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ABSTRACT

Recommender systems (RS) are crucial in offering personalized suggestions tai-
lored to user preferences. While conventionally, Top-K recommendation ap-
proach is widely adopted, its reliance on fixed recommendation sizes overlooks
the diverse needs of users, leading to some relevant items not being recommended
or vice versa. While recent work has made progress, they determine K by search-
ing over all possible recommendation sizes for each user during inference. In
real-world scenarios, with large datasets and numerous users with diverse and ex-
tensive preferences, this process becomes computationally impractical. Moreover,
there is no theoretical guarantee of improved performance with the personalized
K. In this paper, we propose a novel framework, K-Adapt, which determines dy-
namic K-prediction set size for each user efficiently and effectively. Specifically, it
reformulates adaptive Top-K recommendation as a utility-based risk control prob-
lem, where a calibrated threshold based on user utility metrics determines the
prediction sets. A lightweight greedy optimization algorithm efficiently learns
this threshold to generate dynamic recommendations. Theoretical analysis is pro-
vided by establishing upper bounds on expected risk as well as near-optimality and
stability of learned threshold. Extensive experiments on multiple datasets demon-
strate that K-Adapt framework outperforms baseline methods in both performance
and time efficiency, offering a guaranteed solution to fixed Top-K challenges.

1 INTRODUCTION

With the growing relevance of the web as a medium for electronic and commercial transactions,
Recommender Systems (RS) (Isinkaye et al., 2015; Lu et al., 2015; Aggarwal, 2016; Zhao et al.,
2023) have become ubiquitous for mitigating information overload, enabling platforms to deliver
relevant suggestions across various domains such as e-commerce (Gulzar et al., 2023), entertain-
ment (Perano et al., 2021), and job matching (Islam et al., 2021). They rank items based on users’
preferences and their historical behaviors (Khatwani & Chandak, 2016; Cui et al., 2020), thereby
presenting the Top-K items (Cremonesi et al., 2010; Li et al., 2020; Wei et al., 2024), with the rank-
ing scores, sorted in descending order. While this heuristic Top-K recommendation approach is
widely adopted in the literature for its simplicity, a fundamental limitation is often overlooked: its
reliance on a fixed K. This approach assumes that the same recommendation size will suffice for
all users, ignoring their diverse needs and leading to some relevant items not being recommended or
vice versa. As a result, poor recommendation performance across users can lead to dissatisfaction
and disengagement from the platform (Chen et al., 2022). For example, Figure 1 illustrates how
the NeuMF model’s oracle performance on the Last.fm dataset obtained by dynamically selecting
each user’s best per-metric set size (capped at 25) differs substantially from the performance under
a single, fixed k ( where fixed k is derived by averaging the user-specific (oracle) set sizes across the
dataset for each metric) highlighting the inherent weakness of fixed-K recommendations.
While the concept of dynamically tailoring K to individual users is promising across multi-
ple recommendation settings like optimizing screen space (Xi et al., 2023), balancing user en-
gagement and budget constraints (Chen et al., 2022), or reducing user overload, existing re-
search in this direction remains very limited. Recently, KWEON et al. (2024) modeled user-
item interactions using Bernoulli distributions during inference and approximated utility over
ranked lists with Poisson-Binomial distribution to determine optimal K for each user. How-
ever, evaluating utility during inference is computationally impractical for real-world systems
handling extra high dimension K, millions of users, and numerous preferences. This chal-

The code and implementation details are available at https://anonymous.4open.science/r/Top-Adaptive-K-
551B
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lenge also shares parallels with document list truncation methods (Wu et al., 2021; Wang et al.,
2022). However, these methods are prone to overfitting and poor generalization in the sparse
and noisy contexts of recommendation datasets. Moreover, none of these methods provides sta-
tistical guarantees for model performance, which is essential for trustworthy recommendations.

Figure 1: Comparison of Oracle vs. Fixed K on
Last.fm dataset using NeuMF model.

Motivated by the above-mentioned challenges
and taking inspiration from Conformal Predic-
tion (CP) (Schafer et al., 1999; Vovk et al., 2005;
Fontana et al., 2023), we aim to propose a sta-
tistically sound user-tailored framework that in-
corporates uncertainty quantification into the RS
ecosystem. Specifically, our framework aims
to achieve two key objectives: (1) dynamically
and efficiently determining prediction set size for
each user, and (2) statistically ensuring that these
dynamically generated prediction set sizes meet
the desired performance guarantees across the
dataset. However, CP in its classical form is not
suitable for this setting as: (a) it does not align
with the goals of recommender systems, where
performance is measured by ranking-based utilities such as Recall or NDCG rather than simple la-
bel inclusion; and (b) its guarantees are marginal and label-oriented, offering no direct control over
user-level risk with respect to these utilities. As a result, naive application of CP will result in overly
conservative recommendation sets that sacrifice relevance and user satisfaction.
To address these challenges, we propose K-Adapt, a dataset- and model-agnostic statistical frame-
work that frames adaptive top-K recommendation as a risk-controlled prediction problem. Instead
of guaranteeing label coverage as in classical CP, K-Adapt defines user-level loss functions based
on ranking utilities and constrains their expected risk below a user-defined threshold α with confi-
dence 1 − η. Specifically, K-Adapt leverages the output scores of a base recommender and applies
a calibrated threshold parameter λ to determine items recommended to each user. This calibration
balances set size and utility, producing recommendation lists that are compact and reliable. Impor-
tantly, it also avoids the conservativeness of classical CP while ensuring statistical validity aligned
with ranking-based metrics central to RS. Our contributions are as follows:

• We first propose a novel framework, K-Adapt, which reformulates adaptive recommendation
as a utility-based risk control problem extending the CP paradigm, and defines loss functions
tailored to key RS performance metrics.

• Secondly, we develop a light-weight greedy-based optimization algorithm to efficiently calibrate
the threshold λ and ensure that the utility-based risk remains below a user-defined target.

• Next, we provide rigorous theoretical analysis showing that the calibrated threshold λ̂ not only
controls the expected utility-based risk near the user-specified level α with high probability
(Theorem 1), but also lies near the population-optimal threshold (Theorem 2) and remains stable
under sampling perturbations of the calibration set (Theorem 3).

• Finally, we conduct extensive experiments across multiple datasets and metrics (Section 5) to
demonstrate the effectiveness of K-Adapt in both performance as well as time efficiency.

2 RELATED WORKS

2.1 PERSONALIZED RECOMMENDATION SIZE

In RS, the most common practice involves recommending top-K fixed item for each user (Yang
et al., 2012; Kweon et al., 2021; Kang et al., 2022; Li et al., 2024). The idea of dynamically tailoring
the recommendation set size to individual users’ preferences is a novel research direction that has
received limited attention. It draws parallels with the document list truncation problem, which
determines the optimal cutoff position for retrieved documents (Arampatzis et al., 2009; Wu et al.,
2021). Some recent methods such as AttnCut and MtCut (Bahri et al., 2020; Wang et al., 2022)
utilize deep models to frame this truncation task as a classification problem to predict the optimal
cutoff position using a K-dimensional probability target vector. Recently, KWEON et al. (2024)
proposed PerK, which leverages calibrated interaction probabilities to estimate expected user utility
and select optimal personalized recommendation sizes.
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2.2 CONFORMAL PREDICTION

Conformal prediction (Papadopoulos et al., 2002; Shafer & Vovk, 2008; Angelopoulos & Bates,
2022), provides finite-sample, distribution-free guarantees by constructing prediction sets that en-
sure the coverage guarantee P (Y /∈ C(X)) ≤ α. This foundational method is model-agnostic and
has been widely adopted in applications requiring robust uncertainty quantification.
Recent advancements in conformal methods have extended these guarantees to address more com-
plex challenges. Works like Tibshirani et al. (2019) explore conformal prediction under distribu-
tional shifts, while Bates et al. (2021) introduce high probability risk bounds to control errors beyond
miscoverage. Building on these advancements, conformal risk control (Angelopoulos et al., 2024)
generalizes conformal prediction to guarantee the expected value of monotone functions, expressed
as E[ℓ(Cλ(X), Y )] ≤ α. Here, λ is tunable parameter to balance prediction set size Cλ(X) and
controlled loss and α is desired error rate. This framework expands conformal prediction’s utility,
enabling applications like false negative rate control in settings like multilabel classification.

3 THE PROPOSED FRAMEWORK

We begin by introducing notations used in this paper. Consider m items, denoted as i = [i]mj=1,
where each item ij is an element of the item space I. Similarly, we have n users, represented by
u = [u]nk=1, where each user uk belongs to the user space U . For brevity, we use u and i to denote
a user and an item, respectively.
We focus on the recommendation with implicit feedback (Hu et al., 2008; He et al., 2016; Zhu et al.,
2024), a widely adopted scenario in RS. For a pair (u, i), an interaction label Yu,i is assigned a value
of 1 if the interaction is observed, and 0 otherwise. Note that when Yu,i = 0, it indicates that the
item i may either be irrelevant to the user u or a hidden-relevant item. These interaction labels are
used to define Itrue(u), the set of all relevant items for user u i.e. Itrue(u) = {i | Yu,i = 1}.
A dataset D = {(u, i) | Yu,i = 1} consists of observed positive pairs and is partitioned into
three mutually exclusive subsets: training (Dtrain), calibration (Dcalib), and testing (Dtest). For a
user u, the unobserved itemset I−u = {i | (u, i) /∈ Dtrain} represents all items not observed in the
training set. This unobserved itemset is further partitioned into two disjoint subsets: Icalib

u and I test
u ,

corresponding to the calibration phase and testing phase, respectively.
Prediction Sets After the recommender model fθ : U × I → [0, 1] is trained on Dtrain, we pro-
duce a ranked list π(u) for the unobserved items in I−u by sorting their relevance scores fθ(u, i) in
descending order:

π(u) = sorti∈I−
u
fθ(u, i), (1)

where π(u) represents the ranked order of unobserved items based on the estimated scores. Here,
I−u is either Icalib

u or I test
u , depending on the calibration or testing phase respectively.

Top-K Predictions Traditionally, recommender systems generate Top-K predictions for a given
user u by selecting the K-most relevant items from the ranked list π(u):

πK(u) = π(u)[: K], (2)

where[: K] denotes selecting the first K elements of the ranked list π(u).
While this fixed-K approach is commonly adopted for simplicity, it fails to adapt to user-specific
preferences and varying recommendation quality across users. This limitation motivates the explo-
ration of dynamic prediction set sizes to better align recommendations with user needs. To address
this, we develop our K-Adapt framework which creates personalized dynamic prediction set sizes
for each user to ensure guaranteed performance across different recommendation metrics.
We begin by defining our set predictor dominated by the parameter λ to output calibrated prediction
set πλ(u). The calibrated prediction list πλ(u) is given by:

πλ(u) =
[
i ∈ π(u) | fθ(u, i) ≥ λ

]
, (3)

where the items are retained in the same order as in π(u).
By construction, the predictor satisfies the following property:

λ1 < λ2 =⇒ πλ2
(u) ⊆ πλ1

(u). (4)

Next, to quantify the alignment between the calibrated prediction set πλ(u) and the ground-truth
relevant items Itrue(u). We introduce a general utility functional:

UM : 2I × 2I → [0, 1],

3
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Figure 2: The K-Adapt Framework. The top portion outlines how λ is calibrated to choose recommendation
list lengths under a specified risk constraint. In the lower left, we compare final recommendations from top-K,
other dynamic-K, and K-Adapt (green = relevant, red = irrelevant), showing how K-Adapt flexibly selects up to
a maximum allowable length (max k) while maintaining high relevance. The lower right plots runtime versus
dataset size and max k, illustrating that K-Adapt’s computational overhead remains manageable even as the
dataset size and max k grows, providing superior performance with time efficiency.

which evaluates the quality of a prediction set relative to the true relevant set under a recommen-
dation metric M ∈ {Recall,MRR, F1,NDCG, . . .}. For a given user u, the utility is written as
UM (Itrue(u), πλ(u)), which measures how well the prediction set πλ(u) captures the true prefer-
ences of user u according to metric M .1
Subsequently, we define the user-utility-based loss function for user u as follows:

Lu(λ) =

{
0, if UM

(
Itrue(u), πλ(u)

)
= 1,

1− UM

(
Itrue(u), πλ(u)

)
, otherwise.

(5)

Now given Equation (5), we define the expected risk as:

R(λ) = Eu∼U [Lu(λ)]. (6)

Building on the principle of Conformal Risk Control (Angelopoulos et al., 2024) and the nesting
property in Equation (4), we generalize the approach to utility-based losses tailored for recommender
systems and define the optimal threshold λ∗ as follows:

λ⋆ = sup{λ ∈ Λ : R(λ) ≤ α}. (7)

In practice, true data distribution is unknown, we use the empirical risk R̂n(λ) to approximate the
expected risk R(λ) which is given by:

R̂n(λ) =
1

n

n∑
i=1

Lui
(λ). (8)

To this end, we complete the modeling of the proposed framework. To output the dynamic predic-
tion sets for each user by K-Adapt such that the performance guarantee is met, we design a novel
algorithm- K-Adapt based on a greedy strategy to obtain the parameter λ̂ empirically.
The K-Adapt framework is depicted in Figure 2 and the complete procedure of constructing dynamic
prediction sets is summarized in Algorithm 1 in Section A.3 Appendix.

1The definitions of the utility metrics are provided in Section A.2.
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Prediction Set Construction: After obtaining λ̂ from Algorithm 1, we construct prediction sets
for Dtest. For each user u in the test dataset, we create the prediction set by selecting items with
relevance scores greater than λ̂. The prediction sets, tailored to individual user preferences, are
ensured to control the risk below the user-defined risk threshold α.

4 THEORETICAL ANALYSIS

In the previous sections, we demonstrated how our framework utilizes a trained model fθ(u, i)
together with a calibration dataset Dcalib to learn a threshold λ̂, which is then used to generate
dynamic recommendation sets for each user during testing. However it remains to be established
whether this empirically calibrated threshold can provide formal guarantees on controlling risk and
achieving performance. In this section, we address this by deriving three complementary results.
Firstly, we establish that the expected risk under the calibrated threshold is controlled at the user-
specified level α up to a finite-sample slack (validity). Secondly, we show that the learned threshold
λ̂ lies close to the population-optimal threshold λ⋆ (optimality). Finally, we prove that the calibrated
threshold is robust to sampling perturbations in the calibration set (stability). The results have been
depicted in the following theorems:
Theorem 1 (Expected Risk Control). Let Λ be a finite set of λ. The expected risk R(λ) is right-
continuous in λ, and is bounded within [0, B] for some B > 0 and all u and λ.
For any η > 0, let δ(ϵ) be the distribution deviation between the expected and empirical risk such

that it satisfies: 2|Λ| exp
(
− 2n δ(ϵ)2

B2

)
≤ η. Then, for λ̂ ∈ Λ, with probability at least 1−η we have,

R(λ̂) ≤ α +
B√
2n

√
ln
(

2|Λ|
η

)
.

Proof. Proof can be found in Section A.1.1 in Appendix. □

Remark 1. From Theorem 1, we can see the expected risk can be upper bounded by α and a constant

term. When the sample size n → ∞, B√
2n

√
ln
(

2|Λ|
η

)
→ 0, the upper bound of the expected risk

approaches to α.
Theorem 2 (Optimality of the Calibrated Threshold). Given λ⋆ = sup{λ ∈ Λ : R(λ) ≤ α} denote
the population-optimal threshold. Let λ̂ = max{λ ∈ Λ : R̂(λ) ≤ α}, where R̂(λ) is the empirical
risk, suppose R(λ) is nondecreasing in λ and satisfies the margin condition at λ⋆ such that there
exists c > 0 with R(λ)−R(λ⋆) ≥ c(λ− λ⋆), ∀λ ≥ λ⋆. Then with probability at least 1− η:

− εn
c ≤ λ⋆ − λ̂ ≤ ∆Λ,

where ∆Λ = maxj(λj+1 − λj) and εn = B√
2n

√
ln
(

2|Λ|
η

)
is the deviation term from Theorem 1.

Proof. Proof can be found in Section A.1.2 in Appendix. □

Remark 2. Theorem 2 shows that calibrated threshold λ̂ produced by K-Adapt is near-optimal as
with high probability it lies within one grid step to the left of λ⋆ and within εn/c to the right of λ⋆.
As the calibration size n→∞ (so εn → 0) and the grid is refined (∆Λ → 0), λ̂ converges to λ⋆.
Theorem 3 (Stability of the Calibrated Threshold). Given be a finite set of λ, and suppose per-user
losses satisfy Lu(λ) ∈ [0, B] for all u, λ. We define the population risk R(λ) = E[Lu(λ)], which
is nondecreasing in λ. For a target risk level α ∈ (0, 1), we define the empirical thresholds as
λ̂ = max{λ ∈ Λ : R̂n(λ) ≤ α}, λ̂aug = max{λ ∈ Λ : R̂n+1(λ) ≤ α}, where R̂n and R̂n+1

denote the empirical risks computed on n and n+1 calibration samples, respectively. We assume
the margin condition at the population threshold λ⋆ = sup{λ ∈ Λ : R(λ) ≤ α} such that there
exists c > 0 for all λ ≥ λ⋆, R(λ)−R(λ⋆) ≥ c(λ− λ⋆). Then, for any η ∈ (0, 1), with probability
at least 1− η,

|λ̂aug − λ̂| ≤ ∆Λ +
2εn
c

,

where ∆Λ = maxj(λj+1 − λj) and εn = B√
2n

√
ln
(

2|Λ|
η

)
is the deviation term from Theorem 1.

Proof. Proof can be found in Section A.1.3 in Appendix. □
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Remark 3. Theorem 3 shows that the calibrated threshold is robust to perturbations in the calibra-
tion set. Its variability decays at rate O(1/

√
n), up to grid resolution ∆Λ. As n→∞ and ∆Λ → 0,

the thresholds λ̂ and λ̂aug converge.

Together, these guarantees demonstrate that K-Adapt not only enforces risk control but also pro-
duces thresholds that are provably near-optimal and stable, ensuring both theoretical soundness and
practical reliability.

Table 1: Performance comparison between K-Adapt (Ours) and baseline methods under various BaseMod-
els (DeepFM, LighGCN, GMF, MLP, NeuMF), metrics (Recall, MRR, F1, NDCG) across different Datasets
(MovieLens, Last.fM, AmazonOffice). For K-Adapt, α and η are set empirically as 0.05, respectively. Bold
indicates best result and underline marks the second best.

BaseModel Method
MovieLens Last.fM AmazonOffice

Recall MRR F1 NDCG Recall MRR F1 NDCG Recall MRR F1 NDCG

DeepFM

Oracle 0.47 0.72 0.37 0.47 0.47 0.70 0.38 0.46 0.52 0.32 0.23 0.28

Avg-K 0.36 0.59 0.23 0.29 0.33 0.50 0.25 0.31 0.32 0.19 0.11 0.20
AttnCut 0.38 0.62 0.29 0.32 0.32 0.58 0.31 0.35 0.33 0.14 0.15 0.16
MtCut 0.39 0.61 0.29 0.32 0.36 0.58 0.31 0.38 0.37 0.15 0.15 0.17
PerK 0.41 0.62 0.30 0.37 0.40 0.61 0.32 0.40 0.44 0.23 0.17 0.21
K-Adapt (Ours) 0.43 0.67 0.33 0.42 0.43 0.65 0.34 0.43 0.48 0.28 0.18 0.23

LightGCN

Oracle 0.50 0.72 0.39 0.45 0.51 0.67 0.39 0.47 0.51 0.34 0.23 0.30

Avg-K 0.35 0.59 0.25 0.33 0.41 0.52 0.30 0.37 0.42 0.23 0.13 0.20
AttnCut 0.37 0.61 0.28 0.36 0.37 0.54 0.31 0.36 0.35 0.23 0.15 0.19
MtCut 0.41 0.64 0.29 0.36 0.39 0.56 0.32 0.38 0.37 0.25 0.15 0.21
PerK 0.43 0.62 0.30 0.38 0.43 0.50 0.32 0.36 0.47 0.27 0.16 0.23
K-Adapt (Ours) 0.45 0.68 0.34 0.40 0.47 0.64 0.34 0.42 0.48 0.29 0.18 0.25

GMF

Oracle 0.41 0.67 0.32 0.38 0.46 0.61 0.37 0.45 0.47 0.28 0.21 0.28

Avg-K 0.17 0.53 0.21 0.20 0.41 0.55 0.31 0.38 0.41 0.21 0.13 0.22
AttnCut 0.29 0.58 0.25 0.31 0.26 0.52 0.32 0.35 0.31 0.20 0.12 0.19
MtCut 0.31 0.60 0.24 0.33 0.27 0.54 0.32 0.37 0.35 0.20 0.12 0.21
PerK 0.35 0.57 0.25 0.32 0.40 0.55 0.32 0.38 0.44 0.18 0.13 0.21
K-Adapt (Ours) 0.38 0.62 0.27 0.34 0.42 0.57 0.34 0.41 0.46 0.24 0.16 0.24

MLP

Oracle 0.48 0.70 0.37 0.43 0.47 0.67 0.40 0.45 0.46 0.30 0.22 0.27

Avg-K 0.25 0.61 0.23 0.30 0.24 0.44 0.19 0.23 0.37 0.16 0.11 0.14
AttnCut 0.39 0.60 0.26 0.31 0.21 0.54 0.30 0.38 0.29 0.18 0.13 0.20
MtCut 0.41 0.60 0.27 0.36 0.23 0.56 0.30 0.40 0.33 0.19 0.13 0.20
PerK 0.41 0.61 0.29 0.38 0.33 0.57 0.34 0.39 0.41 0.18 0.15 0.21
K-Adapt (Ours) 0.44 0.66 0.33 0.40 0.43 0.63 0.37 0.42 0.43 0.26 0.16 0.24

NeuMF

Oracle 0.51 0.74 0.39 0.47 0.50 0.71 0.40 0.49 0.50 0.31 0.23 0.30

Avg-K 0.38 0.61 0.24 0.33 0.31 0.48 0.19 0.25 0.32 0.22 0.12 0.22
AttnCut 0.40 0.63 0.25 0.34 0.35 0.55 0.32 0.39 0.34 0.22 0.15 0.20
MtCut 0.40 0.64 0.26 0.38 0.38 0.57 0.34 0.40 0.37 0.24 0.14 0.19
PerK 0.43 0.62 0.32 0.39 0.42 0.58 0.36 0.42 0.44 0.23 0.16 0.25
K-Adapt (Ours) 0.46 0.69 0.34 0.42 0.45 0.67 0.36 0.44 0.46 0.25 0.18 0.25

5 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness of the proposed framework
(K-Adapt). We design experiments to 1) validate whether the framework can ensure guaranteed
performance by controlling risk below user-defined thresholds and comparing it to other adaptive-k
baselines; 2) analyze the time-efficiency of K-Adapt compared to other baselines. and 3) analyze
how the error rate α and the confidence parameter η influences the performance and the average
optimal prediction set sizes. 4) study the stability of K-Adapt as the calibration set size varies

6
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(Section A.5.1); 5) compare the distribution of calibrated recommendation sizes against oracle and
adaptive-k baselines (Section A.5.2); and 6) examine robustness to user heterogeneity by comparing
global and groupwise calibration (Section A.5.3).

5.1 DATASETS AND BASELINE METHODS

We experiment on three real-world datasets- MovieLens 100k (Movies) (McAuley et al., 2015),
Last.fM (Music) (Cantador et al., 2011) and AmazonOffice (eCommerce) (Harper & Konstan, 2015).
To obtain relevance scores, we use five widely recognized recommender models representing diverse
architectures: a) DeepFM (Guo et al., 2017); b) LightGCN He et al. (2020); c) GMF (Koren et al.,
2009); d) MLP (Zhang et al., 2019) and e) NeuMF He et al. (2017). To evaluate the effectiveness of
K-Adapt, we compare it against the following baseline models:

• AttnCut(Wu et al., 2022): Employs a Bi-LSTM and Transformer encoder in a classification
framework to predict the optimal cutoff position in ranked lists.

• MtCut (Wang et al., 2022): Enhances AttnCut using the Multi-gate Mixture-of-Experts
(MMoE) model, leveraging multi-task learning for improved cutoff prediction.

• PerK (KWEON et al., 2024): Utilizes Poisson-Binomial approximation to compute the ex-
pected utility at each cutoff position in ranked lists.

Additionally, we introduce the Avg-K method, where we calculate the average of the prediction
set sizes returned by K-Adapt during calibration and use it as a fixed k value for all users. Full
implementation details are provided in Section A.4 in Appendix.

5.2 EXPERIMENTAL RESULTS

Table 2: Average time (sec) on various datasets.

Method Movielens Last.fM Amazon Office
AttnCut 125.67 601.67 905.88
MtCut 425.13 724.08 1017.15
PerK 1205.78 3905.78 7560.67
K-Adapt (Ours) 24.08 55.27 94.28

We evaluate the performance of all
methods, i.e., Avg-K, AttnCut, Mt-
Cut, PerK, and K-Adapt, in terms
of HR, Recall, NDCG, and MRR
across three datasets: MovieLens,
LastFM, and AmazonOffice, imple-
mented on five base recommendation
models: DeepFM, LightGCN, GMF,
MLP, and NeuMF. The detailed re-
sults are presented in Table 1. From these results, we make the following observations:

• The proposed K-Adapt framework efficiently controls the risk within α = 0.05 compared to
Oracle values for all tested datasets and metrics across all baselines, thereby aligning with the
theoretical expectations. In doing so, it also demonstrates superior performance compared to
other baselines.

• The Avg-K method, which uses a fixed set size based on the average prediction sizes of K-Adapt,
serves as a competitive baseline. However, its performance declines compared to adaptive meth-
ods, particularly on dense datasets like MovieLens, underscoring the importance of personalized
prediction sizes for optimal user satisfaction.

• Adaptive methods like AttnCut and MtCut generally outperform Avg-K on dense datasets like
MovieLens. However, their performance deteriorates on sparser datasets like Last.fM and Ama-
zonOffice due to reliance on high-dimensional features (e.g., embeddings), which leads to over-
fitting and poorer generalization in sparse data environments.

• PerK outperforms AttnCut and MtCut by leveraging calibrated interaction probabilities and
modeling of user-specific interaction likelihoods using the Bernoulli-Poisson framework. This
enables it to generalize effectively across both dense and sparse datasets, outperforming meth-
ods less suited to sparse or noisy environments. However, it still performs inferior to K-Adapt
because of its reliance on accurately determining calibrated interaction probabilities, which, de-
spite user-wise calibration, may fail to fully adapt to the variability of user preferences in highly
dynamic environments.

• Additionally, the choice of the base recommendation model significantly impacts the perfor-
mance of adaptive k-based methods. Models like LightGCN and NeuMF consistently outper-
form GMF and MLP, underscoring the importance of selecting a robust base model to maximize
the effectiveness of adaptive frameworks.

• Overall, the results demonstrate K-Adapt’s data- and model-agnostic nature, achieving superior
performance across all metrics, base models, and datasets by dynamically adjusting recommen-
dation set sizes using Conformal Risk Control.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 SPACE AND TIME ANALYSIS

We analyze the computational cost(training time) of the Top-Adaptive-K framework in compari-
son with other dynamic-K methods. The results averaged on top of all BaseModels are presented
in Table 2. From the results, we can observe that our proposed framework is significantly more
time-efficient than the other dynamic-K baselines, which indicates the scalability of our method.
This is because methods like AttnCut rely on neural models like Bi-LSTM (h (hidden layers)) and
Transformer Encoder (d) (embeddings), making it computationally heavy with complexities depen-
dent on h2 and d2, leading to time complexity of O(u · n · (h2 + d2)), where n is prediction set
size. MtCut extends this further by introducing multiple experts (e), significantly increasing the re-
source demands due to the additional model parameters (e · d2), which results in time complexity of
O(u·n·(h2+e·d2)). PerK avoids neural networks, relying instead on runtime utility estimations for
each user individually, which makes it less resource-intensive during calibration but computationally
expensive during inference, particularly when the prediction set size (n) or the range of k i.e., m)
is large. Our framework alleviates these issues by not using neural models and learning λ during
calibration, avoiding the need to optimize across the range of k (up to m) at runtime. As a result,
it has efficient time complexity (O(u · n logn)) that is independent of m, unlike other frameworks.
This makes K-Adapt highly resource-efficient in practical applications.

5.4 PARAMETER ANALYSIS

We further analyze the influence of parameters α (risk threshold) and η (confidence thresh-
old) on the performance of the K-Adapt framework. Specifically, we evaluate their im-
pact on performance metrics (e.g., NDCG, F1 score etc.) and average prediction set size.

(a) Recall vs. α (b) MRR vs. α

Figure 4: Performance trends on the Last.fm dataset with
varying α and fixed η = 0.1.

Figure 4 reports the impact of risk threshold
α varying from 0.10 to 0.50 (in increments
of 0.05) on average prediction set sizes un-
der fixed confidence threshold η = 0.10 using
Last.fM dataset on Recall and MRR metrics
respectively. We observe that as α increases,
both average prediction set size and perfor-
mance metrics exhibit a decreasing trend.
This behavior aligns with theoretical expec-
tation, as increasing α relaxes the risk thresh-
old, allowing the model to generate smaller
prediction sets but at lower performance.
Figure 5 evaluates the impact of confidence
level η varying from 0.10 to 0.50 (in incre-
ments of 0.05) on average prediction set sizes under fixed risk threshold α = 0.10 using the Ama-
zonOffice dataset on F1 and NDCG metrics, respectively. We observe that when η increases, the
model becomes less conservative, leading to a reduction in both prediction set size and performance
metrics. This phenomenon demonstrates the framework’s ability to balance between prediction set
tightness and performance guarantees based on confidence threshold.

(a) F1 vs. η (b) NDCG vs. η

Figure 5: Performance trends on the AmazonOffice
dataset with varying η and fixed α = 0.1.

This analysis offers valuable insights into
prediction control, enabling practitioners to
dynamically adjust the prediction set size and
associated performance metrics based on de-
sired risk and confidence thresholds. Due to
space constraints, the remaining plots show-
ing similar trends are in the code repository.

6 CONCLUSION

This paper introduces limitations of fixed pre-
diction set sizes in RS, which cause user dis-
satisfaction, degrading RS performance. We
propose K-Adapt, a framework that dynamically outputs prediction set sizes while also providing
theoretical performance guarantees. Empirical results validate that K-Adapt outperforms heuristic
dynamic-k baselines, achieving superior performance with empirically well-chosen risk threshold
(α) and confidence levels (η). This work establishes foundations for dynamic, personalized predic-
tion sets with guaranteed performance in diverse recommendation settings.
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To facilitate reproducibility, we provide the following resources. 1) Source code and datasets: An
anonymized implementation of our proposed framework, supporting codes and datasets are included
in the anonymous repository https://anonymous.4open.science/r/Top-Adaptive-K- 551B 2)Proofs:
Formal statements and complete proofs underpinning our framework are provided in Section A.1
in the Appendix. 3) Hyperparameters and Implementation Details: The detailed implementation
details and configurations are present in Section A.4 in the Appendix.
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A APPENDIX

A.1 PROOFS

A.1.1 THEOREM 1
Proof. We first consider the empirical risk on n+ 1 samples and using eq. (8):

R̂n+1(λ) =
1

n+ 1

n+1∑
i=1

Lui
(λ)

=
n

n+ 1
R̂(λ) +

1

n+ 1
Lun+1

(λ).

(9)

where R̂(λ) is empirical risk based on the first n samples, and Lun+1(λ) is loss on the (n + 1)th
sample.
For ϵ > 0, suppose we have:

R̂(λ∗) ≤ α − ϵ. (10)
Then from equation 9 we get

R̂n+1(λ
∗) ≤ n

n+ 1
(α− ϵ) +

1

n+ 1
Lun+1

(λ∗).

Multiplying both sides by (n+ 1) and rearranging:

(n+ 1) R̂n+1(λ
∗) ≤ n(α− ϵ) + Lun+1

(λ∗),

Lun+1
(λ∗) ≥ (n+ 1) R̂n+1(λ

∗) − n(α− ϵ).

Taking expectations on both sides results in:

E
[
Lun+1(λ

∗)
]
≥ (n+ 1)E

[
R̂n+1(λ

∗)
]
− n (α− ϵ).

Since E[Lun+1
(λ)] = R(λ), we have

R(λ∗) ≥ (n+ 1)E
[
R̂n+1(λ

∗)
]
− n (α− ϵ).

Next, we relate R̂(λ) to R(λ) through Hoeffding’s inequality. For any fixed λ, Hoeffding’s inequal-
ity states:

P
( ∣∣R(λ)− R̂(λ)

∣∣ > δ
)
≤ 2 exp

(
− 2n δ2

B2

)
, (11)

where n is the number of samples, δ is deviation between expected risk and empirical risk and B is
the bound of risk. Since Λ is a finite set of thresholds, we apply union bound over all λ ∈ Λ. This
results in:

P
(
∃λ ∈ Λ :

∣∣R(λ)− R̂(λ)
∣∣ > δ

)
≤∑

λ∈Λ

P
(∣∣R(λ)− R̂(λ)

∣∣ > δ
)
≤ 2|Λ| exp

(
−2n δ2

B2

)
.

(12)

Hence,
P
(
sup
λ∈Λ

∣∣R(λ)− R̂(λ)
∣∣ > δ

)
≤ 2|Λ| exp

(
− 2n δ2

B2

)
,

and equivalently,

P
(
sup
λ∈Λ

∣∣R(λ)− R̂(λ)
∣∣ ≤ δ

)
≥ 1− 2|Λ| exp

(
− 2n δ2

B2

)
.

We now choose δ = δ(ϵ) to ensure this event has probability at least 1− η. Concretely, we set

2|Λ| exp
(
− 2n δ(ϵ)2

B2

)
= η,

implying that with probability at least 1− η,

sup
λ∈Λ

∣∣R(λ)− R̂(λ)
∣∣ ≤ δ(ϵ).

In particular, for any specific λ ∈ Λ:

|R(λ)− R̂(λ)| ≤ δ(ϵ).
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Let us return to λ∗. From R̂(λ∗) ≤ α − ϵ in equation 10 and the bound |R(λ∗) − R̂(λ∗)| ≤ δ(ϵ),
we obtain

R(λ∗) ≤ R̂(λ∗) + δ(ϵ) ≤ (α− ϵ) + δ(ϵ).

Since ϵ can be arbitrarily small, we typically write

R(λ∗) ≤ α+ δ(ϵ).

Finally, plugging

δ(ϵ) =
B√
2n

√
ln
(

2|Λ|
η

)
into the above with probability at least 1− η gives:

R(λ∗) ≤ α +
B√
2n

√
ln
(

2|Λ|
η

)
Hence Proved.

A.1.2 THEOREM 2
Proof. By Hoeffding’s inequality and a union bound over the finite grid Λ, with probability at least
1− η, we have:

sup
λ∈Λ
|R(λ)− R̂(λ)| ≤ εn. (i)

We know the empirical λ̂ chosen by our algorithm satisfies R̂(λ̂) ≤ α, which implies that:

R(λ̂) ≤ R̂(λ̂) + εn ≤ α+ εn. (ii)

Meanwhile, for any λ > λ̂, the maximality of λ̂ ensures R̂(λ) > α, hence

R(λ) ≥ R̂(λ)− εn > α− εn. (iii)

From (ii) and (iii), we get that λ̂ lies between the population error levels α − εn and α + εn. Now
we compare λ̂ with λ⋆. If λ̂ ≥ λ⋆, then by the margin condition at λ⋆ we have:

c(λ̂− λ⋆) ≤ R(λ̂)−R(λ⋆) ≤ (α+ εn)− α = εn,

which gives us
λ̂− λ⋆ ≤ εn

c , i.e. λ⋆ − λ̂ ≤ − εn
c . (iv)

On the contrary, if λ̂ ≤ λ⋆, then consider the consecutive grid points λj < λ⋆ < λj+1. By
monotonicity,

R(λj) ≤ α ≤ R(λj+1).

This condition ensures λj ≤ λ̂ ≤ λ⋆ < λj+1, such that

0 ≤ λ⋆ − λ̂ ≤ λj+1 − λj ≤ ∆Λ. (v)

From (iv) and (v), we get that with probability at least 1− η,

− εn
c ≤ λ⋆ − λ̂ ≤ ∆Λ.

Hence Proved.

A.1.3 THEOREM 3
Proof. By Hoeffding’s inequality, for each sample size m ∈ {n, n+ 1} and any δ > 0,

P
(
sup
λ∈Λ
|R(λ)− R̂m(λ)| > εm

)
≤ 2|Λ| exp

(
− 2mε2m

B2

)
.

Choosing εm = B√
2m

√
ln
( 4|Λ|

η

)
ensures that, with probability at least 1− η, the joint event holds:

sup
λ∈Λ
|R(λ)− R̂n(λ)| ≤ εn, sup

λ∈Λ
|R(λ)− R̂n+1(λ)| ≤ εn+1. (i)

By construction of λ̂, we have R̂n(λ̂) ≤ α, which implies:

R(λ̂) ≤ R̂n(λ̂) + εn ≤ α+ εn. (ii)
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Similarly, maximality ensures that for any λ > λ̂, R̂n(λ) > α, so:

R(λ) ≥ R̂n(λ)− εn > α− εn. (iii)

Thus λ̂ is bracketed between the population error rates at levels α− εn and α+ εn.
Repeating the same argument with R̂n+1 yields the analogous bracket for λ̂aug.
By monotonicity of R and the margin condition at λ⋆, any increase of the risk level by δ can move
the cutoff rightward by at most δ/c. Specifically:

sup{λ : R(λ) ≤ α+ δ} ≤ λ⋆ + δ/c.

Applying this with δ ∈ {εn, εn+1} gives

λ̂ ≤ λ⋆ + εn/c, λ̂aug ≤ λ⋆ + εn+1/c. (iii)

Conversely, moving the risk level down by δ can shift the cutoff leftward by at most δ/c, and
discretization introduces at most one additional grid step ∆Λ. Hence, we get:

λ⋆ − εn/c−∆Λ ≤ λ̂, λ⋆ − εn+1/c−∆Λ ≤ λ̂aug. (iv)

Taking the rightmost admissible value of λ̂aug and the leftmost admissible value of λ̂ gives:

λ̂aug − λ̂ ≤ ∆Λ +
εn + εn+1

c
.

Finally, since εn+1 ≤ εn
√

n
n+1 , we can simplify to

|λ̂aug − λ̂| ≤ ∆Λ +
2εn
c

.

Hence Proved.

A.2 UTILITY FUNCTIONS

The design of our loss function in Equation (5) makes the proposed framework more flexible by
accommodating different types of utility functions.
Below, we describe the utility functions for commonly used metrics:
1. Utility for Recall:

Urecall(Itrue(u), πλ(u)) =
|Itrue(u) ∩ πλ(u)|
|Itrue(u)|

. (13)

This utility measures the proportion of relevant items included in the prediction set. Here, |·| denotes
the cardinality of a set.
2. Utility for Mean Reciprocal Rank:

Umrr(Itrue(u), πλ(u)) =


1

min
{
r(i)

∣∣ i∈Itrue(u)∩πλ(u)
} ,

if Itrue(u) ∩ πλ(u) ̸= ∅,

0, otherwise.

(14)

This utility measures how early the first relevant item appears in the ranked list. The term r(i)
represents the rank of item i in the prediction set πλ(u).
3. Utility for F1-Score :

UF1(Itrue(u), πλ(u)) =
2|Itrue(u) ∩ πλ(u)|
|Itrue(u)|+ |πmax

λ (u)|
. (15)

This utility balances how many of the relevant items are actually predicted with how many of the
predicted items are truly relevant. Here, |πmax

λ (u)| is the maximum possible size of the prediction
set for user u at the given threshold λ.
4. Utility for NDCG :

Undcg(Itrue(u), πλ(u)) =

∑|πλ(u)|
i=1

I[i∈Itrue(u)]
log2(i+1)∑|Itrue(u)|

i=1
1

log2(i+1)

. (16)

This utility measures ranking quality by assigning higher importance to relevant items appearing
earlier in the ranked list. Here, I[i ∈ Itrue(u)] is an indicator function that returns 1 if the item i is
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relevant, and 0 otherwise. The term log2(i+1) is a position-based discount factor to penalize items
ranked lower.
By leveraging utility functions tailored to specific metrics, K-Adapt accommodates a wide range of
evaluation criteria such as Recall, MRR, F1 and NDCG.

A.3 ALGORITHM

We now present the algorithm for the K-Adapt framework. The procedure begins with an initial-
ization step where the control parameter λ is set to the initial value λinit. For each candidate λ,
the algorithm constructs calibrated prediction sets πλ(u) (Eq. 4) from the base recommender scores
fθ(u, i) by retaining all items with scores above the threshold. Next, the user-utility loss Lu(λ) is
computed for each user as defined in Eq. 5, and aggregated into the empirical risk R̂n(λ) (Eq. 8).
To find the largest λ such that the empirical risk remains below the target risk level (α − ϵ), where
α is the user-defined tolerance and ϵ is a slack parameter, we search in a greedy manner. When
R̂n(λ) ≤ α− ϵ, the algorithm terminates and returns λ̂ = λ. Otherwise, the threshold is reduced in
steps of ∆λ† until the stopping condition is satisfied. This simple yet effective strategy ensures that
the resulting calibrated threshold λ̂ balances compactness of recommendation sets with statistical
risk control.
The detailed procedure is summarized in Section A.3.

Algorithm 1 K-Adapt Algorithm
Input: Recommendation model fθ(u, i), calibration dataset Dcalib, initial control parameter λinit,
user-defined risk threshold α, error tolerance ϵ.
Output: Calibrated threshold λ̂.

1: Define utility function UM (·) based on the chosen recommendation metric.
2: Initialize λ← λinit.
3: while λ > 0 do
4: Generate prediction set πλ(u) using fθ(u, i) ≥ λ ( Equation 4).
5: Compute user loss Lu(λ) ( Equation 5).
6: Compute empirical risk R̂n(λ) ( Equation 8).
7: if R̂n(λ) ≤ α− ϵ then
8: return λ̂← λ
9: else

10: Update λ← λ−∆λ†.
11: end if
12: end while

A.4 IMPLEMENTATION DETAILS

All the base recommender models are trained using the Adam Optimizer. We train each model
for 20 epochs while keeping the learning rate at 0.001 and batch size at 256. The scores fθ(u, i)
generated by these base recommender models are used as inputs for the adaptive k methods. Detailed
configurations of the baselines are as follows: MMOECut uses 3 experts with Transformer layers
of size 128 and 2 attention heads, combined with a gating mechanism and a bi-directional LSTM of
size 64; AttnCut employs a Transformer layer of size 64 with 2 attention heads and a bi-directional
LSTM of size 32; PerK employs a Poisson-Binomial approximation to compute expected utility
values. Our framework K-Adapt uses error rate α = 0.05 and confidence parameter η = 0.05.
Furthermore, we split the held-out training data with 60% as the calibration data and 40% as the
testing data on all datasets. We also set the negative sampling rate to 50 for each true user-item
interaction and the maximum recommendation size for each user to 25.

A.5 ADDITIONAL EXPERIMENTS

A.5.1 CALIBRATION SIZE ANALYSIS

We analyze the stability of K-Adapt as the calibration set size varies. We fix the error rate at α =
0.05, the confidence level at η = 0.05, and the maximum recommendation size at Kmax = 25. We
subsample the calibration users from 50% to 100% in 10% increments, recalibrate λ̂ twenty times
per fraction, and evaluate the Recall and NDCG based empirical risk on a fixed test set in Figures 6
and 7 respectively. These plots depict empirical risk (solid line) against the calibration fraction and
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(a) MovieLens (b) Last.fm (c) AmazonOffice

Figure 6: Calibration stability analysis across MovieLens, Last.fM and AmazonOffice datasets respectively.
The y-axis reports empirical risk (defined w.r.t. Recall), and the x-axis shows the calibration fraction. The
dashed line marks the target α = 0.05. Shaded regions indicate 95% confidence intervals across 20 random
calibration subsamples.

(a) MovieLens (b) Last.fm (c) AmazonOffice

Figure 7: Calibration stability analysis across MovieLens, Last.fM and AmazonOffice datasets respectively.
The y-axis reports empirical risk (defined w.r.t. NDCG), and the x-axis shows the calibration fraction. The
dashed line marks the target α = 0.05. Shaded regions indicate 95% confidence intervals across 20 random
calibration subsamples.

the shaded band indicates the variability across the twenty recalibrations (95% confidence interval).
With only 50% of the calibration data, the achieved risk is close to but slightly above the target
α = 0.05, and the shaded band is comparatively wide. As the calibration fraction increases, both
quantities improve: the mean empirical risk decreases and aligns tightly with α, and the shaded
band contracts, indicating lower variability. This behavior is expected as the smaller calibration sets
result in noisier estimates of λ̂ and thus more dispersion in achieved risk, whereas larger calibration
sets stabilize the estimate and concentrate the risk near the target level. Interestingly, the variance
across calibration subsamples also differs by metric as Recall exhibits the tighter band, while NDCG
is more volatile due to its sensitivity to single-item rank positions or sparse positives. Overall, K-
Adapt maintains risk control even with limited calibration data, and additional calibration users
further tighten the guarantees while reducing variance.

A.5.2 RECOMMENDATION SIZE DISTRIBUTION ANALYSIS

To further understand the behavior of K-Adapt, we compare the distribution of calibrated recommen-
dation set sizes against the Oracle and adaptive-k baselines. We fix the maximum recommendation
size to Kmax = 25 and evaluate on MovieLens, Last.fm, and AmazonOffice, using NDCG-based
utility metric at α = 0.05. For each method, we record the empirical distribution of prediction set
sizes across all users. The results are presented in Figures 8 to 10. From the firesults we observe:

• Firstly, the oracle distributions differ across datasets: MovieLens produces left-heavy dis-
tributions with most users requiring smaller set sizes as it is denser; AmazonOffice, in
contrast, is sparse and shifts mass toward larger set sizes; Last.fm lies between these ex-
tremes. This highlights the need for user- and dataset-adaptive calibration rather than a
one-size-fits-all choice of K.

• Among the baselines, AttnCut and MtCut both exhibit strong small-K bias, concentrating
probability mass at the left end of the spectrum. MtCut is slightly more spread out due to its
expert-gated architecture, but the two remain largely similar, especially in denser datasets.

†Here,∆(λ) is equivalent to λ
|Λ| , where Λ is set of λ.
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Figure 8: Distribution of recommendation set sizes on MovieLens datasets for Kmax = 25, α = 0.05 η =
0.05. The x-axis denotes the selected recommendation size K, and the y-axis shows the empirical probability
across users. Results are shown for Oracle, AttnCut, MtCut, PerK, and K-Adapt.

Figure 9: Distribution of calibrated set sizes on Last.fM datasets for Kmax = 25, α = 0.05 η = 0.05. The x-
axis denotes the selected recommendation size K, and the y-axis shows the empirical probability across users.
Results are shown for Oracle, AttnCut, MtCut, PerK, and K-Adapt.

• The PerK baseline, by design, produces broader mid-range distributions with a visible tail
near Kmax, reflecting its reliance on Poisson–Binomial approximations that are sensitive
to calibration noise. Importantly, the strength of this tail grows on sparser datasets, where
user-level probabilities are less stable.

• K-Adapt consistently follows the Oracle distributions more closely than the baselines. On
MovieLens, it preserves the left-heavy shape while allowing for occasional larger sets; on
AmazonOffice, it flexibly shifts mass toward higher K values while avoiding the overex-
tended tails observed in PerK. It, however, has slight deviations which are expected. This
deviation is due to K-Adapt, which optimizes risk guarantees without directly observing
ground-truth oracle sizes.

Overall, these results show that K-Adapt not only provides theoretical guarantees but also adapts
set-size distributions in a way that reflects dataset density and user heterogeneity.

A.5.3 HETEROGENEITY ANALYSIS BY USER ACTIVITY

We finally examine whether a single global threshold λ̂ suffices for heterogeneous user populations,
or whether group-specific calibration provides noticeable benefits. Following Li et al. (2021) we
partition the AmazonOffice dataset into two cohorts based on interaction count: a low-activity group
and a high-activity group. Users are initially split evenly, and the boundary is then adjusted to
ensure that the minimum interaction count in the high-activity group exceeds the maximum in the
low-activity group by at least one. We then evaluate each group separately on the test set, comparing
the performance under the global λ̂ with that under group-wise thresholds λ̂g calibrated within each
cohort. We report Recall, MRR, F1, and NDCG together with the average set size in parentheses. As
shown in Table 3, the results highlight only modest differences between global and group-wise cali-
bration. For low-activity users, group-wise calibration tends to increase set sizes slightly, improving
Recall and F1. For high-activity users, the global λ̂ is mildly conservative, so group-wise calibration
yields small improvements in MRR and NDCG by trimming redundant items. However, in both
groups the utility gaps are minor, demonstrating that K-Adapt’s global calibration already delivers
near-oracle performance while providing robust guarantees across heterogeneous user cohorts.
A.6 DISCUSSION

K-Adapt provides a novel solution to the practical problem of dynamic recommendation set selec-
tion: how to adapt the cutoff K flexibly across users while retaining guarantees on recommendation
quality. Existing adaptive-K methods either rely on learned heuristics or distributional approxima-
tions, which may perform well in specific settings but lack formal guarantees. By converting this
problem into a risk-controlled prediction set problem, K-Adapt bridges this gap, offering a data- and
model-agnostic framework that balances flexibility in set size with rigorous statistical guarantees
ensuring sustained control of utility risk across diverse datasets and base recommenders.
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Figure 10: Distribution of calibrated set sizes on AmazonOffice datasets for Kmax = 25, α = 0.05 η = 0.05.
The x-axis denotes the selected recommendation size K, and the y-axis shows the empirical probability across
users. Results are shown for Oracle, AttnCut, MtCut, PerK, and K-Adapt.

Table 3: Heterogeneity analysis on AmazonOffice by user activity (α = 0.05, η = 0.05, Kmax = 25) using
NeuMF. Values in parentheses denote average set size. λ̂ is the global threshold, while λ̂g1 and λ̂g2 are group-
specific thresholds for low- and high-activity cohorts.

Group Calibration Recall ↑ MRR ↑ F1 ↑ NDCG ↑

Low-activity λ̂ 0.429 (16.9) 0.225 (10.6) 0.165 (11.4) 0.234 (12.5)
λ̂g1 0.442 (17.8) 0.231 (11.4) 0.172 (12.6) 0.248 (13.6)

High-activity λ̂ 0.465 (7.6) 0.255 (6.5) 0.185 (7.1) 0.256 (8.5)
λ̂g2 0.472 (8.05) 0.264 (7.2) 0.189 (7.8) 0.266 (9.0)

Gap (∆) λ̂ 0.036 0.030 0.020 0.022
λ̂g 0.030 0.033 0.017 0.018

Empirically, K-Adapt consistently outperforms baseline adaptive-K methods across MovieLens,
Last.fm, and AmazonOffice while preserving the desired risk control. It does so without introduc-
ing significant runtime overhead, as calibration is a single forward pass per threshold and scales
efficiently with dataset size. Furthermore, K-Adapt is robust to heterogeneous user populations:
experiments on AmazonOffice show that both global and group-wise calibration deliver near-oracle
utilities, with only minor differences across cohorts. This suggests that one global λ̂ already pro-
vides strong coverage while group-specific calibration can offer additional refinements if needed.
K-Adapt is also flexible. Since the utility function UM is externally defined, the framework can be
adapted to optimize for diverse objectives such as diversity, fairness, or safety, while retaining the
same statistical guarantees. For instance, UM could penalize concentration on a few popular items,
or enforce constraints on exposure across groups. Validity guarantees would then hold with respect
to the modified utility function, requiring no change in the core theory.
At the same time, K-Adapt faces two key challenges. First, as with other conformal methods, finite-
sample effects can lead to conservative prediction sets when calibration data are scarce, as observed
in our stability analysis. Second, K-Adapt depends on the quality of the underlying recommender
scores: if a base model produces poorly ranked or miscalibrated scores, the resulting thresholds can-
not fully compensate. Addressing these challenges, for example, by integrating improved calibration
of base scores or hybrid group-wise updates, remains promising future work. Overall, K-Adapt ad-
vances the reliability of adaptive-K recommendation by combining the simplicity of threshold-based
cutoff selection with the rigor of conformal risk control. We believe this pragmatic step can inspire
future research on trustworthy, utility-aware recommendation systems.
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