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ABSTRACT

This study considers the estimation of the direct bias-correction term for estimating the average
treatment effect (ATE). Let {(X;, D;,Y;)}"_, be the observations, where X; € R¥ denotes K-
dimensional covariates, D; € {0, 1} denotes a binary treatment assignment indicator, and ¥; € R

denotes an outcome. In ATE estimation, ho(D;, X;) = ]le[f(;: ;] — 117[?;(:)(03) is called the bias-
correction term, where eo(X;) is the propensity score. The bias-correction term is also referred to
as the Riesz representer or clever covariates, depending on the literature, and plays an important
role in construction of efficient ATE estimators. In this study, we propose estimating h by directly
minimizing the Bregman divergence between its model and hg, which includes squared error and
Kullback-Leibler divergence as special cases. Our proposed method is inspired by direct density
ratio estimation methods and generalizes existing bias-correction term estimation methods, such as
covariate balancing weights, Riesz regression, and nearest neighbor matching. Importantly, under
specific choices of bias-correction term models and Bregman divergence, we can automatically
ensure the covariate balancing property. Thus, our study provides a practical modeling and estimation
approach through a generalization of existing methods.

1 INTRODUCTION

We consider the problem of estimating the average treatment effect (ATE) in causal inference (Imbens & Rubin, 2015).
Methods for estimating ATEs are typically designed to eliminate bias arising from treatment assignment and the
estimation of nuisance parameters, aiming for (asymptotic) unbiasedness and efficiency.

1.1 ATE ESTIMATORS AND BIAS CORRECTION

We begin by formulating the problem. There are two treatments, denoted by 1 and OE| For each treatment d € {1, 0}, let
Y (d) € R denote the potential outcome under treatment d. The treatment assignment indicator is denoted by D € {1, 0},
and the observed outcome is given by Y = 1[D = 1]Y(1) + 1[D = 0]Y'(0), meaning that we observe Y (d) only if the
unit is actually assigned to treatment d. Each unit is characterized by K -dimensional covariates X € X C RX, where
X denotes the covariate space. For n units indexed by 1,2,...,n,let D = {(X;, D;,Y;)}I, denote the observed data,
where each (X;, D;,Y;) is an i.i.d. copy of (X, D,Y) generated from an underlying distribution Py. Our goal is to
estimate the ATE, defined as
T = E[Y (1) - Y(0)],

where the expectation is taken over the distribution F. Note that we can also apply our method for the ATE for the
treated group (ATT). For the details about ATT estimation, see Appendix [C]

Let eg(X) = Py(D = 1 | X) denote the probability of assigning treatment 1 given covariates X, which is known
as the propensity score. Throughout this study, we impose the following conditions, commonly referred to as the
unconfoundedness and common support assumptions.

Assumption 1.1. It holds that (Y (1),Y (0)) 1D | X. There exists a constant C > 0 independent of n such that
C<eyzr)<l—=Cforallz e X.

When eq(x) is not constant, a distributional shift arises between the observed outcomes in the treatment and control
groups, denoted by G; and Gy, respectively, where G, := {i € {1,2,...,n}: D; = d}. This shift induces bias in the

'In some cases, only treatment 1 is referred to as the treatment, while treatment 0 is referred to as the control. For simplicity, we
refer to them as treatment 1 and treatment O throughout this study.
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sample mean, ‘71“ >icg, Yi = \Tld| > icg, Yi(d), which deviates from E [Y'(d)] and thus prevents the sample mean

. 1
difference, o >

ica, Yi = g57 2ieg, Yi» from being an unbiased estimator of the ATE.

To address this issue, several debiased estimators have been proposed under standard regularity conditions. In
this section, we introduce two representative estimators, the inverse probability weighting (IPW) estimator and the
augmented IPW (AIPW) estimator, as follows:

o ~] 1[D;=1]Y; 1[D;=0]Y; 1[D;=1 1[D;=0
IPW estimator. 77" = L 5% ( [eo(xi]) - 1[_60&0 ) =15, ( e[o(xi)] - 1_[50()(3)) Y.

eo(X5) 1—eo(X5)
to(d, X) is the expected conditional outcome E [Y'(d) | X] of treatment d given X. The AIPW estimator is
also known as the doubly robust (DR) estimator (Bang & Robins}, 2003).

AIPW estimator. 7ATPW .— Ly~ ((“Di:” _ AD:=0] ) (Y; — po(Ds, X)) + po(1, X3) — 0(0, le)), where

Bias-correction term. In both estimators, the term

1D=1] 1[D =0

ho(D, X) = hD, X) = = o ~ T eo(X)

is crucial. This term, referred to as the bias-correction term, is central to ATE estimation (Schuler & van der Laan,
2024). A common approach is to estimate e using logistic regression and then plug the resulting estimate ¢ into
h. Note that the bias-correction term is also referred to as the Riesz representer (Chernozhukov et al.| [2021)) or the
clever covariates (van der Laan|, [2006). We use the term bias-correction term because the Riesz representer is closely
connected to the automatic debiased machine learning literature, and the clever covariates is closely connected to the
targeted maximum likelihood estimation (TMLE) literature.

For example, in a typical one-step bias correction, we first construct an ATE estimator as 7oM =

L3 (n(1,X) — 7in(0, X)), where /i, is an estimator of 9. This estimator is known as the direct method (DM)
or naive plug-in estimator. To obtain an efficient estimator, we add the bias-correction term % Yo ho(Ds, Xi)(Yi —
fin(D;, X;)) to the first-stage DM estimator 72°M, yielding the AIPW estimator.

In this study, we propose a method to estimate the bias-correction term, also called the Riesz representer or the clever
covariates. For example, we can estimate the bias-correction term by estimating the propensity score ey using the
maximum likelihood estimation. However, our interest is not in propensity score estimation but in bias-correction term
estimation. As the well-known Vapnik principle states, we should avoid such an intermediate problem and ideally aim
to estimate the target objective in a more direct manner [1998). Following this principle, this study considers
estimating ho (D, X) by directly minimizing the estimation error for the true ho(D, X).

The technical challenge is that the target objective hg is unknown. To address this issue, we employ techniques
developed in the direct density-ratio estimation (DRE) literature (Sugiyama et al.} 2012). In direct DRE, the goal is to
minimize the empirical risk between the true density ratio and its model, even though the true density ratio is unknown.
It is known that empirical risk minimization is feasible even without knowledge of the true propensity score. Since
the inverse propensity score can be viewed as a density ratio, we can extend these existing methods to our setting. For
causal inference researchers who are unfamiliar with DRE, we review the DRE literature in Appendix [A]

Our motivation is also closely aligned with studies on Riesz regression (Chernozhukov et al.,[2021) and covariate
balancing weights (Imai & Ratkovic, 2013}, [Deville & Sarndal, [1992), which also aim to estimate the bias-correction
term in a direct manner. Studies in covariate balancing focus on the balancing property of propensity score estimator
and estimate them using the property. [Chernozhukov et al.| (2021) proposes Riesz regression which represents the
bias-correction term as the Riesz representer. Although the derivation process is different, we derive the objective
function that is the same as [Chernozhukov et al.| (2021) by using the DRE techniques. Further, we generalize our
objective by using the Bregman divergence as well as DRE in |Sugiyama et al.|(2011). From this generalization, we
further connect our approach to the covariate balancing by showing the equivalence between our objective and empirical
balancing through the duality arguments discussed in|Zhao|(2019) and |Bruns-Smith et al.| (2025).

1.2 OUR CONTRIBUTIONS

This study has the following four contributions: (i) a general framework for directly estimating the bias-correction
term (also called the Riesz representer or clever covariates) via Bregman divergence minimization; (ii) our proposed
framework includes Riesz regression in [Chernozhukov et al.| (2021)) and the tailored loss in as special
cases; (iii) under our framework, we show that there are appropriate choices of bias-correction term models and
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Bregman divergences under which covariate balancing is automatically realized as the dual of the Bregman divergence
minimization problem (automatic covariate balancing); (iv) we provide a theoretical analysis of the estimator.

Our first contribution is the proposal of a framework for direct bias-correction term estimation via Bregman divergence
minimization. We estimate the bias-correction term by directly minimizing the estimation error of the true bias-

correction function hg, measured by the Bregman divergence, BR;(hO | h) =E {g (ho(D, X)) — g(h(D, X)) —
dg(h(d, X)) (ho(D, X) — h(D, X))} , where ¢ is a differentiable and strictly convex function. By changing g, we can

measure the error using various metrics, such as the squared loss or KL divergence loss. Since the Bregman divergence
involves the unknown function A, direct optimization is infeasible. To address this issue, we propose minimizing an

alternative objective function, defined as BR, (h) = E{ —g(hMD, X)) + 8g(h(D, X))h(D,X) — dg(h(1, X)) —
dg (h(O7 X ))} Minimizing the original Bregman divergence BRZ (h) is equivalent to minimizing BR, (h) which

does not depend on the unknown function. That is, we establish the equivalence: h* = arg minj, ¢4 BRg (ho | B) =
argming, 4 BRy (h) The resulting objective function can then be approximated using an empirical risk function.

Our second contribution is the unification of existing literature. Our proposed Bregman divergence minimization
objective includes Riesz regression in (Chernozhukov et al.|(2021)) (when using the squared loss) and the tailored loss in
(when using the KL divergence loss). Furthermore, our framework also integrates covariate balancing
methods (Imai & Ratkovic| 2013a; [Hainmueller} 2012}, [Zubizarretal 2013} [Chan et al.} 2015} [Wong & Chanl [2017). If we
use linear models to approximate the bias-correction term and train the model with the squared loss (Riesz regression),
the dual problem coincides with the optimization problem in stable balancing weights. If we model the bias-correction
term via the propensity score with logistic models and train the model with the KL divergence loss (tailored loss), the
dual problem becomes the same as the optimization problem in entropy balancing weights. (2025a), a subsequent
work of this study, refers to this property as automatic covariate balancing. See Table[]in Section 2]and Figure[T]in
Appendix.

Our third main contribution is the theoretical analysis of the estimator obtained via direct bias-correction term estimation.
Since we estimate 7y using empirical risk minimization, we establish bounds on the estimation error using empirical
process theory. Furthermore, we present examples of ATE estimators that incorporate the bias-correction term estimated
using our framework and conduct simulation studies. Using standard ATE estimation techniques, we demonstrate that
our method yields a \/n-consistent ATE estimator.

As a side product of our contributions, we find that we can import various existing results from the DRE literature.
Since Riesz regression is essentially the same as LSIF, various results about convergence rate analysis and optimization
methods have already been established. For example, [Kanamori et al] (2012)) shows the convergence rate when using
a reproducing kernel hilbert space (RKHS) for the density ratio, or equivalently the bias-correction term. [Kato &
Teshimal shows the rate when using neural networks, which has been further refined in [Zheng et al.|(2022]).
Rhodes et al.| (2020) and [Kato & Teshimal (2021)) point out the overfitting problem characteristic of DRE estimation and
propose techniques to avoid the problem. |[Lin et al.|(2023)) finds that nearest neighbor matching can be interpreted as
density ratio estimation, and it can also be interpreted as a special case of LSIF or Riesz regression (See Appendix [H).
These findings not only help deepen our understanding of Riesz regression, but also prevent unnecessary reinvention.
For example, the covariate adaption method proposed in [Chernozhukov et al|(2025)) uses Riesz regression, but it is
essentially the same as covariate adaption with a density ratio estimated via LSIF (Kanamori et al.} [2009), except for
the regression adjustment. While [Chernozhukov et al.|(2022a)) proposes neural networks and random forests for Riesz
regression, the techniques for estimating the density ratio have also been proposed in the DRE literature

et al}[2012} [Abe & Sugiyamal 2019} [Rhodes et al | [2020; [Kato & Teshimal, 202T]).

2 BIAS-CORRECTION TERM ESTIMATION VIA BREGMAN DIVERGENCE MINIMIZATION

In this study, we consider estimating hy by minimizing the empirical risk associated with the Bregman divergence
between hg and its estimator h: {1,0} x X — R.

2.1 POPULATION BREGMAN DIVERGENCE MINIMIZATION

Let g: R — R be a differentiable and strictly convex function. Given d € {1, 0}, we define the Bregman divergence
between hg and h as b (ho(d, z) | h(d, z)) = g(ho(d, z)) — g(h(d,z)) — dg(h(d, z)) (ho(d, z) — h(d,)), where

0g denotes the derivative of g. Then, we define the average Bregman divergence as BR; (ho | h) =K [g (ho(D, X )) -
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g(h(D, X)) — dg(h(d, X)) (ho(D,X) — h(D, X))} Then, we estimate ho by h* = arg minj, ¢4 BR; (ho | h). By
dropping the term that is irrelevant to learning, we have

h* = argmin BR, (h) ,
heM

where  BR, (1) = E| — g(h(D, X)) + dg(h(D, X))h(D, X) = g (h(1, X)) + dg(h(0, X))
This can be shown as follows:

h* = argmin S OE [11[17 = d| (g(ho(d,X)) — g(h(d, X)) — dg(h(d, X)) (ho(d,X) - h(d,X)))]

de{1,0}
=argmin > E[1[D =d] (~g(h(d, X)) ~ dg(h(d, 2)) (ho(d, X) ~ h(d, X))) |
TER 4e{1,0}
= argmin 3 (E[n[p = d] (—g(h(d, X)) + dg(h(d, X))h(d, X))] - E[]l[D — d)9g(h(d, x))ho(d,X)D
TER ge(1,0}

— argmin {E[ (~g(h(D, X)) + dg(h(D, X))h(d, X)) | ~ E|9g(h(1, X))| +E|ag(h(0, X)) } .
reH
Here, we dropped terms irrelevant to the optimization and used E[1[D = 1]ho(1, X) | X] = Eleq(X)ho(1,X) | X] =
land E[1[D = 0]ho(0,X) | X] = —1.

Thus, surprisingly, we demonstrate that the least squares estimate for the unknown true bias-correction term hg can be
defined by an objective function that does not explicitly include hy itself. As discussed in the following subsection, this
objective function can be easily approximated using observations.

2.2 EMPIRICAL BREGMAN DIVERGENCE MINIMIZATION

Then, we estimate the bias-correction term hy by minimizing an empirical Bregman divergence as

Ty = arg minﬁﬁg (R) + AJ(h),
heH

where J(h) is some regularization function and

n

BRy(h) = 3 (— g(h(Dy X)) + dg(h(Dy, X2))h(Ds, X,) — Dg(h(1, X,) + Da(h(0, X.))).

n <
i=1

2.3 LOSSES FOR THE BIAS-CORRECTION TERM ESTIMATION

By changing g, we can obtain various loss functions for estimating the bias-correction term, as shown in the subsequent
subsections. In particular, if we use the squared loss in the Bregman divergence, we obtain Riesz regression in
Chernozhukov et al.|(2021)), which is originally called Least-Squares Importance Fitting (LSIF) in the DRE literature
Kanamori et al.|(2009). Note that kernel mean matching by |Gretton et al.| (2009) is also the same as, or a variant of,
LSIF. If we use the KL divergence, we obtain the tailored loss in Zhao|(2019), which is originally called KLIEP in the
DRE literature |Sugiyama et al.|(2008). Furthermore, as we discuss in Section if we use linear models for hy and
train them with the squared loss, the covariate balancing property is automatically obtained, as shown in|Bruns-Smith
et al.| (2025). If we model hg using the propensity score ey approximated via logistic models and train it with the
tailored loss, the covariate balancing property is automatically obtained, as shown in|Zhao| (2019). We demonstrate
the correspondence of the existing methods in Table[I] Also see Figure[I]in Appendix for the relationship among
bias-correction term estimation via Bregman divergence minimization, density ratio estimation, and covariate balancing,
summarized in | Kato| (2025a)) and Kato| (2025c).

2.4 SQUARED LOSS

Our least squares method for direct bias-correction term estimation can be obtained by using a squared loss ¢g5*(h) =
(h — 1)2. By substituting this function into the Bregman divergence, we formulate the estimation problem as h* :=

arg ming ¢4 BRgSL (h), where

BRs (h) = E[ —2(h(1,X) = h(0, X)) + h(D, X)2].

4
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Table 1: Correspondence among DRE methods and bias-correction term estimation methods (BCE).

DRE method BCE method g(t)
LSIF (Kanamori et al.|[2009 Riesz regression (Chernozhukov et al./|2021 (t—1)2/2
Kernel Mean Matching (Gretton et al. 2009} Stable balancing weights (Zubizarreta) 2015
UKL (Nguyen et al.{[2010 Tailored loss @hao] 2019) tlog(t) — t
KLIEP (Sugiyama et al.||2008 Entropy balancing weights lHainmueller] 2012} g
Binary KL divergence tlog(t) — (1+ ¢)log(1 +¢)
Clog(1—1t
2O ot 1) o1~ ) for0 <1 <1

Then, we estimate the bias-correction term as h,, := arg miny, .4, ﬁf\{gSL (h) + AJ(h), where EF\{gSL (h)y =150 (-

2(h(1,X;) — h(0,X;)) + h(D;, X;)?). This objective function is the same as the one used in Chernozhukov et al.

(2021)). This type of estimation method is referred to as LSIF in density-ratio estimation (Kanamori et al.|[2009).

2.5 KL DIVERGENCE LOSS

Consider g®%(h) = |h|log|h| — |h|, which is a convex function. By substituting this function into the Bregman
divergence, we formulate the estimation problem as h* := arg ming, 4 BRgkw (h) , where

BRt (h) = ]E[|h(Di,Xi)\ —log(|h(1, X)|) — 1og(|h(o,X)|)].

Then, we estimate the bias-correction term as h,, := argmin,cy BRyxt (k) + AJ(h), where BRyxu(h) =
LS (JM(Di, X3)| = log (JR(1, X;)[) — log (|R(0, X;)])). This estimation method corresponds to unnormalized
Kullback—Leibler (UKL) minimization in DRE (Nguyen et al.| 2010), which generalizes the KL importance estimation
procedure (KLIEP). Also see Appendix [B]

2.6 TAILORED LOSS (A VARIANT OF THE KL DIVERGENCE LOSS)

Next, as a variant of the KL divergence loss, we propose the tailored loss. Let us redefine a model H as a set of functions
h(1,-): X = (1,00) and h(0,-): X — (—1,—o00); that is, we restrict the space of h. This restriction is justified
from the form of hg and the common support assumption. Let us consider g™ (h) = (|h| — 1) log (Jh| — 1) — |h|. By
substituting this function, we obtain

BRyn (h) := E[log (Ih(D, X)| — 1) + |h(D, X)| — log (|A(1, X)| — 1) — log (|h(0, X)| — 1) ]

Note that it holds that BRn (1) = E[ = 1[D = 0] log (|h(1, X)| — 1) = 1[D = 1]log (|h(0, X)| — 1) + 1[D =
1Jh(1,X) — 1[D = O]h(O,X)}. Then, we estimate the bias-correction term as h, := argmin,c, BRyn (h),

where the empirical Bregman divergence becomes ﬁﬁgn(h) = L5 (1[D; = 0]log (Jh(1, X;)| — 1) + 1[D; =
log ([A(0, X;)| = 1) + 1[Di = 1]|(1, X;)| = 1[Di = 0| (0, X,)])-

3 AUTOMATIC COVARIATE BALANCING

Under specific choices of Riesz regression models and Bregman divergence, we can automatically enforce the covariate
balancing property. The key tool is the duality relationship between the Bregman divergence minimization problem and
the covariate balancing optimization problem. This result is shown in[Kato| (2025a), and we introduce the result for
reference.

3.1 LINEAR MODELS AND SQUARED LOSS

Consider a linear model
hs(D,X) =®(D,X)" 3,

where @: {1,0} x X — RP is a basis function. For this model, using the squared loss (Riesz regression) automatically
achieves covariate balancing, as discussed in|Bruns-Smith et al.[(2025)).
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Specifically, under linear models, by duality, this MSE minimization problem is equivalent to solving
S wd(D;, X;) — (<1> LX)~ ® .X7-> ~0,
il so Y w00, - (32 (30,5 -20.%)) ) <o,

i=1 i=1

where 0, is the p-dimensional zero vector. This optimization problem matches that used to obtain stable weights

(Zubizarreta, 2015).
It enforces the covariate balancing condition Y, @, ®(D;, X;) — (Z, 1 ((I)(l Xi) — (D(O,X,,;)>) = 0,, where
71),‘, = (I)(DlX,> /5)

Another advantage of using linear models is that we can write the entire ATE estimation with a single linear model, as
shown by [Bruns-Smith et al|(2025).

3.2 LOGISTIC MODELS AND TAILORED LOSS

We can model the Riesz representer by modeling the propensity score as
hg(D,X)=1[D = 1]rg(1,X) — 1[D = 0]rz(0, X),

where r3(1, X) = ﬁ (0, X) = %#X) ep(X) = m and ®: X — RP is a basis function.
Note that we do not include D, unlike the basis function used in linear models. For this model, if we use the KL-
divergence—flavored convex function defined in Section 2.6 which corresponds to the tailored loss in[Zhao| (2019), we

automatically achieve covariate balancing.

Define § := argming ;- > 3 ey 0y (]l[Di =d (— log (W) +rs(d, Xi)) ), and denote 3 by 7. Un-
der logistic models, by duality, the KL divergence-flavored loss is equivalent to solving

n

min > “(w; — 1) log(w; — 1) s.t. (Z (Jl[Di = Huw; ®(X;) - 1[D; = o]wié(Xi))> =0,.

1 n
we(1,00)" i=1

This optimization problem matches that used in entropy balancing (Hainmueller,[2012). Note that this objective function
is derived from BRym (h) when we use the logistic model specified in this section.

As a result, we obtain Y. (1[D; = 1]w; ®(X;) — 1[D; = 0]@;®(X;) ) = 0,, where w; = 7(X;).
=1 p

This model has the advantage that we can use a basis function ®(X) independent of D. Moreover, it naturally achieves
covariate balance in the sense that the covariate distributions match between the treated and control groups. Additionally,
it allows us to automatlcally impose nonnegat1v1ty on h(1, X) and —h(0, X), which may be violated in linear models.

Note that ho(1, X) = &y and ho(1, X) = 1—r%y-

3.3 COMPARISON

We first discuss the advantages of using logistic models over linear models. One benefit of using logistic models
is that we can simplify the basis function by making it independent of D. Furthermore, we can express covariate

balancing in a clearer form as ) ;_; (]l[Di = 1w;®(X;) — 1[D; = 0}@¢<I>(Xi)) = 0,, while under linear models,

S w®(Ds, X)) — (ZZ 1 ((I>(1 X;) — @(O,Xi))> = 0, is attained, but it is somewhat harder to interpret.

Moreover, using logistic models incorporates more information about the form of the bias-correction term, which
includes the inverse propensity function. Logistic models also naturally impose restrictions such that (1, X) € (1, 00)
and h(0, X) € (—o0, —1) under the common support assumption.

In contrast, if we use linear models, we can express the entire ATE estimator with a single linear model, as shown
in Bruns-Smith et al.| (2025)). Furthermore, we can obtain the estimator of the bias-correction term as a closed-form
solution. In addition, as discussed in [Kato| (2025b), a subsequent work of this study. nearest neighbor matching is also
an instance of linear models trained via Riesz regression (squared loss). We introduce the result in Appendix [H| for
reference.

Ultimately, there is no clear dominance between the use of linear and logistic models. Moreover, we can also use
more complex models, such as random forests and neural networks. The choice of model should be made based on the
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data and application, and once the model is selected, we can determine appropriate specifications that ensure covariate
balancing automatically.

4 ESTIMATION ERROR ANALYSIS

This section provides an estimation error analysis for hg estimated by the direct bias-correction term estimation method.
We can use various models for 7, including RKHS and neural networks.

4.1 MODEL

We define a model of the bias-correction term hg by h(D,X) = ("1 o f(D,X) = ("' (f(D, X)), where ( is a
continuously differentiable and globally Lipschitz link function, and f is some basic model. For example, if we use
linear model for the bias-correction term hg, we can write h(D, X) = ®(D, X) T 3, where  is the identity function,
f(D,X)=®(D,X)T 3, ® is some basis function and 3 is the corresponding parameter. If we use logistic model for
the bias-correction term hg, we can use logistic link for ¢, and f(D, X) = ®(X) T 3.

4.2 RKHS

First, we investigate the case with RKHS regression. Let FREKHS be a class of RKHS functions, and define fREHS :—
argmin ¢ rricus Lo, ({71 0 f) + Al f[|%. where || - [|% is the RKHS norm. Then, we define an estimator as h*<HS =

(=1 o fRKHS We analyze the estimation error by employing the results in Kanamori et al. (2012), which study RKHS-
based LSIF in DRE. We define the following localized class of RKHS functions as a technical device: F 11\2/[1(1-15 = { fe

FRKHS: [(f) < M} for some norm I(f) of f. We also define HRKHS .= {(~1o f: f € FREHSY We then make the
following assumption using this localized class.

Assumption 4.1. There exist constants 0 < v < 2,0 < 8 < 1, ¢g > 0, and A > 0 such that for all M > 1, it
holds that Hp (5, FREHS Py) < A (%)W, where Hp (0, FRKHS | Py) is the bracketing entropy with radius § > 0 for the
function class FRKUS and the distribution Py.

For the details of the definition of the bracketing entropy, see Appendix [Fjand Definition 2.2 in[van de Geer| (2000).

Under these preparations, we establish an estimation error bound.

Theorem 4.1 (L2-norm estimation error bound). Suppose that g is p-strongly convex and there exist constant C' > 0
such that |g" (t)| < C Vt € R. Assume also that ~1(0) is finite. Suppose that Assumptionsand hold. Set the
regularization parameter X = ), so that lim, . \,, = 0 and \;! = O(nl_‘;) (n — 00). If hg € HEKHS then we

~ 2
have ’ RRKHS (D X)) — ho(D, X)H = Op, (AV2).
LQ(P())

The proof is provided in Appendix [F| following the approach of [Kanamori et al.| (2012). The parameter + is determined
by the function class to which f belongs.

4.3 NEURAL NETWORKS

Second, we provide an estimation error analysis when we use neural networks for H. Our analysis is mostly based on
Kato & Teshimal(2021) and [Zheng et al.|(2022). We define Feedforward neural networks (FNNs) as follows:

Definition 4.1 (FNNs. From Zheng et al. (2022)). Let D, W, U, and S € (0, c0) be parameters that can depend on n.
Let F¥NN .= FFNN. ., s be a class of ReLU-activated FNNs with parameter 0, depth D, width W, size S, number
of neurons U, satisfies the following conditions: (i) the number of hidden layers is D; (ii) the maximum width of the
hidden layers is V; (iii) the number of neurons in eg is U; (iv) the total number of parameters in eg is S.

FFNN

, we define f

FNN
v n

7FNN ._
h,, =

For the model ‘= argmin e peny Zn(g ~1 o f). Then, we define an estimator as

C_l o ENN'

For the estimator, we can prove an estimation error bound. Let us make the following assumption.
Assumption 4.2. There exists a constant 0 < M < oo such that || folleo < M, and || f||coc < M for any f € F¥NN,

Let Pdim(FFNN) be the pseudo-dimension of F¥NN, For the definition, see Anthony & Bartlett/(1999) and Definition 3
in|Zheng et al.|(2022). Then, we prove the following estimation error bound:



Under review as a conference paper at ICLR 2026

Theorem 4.2 (Estimation error bound for neural networks). Suppose that g is /1 strongly convex and there ex-
ist constant_ C' > 0 such that |g"(t)] < M Vt € R. Assume also that (~1(0) is finite. Suppose that As-
sumption . 4.2| holds. For fo such that ho = (~' o fo, also assume fo € (B, M,[0,1]%) with 3 = k + a,

where k € NT and a € (0,1], and F*NN has width W and depth D such that W = 38(|8] + I)QdLﬁH‘1
and D = 21(|8] + 1)2fn2<di2ﬁ> log, (8n2<d12ﬁ>)1. Then, for M > 1 and n < Pdim(FNN), it holds that

HhFNN (D, X) — ho(D, X)’

dent of n.

La(P) = CO(LBJ + 1)9d2LﬁJ+(5A3)n_% log® n, where Cy > 0 is a constant indepen-
2 0

The proof is provided in Appendix |G} following the approach of Zheng et al.|(2022)). This result directly implies the
minimax optimality of the proposed method when f; belongs to a Holder class.

5 EXAMPLE ABOUT THE AIPW ESTIMATOR

This section introduces the AIPW estimator with nuisance parameters estimated using our proposed direct bias-
correction term estimation. We prove that under certain conditions, the proposed estimator is asymptotically normal.
Note that this result is well known in the literature except for the use of nuisance parameters estimated via our direct
bias-correction term estimation. The purpose of this section is not to provide novel methodological or theoretical results
but to present an application of our proposed method.

We analyze the AIPW estimator with an estimated propensity score. Recall that the AIPW estimator is defined as
TAPW — L5~ ( n(Di, Xi) (Y — fin (D4, X5)) + 1in (1, X3) — n (0, XZ-)), which is also called the DR estimator.

We first make the following assumption.

Assumption 5.1 (Donsker condition or cross fitting). Either of the followings holds: (i) the hypothesis classes H and
M belong to the Donsker class, or (ii) [in, and h,, are estimated via cross fitting.

For example, the Donsker condition holds when the bracketing entropy of # is finite. In contrast, it is violated in
high-dimensional regression or series regression settings where the model complexity diverges as n — oco. For neural
networks, the assumption holds if both the number of layers and the width are finite. However, if these quantities grow
with the sample size, the assumption is no longer valid.

Even if the Donsker condition does not hold, we can still establish asymptotic normality by employing sample
splitting (Klaassen, |1987)). There are various ways to implement sample splitting, and one of the most well-known
is cross-fitting, used in double machine learning (DML, |(Chernozhukov et al) 2018). In DML, the dataset is split
into several folds, and the nuisance parameters are estimated using only a subset of the folds. This ensures that in
hn(D;y X;) (Vi — fin (D, X)) + In (1, X;) — 1,(0, X;), the observations (X;, D;, Y;) are not used to construct fi,
and 7,,. For more details, see Chernozhukov et al.|(2018).

Assumption 5.2 (Convergence rate). ||/i\z—h0H2 = 0,(1), H2 = 0,(1), and H/i\z—hoHQHﬂ—uoHQ = 0,(1/4/n).

Under these assumptions, we show the asymptotic normality of 72"V, We omit the proof. For details, see Schuler &
van der Laan| (2024)), for example.

Theorem 5.1 (Asymptotic normality). Suppose that Assumptions and hold. Then, the AIPW estimator
converges in distribution to a normal distribution as \/n (FT/L“PW - To) LN (0,V*), where V* is the efficiency bound

defined as V* = E [0;((1;;) + 1= ig())(()) + (T0(X) — 70)2} and o(X) =E[Y (1) — Y (0) | X].

Here, V* matches the efficiency bound given as the variance of the efficient influence function (van der Vaart, |1998)).
Thus, this estimator is efficient.

5.1 COMPARISON WITH THE STANDARD DRE APPROACHES

If we follow the standard DRE approach, we may formulate the problem as the direct estimation of ro(1, X). For
example, when using LSIF, the risk is given by E [ — 2r(1, X)| + E[1[D = 1]r(1, X)?], which corresponds to a part of

our risk: E[f 2r(1,X) —2r(0, X) + 1[D = 1]r(1, X)? + 1[D = 0]r(0, X)Q]. Thus, our proposed method is closely
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Table 2: Experimental results. We report the empirical MSE and Bias of each method.

D . . DM DBC (LS) DBC (KL) MLE CBPS RieszNet DM
ata Dimension X
Three-layer perceptron Dragonnet Linear model
| PW DR | IPW DR || IPW DR || IPW DR IPW DM DR ||
K =3 | MSE | 0.006 , 0392 0.005 6 0374 0.005 6 0330 0.004 1429 0.006 | 0.017 0.021 0.040 2.781
Model 1 K =3 | Bias || -0.037 || -0.299 -0.024 | -0.316 -0.023 | -0.257 -0.022 || -0.747 -0.037 || -0.027 -0.025 -0.053 -0.197
K =3 || MSE | 0.521 1.956 0481 | 2.779 0478 | 6.510 0.507 || 3.570 0.515 || 0464 0.510 0.379 7.511
K =10 || Bias || 0.094 || -0.930 0.086 | -0.822  0.088 || -0.268  0.091 || -1.422  0.089 || -0.093 -0.106 -0.017 0.101
K =3 | MSE | 0.048 | 0343 0.033 | 0819 0.037 | 2.838 0.045 1.848  0.044 | 0.030 0.034 0.051 2.866
Model 2 K =3 | Bias | -0.009 || -0.275 -0.011 | -0.382 -0.010 || -0.403 -0.011 || -0.781 -0.012 || -0.022 -0.020 -0.057 -0.214
K =3 | MSE | 0517 | 2006 0474 | 2980 0477 || 6.517 0507 | 3.816 0512 || 0.407 0.446 0.424 7.482
K =10 || Bias || 0.085 || -0.944 0.082 | -0.823  0.085 || -0.269  0.089 || -1.410  0.084 || -0.087 -0.096 -0.012 0.093

connected to LSIF. However, the standard DRE approach does not address whether it is suitable for bias-correction term
estimation. In fact, we can estimate 7y by minimizing the LSIF risk, but our proposed method adopts a different risk:
the sum of E[ — 2r(1, X)| + E[1[D = 1]r(1, X)?] and E[ — 2r(0, X)] + E[1[D = 0]r(0, X)?], which is directly
related to the bias-correction term.

6 SIMULATION STUDIES

We assess the performance of our method through simulation studies, evaluating ATE estimation error. We denote
our direct bias-correction term estimation methods as DBC (LS) when using the squared loss, and DBC (TL) when
using the tailored loss. We compare our approach with ATE estimators using propensity score estimated by maximum
likelihood estimation (MLE), CBPS (Imai & Ratkovic,2013a)), and RieszNet (Chernozhukov et al.,2022a). Because our
DBC (LS) is equivalent to Resz regression, we include RieszNet primarily as a numerical check of equivalence, noting
architectural differences. In this section, for simplicity, we do not apply cross-fitting. We also conduct experiments in
Appendices[l|and [ using synthetic and semi-synthetic data, respectively, in which we apply cross-fitting.

We consider two different dimensions for X, setting K’ = 3 and K = 10, and two different outcome models. This results
in a total of four experimental settings. In all cases, the true ATE is fixed at 7y = 5.0. To generate synthetic data, we first
sample covariates X; from a multivariate normal distribution N (0, I), where I denotes the K x K identity matrix.
The propensity score is then defined as eg(X;) = ——2———, where h(X;) = Zg.’,l o; X5+ 23—1 Bi X2+
Lexp(—h(X))) Jj= ; j= R
Y1Xi,1X5,24+72X; 2. X, 3+7v3X;,1X; 3. The coefficients a5, 85, and «y; are independently drawn from N(0,0.5). Given
these propensity scores, the treatment assignment D is sampled accordingly. The outcome is then generated under two
models, referred to as Model 1 and Model 2. In Model 1, we specify V; = (X, 3) > 1 1.1479D;+¢;, where g; ~ N(0,1)
and 79 = 5.0. In Model 2, the outcome is generated as Y; = X,' 8 + (XZ-Tﬂ)2 +3sin(X; 1) + 1.1+ 70D; +¢;.

We model hy by modeling ey. To model ey, we use a three-layer neural network with an Exponential Linear Unit (ELU)
activation function for each hidden layer (100 nodes per layer). The final output layer applies a sigmoid function to
ensure that the estimated propensity scores remain in (0, 1). We use this model for our method, logistic regression, and
CBPS. For RieszNet, we adopt the DragonNet architecture proposed in|Shi et al.[(2019), following (Chernozhukov et al.
(2022b). For each method, including ours, we compute both the IPW and AIPW estimators using the estimated scores.
Additionally, we include the direct method (DM) estimator with neural networks for comparison. In each case, the
expected conditional outcomes are estimated using a three-layer neural network (100 nodes per hidden layer, with ELU
activation). As a baseline, we also consider the DM estimator with linear models.

The sample size is fixed at n = 3000. As noted earlier, we evaluate two values of K (K = 3 and K = 10) and two
outcome-model specifications (Model 1 and Model 2), resulting in four experimental configurations. Each setting is
repeated 500 times. We report the MSEs and biases of the resulting ATE estimates in Table[2|for n = 3000. Overall, the
results indicate that our direct bias-correction approach achieves competitive or superior estimation accuracy compared
with logistic regression and CBPS, highlighting the benefits of explicitly estimating the bias-correction term in the ATE
context. RieszNet tends to outperform our method, but we consider this to be partly due to differences in the regression
models. While RieszNet employs DragonNet, we use a simpler implementation. We do not employ such models, as
model complexity is not our primary focus. Nevertheless, we emphasize that our method outperforms most existing
approaches while exhibiting comparable performance to RieszNet.
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7 CONCLUSION

This study proposed direct bias-correction term estimation in ATE estimation. Instead of focusing on estimating the
propensity score itself, our approach directly minimizes the estimation error of the bias-correction term, leveraging
empirical risk minimization techniques. We demonstrated that this direct approach enhances estimation accuracy by
avoiding the intermediate step of propensity score estimation. Additionally, our method was analyzed through the lens
of Bregman divergence minimization, providing a generalized framework.
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Bias-correction term estimation
via Bregman divergence minimization
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Figure 1: Relationship among bias-correction term estimation via Bregman divergence minimization, density ratio
estimation, and covariate balancing. This figure is made using the results in [Kato| (2025a) and Kato|(2025c).

A DENSITY-RATIO ESTIMATION (DRE)

Given two probability distributions P and () over a common space X, the density ratio function is defined as

where p(x) and ¢(x) denote the density functions of P and @), respectively. DRE is a fundamental problem in statistical
learning, with applications in importance sampling, anomaly detection, and covariate shift adaptation.

In DRE, estimating the two densities separately can magnify estimation errors, whereas directly modeling and estimating
the density ratio can lead to improved accuracy. Thus, the aim of DRE is to estimate the density ratio in an end-to-end
manner by directly optimizing a single objective. Various methods for DRE have been proposed (Huang et al.| 2007}
Gretton et al., 2009; |Qinl 1998 |Cheng & Chul |2004; |[Nguyen et al., 2010; Kato et al.,|2019)), many of which can be
generalized as instances of Bregman divergence minimization (Sugiyama et al., 2011; Kato & Teshima, [2021]).

Let R be a hypothesis class for 7, consisting of functions r: X — R. The goal of direct DRE is to find an optimal
function r* € R that best approximates ry. A natural approach is to minimize the expected squared error:

Ep [(rO(X) - r(X))ﬂ .

However, since 7o (x) is unknown, direct minimization of this objective is infeasible.

Instead, we derive an equivalent formulation that does not require knowledge of ry. Specifically, we show that
minimizing the expected squared error is equivalent to minimizing the following alternative objective:

—2Eq [r(X)] + Ep [T’(X)Q] .
This transformation enables empirical risk minimization without explicit access to the true density ratio.

Furthermore, we extend this framework by providing theoretical guarantees on the estimation error using tools from
empirical process theory. From the perspective of Bregman divergence minimization, we establish a generalized
methodology for DRE that accommodates various estimation strategies.

Finally, we present numerical experiments that demonstrate the effectiveness of our approach in practical scenarios,
including importance weighting and outlier detection.
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B SILVERMAN’S TRICK

Note that minimization of the Bregman divergence with the KL divergence loss is equal to

r* = arg max Z logr(d,X)] s.t. E[1[D =1]r(1,X;)] =E[1[D = 0]r(0, X;)] = 1.
TER  4e{1,0}

This technique is known as Silverman’s trick (Silverman, [1982). For details, see Theorem 3.3 in [Kato et al.
(2023). We can replace the expected values with the sample means and define the estimation problem as 7, =

argmax,cp % i Zde{Lo} logr(d, X;) s.t. %Z?:l 1D; =1]r(1,X3) = i LD = 0]r(0, X;) = 1
C ESTIMATION OF THE AVERAGE TREATMENT EFFECT FOR THE TREATED (ATT)

Our method can also be applied to other estimands, such as the ATT, which is defined as
oo =E[Y(1)-Y(0)| D=1].
The IPW and AIPW estimators designed for the ATT are given by

. [D;=1 eo(X;)1[D;=0]Y; n 1[D=1 eo(X)1[D=0
IPW estimator. """ := + 21 1 ( o - Dio(l)ft[io(Xi)]) ) = %Zi:l ( [ﬂ'o = W()()((lzeE)(X))]> Y.

. ~A 1 n 1[D=1 eo(X)1[D=0
AIPW estimator. oATPW .= 1577 ( [WO L ﬂ%((lleE(X))]) (Y; — po(0, X5)),

where 7y = E[1[D = 1]].
Thus, the bias-correction term for ATT estimation is given as

~ _1[D=1] ey(X)1[D = 0]
ho(D,X) i= == == = B

where 7o = E[1[D = 1]].

Let wo(x) : ©0(X) _ Then, we denote the bias-correction term as

T Teo(X))"

hio(D, X) = 2 _

Let W be a set of functions w: X — R . Then, we define the following least squares:
w* = argmin E [(E(D,X; T0,70) — E(D7X;r7 m)))ﬂ .
reR

Note that we use 7 itself. We can show that this least squares is equivalent to

w* = ar§€r7nzin {—2E [w(X)] + E [w(X)*1[D =0]] },

where [E; is expectation over the treated group (p(x | d = 1)). The empirical version of this risk is given as

@::argmin{—Qz:lZ]l )+7112w(Xi)2}’

reR =1

We can demonstrate the equivalence between the two least-squares formulations as follows:

w* = argminE [(E(D,X;roﬂro) — E(D7X;r, Wo))z}
reER

= argminE [(wO(X)]l[D = 0] — w(X)1[D = 0])2}

= argerginE [—2wo(X)w(X)1[D = 0] + w(X)?1[D = 0]] .

14



Under review as a conference paper at ICLR 2026

To see this equivalence, consider

This confirms the equivalence between the two least-squares objectives.

D PRELIMINARY

This section introduces notions that are useful for the theoretical analysis.

D.1 RADEMACHER COMPLEXITY

Let 01,...,0, be n independent Rademacher random variables; that is, independent random variables for which
P(o; =1) = P(o; = —1) = 1/2. Let us define

Rnf = %ZUz‘f(Wi)-
i=1

Additionally, given a class F, we define

R, F = sup R, [.
feFr

Then, we define the Rademacher average as E[93,, 7] and the empirical Rademacher average as E, [R,F | X1,..., X,].
D.2 LoCAL RADEMACHER COMPLEXITY BOUND
Let F be a class of functions that map X into [a, b]. For f € F, let us define
Pf=E[f(W)],
1 n
Pn = - Wz .
f= ; f(Wi)

We introduce the following result about the Rademacher complexity.

Proposition D.1 (From Theorem 2.1 in Bartlett et al. (2005)). Let F be a class of functions that map X into [a, b).
Assume that there is some r > 0 such that for every f € F, Var(f(W)) < r. Then, for every z > 0, with probability at
least 1 — exp(—=z), it holds that

. 2rx 1 1\=
sup (Pf_Pnf) < ér;fo{2(1+a)]E[9{nf} + \/7+(b—a) <3+a) n}

D.3 BRACKETING ENTROPY

We define the bracketing entropy. For a more detailed definition, see Definition 2.2 in|van de Geer]|(2000).

Definition D.1. Bracketing entropy. Given a class of functions F, the logarithm of the smallest number of balls in a
norm || - ||2,p of radius 6 > 0 needed to cover F is called the §-entropy with bracketing of F under the Ly(P) metric,
denoted by Hg (9, F, P).
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D.4 TALAGRAND’S CONCENTRATION INEQUALITY

We introduce Talagrand’s lemma.

Proposition D.2 (Talagrand’s Lemma). Let ¢: R — R be a Lipschitz continuous function with a Lipschitz constant
L > 0. Then, it holds that
Ru(poF) < LR, (F).

E BASIC INEQUALITIES

E.1 STRONG CONVEXITY

Lemma E.1 (L, distance bound from Lemma 4 inKato & Teshimal (2021)). If infye(—oo),00 9" (h) > O, then there
exists (4 > 0 such that for all h € H,

2
2
_ < Z _
I = holl3 < - (BRy () — BRy o))
holds.

From the strong convexity and Lemma|E.I] we have

Sl = holl3 < BRy(ha) — BR (ho).

Recall that we have defined an estimator 7 as follows:

h == argmin L, (h) + A\J(h),
het

where J (h) is some regularization term.

E.2 PRELIMINARY

Proposition E.2. The estimator 7 satisfies the following inequality:
BR,(h) + AJ(h) < BRy(h*) + AJ(h*),

where recall that

n

=3 (= o(h(Di, X0)) + 0g(A(Ds, X)H(Ds, Xa) = Dg(h(1, X2)) — Dg(h(0, X,))).

n
=1

fgﬁg(h) =

Let Z € Z be a random variable with a space Z, and {Z,}}_, be its realizations. For a function f: Z — R and X
following P, let us denote the sample mean as

B2 =5 S 1)

We also denote E[f(2)] — E[f(2)] = (E — E)f(2)

E.3 RISK BOUND

Recall that

BR,(h) = % Z ( — g(h(Dy, X)) 4+ 0g(h(D;, X;))h(Dy, X;) — 0g(h(1, X;)) — dg(h(0, Xi))).
Let us define

L(h, D, X) = —g(h(D, X)) 4+ 9g(h(D, X))h(D, X) — 9g(h(1, X)) — 9g(h(0, X)),

16
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and we can write - R
BR,(h) = E[L(h, D, X)]
Then, from Proposition[E.2] we have

E[L(h*, D, X)] — E[L(hn, D, X)] + AJ(h) — AJ(h*) > 0.

Throughout the proof, we use the following basic inequalities that hold for h.
Proposition E.3. The estimator 7 satisfies the following inequality:

M 2
5|

/Hn(DvX) _hU(DvX)‘

Lo (Po)

< (E~E) [L(hn, D, X) = L(ho, D, X)| + B[L(k", D, X) = L(ho, D, X)] + I (ro) = \J (7).
Proof of Proposition [E.2)is trivial. We prove Proposition [E.3|below.
Proof. From the strong convexity and Lemma[E.I| we have

guﬁn — ho||2 < BRy(hn) — BRy(ho) = E [L(ﬁn, D, X) — L(ho, D,X)} .

From Proposition[E.2] we have

% HE(D’X) B hO(D’X)’ 2LQ(P0)

<E {L(En,D, X) — L(ho, D, X)}

) {L(Tln, D, X) — L(ho, D, X)}
~E {L(ﬁn,D,X) - L(hO,D,X)}
+B [L(ﬁn,D,X) - L(hO,D,X)}

<E [L(TL,L,D, X) — Liho, D,X)}

&

{L(ﬁn,D,X) — L(hO,D,X)}

&=

+ [L(ﬁn,D,X) — L(hO,D,X)}

_B [L(En, D,X) — L(h*, D, X)] £ AI(R) — A (ho).

]
F PROOF OF THEOREM [4.1]
We show Theorem 4.1 by bounding
(E7E> [L(TlnaDaX)iL(h07D7X):|7 (1)

in Proposition [E.3] We can bound this term by using the empirical-process arguments.
Note that since hg € H, it holds that h* = hg, which implies that

F.1 PRELIMINARY

We introduce the following propositions from [van de Geer| (2000), Kanamori et al.|(2012) and Kato & Teshima) (2021).

Definition F.1 (Derived function class and bracketing entropy (from Definition 4 in [Kato & Teshimal(2021))). Given a
real-valued function class F, define Lo F := {{o f: f € F}. By extension, we define I : {oH — [1,00) by I({oh) =
I(h)and Lo Hpr :={loh:h € Hy}. Notethat, as a result, £ o H s coincides with{loh € LoH : I(Loh) < M}.

17
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Proposition F.1. Le { : R — R be a v-Lipschitz continuous function. Let Hg (8, F, || - || 1, (py)) denote the bracketing
entropy of F with respect to a distribution P. Then, for any distribution P, any v > 0, any M > 1, and any § > 0, we

have
s+ 1)(20) [ M\”
His (5,00 H, |- [ a(ry) < D207 3( ) <5> .

Moreover, there exists M > 0 such that for any M > 1 and any distribution P,

sup |[loh—Loh™|L,(p) < covM,
Lohe€loH

sup [€oh—"Loh™|e < covM, foralld > 0.
Loh€ELoH pp
l[€oh—Eoh* || L, (ry) <6

Proposition F.2 (Lemma 5.13 in|van de Geer| (2000), Proposition 1 in|[Kanamori et al. (2012)). Let F C L? (P) be
a function class and the map 1(f) be a complexity measure of f € F, where I is a non-negative function on F and
I(fo) < oo for a fixed fo € F. We now define Foy = {f € F : I(f) < M} satisfying F = ;> Fm. Suppose that
there exist co > 0 and 0 < v < 2 such that -

sup | f — foll < colM, sup  ||f = follo < coM, forall >0,
feFm fEFM
”f*fO”LQ(P)S(s
and that Hg (6, Far, P) = O ((M/0)7). Then, we have

o L = fo)d(P = Py
fer D(f)

= 0p(1), (n — 0),

where D(f) is defined by
I1f = foll =it I (s
D(f) = max L\/%D) nz/gzlv)'

Proposition F.3. Let g: K — R be twice continuously differentiable and strictly convex for the space K of hy, and
suppose that there exists M > O such that

lg"(t)| < M forallt € R,
Let (7': R — R be continuously differentiable and globally Lipschitz, that is, there exists Ly > 0 such that
ICH(s) = ¢ @) < Le|s —t| forall s, t € R.
Assume also that (~1(0) is finite, and define
ao:=|¢TH0)],  ar:= L,

so that
IC ()| < ag + arlu| forallu € R.

Let h be a bounded real-valued function on the domain of (D, X ), and write

[l = sup|h(d. )]

Let L be a linear functional acting on bounded functions, such that for some constant C, > 0,

IL(f) < CL(1+ | fllc) forall bounded f.
Define

L o f) = g(¢ o £(D, X)) +8g(¢" 0 f(D, X)) ¢ o (D, X)
—99(¢ o f(1,X)) — 89 (¢ 0 £(0,X)).

Then there exists a constant C' > 0 (depending only on g, (~* and C,) such that

Lo )l <+ f11%).

18
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F.2 UPPER BOUND USING THE EMPIRICAL-PROCESS ARGUMENTS

From Propositions we obtain the following result.
Proposition F.4. Under the conditions of Theorem[.1| for any 0 < v < 2, we have

d (E - 1@) {L(En, D, X) — L(ho, D, X)}
- B - 147/2 - 2
o = Bzt (1 || ) (1] )
=0, | max H , 5 H ,
2/ ()

N

asn — Q.

F.3 PROOF OF THEOREM [4.]

We prove Theorem @.T| following the arguments in [Kanamori et al (2012).

Proof. From Propositionand ho € HREHS "we have

< (Eflﬁ) [L(EH,D,X) *L(ho,DvX)] + Al foll3-

o~

2 ~
(D, X) = ho(D X)[ |+ MBI

From Proposition [F4] we have

o~

2 ~
(D, X) = ho(D, X)L+ Ml

Hﬁ — ho||1Lg(¥02) (1 + HJ?HH)HW2 (1 + HBHH)Q

— 2
= Op | max NG ) + AMlrolfa:
We consider the following three possibilities:
~ 2 ~
hin(D, X) — ho(D, X) + Al Fall3 = Op (), @
LQ(P())
~ 1—~/2 14+~/2
(D, X) — ho(D, X MFalZ =0 17— plizty (1+]17],) 3
n\4/, - ) =+ n = )
0 La(Py) H P NG
2
; i —o (0L
fin(D, X) = ho(D, X)| -  F Al nllze = Op | =7y | - @
The above inequalities are analyzed as follows:
Case (). We have
~ 2
(D, X) = h D,X‘ —0,(\),
[n(D.) = oD, )| =0,

A Fallfe = Op().
hn(D,X) = ho(D,X)| | = Op(A/2) and |7z = Op(1).

Therefore, we have ‘
Py
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Case (3). We have

1-~/2 ~ 1+v/2
A ) 1= it (14| 5] )
W(D.X) = ho(D, %) =0, z
La(Po) Vvn
n 1—7/2 n 14+/2
o | M P (1+]|%]1,)
17l = N
From the first inequality, we have
~ 1+v/2
~ (1 + ‘ In ]-')
n(D, X) = hO(D’X)‘ Py Z O nl/(2+7)
de{1,0}
By using this result, from the second inequality, we have
1en /2 1+v/2
. 1o = )20k ( )
>‘||fn||7-l =0 vn
~ 1—v/2 ~ 1+v/2
1+ ‘ In F ( )
= O nl/@+) Jn
~ 2
(1 + ‘ In ]—')
= O |~
This implies that
~ 2
. (1 + ‘ fn f)
1fll2e = Op | <7z | = op()-

Therefore, the following inequity is obtained.

_ 1 _ 1/2

An(DvX) _hO(DvX)‘

Case[dl We have

—~ 2
~ <1+‘f” J~'>
’n(D7X)_h(D X)‘Lz(PO) v |~ e |

~ 2
(1+‘fn ]—')
Mllfallze = Op | =5y —

As well as the argument in (3), we have ||7]|3; = 0,(1). Therefore, we have

_ 1 _ 1/2
P Op <n1/(2+’7)> = O0p(A79).

in(D, X) = ho(D, X)|
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G PROOF OF THEOREM [4.2]

Our proof procedure mainly follows those in |[Kato & Teshimal (2021) and |Zheng et al.| (2022). In particular, we are
inspired by the proof in Zheng et al.| (2022).

We prove Theorem 4.2] by proving the following lemma:

Lemma G.1. Suppose that Assumptionholds. For any n > Pdim(F¥NN), there exists a constant C' > 0 depending
on (u, o, M) such that for any v > 0, with probability at least 1 — exp(—~), it holds that

R im FNN
\n—hmgc<¢ﬂicr ”%WUWF—EM+VZ)

n
As shown in |Zheng et al.| (2022), we can bound Pdim(F"NN)log(n) by specifying neural networks and obtain
Theorem 4.2

G.1 PROOF OF LEMMA [G.T]

We prove Lemma[G.1] by bounding (I]) in Proposition

To bound @, we show several auxiliary results. Define

Bl (5 e #3030 - (00 X0 <,

i=1
g = {F - pe PO,
ki) = Eq RG]
ul == inf {u > 0: k¥(s) < s Vs >u}.

Here, we show the following two lemmas:

Lemma G.2 (Corresponding to (26) in|Zheng et al.|(2022)). Suppose that the conditions in Lemma hold. Then, for
any z > 0, with probability 1 — exp(—z) it holds that

E [L(ﬁn,D,X) - L(ho,D,X)}

=€ (f “(D,X) = fo(D, X) |3 + 1£°(D, X) - fo(D,X)IIQ\/i + l?fz) .

Lemma G.3 (Corresponding to (29) in|[Zheng et al| (2022). Suppose that the conditions in Lemma[G.1| hold. If there
exists ug > 0 such that

o~

1£(D, X) = f*(D, X)ll2 < uo,
then it holds that

(E _ E) [L(Hn, D, X) — L(ho, D, X)}
<

C (E(, [mnéf*’w} +u0\/j+ ]\iz) .

Additionally, we use the following three propositions directly from Zheng et al.[(2022).
Proposition G.4 (From (32) in|Zheng et al.| (2022))). Let u > 0 be a positive value such that

If = foll2<u
Sorall f € F. Then, for every z > 0, with probability at least 1 — 2 exp(—2z), it holds that

S () — folX0) < 20
i=1
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Proposition G.5 (Corresponding to (36) in Step 3 of [Zheng et al.| (2022)). Suppose that the conditions in Lemma|G.1|
hold. Then, there exists a universal constant C' > 0 such that

: FNN
ot SCM\/Pdlm(]: ) log(n)
n

Proposition G.6 (Upper bound of the Rademacher complexity). Suppose that the conditions in Lemma hold. If
n > Pdim(FFNN), ug > 1/n, and n > (2eM)?, we have

—F* g ; FNN
E, [%ngf , } SCTO\/Pdlm(}'n )logn'

Then, we prove Lemma as follows:

Proof of Lemma If there exists ug > 0 such that

~

1£(X) = f7(X)ll2 < uo,
then from (I)) and Lemmas [G.2]and [G.3] for every z > 0, there exists a constant C' > 0 independent n such that

’ La(Po)

. z  16Mz Pdim(FFNN) logn z Mz
n 3n n n n

This result implies that if y/Pdim(FFNN), then there exists ng such that for all n > ng, there exists u1 < ug such that

Uy > max{\/log(WA\/gM\/z/in,uT}.

2

~ ‘

hn(D,X) — ho(D, X)

2

hn(D,X)—ho(D7X) <U1.

~ ‘

L2(Po)

For any z > 0, define w as

Define a subspace of FFNN ag

STN(fo,u, = {f € FF"Nu || f — foll <.}

Define
€= |logy(2M /+/1log(n)/n)].
Using the definition of subspaces, we divide 7NN into the following ¢ 4 1 subspaces:
3gNN =STNN(f0 ),
—<FNN

Sl ::SFNN (f()vﬂ)\SFNN (f()vﬂ)v

5, =8N (o, 20\ ST fo, 2 m).
Since @, > uf, from the definition of u', we have
w2 < KY(T).

If there exists j < £ such that f € EJFNN, then from , for every z > 0, with probability at least 1 — 8 exp(—=z), there
exists a constant C' > 0 independent of n such that

~ 2
hu(D, X) = ho(D, X) |
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=¢ (2““ <\/ Pl el f) I = Rl + 15— flly [+ M) . ®
n n n n

Additionally, if
: FNN .
C <\/Pdlm(}— Jlog(n) \/;> < Loz, %
n n 8

M 1.5,
o (15" =l + 15" = pllsy 2 + 22 < o2 ®

Here, to obtain (El), we used T > max {\ /log(n)/n, 4v/3M /= /n, uf }, (El), , and .

From Proposition [G.3] it holds that

hold, then

~

hn(D7X)_hO(DaX)H2 §2J_1ﬂ (9)

: FNN
Wt < oM \/ Pdim(FFNN) log(n)
n
Therefore, we can choose w as

u:c<\/Pdim(FFNN)1og(n) +\/Tog()/n + 4vV3M /7/n>7

n

where C' > 0 is a constant independent of n. O

G.2 PROOF OF LEMMAI[G.7Z]
From Proposition[D.I] we have
E {L(ﬁn, D, X) — L(ho, D, X)}
< E[L(n, D, X) = L(ho, D, X)| + V3C| £*(X) - fo(X)||\/§+ 16?#.
This is a direct consequence of Proposition[D.1} Note that 2* and h are fixed, and it is enough to apply the standard
law of large numbers; that is, we do not have to consider the uniform law of large numbers. However, we can still apply

Proposition[D.1] which is a general than the standard law of large numbers, with ignoring the Rademacher complexity
part.

‘We have
E [L(ﬁn, D, X) — L(ho, D,X)}

<E [L(EnaD,X) - L(hO»D7X)]
z  16C9Mz z  16C3M~
VG - ol 2 + S 4 vacaly - gl 2 +
n 3n n 3n

C
<0 (15 -l + 1 - ol 2 + 22

G.3 PROOF OF LEMMAI[G.3|

Let g := (f — f*)?. From the definition of FNNs, we have
g < 4M?

Additionally, we assumed that || f — f*||2 < uo holds. Then, it holds that Var p, (g) < 4M?u2.
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Here, we note that the followings hold for all f (r):

L(h) = L(k*) £ C|f(d,2) = *(d,)

b
where C' > 0 is some constant

Then, from Proposition|D.1] for every z > 0, with probability at least 1 — exp(—2z), it holds that
<E - 1@) [L(Em D, X) — L(ho, D, X)}
<

c (]EU [mnﬁf*’“‘)} + ro\/ng %) .

H NEAREST NEIGHBOR MATCHING

In this section, we show that nearest neighbor (NN) matching for the ATE can be interpreted as a special case of our
direct bias-correction term estimation with the squared loss, that is, Riesz regression or LSIF. This result is shown in

(2025b)), a subsequent work of this study.

The key step is to express the ATE bias-correction term ho (D, X) in terms of density ratios with respect to the marginal
covariate distribution and then to approximate these density ratios via nearest neighbor cells, following the density-ratio

interpretation in (2023).

H.1 ATE BIAS-CORRECTION TERM AND DENSITY RATIOS
Let px denote the marginal density of X and px|p—, the conditional density of X given D = d. Let 7 == Py(D = 1)
and mo := Py(D = 0) = 1 — m;. By Bayes’ rule,

» () = px(@)Po(D=d| X =x) px (a)eo(2)?(1 — eg(z))'
Kp=d Py(D = d) ma ’

where 7y = Po(D = d) and eg(x) = Poy(D =1 1| X = ).

Define the density ratios with respect to the marginal distribution of X by

px () px(z)
r(r) = —————, ro(z) = —/————.
(@) px\Dzl(I) (@) PX\D:O(ﬂU)
From the expression above,
n@ =5 )=
! eo(w)’ 0 1—eo(z)
Therefore, the ATE bias-correction term
1D =1 1D =
no(p, x)= 122 HP =)

eo(X) N 1-— eo(X)

can be written in terms of r; and rq as

ELC.ON TN 1.9

US| o

ho(D,X) =1[D =1] (10)

Thus, estimating hg is equivalent to estimating the pair (r1,70), the density ratios between the marginal covariate
distribution and the treated and control covariate distributions.

H.2 SQUARED LOSS OBJECTIVE AND DECOMPOSITION INTO TWO LSIF PROBLEMS

Recall that when we choose the squared loss ¢5“(h) = (h — 1)?, the population Bregman divergence objective for A is

BR,ei.(h) = ]E[ —2(h(1,X) = h(0, X)) + h(D, X)2].

Consider the parameterization
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with 71, 7o defined above. Substituting this into BR 4st. (h) and using the law of total expectation, we obtain

T‘l(X) + To(X)

st ™0

BR,sw(h) = C — 2IE[ } + E[h(D, X)Q}, a1

where C'is a constant independent of (71, 7). The last term can be decomposed as

(X))’ o(X
w005 =nief (M50 | =1 ] (M62)" | =),
1
Rewriting (]EI) in terms of expectations with respect to px and px|p—q and dropping constants gives
BRsu(h) = —2Ex [r1(X)] + Ex|p=1 [r1(X)?] = 2Ex [ro(X)] + Ex|p=o [ro(X)?] . (12)

Hence minimizing BR gst. (k) over (r1,79) is equivalent to solving two independent LSIF-type problems

ry = arg'rmin {—2Ex[ri(X)] + IEX\D:1[7“1(X)2]} )

rg = argmin { —2Ex [ro(X)] + Ex|p—o[ro(X)?]},

To

and then plugging (r}, ) into (T0).
At the sample level, with G; and G defined as in the Introduction, the empirical LSIF objectives are

2 n
=—— g Xi) E 2 13
) nia n |Q | i€G i "
2 n
=—— E Xi) E . 14
v i ol |Q | i€Go ol Y

Minimizing J, and f() and then using yields an LSIF (Riesz regression) estimator of the ATE bias-correction term
ho.

H.3 NEAREST-NEIGHBOR PARTITION AND HISTOGRAM MODEL

To connect this LSIF formulation to nearest neighbor matching, we now choose a simple histogram-type model for
(r1,70) based on nearest neighbor cells. Let us consider the M-nearest neighbor partition induced by the sample

{ X,

For each treated unit i € G, let N ](\2) (i) C Go denote the set of M nearest control units to X;. Similarly, for each
control unit j € Gy, let N §/1[) (7) C G1 denote the set of M nearest treated units to X ;. We define the neighbor counts
. KWk =|{jeG: ke NP}

Thus K ](\}) (k) counts how often unit % is selected as a control neighbor of treated units, and K z(w) (k) counts how often

it is selected as a treated neighbor of control units. The total numbers of neighbor links are

K (k) = [{i € Gi: k € NP (i)}

ST K (k) = MG, ZK“” — MGy
=1

We now approximate each density ratio r4 by a histogram that is constant on the Voronoi cells induced by the sample:

=360y (@)

k=1

where {¢y, }7_, is the partition of X’ such that ¢, () = 1 if « lies in the cell associated with X}, and ¢y (z) = 0
otherwise. Approximating the integrals in (I3) and (T4) by assigning each observation X; to the nearest cell, the
empirical objectives become (up to constants)

T1(6M) ZK(X) o + |g|z ke Gal(01"), (15)
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Table 3: Results of additional simulation studies. CR denotes the coverage ratio of 95% confidence intervals; that is,
values close to 0.95 are better. DM denotes the direct method, which is independent of the direct bias-correction term
estimation methods; therefore, in theory, the results of the DM estimator should not differ across DBC (LS), DBC (KL),
and DBC (TL). Since we compute the DM estimator when constructing the AIPW estimator in each of DBC (LS), DBC
(KL), and DBC (TL), we also report the DM estimator results for reference.
True DBC (LS) DBC (KL) DBC (TL)

DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW

MSE | 0.00 1.10 0.01 | 0.30 0.59 0.11 | 0.30 0.41 0.08 | 0.31 0.36 0.09

CR 1.00 0.92 097 | 0.17 097 0.87 | 0.11 0.97 0.88 | 0.11 0.92 0.87

9(0 ZK(X) (;0) Z k c go (0)) (16)

k

where K ](é() (k) denotes the number of times X}, is selected as a nearest neighbor when we run the M-NN search over
the whole sample {Xi}?':lﬂ

Minimizing the quadratic objectives and lb with respect to each 9,(;1) yields the closed-form solutions

0" « K ()1k e G, 09" oc KOO (B)1[E € Go).
Therefore, up to a common normalization constant,
r(Xp) & K W)Lk € Gi), ro(Xx) o K7 (k) 1[k € Gol.

Substituting these expressions into (T0) gives
(X) k
By e, (17

for some sample-size dependent normalization constant c,,. Equation (17) coincides, up to normalization, with the
nearest-neighbor based bias-correction weights derived in (2023) for the ATE.

K
WNN(Dy, X) = (2D — 1)(1 +

H.4 NEAREST NEIGHBOR MATCHING AS RIESZ REGRESSION
Using the bias-correction term hNY in (17), the corresponding IPW-type ATE estimator becomes

NN _ 1 Z PNN(Dy, X)) Y,
n
k=1

which can be expanded to the familiar M -nearest neighbor matching form

Ml S (g X on) S (g E %)

i€G1 JENLD (@) i€ €N ()

that is, a two-sided nearest neighbor matching estimator for the ATE that matches treated units to control units and
control units to treated units. Therefore, nearest neighbor matching for the ATE is obtained by minimizing the squared-
loss Bregman divergence within a nearest-neighbor histogram model for the density ratios (71, 7o) and then plugging
the resulting estimator into the bias-correction term h(D, X).

In other words, nearest neighbor matching is a special case of Riesz regression (LSIF) with a particular choice of
feature dictionary based on nearest neighbor cells. This formally justifies the statement in the main text that nearest
neighbor matching can be interpreted as a direct bias-correction term estimator obtained from our squared-loss Bregman
divergence framework.

I ADDITIONAL SIMULATION STUDIES

In this section, we conduct additional simulation studies to more closely examine the finite sample behavior of our direct
bias-correction approach under different choices of Bregman divergence. We focus on the three representative losses

?For a detailed derivation of this approximation, see the analysis of histogram LSIF in (2023)).
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introduced in Section [} the squared loss corresponding to Riesz regression (denoted by DBC (LS)), the KL divergence
loss (DBC (KL)), and the tailored loss (DBC (TL)). We refer to our method collectively as the direct bias-correction
(DBC) approach.

Unlike the simulation design in Section 2] (Simulation studies), here we explicitly use cross fitting in the sense of
Assumption 5.1} This setting illustrates how our framework can be combined with modern high-capacity models
without requiring the Donsker assumption.

I.1 DESIGN AND IMPLEMENTATION

We consider the same basic ATE setting as in the previous simulations. The covariates are three dimensional, K = 3,
and we fix the sample size at n = 3000. In each Monte Carlo replication, we generate covariates X; € R?® from
a multivariate normal distribution A/(0, I3), and construct a nonlinear propensity score model with polynomial and
interaction terms, as in the main simulation study. Treatment assignments D; are then sampled from the resulting
Bernoulli distribution with success probability eq(X;). The outcome Y; is generated from a nonlinear regression model
that includes both squared terms and a nonlinear transformation, with the true ATE fixed at 79 = 5.0. The noise term is
standard normal. This design yields a moderately complex but smooth data generating process for both the propensity
score and the conditional outcome.

To evaluate the efficiency and coverage properties of the estimators, we construct an oracle benchmark that uses the true
nuisance functions. For each replication, we compute the infeasible DM, IPW, and AIPW estimators based on the true
propensity score and the true conditional expectations of Y (d), and we use their corresponding influence functions to
form oracle 95% confidence intervals. The performance of these oracle estimators is summarized in the “True” columns
of Table[3

For our proposed DBC estimators, we estimate the bias-correction term ho(D, X') using one hidden layer neural
networks. In all cases, we use fully connected networks with a single hidden layer of 100 nodes. For DBC (LS),
we employ the squared loss objective associated with Riesz regression. For DBC (KL) and DBC (TL), we use the
KL divergence loss and the tailored loss introduced in Section[2.6] respectively. The conditional outcome regression
o (d, X) for the DM and AIPW estimators is also modeled by a neural network with one hidden layer and 100 nodes.

In DBC (LS), we model hg directly using a neural network with one hidden layer consisting of 100 nodes. In DBC
(KL), DBC (TL), and MLE, we model hg by estimating the propensity score using a neural network with one hidden
layer consisting of 100 nodes.

To avoid relying on the Donsker condition, all nuisance functions (the bias-correction term and the outcome regression)
are estimated with two-fold cross fitting. Specifically, in each replication, we split the sample into two folds, estimate
the nuisance functions on one fold, evaluate the corresponding scores on the other fold, and then swap the roles of the
folds. The final estimators are obtained by aggregating the two cross-fitted folds.

For each loss (LS, KL, TL), we report three estimators:

¢ the direct method (DM), which depends only on the outcome regression;
* the IPW estimator, constructed using the estimated bias-correction term;

 the AIPW estimator, which combines both the estimated bias-correction term and the outcome regression.

Note that the DM estimator is theoretically independent of the specific loss used to estimate the bias-correction term.
In practice, we recompute the DM estimator within each DBC (LS), DBC (KL), and DBC (TL) run to construct the
AIPW estimator, and we report the resulting DM performance for reference. Small differences among the DM columns
therefore reflect only Monte Carlo variation.

We repeat the experiment 100 times. For each method and each estimator (DM, IPW, AIPW), we compute the
empirical mean squared error (MSE) of the ATE estimate and the empirical coverage ratio (CR) of the nominal 95%
confidence interval, defined as the fraction of replications in which the interval contains the true effect 7y. The results
are summarized in Table3]

I.2  RESULTS
Table B reports the MSE and coverage ratio for the oracle estimators (True) and for the three DBC variants. The oracle

AIPW estimator achieves a very small MSE (approximately 0.01) and a coverage ratio close to the nominal level (0.97),
as expected. The oracle IPW estimator exhibits a larger MSE (around 1.10) and slightly conservative coverage (0.92).
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Table 4: MSE and coverage ratio (CR) of ATE estimators in the semi-synthetic IHDP experiment. We report the mean
squared error (MSE) and the empirical coverage ratio (CR) of nominal 95% confidence intervals over 1000 replications
for the direct method (DM), inverse probability weighting (IPW), and augmented IPW (AIPW) estimators. Nuisance
functions are estimated either by a neural network with one hidden layer of size 100 or by an RKHS regression with 100
Gaussian basis functions. The columns correspond to different variants of the direct bias-correction (DBC) approach

based on least squares (LS), Kullback-Leibler (KL), truncated likelihood (TL), and maximum likelihood (MLE) criteria.

Neural network RKHS

DBC (LS) DBC (LS) DBC (TL) DBC (MLE) DBC (LS) DBC (LS) DBC (TL) DBC (MLE)
DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW

MSE | 152 6.82 031 | 1.57 9.42 044 | 1.55 284 032 | 1.58 3.00 043 | 1998 3.56 1997 | 3.50 1.91 458 | 259 1.78 445|248 122
CR 0.03 041 1.00 | 0.06  0.08 1.00 | 0.03 0.73 0.94 | 0.01 0.61 0.90 | 0.00 0.00 0.00 | 0.34 091 0.82 | 048 0.93 0.88 | 0.39 081

232
0.84

The oracle DM estimator is unbiased by construction, hence its MSE is essentially zero and its coverage ratio is close to
one.

For the feasible DBC estimators, the DM columns are nearly identical across DBC (LS), DBC (KL), and DBC (TL),

with MSE around 0.30 and poor coverage (CR between 0.11 and 0.17). This behavior reflects the well known fact that
the plug in DM estimator is not debiased and is not suitable for inference in this design, even when the outcome model
is reasonably flexible.

The IPW estimators based on our direct bias-correction term exhibit substantially reduced MSE relative to the oracle
IPW benchmark that uses the true propensity score. Sucha a “paradox” is reporeted and analyzed in existing studies,

such as [Hirano et al| (2003)) and [Henmi & Eguchi| (2004). Under DBC (LS), the IPW MSE is about 0.59, while DBC
(KL) and DBC (TL) further reduce it to approximately 0.41 and 0.36, respectively. The coverage ratios for IPW are

close to the nominal level for all three losses (around 0.97 for DBC (LS) and DBC (KL), and 0.92 for DBC (TL)).

These results indicate that direct estimation of the bias-correction term can improve both efficiency and coverage for
IPW, and that the KL and tailored losses provide modest gains over the squared loss in this setting.

The AIPW estimators exhibit the best overall performance. All three DBC variants achieve small MSEs, with values
around 0.11 for DBC (LS), 0.08 for DBC (KL), and 0.09 for DBC (TL), which are close to the oracle AIPW MSE of
0.01. The coverage ratios of the AIPW estimators are slightly below the nominal level (between 0.87 and 0.88) but still
reasonably close, especially given the moderate number of Monte Carlo replications. The differences among the three
losses are minor, with DBC (KL) and DBC (TL) showing a slight advantage in terms of MSE.

Overall, these additional experiments support our theoretical findings. First, they confirm that direct estimation of the
bias-correction term via Bregman divergence minimization yields ATE estimators that are close to the oracle benchmark
when combined with cross fitting. Second, they show that the choice of Bregman divergence (squared loss, KL loss, or
tailored loss) has only a modest impact on the performance of the AIPW estimator, while the KL and tailored losses can
provide small efficiency gains in some cases. Third, they illustrate that our framework can be implemented with flexible
neural network models and cross fitting, without relying on the Donsker condition.

J  EXPERIMENTS WITH SEMI-SYNTHETIC DATASETS

We next evaluate the proposed estimators on a semi-synthetic benchmark based on the Infant Health and Development
Program (IHDP) data, following [Chernozhukov et al.| (2022al). The THDP was a randomized trial that investigated the
effect of an early childhood intervention on subsequent developmental and health outcomes. Following the standard
setting “A” implemented in the npci package, we generate 1000 semi-synthetic datasets, each consisting of n = 747
observations with a binary treatment 7', an outcome Y, and p = 25 continuous and binary covariates X . The estimand
of interest is the average treatment effect (ATE) of the intervention on Y.

For each semi-synthetic dataset we compute three ATE estimators: the direct method (DM), the inverse probability
weighting (IPW) estimator, and the augmented IPW (AIPW) estimator. All estimators use our direct bias-correction
(DBC) approach for estimating the Riesz representer or density ratio. We consider several variants of DBC based
on different divergence criteria, including least squares (LS), Kullback—Leibler (KL), truncated likelihood (TL), and
maximum likelihood (MLE).

The nuisance functions are estimated either by a feedforward neural network or by a reproducing kernel Hilbert space
(RKHS) regression. The neural network has a single hidden layer with 100 units and is trained for 100 epochs. For
the RKHS learner we use 100 Gaussian basis functions; the bandwidth of the Gaussian kernel as well as the ridge
regularization parameter are chosen by cross validation.
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To assess estimation accuracy and uncertainty quantification, we report the mean squared error (MSE) of each ATE
estimator and the empirical coverage ratio (CR) of nominal 95% Wald-type confidence intervals across the 1000
replications. Here, CR is defined as the proportion of replications in which the confidence interval contains the true
ATE, so values close to 0.95 indicate well calibrated intervals. The results are summarized in Table [}

Overall, when neural networks are used for nuisance estimation, the AIPW estimator combined with our DBC
schemes achieves substantially smaller MSE than the corresponding DM and IPW estimators, while its CR is close
to one, indicating slightly conservative but reliable inference. The DM estimator exhibits noticeable bias and severe
undercoverage, and the IPW estimator can be unstable, especially for some DBC variants. When RKHS learners are
employed, the IPW estimator performs relatively well in terms of both MSE and CR, whereas the DM and AIPW
estimators are more sensitive to the choice of DBC method and can suffer from larger MSE or poor coverage. These
findings suggest that, in this IHDP benchmark, DBC-based AIPW with neural network nuisance learners provides the
most accurate and well calibrated ATE estimates.
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