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Figure 1. Comparing images with weather corruptions captured in the wild (ACDC [31]) and images corrupted using synthetic corrup-
tions [19] and the predictions using a Mask2Former [7] with a Swin-Base [26] backbone trained on the Cityscapes [9] dataset.

Abstract

Deep learning (DL) models are widely used in real-world001
applications but remain vulnerable to distribution shifts, es-002
pecially due to weather and lighting changes. Collecting di-003
verse real-world data for testing the robustness of DL mod-004
els is resource-intensive, making synthetic corruptions an005
attractive alternative for robustness testing. However, are006
synthetic corruptions a reliable proxy for real-world cor-007
ruptions? To answer this, we conduct the largest bench-008

marking study on semantic segmentation models, compar- 009
ing performance on real-world corruptions and synthetic 010
corruptions datasets. Our results reveal a strong correla- 011
tion in mean performance, supporting the use of synthetic 012
corruptions for robustness evaluation. We further analyze 013
corruption-specific correlations, providing key insights to 014
understand when synthetic corruptions succeed in repre- 015
senting real-world corruptions. The code and datasets will 016
be released upon acceptance. 017
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1. Introduction018

Although very successful in benchmark scenarios, the re-019
liability of deep-learning (DL)-based models for semantic020
segmentation in real-world scenarios remains a major con-021
cern. Potentially unseen variations in the data (a.k.a. distri-022
bution shifts), for example, due to changes in weather con-023
ditions (e.g., fog, rain, snow) and lighting (e.g., nighttime,024
glare), can heavily degrade model performance. Ensuring025
robustness to such shifts is critical for safe and reliable de-026
ployment, particularly in applications like autonomous driv-027
ing [9, 27] or medical imaging [11, 30]. To evaluate model028
robustness, researchers often rely on synthetic corruptions,029
such as [19]. These perturbations — designed to mimic030
real-world conditions — offer a scalable and controlled way031
to assess model performance without the cost of real-world032
data collection.033

Several previous works [4, 23, 31] have also attempted034
to draw focus towards threats posed in real-world applica-035
tions when facing slight domain shifts, for example, through036
noise or simply through changing weather. Specific evalua-037
tions involve the study of Out-Of-Distribution (OOD) sam-038
ples to mimic realistic domain shifts.039

Despite their widespread use, the correlation between040
model performance on synthetic and real-world corruptions041
is not well understood. Figure 1 shows one such scenario042
with real-world corruptions (Snow and Fog) captured in the043
ACDC dataset [31] and similar synthetic corruptions added044
on in-domain images from the cityscapes validation dataset.045
We observe very similar trends in the lack of robustness046
of the model towards both real-world and synthetic corrup-047
tions. However, a fundamental question remains:048

“Are synthetic corruptions a reliable proxy for049
real-world corruptions?”050

If a strong correlation exists, synthetic corruptions could051
serve as a cost-effective alternative for robustness evalua-052
tion. Conversely, if the correlation is weak, extensive tests053
on real-world settings remain necessary at all stages.054

Here, we conduct a large benchmarking study, analyzing055
the correlation between model performance on real-world056
and synthetic corruptions for semantic segmentation. The057
main contributions of this work are as follows:058

• We benchmark multiple DL-based semantic segmentation059
models on real-world corruptions from the ACDC dataset060
and synthetic corruptions from Cityscapes + 2D Common061
Corruptions.062

• We provide an in-depth analysis of corruption-specific063
trends, identifying cases where synthetic corruptions suc-064
ceed or fail as proxies.065

• We provide benchmarking of semantic segmentation066
methods against synthetic corruptions on ADE20k [37]067
and PASCAL VOC 2012 [13] datasets.068

Our findings reveal a high correlation in mean perfor- 069
mance, suggesting that synthetic corruptions can indeed 070
serve as a reliable proxy for real-world robustness evalua- 071
tion. However, we also highlight key cases where synthetic 072
corruptions fail to fully capture real-world effects, under- 073
scoring the need for more nuanced evaluation methods. 074

2. Related Work 075

The robustness of DL-based methods to distribution shifts 076
is often used as a measure of their generalization abil- 077
ity [20, 21]. Common Corruptions [19] and 3D Common 078
Corruptions [24] are tools proposed for benchmarking the 079
robustness of image classification models, but they can be 080
extended to other vision tasks as for example done in [23]. 081
However, both are synthetic corruptions, and distribution 082
shifts occurring in the real world might be slightly different. 083
Conversely, Sakaridis et al. [31] proposed “ACDC: The Ad- 084
verse Conditions Dataset with Correspondences for Robust 085
Semantic Driving Scene Perception”. This dataset contains 086
images captured in the wild in different conditions, such 087
as during Night, Rain, Snow, and Fog. While ACDC does 088
not cover many other possible conditions that can cause dis- 089
tribution shifts, it serves as a community-accepted tool for 090
benchmarking real-world OOD robustness to a certain ex- 091
tent. 092

In this work, we use both Common Corruptions and 093
ACDC to benchmark OOD robustness and thus measure 094
the generalization ability of various semantic segmentation 095
methods, including recently proposed SotA methods like 096
Mask2Former [7] and InternImage [32], with the goal to 097
investigate whether synthetic datasets that are easy to gen- 098
erate can serve as a proxy for a model’s real world OOD 099
robustness. 100

[4] provides a new benchmark for robustness against 101
anomalies, while relevant for real-world applications, we 102
intend to focus this work on traditional OOD robustness. 103

In their work, Michaelis et al. [28] proposed datasets 104
combining 2D Common Corruptions with datasets such as 105
MS-COCO [25], PASCAL VOC 2007 [12], and Cityscapes. 106
However, their evaluations were limited to 2D Common 107
Corruptions and how different severities of the corruptions 108
on the images impact the downstream task performance. 109
We find correlations between performance against 2D Com- 110
mon Corruptions and real-world corruptions. We use their 111
proposed Cityscapes-C (Cityscapes + 2D Common Corrup- 112
tions) as our synthetic corruptions dataset. 113

3. Metrics For Analysis At Scale 114

This is the first work to analyze semantic segmentation 115
methods, especially under the lens of reliability and gen- 116
eralization ability on such a large scale. The most com- 117
monly used metrics for reporting evaluations on seman- 118
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tic segmentation are mean Intersection over Union (mIoU),119
mean class Accuracy (mAcc), and mean Accuracy of all120
pixels (aAcc) [1, 2, 36]. We capture these metrics while121
evaluating models against both ACDC and the 15 2D Com-122
mon Corruptions on the Cityscapes validation dataset. As123
per the commonly accepted practice of such OOD evalua-124
tions, all models are pre-trained on the Cityscapes training125
dataset.126

Similar to [28], the 15 2D Common Corruptions [19]127
considered in this work are: ‘gaussian noise’, ‘shot noise’,128
‘impulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion129
blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘con-130
trast’, ‘elastic’, ‘pixelate’, ‘jpeg’. Similar to [19], Michaelis131
et al. [28] shows that synthetic corruptions with corruption132
severity=1 are too weak, and corruptions with corruption133
severity=5 are too strong for the downstream task. Thus,134
we use corruption severity=3 in our evaluations.135

As discussed, multiple image classification works [10,136
20, 21] and some semantic segmentation works [23, 28] use137
OOD Robustness of models for evaluating the generaliza-138
tion ability of the method. However, different image cor-139
ruptions impact the performance of the semantic segmenta-140
tion methods differently. As we are interested in the worst141
possible case, we define Generalization Ability Measure142
(GAM) as the worst mIoU across all image corruptions at143
a given severity level. That is, we ask the question “For144
a given dataset, what is the worst possible performance of145
a given method?”. Answering this question tells us about146
the reliability and generalization ability of a method. We147
find the minimum of the mIoU of the segmentation masks148
predicted under image corruptions w.r.t. the ground truth149
masks for a given method, across all corruptions at a given150
severity and report this as the GAMseverity level . For ex-151
ample, for severity=3, the measure would be denoted by152
GAM3. The higher the GAM value, the better the general-153
ization ability of the given semantic segmentation method.154
In Appendix A, we show that our observations are not lim-155
ited to the mIoU metric and extend to other metrics as well.156

4. Analysis And Key Findings157

We analyze the correlation in mean performance to deter-158
mine whether synthetic corruptions can serve as a reliable159
proxy for real-world corruptions. Additionally, we conduct160
an in-depth examination of corruption-specific trends, iden-161
tifying cases where synthetic corruptions effectively mimic162
real-world effects and where they fall short.163

4.1. Are Synthetic Corruptions Useful?164

We attempt to study if synthetic corruption like that intro-165
duced by [19] does represent the distribution shifts in the166
real world. While this assumption has driven works such as167
[19, 23, 24], to the best of our knowledge, it has not yet been168
proven. Previous works on robustness [15] simply report169

performance on both, thus, to save compute in the future, 170
we prove this assumption in Fig. 2. 171

For this analysis, we used methods trained on the train- 172
ing set of Cityscapes and evaluated them on 2D Common 173
Corruptions [19] and the ACDC datasets. ACDC is the Ad- 174
verse Conditions Dataset with Correspondences, consisting 175
of images from similar regions and scenes as Cityscapes 176
but captured under different conditions such as Day/Night, 177
Fog, Rain, and Snow. These are corruptions in the real 178
world, thus, we attempt to find correlations between per- 179
formance against synthetic corruptions from 2D Common 180
Corruptions (severity=3) and ACDC. We analyze each com- 181
mon corruption separately and also the mean performance 182
across all 2D Common Corruptions. 183

In Fig. 2, we observe a very strong positive correlation in 184
performance against ACDC and mean performance across 185
all 2D Common Corruptions. This novel finding helps the 186
community significantly. It means that we do not need to 187
go into the wild to capture images with distribution shifts, 188
as synthetic corruptions serve as a reliable proxy for real- 189
world conditions. Next, we look at the correlation be- 190
tween the worst-case scenario measure using GAM3 and 191
ACDC. Here, we observe a higher correlation than the pre- 192
vious case, indicating that the performance against worst- 193
case corruption serves as a reliable proxy for real-world cor- 194
ruptions. Lastly, as a sanity check, we find the correlation 195
between mean performance against all corruptions and per- 196
formance against worse-case corruption to observe a very 197
high correlation. Showing that the two can be used inter- 198
changeably. 199

4.2. When Do Synthetic Corruptions Succeed? 200

Since some synthetic corruptions attempt to directly mimic 201
the real-world scenarios in ACDC, like changes in light- 202
ing due to Day/Night changes or changes in weather due 203
to snowfall or fog, we analyze the correlation of relevant 204
corruptions to ACDC. As discussed in Sec. 4.1, the mean 205
performance correlation is high. However, we observe in 206
Fig. 3 that individual corruptions exhibit varying levels of 207
agreement between synthetic and real-world effects. We 208
observe that the Snow corruption shows a very strong align- 209
ment (Pearson correlation 0.867), indicating that synthetic 210
snow corruptions effectively mimic real-world snow-related 211
degradation, despite the corrupted images looking different 212
to a human observer (as shown in Fig. 1). 213

Brightness (Pearson correlation 0.270) and Fog (Pear- 214
son correlation 0.349) exhibit weak alignment, suggesting 215
that synthetic versions of these corruptions fail to fully cap- 216
ture real-world complexities. Specifically, brightness cor- 217
ruptions struggle to model real-world nighttime conditions, 218
while synthetic fog does not accurately represent atmo- 219
spheric distortions seen in real-world data. 220

These findings highlight that while synthetic corruptions 221
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Figure 2. To empirically determine if synthetic common corruptions such as those proposed by [19] truly represent the distribution and
domain shifts in the real world, we try to find correlations in evaluations on ACDC and 2D Common Corruptions. Each model is trained on
the training dataset of the Cityscapes dataset. Left plot: The y-axis represents values from evaluations on the ACDC dataset, and the x-axis
represents mean performance from evaluations on the Common Corruptions at severity=3. We observe a high positive correlation. Centre
plot: The y-axis again represents values from evaluations on the ACDC dataset, while the x-axis represents GAM3, which is the worst
performance of the methods across all the Common Corruptions at severity=3. We observe a slightly higher positive correlation. Right
plot: serves as a sanity check, where the y-axis represents GAM3 and the x-axis represents mean performance from evaluations on the
Common Corruptions at the same severity. We observe a very high correlation in performance. Thus, given the high positive correlations
between performance on the ACDC and mean performance against all synthetic common corruption, we conclude for relative analysis that
synthetic corruptions do serve as a reliable proxy for real-world corruptions.
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Figure 3. Correlation between model performance (legend as in Fig. 2) on ACDC (real-world corruptions) and 2D Common Corruptions
(synthetic) for different corruption types. The left-most plot shows the correlation between mean mIoU across all 2D Common Corruptions
and ACDC, with a strong Pearson correlation of 0.759, indicating that synthetic corruptions are generally a reasonable proxy for real-world
robustness. The remaining plots analyze specific corruptions: brightness (synthetic) vs. night (real) with correlation 0.270, snow (synthetic)
vs. snow (real) with correlation 0.867, fog (synthetic) vs. fog (real) with correlation 0.349, and frost (synthetic) vs. fog (real) with
correlation 0.680. While some synthetic corruptions (e.g., snow) closely align with their real-world counterparts, others (e.g., brightness
for night) exhibit weaker correlations, highlighting cases where synthetic corruptions may fail as accurate proxies.

can approximate real-world robustness trends, they are not222
universally reliable across all corruption types.223

Interestingly, we observe a moderate positive correlation224
(Pearson correlation 0.680) in performance against ACDC225
Fog and 2D Common Corruption Frost. Since the Frost 2D226
Common Corruption involves superimposing a randomly227
chosen frost image on the input image with some trans-228
parency, one might hypothesize that the model finds the dis-229
tribution shifts between the two to be moderately similar.230

5. Conclusion231

Our study provides the most comprehensive benchmarking232
to date on the reliability of synthetic corruptions as a proxy233
for real-world distribution shifts in semantic segmentation.234
Through extensive experiments, we observe a strong cor-235

relation in mean performance between synthetic and real- 236
world corruptions, supporting their utility for robustness 237
evaluation. However, a deeper analysis of individual cor- 238
ruption types reveals that while some synthetic corruptions 239
(e.g., snow) closely align with real-world performance, oth- 240
ers (e.g., brightness, fog) exhibit weak correlations, high- 241
lighting gaps in current benchmarking approaches. 242

These findings underscore the importance of refining 243
synthetic corruption benchmarks to better capture real- 244
world conditions. To promote OOD evaluations on syn- 245
thetic datasets, we provide benchmarking of all 15 2D Com- 246
mon Corruptions on the most commonly used semantic seg- 247
mentation datasets, namely, Cityscapes, ADE20k, and PAS- 248
CAL VOC2012 datasets. We release our datasets and code 249
to facilitate further research in this direction. 250
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– Appendix B.2: Details for the datasets used. 420

* Appendix B.2.1: ADE20K 421

* Appendix B.2.2: Cityscapes 422

* Appendix B.2.3: PASCAL VOC2012 423
– Appendix B.3: A comprehensive look-up table for all the semantic segmentation methods’ model weight and datasets 424

pair available in SEMSEGBENCH and used for evaluating the benchmark. 425

• Appendix C: Description of the 2D Common Corruptions used and visualizations of some corruptions on the Cityscapes 426
validation dataset and the performance of InternImage-Base on these corrupted images. 427

• Appendix D: Here we provide benchmarking results from 2D Common Corruption evaluations at severity 3, for the 428
ADE20K, Cityscapes, and PASCAL VOC2012 datasets. 429

• Appendix E: Extension To Related Work: Here, we extend the related work to discuss a few other important works. 430

• Appendix F Future Work: Following, we discuss the future directions possible from this work and extension of this work. 431

• Appendix F.1 Limitations: We discuss the limitations of this work in detail. 432

A. Correlation In Metrics 433

Here, we provide a comparison of mean accuracy across synthetic (2D Common Corruptions) and real-world (ACDC) cor- 434
ruptions. The top plot presents mAcc (mean class accuracy) with a stronger correlation of 0.782–0.858, while the bottom plot 435
shows results for aAcc (all pixel accuracy) with a Pearson correlation of 0.688–0.767. These results indicate that synthetic 436
corruptions serve as a reasonable proxy for real-world robustness. Thus, the analysis made using mIoU would also hold if 437
made using other metrics. 438

B. Implementation Details Of The Benchmarking 439

Following, we provide details regarding the experiments done for creating the benchmark used in the analysis. 440

B.1. Compute Resources. 441

Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU each, however, SegFormer [34] and 442
Mask2Former [7] with large backbones are more compute-intensive, and thus 80GB NVIDIA A100 GPUs or NVIDIA H100 443
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Figure 4. Comparison of mean accuracy across synthetic (2D Common Corruptions) and real-world (ACDC) corruptions. The top plot
presents mAcc (mean class accuracy) with a stronger correlation of 0.782–0.858, while the bottom plot shows results for aAcc (all pixel
accuracy) with a Pearson correlation of 0.688–0.767. These results indicate that synthetic corruptions serve as a reasonable proxy for
real-world robustness, even when measured using metrics other than mIoU

were used for these models, a single GPU for each experiment. Training some of the architectures with large backbones444
required using two to four GPUs in parallel.445

B.2. Dataset Details446

Performing OOD robustness evaluations is very expensive and compute-intensive. Thus, for the benchmark, we only use447
ADE20k, Cityscapes, and PASCAL VOC2012 as these are the most commonly used datasets for evaluation [1, 7, 23, 34, 36].448

B.2.1. ADE20K449

ADE20K [37] dataset contains pixel-level annotations for 150 object classes, with a total of 20,210 images for training, 2000450
images for validation, and 3000 images for testing. Following common practice [1, 34] we evaluate using the validation451
images.452

B.2.2. Cityscapes453

The Cityscapes dataset [9] comprises a total of 5000 images sourced from 50 different cities in Germany and neighboring454
countries. The images were captured at different times of the year and under typical meteorological conditions. Each image455
was subject to pixel-wise annotations by human experts. The dataset is split into three subsets: training (2975 images),456
validation (500 images), and testing (1525 images). This dataset has pixel-level annotations for 30 object classes.457
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B.2.3. PASCAL VOC2012 458

The PASCAL VOC 2012 [13], contains 20 object classes and one background class, with 1464 training images, and 1449 459
validation images. We follow common practice [14, 17, 35, 36], and use work by Hariharan et al. [16], augmenting the 460
training set to 10,582 images. We evaluate using the validation set. 461

Calculating the mIoU. mIoU is the mean Intersection over Union of the predicted segmentation mask with the ground 462
truth segmentation mask. 463

B.3. Models Used 464

Table 1 presents a comprehensive reference table for all semantic segmentation models used in our benchmarking. These 465
methods include some of the first efforts in DL-based semantic segmentation methods like UNet [30], and some of the most 466
recent SotA methods like InterImage [32]. Each model is trained on the respective training subset of its dataset and evaluated 467
on the corresponding validation set. The evaluations on 2D Common Corruptions are conducted using the validation sets. 468

C. 2D Common Corruptions 469

[19] propose introducing a distribution shift in the input samples by perturbing images with a total of 15 synthetic corruptions 470
that could occur in the real world. These corruptions include weather phenomena such as fog, and frost, digital corruptions 471
such as jpeg compression, pixelation, and different kinds of blurs like motion, and zoom blur, and noise corruptions such 472
as Gaussian and shot noise amongst others corruption types. Each of these corruptions can perturb the image at 5 different 473
severity levels between 1 and 5. The final performance of the model is the mean of the model’s performance on all the 474
corruptions, such that every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are 475
applied to a 2D image, they are collectively termed 2D Common Corruptions. 476

We show examples of perturbed images over some corruptions and the changed predictions in Figure 5. 477
In Figure 6, we extend the visualizations from Figure 1, additionally showing Night and Rain for ACDC, and Brightness 478

and Frost for 2D Common Corruptions. 479

D. Benchmarking Results 480

Following, we include the results from the 2D Common Corruptions evaluations of all the semantic segmentation methods 481
over all of the common corruptions, for PASCAL VOC2012 in Figure 7, for Cityscapes in Figure 8, and for ADE20K in 482
Figure 9. 483

E. Extension To The Related Work 484

Kamann and Rother [23] provide an OOD robustness benchmark for semantic segmentation. While they use multiple back- 485
bone architectures, such as variants of ResNet [18], MobileNet [22], and Xception [8], their evaluations are limited to the 486
DeepLabV3+ [6] architecture. Our evaluated benchmark extends to multiple architectures and backbones, including recently 487
proposed SotA methods like Mask2Former [7] and InternImage [32]. 488

F. Future Work 489

Distribution shifts in the real world can be caused by multiple factors, one such factor is lens aberrations. [29] presents 490
many such lens aberrations. Additionally, Kar et al. [24] recently proposed 3D Common Corruptions that take scene depth 491
into account to make corruptions more realistic-looking. We intend to extend our analysis to include these, enabling a more 492
comprehensive robustness study. 493

F.1. Limitations 494

Benchmarking the robustness of semantic segmentation methods is a computationally and labor-intensive endeavor. Thus, 495
best utilizing available resources, we benchmark a limited number of settings. While more evaluations like correlation with 496
different severity levels would be interesting, this is the most comprehensive robustness benchmark to date and instills interest 497
to further improve our synthetic corruptions. 498
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Table 1. An Overview of all the semantic segmentation methods used in the benchmark in this work made using SEMSEGBENCH. Each of
the mentioned backbones has been evaluated using each of the architectures and datasets mentioned in the row in this table.

Backbone Architecture Datasets Time Proposed (yyyy-mm-dd)

ResNet101 [18]
DeepLabV3 [5], DeepLabV3+ [6],

Mask2Former [7], PSPNet [36]
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

ResNet18 [18]
DeepLabV3 [5], DeepLabV3+ [6],

PSPNet [36] Cityscapes 2017-12-05

ResNet50 [18]
DeepLabV3 [5], DeepLabV3+ [6],

Mask2Former [7], PSPNet [36]
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

Swin-Base [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Small [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Tiny [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

MIT-B0 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B1 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B2 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B3 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B4 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B5 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

UNet Convolutions UNet [30] Cityscapes 2015-05-18

BEiT-Base [3] UPerNet [33] ADE20K 2022-09-03

BEiT-Large [3] UPerNet [33] ADE20K 2022-09-03

InternImage-Base [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Huge [32] UPerNet [33] ADE20K 2023-04-17

InternImage-Large [32] UPerNet [33] ADE20K, Cityscapes 2023-04-17

InternImage-Small [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Tiny [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-XLarge [32] UPerNet [33] ADE20K, Cityscapes 2023-04-17
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Figure 5. Illustrating changes in prediction due to different 2D Common Corruptions on a randomly chosen input image from the
Cityscapes dataset, when attaching the semantic segmentation method InterImage-Base. In the subfigures with semantic segmenta-
tion mask predictions, Left: Ground Truth Mask, and Right: Predicted Mask.
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Figure 6. An extension to Figure 1, comparing images with weather corruptions captured in the wild (ACDC [31] and images corrupted
using synthetic corruptions [19] and the predictions using a Mask2Former [7] with a Swin-Base [26] backbone trained on the Cityscapes [9]
dataset.
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Figure 7. Dataset used: PASCAL VOC2012. The correlation in the performance of semantic segmentation methods against different 2D
Common Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures
and marker styles are used to show different backbones used by the semantic segmentation methods. For the limited PASCAL VOC2012
evaluations we observe some correlation between the number of learnable parameters and the performance against common corruptions,
however, more evaluations (more publicly available checkpoints) are required for a meaningful analysis.
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Figure 8. Dataset used: Cityscapes. The correlation in the performance of semantic segmentation methods against different 2D Common
Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods. Except for DeepLabV3+ with a ResNet18
backbone, most other methods show a weak positive correlation between the number of learnable parameters used by a method and
its performance against most of the common corruption. Multiple occurrences of an Architecture and Backbone pair are due to their
evaluations being performed at two different crop sizes i.e. 512×512, and 512×1024.
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Figure 9. Dataset used: ADE20K. The correlation in the performance of semantic segmentation methods against different 2D Common
Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods. Except for DeepLabV3, all other methods
show some positive correlation between the number of learnable parameters used by a method and its performance against any common
corruption.
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