234

families, matrix “blocks” are highly sparse, since child features all co-occur with the parent feature235

but rarely co-occur with one another. Subsets of the co-occurrence matrix, permuted by feature236

family, are shown in 5.237

Motivated by these structures, we compute the parent-child co-occurrence ratio R(p, C) for every fam-238

ily with parent feature p and children C, avg(
∑

i∈C Aip)

avg(
∑

i∈C
∑

j∈C,j ̸=i Aij)
. We also permute the co-occurrence239

and activation similarity matrices by greedily selecting feature families, and compute the in-block to240

off-diagonal ratios Cdiag/Coff and Ddiag/Doff (excluding the i = j diagonal), capturing the clustering241

strength of the block diagonal. Statistics are listed in Table 1.242

Dataset (k, n) Size F1 Pearson R(p, C) Cdiag/Coff Ddiag/Doff finc

astro-ph (16, 3072) 6 0.86 0.76 10.99 5.13 5.47 0.36
(32, 6144) 6 0.86 0.73 11.75 4.72 5.87 0.31
(64, 9216) 7 0.80 0.7 6.87 2.0 3.05 0.24

cs.LG (16, 3072) 5 0.73 0.6 2.44 8.35 0.89 0.23
(32, 6144) 5 0.73 0.59 3.5 7.33 1.07 0.30
(64, 9216) 7 0.80 0.71 1.22 1.78 2.57 0.41

Table 1: Interpretability and structure metrics for feature families from astro-ph and cs.LG; we
report medians unless otherwise noted. finc refers to the fraction of features belonging to a clean (F1
≥ 0.8, Pearson ≥ 0.8) feature family.
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Figure 6: Relationship between intervention accuracy and query fidelity for SAE-based embedding
interventions versus traditional query rewriting in scientific literature retrieval for computer science
(cs.LG) and astronomy (astro-ph) domains. Intervention accuracy measures the precision of causal
query modifications, while query fidelity is quantified by cosine similarity between original and
modified query embeddings.

5 Evaluating effectiveness of search interventions in scientific literature243

5.1 Intervening on scientific embeddings with SAE features244

As an implementation detail, we note that intervening on a feature by up- or down-weighting its245

hidden representation and then decoding is equivalent to directly adding the scaled feature vector to246

the final embedding. This approach allows for precise manipulation of scientific concepts within the247

embedding space. We explore an alternative process in Appendix G where we iteratively optimise the248

encoded decoded latents to minimise the difference between the desired feature activations and the249

actual activations, potentially offering even finer control over scientific concept representation.250

5.2 Experiments in scientific literature retrieval251

We incorporate SAE-based embedding interventions into a scientific literature retrieval system for252

computer science (cs.LG) and astronomy (astro-ph), demonstrating cross-domain applicability in253

scientific AI. To assess the effectiveness of SAE feature intervention on semantic search of scientific254

literature, we evaluate the specificity and interpretability of feature-centric query modifications. We255

select random samples (N = 50 each) of real literature retrieval queries relevant to machine learning256

and astronomy, which are answerable with information in papers from cs.LG and astro-ph.257

For each scientific query, we return the top k = 10 most relevant papers using embedding cosine258

similarity, forming the original retrieval results R. We then select a random feature i in the top-k from259

the query’s hidden representation hq, and another orthogonal feature j that has no overlap with the260

top-k; we limit our selection only to features that are highly interpretable (F1 > 0.9, Pearson > 0.9).261

Given these features, we create a modified query embedding with h′q, i = λ− and h′q, j = λ+,262

letting λ− = 0 and sampling λ+ ∈ [0, 5]. This effectively down-weights” and up-weights” the263

importance of specific scientific concepts i and j, respectively, in the modified query, which is used264

to generate new retrieval results R′.265

To evaluate the effect of up-weighting and down-weighting query modifications on the final retrieval266

results, we provide both R and R′ to an external LLM instance. The external LLM then compares267

R and R′ and determines which scientific concepts, out of a multiple-choice subset of 5 options,268

have been up-weighted or down-weighted; we use this to compute the intervention accuracy, which269

measures the precision and efficacy of causal query interventions in scientific literature search. As a270

baseline, we compare our SAE-based method against traditional query rewriting, by using another271

LLM instance to re-write the original query such that it up-weights j and down-weights i entirely272

using natural language. Our results, shown in Figure 6, demonstrate that SAE feature interventions273

consistently outperform traditional query rewriting across various levels of query fidelity in scientific274

literature search.275

We also experiment with intervening on feature families, sampling highly interpretable families276

containing features in the query top-k. This allows us to manipulate scientific concepts at different277
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levels of abstraction. We uniformly adjust weights for all features in the family, including the parent,278

using the auto-generated family interpretation as the multiple-choice option. Results show that279

feature family interventions achieve accuracy comparable to individual features, but only down-280

weighting interventions outperform query re-writing. This may be because feature families can281

comprehensively down-weight related scientific concepts, while up-weighting a general concept282

doesn’t necessarily require activating all granular child features. Notably, lower cosine similarity283

isn’t inherently undesirable, as changing the query will naturally reduce similarity.284

6 Discussion285

In this work, we have presented a novel approach towards more interpretable scientific foundation286

models and literature search, by applying sparse autoencoders (SAEs) to dense text embeddings to287

derived from large language models. We have demonstrated the usefulness of SAEs in disentangling288

embeddings of scientific paper abstracts into semantically relevant document-level concepts, an289

important step towards more transparent and controllable AI systems for scientific applications. We290

introduced the concept of “feature families” in SAEs, which allow for multi-scale semantic analysis291

and manipulation of scientific concepts. Furthermore, we showcased the practical utility of our292

approach by applying these interpretable features to enable fine-grained control over query semantics293

in scientific literature search, aligning with recent work on controlled text generation (Lee, 2024).294

Our approach offers a novel solution to the growing challenge of scientific literature exploration. With295

the exponential growth in papers, traditional search methods are becoming increasingly ineffective296

(Tsang et al., 2016). Our SAE-based approach, for which we provide an open-source interface,297

provides a new way to navigate and find pertinent scientific papers, especially in interdisciplinary298

fields where relevant work may not be easily discoverable through conventional keyword searches,299

citation networks, or vector search (Sharma et al., 2022; Thomsett-Scott et al., 2016).300

Foundation models, including large language models, are increasingly useful in scientific discovery301

(Si et al., 2024; Tshitoyan et al., 2019; AI4Science et al., 2023). By providing concept-level302

interpretability, our work also allows for probing the evolution of scientific fields over time, as303

captured through state-of-the-art language models and scientific literature corpora. Existing efforts to304

map the landscape of scientific research and understand domain and conceptual shifts have relied305

primarily on citation networks and keyword analysis (Boyack et al., 2005; Uzzi et al., 2013). However,306

SAE features more directly probe semantic meaning and are less sensitive to paper-level or keyword-307

level variations, potentially enabling more robust literature searches and meta-analyses. Statistics308

of SAE features representing scientific concepts—such as clustering patterns, co-occurrences, and309

temporal trends— could gain novel insights into how scientific domains have changed and interacted.310

To more thoroughly evaluate our approach, we would like to collect human user evaluations of311

our SAE-based literature search and compare SAE interventions to other user-facing techniques,312

e.g. prompt rewriting. We’d like to evaluate our reconstructed embeddings against the original313

embeddings using a standard semantic embedding benchmark such as MTEB (Muennighoff et al.,314

2022). We’d also like to be able to conduct an evaluation of SAE features against some proxy of315

ground-truth features, much like Makelov et al. (2024) propose. For instance, the Unified Astronomy316

Thesaurus (Frey et al., 2018) could provide a basis for evaluating individual feature overlap with317

astronomy concepts, and even family features as groupings of these individual concepts.318

Limitations: Our work focused on relatively small datasets from specific scientific domains. Al-319

though this specificity allowed us to demonstrate the effectiveness of our approach in targeted areas,320

future work should investigate how well these methods generalise to larger, more diverse datasets.321

Additionally, our automated interpretability process, while effective, does not utilise the full spectrum322

of activations, potentially missing nuanced patterns in feature behaviour.323

The computational requirements for training SAEs on large embedding datasets also present scalability324

challenges that need to be addressed for wider adoption of this approach. Our SAEs are quite small in325

comparison to more general language model SAEs. This proved adequate given that we only require326

a single embedding vector per example (rather than one per token posiiton) and the narrow domains327

we trained on, but SAEs for general text embeddings would need to be scaled up by at least 2-3 the328

total number of latents. Further, while we’ve demonstrated the utility of our approach for literature329

search, further work is needed to integrate these interpretable representations into the real-world330

workflows of human scientists, from hypothesis generation to experimental design and analysis.331
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Pranav Khetarpal, Sharaf Zaman, David Brodrick, Sergio J. Rodríguez Méndez, Thang Bui, Alyssa433

Goodman, Alberto Accomazzi, Jill Naiman, Jesse Cranney, Kevin Schawinski, and UniverseTBD434

(2023). AstroLLaMA: Towards Specialized Foundation Models in Astronomy. arXiv: 2309.06126435

[astro-ph.IM]. URL: https://arxiv.org/abs/2309.06126.436

Olshausen, Bruno A and David J Field (1997). “Sparse coding with an overcomplete basis set: A437

strategy employed by V1?” In: Vision Research 37.23, pp. 3311–3325.438

Qu, Jiaxing, Yuxuan Richard Xie, Kamil M. Ciesielski, Claire E. Porter, Eric S. Toberer, and Elif439

Ertekin (2024). “Leveraging language representation for materials exploration and discovery”. In:440

npj Computational Materials 10, pp. 1–14. DOI: 10.1038/s41524-024-01231-8.441

Rajamanoharan, Senthooran, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János442

Kramár, Rohin Shah, and Neel Nanda (2024). “Improving dictionary learning with gated sparse443

autoencoders”. In: arXiv preprint arXiv:2404.16014.444

Rasmy, Laila, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi (2021). “Med-BERT: pretrained con-445

textualized embeddings on large-scale structured electronic health records for disease prediction”.446

In: npj Digital Medicine 4.1, pp. 1–13.447

11

https://arxiv.org/abs/2408.01556
https://arxiv.org/abs/2408.01556
https://arxiv.org/abs/2408.01556
https://arxiv.org/abs/2408.01556
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://arxiv.org/abs/2301.10140
https://arxiv.org/abs/2301.10140
https://arxiv.org/abs/2301.10140
https://arxiv.org/abs/2301.10140
https://arxiv.org/abs/2312.07559
https://arxiv.org/abs/2312.07559
https://thesephist.com/posts/prism
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://arxiv.org/abs/2309.06126
https://arxiv.org/abs/2309.06126
https://arxiv.org/abs/2309.06126
https://arxiv.org/abs/2309.06126
https://doi.org/10.1038/s41524-024-01231-8


Reimers, Nils, Lucas Beyer, and Iryna Wang (2022). “The curse of dense low-dimensional information448

retrieval for large index sizes”. In: arXiv preprint arXiv:2112.07899.449

Reimers, Nils and Iryna Gurevych (2019). “Sentence-BERT: Sentence Embeddings using Siamese450

BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural451

Language Processing, pp. 3982–3992.452

Romera-Paredes, Bernardino, Mohammadamin Barekatain, Alexander Novikov, et al. (2024). “Mathe-453

matical discoveries from program search with large language models”. In: Nature 625, pp. 468–475.454

DOI: 10.1038/s41586-023-06924-6.455

Sharma, Ritu, Sarita Gulati, Amanpreet Kaur, Atasi Sinhababu, and Rupak Chakravarty (2022).456

“Research discovery and visualization using ResearchRabbit: A use case of AI in libraries”. In:457

COLLNET Journal of Scientometrics and Information Management 16.2, pp. 215–237.458

Si, Chenglei, Diyi Yang, and Tatsunori Hashimoto (2024). Can LLMs Generate Novel Research459

Ideas? A Large-Scale Human Study with 100+ NLP Researchers. arXiv: 2409.04109 [cs.CL].460

URL: https://arxiv.org/abs/2409.04109.461

Taylor, Ross, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,462

Andrew Poulton, Viktor Kerkez, and Robert Stojnic (2022). Galactica: A Large Language Model463

for Science. arXiv: 2211.09085 [cs.CL]. URL: https://arxiv.org/abs/2211.09085.464

Templeton, Adly (2024). Scaling monosemanticity: Extracting interpretable features from claude 3465

sonnet. Anthropic.466

Thomsett-Scott, Beth and Patricia E Reese (2016). “Academic libraries and discovery tools: A survey467

of the literature”. In: Discovery Tools: The Next Generation of Library Research, pp. 3–23.468

Trifonov, Valentin, Octavian-Eugen Ganea, Anna Potapenko, and Thomas Hofmann (2018). Learning469

and Evaluating Sparse Interpretable Sentence Embeddings. arXiv: 1809.08621 [cs.CL]. URL:470

https://arxiv.org/abs/1809.08621.471

Tsang, Daniel C and Julia M Gelfand (2016). “The Changing Landscape of Research Library472

Collections: Ensuring Realistic Sustainability.” In.473

Tshitoyan, Vahe, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova,474

Kristin A. Persson, Gerbrand Ceder, and Anubhav Jain (2019). “Unsupervised word embeddings475

capture latent knowledge from materials science literature”. In: Nature 571, pp. 95–98. DOI:476

10.1038/s41586-019-1335-8.477

Turian, Joseph, Lev Ratinov, and Yoshua Bengio (2010). “Word representations: a simple and478

general method for semi-supervised learning”. In: Proceedings of the 48th annual meeting of the479

association for computational linguistics, pp. 384–394.480

Uzzi, Brian, Satyam Mukherjee, Michael Stringer, and Ben Jones (2013). “Atypical combinations481

and scientific impact”. In: Science 342.6157, pp. 468–472.482

Wang, Liang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,483

and Furu Wei (2024). Text Embeddings by Weakly-Supervised Contrastive Pre-training. arXiv:484

2212.03533 [cs.CL]. URL: https://arxiv.org/abs/2212.03533.485

Wright, Benjamin and Lee Sharkey (2024). Addressing Feature Suppression in SAEs. https://www.486

alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-487

in-saes. [Accessed 16-07-2024].488

12

https://doi.org/10.1038/s41586-023-06924-6
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/1809.08621
https://arxiv.org/abs/1809.08621
https://doi.org/10.1038/s41586-019-1335-8
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes


Contents489

1 Introduction 1490

2 Background and Related work 2491

2.1 Embeddings and Representation Learning . . . . . . . . . . . . . . . . . . . . . . 2492

2.2 Sparse autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3493

2.2.1 Architecture and training . . . . . . . . . . . . . . . . . . . . . . . . . . . 3494

2.2.2 Structure in SAE features . . . . . . . . . . . . . . . . . . . . . . . . . . . 4495

2.3 Language foundation models in science . . . . . . . . . . . . . . . . . . . . . . . 4496

3 Training SAEs and automated labelling 4497

3.1 Training and automated interpretability methods . . . . . . . . . . . . . . . . . . . 4498

4 Constructing feature families through graph-based clustering 5499

4.1 Feature splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6500

4.2 Feature families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6501

5 Evaluating effectiveness of search interventions in scientific literature 8502

5.1 Intervening on scientific embeddings with SAE features . . . . . . . . . . . . . . . 8503

5.2 Experiments in scientific literature retrieval . . . . . . . . . . . . . . . . . . . . . 8504

6 Discussion 9505

A Training details 14506

A.1 Training setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14507

A.2 Training and automated interpretability methods . . . . . . . . . . . . . . . . . . . 14508

A.3 SAE training metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15509

A.4 Scaling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16510

A.5 Feature density and similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16511

B SAErch.ai 18512

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18513

B.2 Feature Visualisation Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19514

B.2.1 Individual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19515

B.2.2 Feature Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19516

C Automated interpretability details 20517

C.1 Examples of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20518

C.2 Automated interpretability prompts . . . . . . . . . . . . . . . . . . . . . . . . . . 21519

C.3 Exploring the effectiveness of smaller models . . . . . . . . . . . . . . . . . . . . 23520

D Cross-domain features 23521

13



E Feature family details 25522

E.1 Feature splitting structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25523

E.2 Feature family structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26524

E.3 Feature family interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29525

F Exploring learned decoder weight matrices 29526

G Iterative encoding optimisation 29527

A Training details528

A.1 Training setup529

Our sparse autoencoder (SAE) implementation incorporates several recent advancements in the field.530

Following Bricken et al. (2023), we initialise the bias bpre using the geometric median of a data531

point sample and set encoder directions parallel to decoder directions. Decoder latent directions are532

normalised to unit length at initialisation and after each training step. For our top-k models, based on533

Gao et al. (2024), we set initial encoder magnitudes to match input vector magnitudes, though our534

analyses indicate minimal impact from this choice.535

We also use an auxiliary loss, similar to the “ghost grads” technique (Jermyn et al., 2023), to model536

the reconstruction error using the top kaux dead latents, where we typically set kaux = 2k (Gao et al.,537

2024). Latents are flagged as dead during training if they have not activated for a predetermined538

number of tokens (in our case, one full epoch through the training data). Given the reconstruction539

error of the main model e = x − x̂, we define the auxiliary loss as Laux(x, x̂) = ∥e − ê∥22 where540

ê = Wdz is the reconstruction using the top kaux dead latents, and z is the sparse representation541

using only these dead latents. This additional loss term helps to revive dead features and improve542

the overall representational capacity of the model (Gao et al., 2024). We found that dead latents543

only occurred during training the k = 16 models, and all dead latents had disappeared by the end544

of training. We show how dead latents evolved over training the k = 16 SAEs for the astro-ph545

abstracts in Figure 7.546

For optimisation, we employ Adam (Kingma et al., 2014) with β1 = 0.9 and β2 = 0.999, maintaining547

a constant learning rate. We use gradient clipping. Our training uses batches of 1024 abstracts, with548

performance metrics showing robustness to batch size variations under appropriate hyperparameter549

settings.550

The primary MSE loss uses a global normalisation factor computed at training initiation, while551

the AuxK loss employs per-batch normalisation to adapt to evolving error distributions. Following552

Bricken et al. (2023), we apply a gradient projection technique to mitigate interactions between the553

Adam optimiser and decoder normalisation.554

A.2 Training and automated interpretability methods555

Training: We train our top-k SAEs on the embeddings of abstracts from papers on arXiv with the556

astro-ph tag (astrophysics, 272,000 papers) and the cs.LG tag (computer science, 153,000 papers).557

The embeddings were generated with OpenAI’s text-embedding-3-small model.1 We train our558

SAEs on these collections of embeddings separately. We normalised the embeddings to zero mean559

and unit variance before passing them to the SAE as inputs. Our trained SAEs will be made available560

for download.561

Hyperparameters: Notable hyperparameters include the number of active latents k, the total number562

of latents n, the number of auxiliary latents kaux, the learning rate, and the auxiliary loss coefficient563

α. We found learning rate and auxiliary loss coefficient to not have a significant effect on final564

reconstruction loss; we set the former to 1e-4 and the latter to 1/32. We vary k between 16 and 128,565

and n between two to nine times the embedding dimension dinput. Whilst we train SAEs with many566

1https://openai.com/index/new-embedding-models-and-api-updates/
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Figure 7: The proportion of dead latents, defined as features that haven’t fired in the last epoch of
training, for our k = 16 SAEs on the astro-ph abstract embeddings. All dead latents were gone by
the end of training. We found that dead latents only occurred in k = 16 autoencoders.

different combinations of these hyperparameters, we largely focus on what we hereon refer to as567

SAE16 (k = 16, n = 2dinput = 3072), SAE32 (k = 32, n = 4dinput = 6144) and SAE64 (k = 64,568

n = 6dinput = 9216). We train each model for approximately 13.2 thousand steps.569

Automated interpretability: Following the training of a Sparse Autoencoder (SAE), it becomes570

necessary to interpret its features, each corresponding to a column in the learned decoder weight571

matrix. To facilitate feature interpretation and quantify interpretation confidence, we employ two572

Large Language Model (LLM) instances: the Interpreter and the Predictor. The Interpreter is573

tasked with generating labels for each feature. It is provided with the abstracts that produce the top574

5 activations of the feature across the dataset, along with randomly selected abstracts that do not575

activate the feature. The Interpreter then generates a label for the feature based on this input (for the576

complete prompt, refer to Appendix C). Subsequently, the generated label is passed to the Predictor.577

The Predictor is presented with three randomly sampled abstracts where the feature was activated and578

three where it was not. It is then instructed to predict whether a given abstract should activate the579

feature, expressing its confidence as a score ranging from −1 (absolute certainty of non-activation) to580

+1 (absolute certainty of activation).2 We measure the Pearson correlation between this confidence581

and the true activation (binary; +1 or -1). We also measure the F1 score, when framing the confidence582

as a binary classification (active if confidence is above 0, inactive otherwise).583

Evaluation metrics: In order to compare SAEs, we evaluate both their ability to reconstruct the584

embeddings, as well as the interpretability of the learned features. For the former, we examine the585

normalised mean squared error (MSE), where we divide MSE by the error when predicting the mean586

activations. We also report the log density of the activation of features across all papers. We do not587

report dead latents (those not firing on any abstract) as all models contained zero dead latents at the588

end of training. We also report the mean activation of features, when their activation is non-zero. To589

measure interpretability, we use Pearson correlation, as outlined above.590

A.3 SAE training metrics591

Table 2 shows the final training metrics for all combinations of SAEs trained. We note clear trends in592

normalised MSE, log feature density and activation mean as we vary the number of active latents k593

and the overall number of latents n.594

2We use 3 activating and 3 non-activating abstracts for the Predictor, rather than 5, due to LLM costs. We
used gpt-4o as the Interpreter and gpt-4o-mini as the Predictor. Notably, we predict each abstract separately,
rather than batching abstracts like Bricken et al. (2023).
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Table 2: Metrics for our top-k sparse autoencoders with varying k and hidden dimensions, across
both astronomy and computer science papers. MSE is normalised mean squared error, Log FD is
the mean log density of feature activations, and activation mean is the mean activation value across
non-zero features. Note that MSE is normalised.

astro.ph cs.LG

k n MSE Log FD Act Mean MSE Log FD Act Mean

16

3072 0.2264 -2.7204 0.1264 0.2284 -2.7314 0.1332
4608 0.2246 -4.7994 0.1350 0.2197 -3.0221 0.1338
6144 0.2128 -3.1962 0.1266 0.2089 -3.2299 0.1342
9216 0.1984 -3.4206 0.1264 0.1962 -3.4833 0.1343

12288 0.1957 -6.2719 0.1274 0.1897 -3.6448 0.1347

32

3072 0.1816 -2.3389 0.0847 0.1831 -2.3008 0.0885
4608 0.1691 -3.6091 0.0882 0.1697 -2.5152 0.0876
6144 0.1604 -2.7761 0.0841 0.1641 -2.6687 0.0873
9216 0.1554 -3.0227 0.0842 0.1540 -2.9031 0.0875

12288 0.1520 -4.9505 0.0843 0.1457 -3.0577 0.0877

64

3072 0.1420 -1.9538 0.0566 0.1485 -1.8875 0.0584
4608 0.1331 -2.7782 0.0622 0.1370 -2.0637 0.0570
6144 0.1262 -2.2828 0.0545 0.1310 -2.1852 0.0558
9216 0.1182 -2.4682 0.0539 0.1240 -2.3536 0.0545

12288 0.1152 -3.4787 0.0583 0.1162 -2.4847 0.0548

128

3072 0.1111 -1.8876 0.0483 0.1206 -1.5311 0.0399
4608 0.1033 -2.1392 0.0457 0.1137 -1.6948 0.0376
6144 0.1048 -2.2501 0.0438 0.1076 -1.8079 0.0366
9216 0.0975 -2.5352 0.0409 0.0999 -1.9701 0.0348

12288 0.0936 -2.7025 0.0399 0.0942 -2.0858 0.0342

A.4 Scaling laws595

For the left panel of Figure 2, which shows the scaling of normalised MSE with the number of total596

latents n, we observe the following power-law relationships:597

k = 16 : L(n) = 0.61n−0.12 (astro.ph); L(n) = 0.67n−0.13 (cs.LG)

k = 32 : L(n) = 0.49n−0.13 (astro.ph); L(n) = 0.56n−0.14 (cs.LG)

k = 64 : L(n) = 0.46n−0.15 (astro.ph); L(n) = 0.60n−0.17 (cs.LG)

k = 128 : L(n) = 0.31n−0.13 (astro.ph); L(n) = 0.51n−0.18 (cs.LG)

For the right panel of Figure 2, which shows the scaling of normalised MSE with the amount of598

compute C (in FLOPs), we observe the following power-law relationships:599

k = 16 : L(C) = 3.84C−0.11

k = 32 : L(C) = 5.25C−0.13

k = 64 : L(C) = 8.03C−0.16

k = 128 : L(C) = 2.80C−0.13

These equations demonstrate the consistent power-law scaling behaviour of sparse autoencoders600

across different values of k, n, and compute C.601

A.5 Feature density and similarity602

We find an intuitive relationship between k and n and the log feature density (essentially, how often a603

given feature fires). As k increases, we get a sharper peak of log feature density, shifted to the right,604

suggesting features fire in a tighter range as we increase the instantaneous L0 of the SAE’s encoder605

(Figure 8).606
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Figure 8: Log feature density for features in our three SAEs as a stacked histogram, showing the
distribution of how often features fire across all paper abstacts (cs.LG and astro-ph). The larger
SAE has a higher mean feature density than the smaller SAEs.
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Figure 9: Nearest-neighbour cosine similarity distributions for SAE features. To find features in an
SAE with a lower k that are most similar to those in an SAE with a larger k, we compute the cosine
similarity between each feature in the larger model and each feature in the smaller model. We do this
for several values of n, and combine the distributions for astro.ph and cs.LG.

To compare features across different SAEs trained on the same input data, we analyse the cosine607

similarity between the decoder weight vectors corresponding to each feature. Decoder weights,608

represented by columns in the decoder matrix, directly encode each feature’s contribution to input609

reconstruction. Encoder weights, on the other hand, are optimised to extract feature coefficients610

while minimising interference between non-orthogonal features. This separation is important in the611

context of superposition, where we have more features than input dimensions, precluding perfect612

orthogonality.613
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Figure 10: The SAErch tab of our web application, demonstrating a semantic search for “measurable
signatures of stochasticity in star formation in galaxies” in the astrophysics domain. The interface
displays the top 10 search results ranked by relevance, including title, citation count, and publication
year. On the right, sliders represent the top activated SAE features for the query, allowing users
to fine-tune the search by adjusting feature weights. On the bottom we have our feature addition
interface. Users can search for specific semantic features (e.g., “black holes”) and add them to their
query. They can then adjust the strength of these features.

B SAErch.ai614

To demonstrate the practical applications of our sparse autoencoder (SAE) approach to semantic615

search and feature interpretation, we developed a web application that allows users to interact with616

the SAE models trained on arXiv paper embeddings. The link will be made public at the end of the617

anonymity period.618

B.1 Overview619

SAErch.ai is built using the Gradio framework and consists of three main tabs: Home, SAErch, and620

Feature Visualisation. The application allows users to switch between the Computer Science (cs.LG)621

and Astrophysics (astro-ph) datasets.622

The SAErch tab implements the core functionality of our semantic search system, allowing users to:623

• Input a search query624

• View the top 10 search results based on embedding similarity625

• Interact with the SAE features activated by their query626

For each query, the system displays sliders corresponding to the top-k SAE features activated by the627

input. Users can adjust these sliders to modify the query embedding, effectively steering the search628

results towards or away from specific semantic concepts; see Figure 10. This directly demonstrates629

the fine-grained control over query semantics discussed in Section 5 of our paper. Users can also630

search for and add specific features not initially activated by their query (Figure ??).631

18



Figure 11: Individual feature visualisation for the “Circuit analysis in neural networks” feature in the
computer science domain. The interface displays key interpretability metrics, top activating abstracts,
correlated and co-occurring features, and an activation distribution histogram. Further information
(not shown in the image) includes co-occurring features and activation distribution.

B.2 Feature Visualisation Tab632

The Feature Visualisation tab is divided into two sub-tabs: Individual Features and Feature Families.633

This section of the application directly relates to our analysis of SAE features and feature families634

discussed in Sections 3 and 4.635

B.2.1 Individual Features636

For any selected feature, this tab displays:637

• Top 5 activating abstracts, demonstrating the semantic content captured by the feature638

• Top and bottom 5 correlated features, illustrating the relationships between different SAE639

features640

• Top 5 co-occurring features, showing which features tend to activate together641

• A histogram of activation values, providing insight into the feature’s behavior across the642

corpus643

• The most similar features in SAE16 and SAE32644

B.2.2 Feature Families645

The Feature Families tab in our web application offers an in-depth exploration of related features646

discovered by our sparse autoencoder. We show an example feature family in Figure 12.647

The table displays the parent feature (superfeature) and its child features, along with key metrics,648

such as the name of the parent and child features, the frequency of co-occurrence between the child649

feature and the parent feature, ranging from 0 to 1, and the F1 Score and Pearson correlation.650

The interactive directed graph provides a visual representation of the feature family structure. Each651

node represents a feature. The size of the node corresponds to the feature’s density (frequency of652
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Figure 12: Directed graph visualization of a transformer models feature family. Nodes represent
individual features, with size indicating feature density and color intensity showing Pearson correla-
tion. Edges depict relationships between features, with arrow direction pointing from more general to
more specific concepts. Users can hover over nodes to view detailed feature information.

activation), while the color intensity indicates the Pearson correlation (interpretability). Arrows653

between nodes show relationships between features, with the direction typically pointing from more654

general to more specific concepts. Users can hover over nodes to view detailed information about655

each feature, including its name and log density.656

C Automated interpretability details657

C.1 Examples of features658

We show some examples of perfectly interpretable features (Pearson correlation > 0.99) in Table 3.659

The strength of the activation of the feature on its top 3 activating abstracts is shown in parentheses660

next to the abstract title.661
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Feature

Astronomy

Cosmic Microwave Background CMB map-making and power
spectrum estimation (0.1708)

How to calculate the CMB
spectrum (0.1598)

CMB data analysis and spar-
sity (0.1581)

Periodicity in astronomical data Generalized Lomb-Scargle
analysis of decay rate
measurements from the
Physikalisch-Technische
Bundesanstalt (0.1027)

Multicomponent power-
density spectra of Kepler
AGNs, an instrumental
artefact or a physical origin?
(0.0806)

RXTE observation of the X-
ray burster 1E 1724-3045. I.
Timing study of the persistent
X-ray emission with the PCA
(0.0758)

X-ray reflection spectra X-ray reflection spectra from
ionized slabs (0.3859)

The role of the reflection
fraction in constraining black
hole spin (0.3803)

Relativistic reflection: Re-
view and recent develop-
ments in modeling (0.3698)

Critique or refutation of theories What if string theory has no
de Sitter vacua? (0.2917)

No evidence of mass segrega-
tion in massive young clusters
(0.2051)

Ruling Out Initially Clustered
Primordial Black Holes as
Dark Matter (0.2029)

Computer Science

Sparsity in Neural Networks Two Sparsities Are Better
Than One: Unlocking the Per-
formance Benefits of Sparse-
Sparse Networks (0.3807)

Truly Sparse Neural Net-
works at Scale (0.3714)

Topological Insights into
Sparse Neural Networks
(0.3689)

Gibbs Sampling and Variants Herded Gibbs Sampling
(0.2990)

Characterizing the General-
ization Error of Gibbs Algo-
rithm with Symmetrized KL
information (0.2858)

A Framework for Neural Net-
work Pruning Using Gibbs
Distributions (0.2843)

Arithmetic operations in transformers Arbitrary-Length Generaliza-
tion for Addition in a Tiny
Transformer (0.1828)

Carrying over algorithm in
transformers (0.1803)

Understanding Addition in
Transformers (0.1792)

Table 3: Activation strengths and titles for abstracts related to Astronomy and Computer Science
features.

C.2 Automated interpretability prompts662

We provide the prompts used for the Interpreter model and the Predictor model in the boxes below.663

Where this text is used, it represents an input to the model. We found that performance significantly664

increased when including the instruction to use “Occam’s razor”, whereby the simplest feature at the665

appropriate level of granularity was selected.666
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Interpreter Model Prompt

You are a meticulous <type> researcher conducting an important investigation into a certain
neuron in a language model trained on <subject> papers. Your task is to figure out what
sort of behaviour this neuron is responsible for – namely, on what general concepts, features,
themes, methodologies or topics does this neuron fire? Here’s how you’ll complete the task:

INPUT DESCRIPTION: You will be given two inputs: 1) Max Activating Examples and 2)
Zero Activating Examples.

1. You will be given several examples of text that activate the neuron, along with a
number being how much it was activated. This means there is some feature, theme,
methodology, topic or concept in this text that ‘excites’ this neuron.

2. You will also be given several examples of text that don’t activate the neuron. This
means the feature, topic or concept is not present in these texts.

OUTPUT DESCRIPTION: Given the inputs provided, complete the following tasks.
1. Based on the MAX ACTIVATING EXAMPLES provided, write down potential topics,

concepts, themes, methodologies and features that they share in common. These
will need to be specific - remember, all of the text comes from subject, so these
need to be highly specific subject concepts. You may need to look at different
levels of granularity (i.e. subsets of a more general topic). List as many as you can
think of. Give higher weight to concepts more present/prominent in examples with
higher activations.

2. Based on the zero activating examples, rule out any of the topics/concepts/features
listed above that are in the zero-activating examples. Systematically go through your
list above.

3. Based on the above two steps, perform a thorough analysis of which feature, concept
or topic, at what level of granularity, is likely to activate this neuron. Use Occam’s
razor, as long as it fits the provided evidence. Be highly rational and analytical here.

4. Based on step 4, summarise this concept in 1-8 words, in the form FINAL:
<explanation>. Do NOT return anything after these 1-8 words.

Here are the max-activating examples: <max activating examples>

Here are the zero-activating examples: <zero activating examples>

Work through the steps thoroughly and analytically to interpret our neuron.
667

22



Predictor Model Prompt

You are a <subject> expert that is predicting which abstracts will activate a certain neuron
in a language model trained on <subject> papers. Your task is to predict which of the
following abstracts will activate the neuron the most. Here’s how you’ll complete the task:

INPUT DESCRIPTION: You will be given the description of the type of paper abstracts on
which the neuron activates. This description will be short. You will then be given an abstract.
Based on the concept of the abstract, you will predict whether the neuron will activate or not.

OUTPUT DESCRIPTION: Given the inputs provided, complete the following tasks.
1. Based on the description of the type of paper abstracts on which the neuron activates,

reason step by step about whether the neuron will activate on this abstract or not.
Be highly rational and analytical here. The abstract may not be clear cut - it may
contain topics/concepts close to the neuron description, but not exact. In this case,
reason thoroughly and use your best judgement. However, do not speculate on topics
that are not present in the abstract.

2. Based on the above step, predict whether the neuron will activate on this abstract
or not. If you predict it will activate, give a confidence score from 0 to 1 (i.e. 1
if you’re certain it will activate because it contains topics/concepts that match the
description exactly, 0 if you’re highly uncertain). If you predict it will not activate,
give a confidence score from -1 to 0.

3. Provide the final confidence score in the form PREDICTION: (your prediction)
e.g. PREDICTION: 0.5. Do NOT return anything after this.

Here is the description/interpretation of the type of paper abstracts on which the neuron
activates: <description>

Here is the abstract to predict: <abstract>

Work through the steps thoroughly and analytically to predict whether the neuron will activate
on this abstract.

668

C.3 Exploring the effectiveness of smaller models669

Although we eventually used gpt-4o-mini as the Predictor model, we initially did some ablations670

to understand how effective gpt-4o and gpt-3.5-turbo would be as different combinations of671

the Interpreter and Predictor models. We measured this by randomly sampling 50 features from672

our SAE64 (trained on astro-ph abstracts) and measuring the interpretability scores of different673

model combinations, in terms of both F1 score (does the model’s binary classification of a feature674

firing on an abstract agree with the ground-truth) and the Pearson correlation (described in the main675

body). Interestingly, we observe that using gpt-4o as the Interpreter and gpt-3.5-turbo as the676

Predictor leads to similar scores as using gpt-3.5-turbo for both, as shown in Figures 13 and677

Figures 14. This suggests that the challenging task in the autointerp is not necessarily labelling but678

rather predicting the activation of a feature on unseen abstracts.679

Another observation is that using gpt-3.5-turbo as the Predictor only leads to a moderate degrada-680

tion of F1 score, it leads to a significant degradation of Pearson correlation. This is likely because681

we only use 6 abstracts for each feature prediction (3 positive, 3 negative) and thus there are only a682

few discrete F1 scores possible. Additionally, it appeared that gpt-3.5-turbo was generally less683

likely to assign higher confidence scores in either direction, with a much lower variance in assigned684

confidence than when gpt-4o was the Predictor. This affects Pearson correlation but not F1.685

D Cross-domain features686

The intersection between our cs.LG (n = 153, 146) and astro.PH (n = 271, 492) corpora contains687

n = 330 cross-posted papers. Motivated by these papers, as well as the observation of similar688

features re-occurring in models of different sizes (see Section 4), we search for the max cosine689

similarity feature between cs.LG and astro.PH SAEs at a fixed k and ndir. As expected, we find690
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Figure 13: Correlation between F1 scores and Pearson correlation scores of different combinations of
(labeller, predictor) models. Interestingly, using GPT-3.5 as the predictor appears to degrade
performance similarly regardless of whether the feature was labelled by GPT-4o or GPT-3.5.
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Figure 14: Mean F1 scores and Pearson correlations (according to ground-truth feature activations)
across 50 randomly sampled features, for different combinations of (Interpreter, Predictor)
models.
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Figure 15: Maximum pair-wise cosine similarity of feature vectors between SAEs trained on different
domains.

Feature Name (astro-ph) Best Match (cs.LG) Cosine Sim. Activation Sim. ∆ F1 ∆ Pearson
Deep learning CNNs and Applications 0.39 0.33 -0.2 -0.17
Generative Adversarial Networks Generative Adversarial Networks (GANs) 0.61 0.26 0 0
Transformers Transformer architectures and applications 0.5 0.33 0 -0
Artificial Neural Networks Artificial Neural Networks (ANNs) 0.64 0.02 0 0
Artificial Intelligence AI applications in diverse domains 0.61 0.45 0 0.02
Automation and Machine Learning Automation in computational processes 0.9 0.77 -0.25 -0.47
Gaussian Processes Gaussian Processes in Machine Learning 0.59 0.54 0 0.03
Regression analysis Regression techniques and applications 0.81 0.53 0 -0.01

Table 4: Feature matches from the "Machine Learning" family (astroPH); k = 64, ndir = 9216.

significant mis-alignment between the vast majority of feature vectors between SAEs trained on691

different domains, with mis-alignment increasing with k and ndir (see Figure 15; this is unsurprising692

given how k and ndirs correlate with feature granularity).693

However, a small subset of features appear in both sets of SAEs, with relatively high max cosine694

similarity. For example, Table 4 shows the nearest cs.LG neighbours for every feature in the695

astro.PH “Machine Learning” feature family (average cosine similarity = 0.59, average activation696

similarity = 0.40). To test whether the features represent the same semantic concepts, we substitute the697

natural language description of the best-match cs.LG feature for each listed astro.PH feature and698

test the interpretability of the substituted descriptions; we find ∆Pearson = −0.07 and ∆F1 = −0.06.699

The existence of these features suggests that both sets of SAEs learn a semi-universal set of features700

that span the domain overlap between astro.PH and cs.LG.701

Interestingly, we find a number of near-perfectly aligned pairs (cosine similarity > 0.95) of highly702

interpretable features with little semantic overlap. A number of these features share similar wording703

but not meaning, such as “Substructure in dark matter and galaxies" (astro-ph) and “Subgraphs and704

their representations". Of these 10 feature pairs, the average activation similarity is 0.91.705

E Feature family details706

E.1 Feature splitting structures707

Figure 16 shows an example of a recurrent feature across SAE sizes that does not exhibit feature708

splitting. While the feature has extremely high activation and cosine similarity across every model709

pair, each model only learns 1 feature in this direction. In Figures 17a and 17b we show two ex-710

amples of feature splitting across SAE16 – SAE32 – SAE64 trained on astro-ph. 17a appears to711

show canonical feature splitting as originally described in Bricken et al., 2023, with an increasing712

number of features splitting the semantic space at each SAE size. There exists a top-level “period-713

icity”/“periodicity detection” feature universal to all three SAEs, with relatively high similarity to714

all other features, as well as novel, more granular features appearing in smaller SAEs, i.e. “Quasi-715

periodic oscillations in blazars”, which only appears in SAE64 and is highly dissimilar from other716

split features.717
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Figure 16: Recurrent features across SAEs trained on astro-ph; heatmap colored by activation
similarity D; all feature vector cosine similarities are > 0.98.

In contrast, 17b demonstrates nearest-neighbour features across models that do not exhibit semanti-718

cally meaningful feature splitting. While the top-level “Luminous Blue Variables (LBVs)" feature719

occurs at every model size, SAE64 also exhibits two additional features, “Lemaitre-Tolman-Bondi720

(LTB) Models" and “Lyman Break Galaxies (LBGs)", that are highly dissimilar to each other, the721

LBVs feature, and every other feature in the smaller models. We claim these are novel features,722

occurring for the first time in SAE64, and that SAE16/SAE32 do not learn features for any related723

higher-level concepts; instead, this grouping could be a spurious token-level correlation (LBV/LT-724

B/LBG as similar acronyms).725

Feature triplets In Figure 18a, we search for features that occur in ndirs = 3072 models and have726

highly aligned features in larger (ndirs = 6144, 9216) models; we use this as a rough proxy for the727

number of re-occurring features. We find that significantly more features re-occur between models728

for higher k, with over 1100 feature triplets at > 0.95 cosine similarity for k = 16; as k increases,729

the number of triplets drops sharply.730

Self-consistency In 18b we show the set overlap between nearest-neighbour matches between731

SAE16 and SAE64 found directly, and nearest-neighbour matches between SAE16 and SAE64 found732

via nearest-neighbour matches to SAE32. If features exhibit perfectly clean splitting geometry, then733

these two sets of SAE64 features should be consistent. However, we find that the distribution of set734

overlap is roughly bimodal; other than triplet features with perfect overlap, overlap generally ranges735

from 0 to 0.6. The vast majority of intersection = 1 sets are ≤ 3 features in size. This corroborates736

findings in 9 which suggests features across models with different k are not well-aligned.737

E.2 Feature family structure738

We compute feature family sizes (including the parent), co-occurrence ratios (R(p, C), see section 4),739

and activation similarity ratios (computed identically to R(p, C), just using activation similarities).740

Statistics for variants of cs.LG and astro-ph are shown in 19. We find a positive correlation741

(Spearman = 0.22) between R(p, C) and feature family interpretability.742

We reproduce the projection method of Engels et al., 2024, running all documents through the SAE743

and ablating features not in the feature family, to produce Figure 20. Visualizing the resulting principal744

components confirms that the feature families we find do not represent manifolds or irreducible745

multi-dimensional structures. We can instead think of feature families as linear subspaces in the746

high-dimensional latent space; in fact, the component vectors can be seen in the lines of points747

representing documents only activating on one feature in the family.748

In 4 we use n = 3 iterations of feature family construction. We select this hyper-parameter based off749

Figure 21. In the first 2-3 iterations, removing parent nodes and re-constructing features preferentially750
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(a) We find both recurrent features and novel features at every level (i.e. the
top-level “periodicity detection"/“periodicity" feature); heatmap colored by
pairwise cosine similarity.

(b) While “Luminous Blue Variables" is a recurrent feature in each SAE, SAE64 also
exhibits 2 other nearest-neighbour features to “Luminous Blue Variables" that are not
semantically related; heatmap colored by pairwise cosine similarity.
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Figure 19: Feature families statistics (left: size; middle: activation similarity ratio; right: co-
occurrence ratio, R(p, C)); k = 64, ndir = 9216.

Figure 20: PCA projections of 3 example feature families from SAE64; points are latent representa-
tions of activating examples, colored by average activation for in-family features in the top k.
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Figure 21: New feature families as a function of iteration; no deduplication is performed.

creates additional smaller families, suggesting iterations are necessary to fully explore the graph.751

But given the sparse co-occurrences (Ci,j > 0.1) used to build the graph, the number of additional752

feature families found at each iteration drops off steeply after n = 3.753

E.3 Feature family interpretability754

We show example feature families and their interpretability scores in Figure 22.755

F Exploring learned decoder weight matrices756

Encoder and decoder representations Figure 23 reveals an intriguing relationship between feature757

distinctiveness and the similarity of encoder and decoder representations in our sparse autoencoder.758

In an ideal scenario with orthogonal features, encoder and decoder vectors would be identical, as the759

optimal detection direction (encoder) would align perfectly with the representation direction (decoder).760

This is because orthogonal features can be uniquely identified without interference. However, in our761

high-dimensional space with more features than dimensions, perfect orthogonality is impossible due762

to superposition.763

The right panel of Figure 23 shows a negative correlation between a feature’s decoder-encoder cosine764

similarity and its maximum similarity with other features. Features more orthogonal to others (lower765

maximum similarity) tend to have more similar encoder and decoder representations. This aligns766

with intuition: for more isolated features, the encoder’s detection direction can closely match the767

decoder’s representation direction. Conversely, features with higher similarity to others require768

the encoder to adopt a more differentiated detection strategy to minimise interference, resulting in769

lower encoder-decoder similarity. The left panel, showing a mean cosine similarity of 0.57 between770

corresponding encoder and decoder vectors, further emphasises this departure from orthogonality.771

This phenomenon points to the importance of untied weights in sparse autoencoders.772

Clustering feature vectors Motivated by structure in the feature activation graph, we explore whether773

similar structure can be found in the decoder weight matrix W itself. Gao et al., 2024 find 2 such774

clusters; we reproduce their method across our embeddings and SAEs, permuting the left singular775

vectors U of W using a one-dimensional UMAP. We also experiment with permuting U and W using776

reverse Cuthill-McKee. We do not find any meaningful block diagonal structure or clustering in W .777

G Iterative encoding optimisation778

We noted in Section 5 that intervening on a feature by up- or down-weighting its hidden representation779

and then decoding is equivalent to directly adding the scaled feature vector to the final embedding.780
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interpretability; radar charts show Pearson correlation scores for individual features (vertices) and
the overall family (dashed line). While high-quality feature families truly have shared meaning,
low-quality families appear to be mostly spurious and are not interpretable through short descriptions.
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Figure 23: (Left) Cosine similarities between the encoder row and corresponding decoder column for
SAE64 (cs.LG). The mean cosine similarity is 0.57, suggesting that encoder and decoder features
are rather different, agreeing with Nanda (2023). (Right) We notice a slight negative correlation
between a feature’s decoder-encoder cosine similarity, and its maximum similarity with other features,
possibly suggesting that features that are furthest removed from all other features in embedding space
can have more similar corresponding decoders and encoder projections.
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Figure 24: UMAP density plots along with LLM generated labels for SAE16 (left) and SAE64 (right)
for the astro-ph features.
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Figure 25: Distribution of maximum cosine simi-
larity between a given feature vector and all other
feature vectors, within the same SAE.
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Figure 26: Cosine similarity between the orig-
inal query embedding and the modified query
embedding, with different values of upweighting
random zero features and downweighting ran-
dom active features.

To demonstrate this equivalence, let’s consider an intervention on feature i by an amount δ. The781

modified hidden representation is h′ = h+ δei, where ei is the i-th standard basis vector. Decoding782

this modified representation gives x̂′ = Wdh
′ = Wdh + δWdei = x̂ + δwi, where wi is the i-th783

column of Wd. Thus, intervening on the hidden representation and then decoding is equivalent to784

directly adding the scaled feature vector to the original reconstruction.785

We show in Figure 26 how cosine similarity between the original query embedding and the modified786

query embedding changes as we change the upweighting and downweighting strength for different787

features. Cosine similarity drops rapidly as soon as upweight or downweight exceeds 0.1.788

There is an implicit challenge in SAE-based embedding interventions: the trade-off between steering789

strength and precision. When directly manipulating feature activations, we observed that strong790

interventions often led to unintended semantic shifts, activating correlated features and potentially791

moving the embedding far from the SAE’s learned manifold. Our goal is to achieve precise semantic792

edits that express the desired feature strongly while minimising interference with unrelated features.793

To this end, we developed an iterative optimisation approach that leverages the SAE’s learned feature794

space to find an optimal balance between these competing objectives.795
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Let x ∈ Rd be the original embedding, fθ(·) the SAE encoder, and gϕ(·) the SAE decoder. We define796

a target feature vector t ∈ Rk representing the desired feature activations after intervention, where k797

is the number of active features in our SAE. The iterative latent optimisation aims to find optimised798

latents h∗ that satisfy:799

h∗ = argminh′

{
∥fθ(gϕ(h′))− t∥22

}
We solve this optimisation problem using gradient descent, starting from the initial latents h = fθ(x)800

and iteratively updating h′. We use the AdamW optimiser with a cosine annealing learning rate801

schedule.802

To evaluate the effectiveness of this approach, we compare it to a direct intervention method where we803

simply set the target feature to a specific value in the latent space. For each abstract in our dataset, we804

embed the abstract using an OpenAI embedding model to obtain x. We then encode the embedding805

to get initial latents h = fθ(x). We randomly select a target feature i and target value v. We then806

apply both intervention methods: our iterative optimisation of h′ as described above, with ti = v and807

tj = hj for j ̸= i, and direct intervention: setting h′
i = v and h′

j = hj for j ̸= i.808
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Figure 27: Normalised MSE at each of 10 steps across the iterative latent optimisation process. Left:
Setting a random zero feature to active. Right: Setting a random active feature to zero.

Figure 27 (left panel) shows the trajectory of normalised MSE during the iterative optimisation process,809

when setting a random zero feature to active. Similarly, the right panel shows the optimisation when810

setting a random active feature to zero. Normalised MSE improves in the former case but not the811

latter.812
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