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ABSTRACT

This study considers the estimation of the direct bias-correction term for estimating the average
treatment effect (ATE). Let {(Xi, Di, Yi)}ni=1 be the observations, where Xi ∈ RK denotes K-
dimensional covariates, Di ∈ {0, 1} denotes a binary treatment assignment indicator, and Yi ∈ R
denotes an outcome. In ATE estimation, h0(Di, Xi) := 1[Di=1]

e0(Xi)
− 1[Di=0]

1−e0(Xi)
is called the bias-

correction term, where e0(Xi) is the propensity score. The bias-correction term is also referred to
as the Riesz representer or clever covariates, depending on the literature, and plays an important
role in construction of efficient ATE estimators. In this study, we propose estimating h0 by directly
minimizing the Bregman divergence between its model and h0, which includes squared error and
Kullback–Leibler divergence as special cases. Our proposed method is inspired by direct density
ratio estimation methods and generalizes existing bias-correction term estimation methods, such as
covariate balancing weights, Riesz regression, and nearest neighbor matching. Importantly, under
specific choices of bias-correction term models and Bregman divergence, we can automatically
ensure the covariate balancing property. Thus, our study provides a practical modeling and estimation
approach through a generalization of existing methods.

1 INTRODUCTION

We consider the problem of estimating the average treatment effect (ATE) in causal inference (Imbens & Rubin, 2015).
Methods for estimating ATEs are typically designed to eliminate bias arising from treatment assignment and the
estimation of nuisance parameters, aiming for (asymptotic) unbiasedness and efficiency.

1.1 ATE ESTIMATORS AND BIAS CORRECTION

We begin by formulating the problem. There are two treatments, denoted by 1 and 0.1 For each treatment d ∈ {1, 0}, let
Y (d) ∈ R denote the potential outcome under treatment d. The treatment assignment indicator is denoted byD ∈ {1, 0},
and the observed outcome is given by Y = 1[D = 1]Y (1) + 1[D = 0]Y (0), meaning that we observe Y (d) only if the
unit is actually assigned to treatment d. Each unit is characterized by K-dimensional covariates X ∈ X ⊂ RK , where
X denotes the covariate space. For n units indexed by 1, 2, . . . , n, let D := {(Xi, Di, Yi)}ni=1 denote the observed data,
where each (Xi, Di, Yi) is an i.i.d. copy of (X,D, Y ) generated from an underlying distribution P0. Our goal is to
estimate the ATE, defined as

τ0 := E
[
Y (1)− Y (0)

]
,

where the expectation is taken over the distribution P0. Note that we can also apply our method for the ATE for the
treated group (ATT). For the details about ATT estimation, see Appendix C.

Let e0(X) = P0(D = 1 | X) denote the probability of assigning treatment 1 given covariates X , which is known
as the propensity score. Throughout this study, we impose the following conditions, commonly referred to as the
unconfoundedness and common support assumptions.

Assumption 1.1. It holds that (Y (1), Y (0)) |= D | X . There exists a constant C > 0 independent of n such that
C < e0(x) < 1− C for all x ∈ X .

When e0(x) is not constant, a distributional shift arises between the observed outcomes in the treatment and control
groups, denoted by G1 and G0, respectively, where Gd := {i ∈ {1, 2, . . . , n} : Di = d}. This shift induces bias in the

1In some cases, only treatment 1 is referred to as the treatment, while treatment 0 is referred to as the control. For simplicity, we
refer to them as treatment 1 and treatment 0 throughout this study.
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sample mean, 1
|Gd|

∑
i∈Gd

Yi =
1

|Gd|
∑

i∈Gd
Yi(d), which deviates from E [Y (d)] and thus prevents the sample mean

difference, 1
|G1|

∑
i∈G1

Yi − 1
|G0|

∑
i∈G0

Yi, from being an unbiased estimator of the ATE.

To address this issue, several debiased estimators have been proposed under standard regularity conditions. In
this section, we introduce two representative estimators, the inverse probability weighting (IPW) estimator and the
augmented IPW (AIPW) estimator, as follows:

IPW estimator. τ̃ IPW := 1
n

∑n
i=1

(
1[Di=1]Yi

e0(Xi)
− 1[Di=0]Yi

1−e0(Xi)

)
= 1

n

∑n
i=1

(
1[Di=1]
e0(Xi)

− 1[Di=0]
1−e0(Xi)

)
Yi.

AIPW estimator. τ̃AIPW := 1
n

∑n
i=1

((
1[Di=1]
e0(Xi)

− 1[Di=0]
1−e0(Xi)

)
(Yi − µ0(Di, Xi)) + µ0(1, Xi)− µ0(0, Xi)

)
, where

µ0(d,X) is the expected conditional outcome E [Y (d) | X] of treatment d given X . The AIPW estimator is
also known as the doubly robust (DR) estimator (Bang & Robins, 2005).

Bias-correction term. In both estimators, the term

h0(D,X) := h(D,X) :=
1[D = 1]

e0(X)
− 1[D = 0]

1− e0(X)

is crucial. This term, referred to as the bias-correction term, is central to ATE estimation (Schuler & van der Laan,
2024). A common approach is to estimate e0 using logistic regression and then plug the resulting estimate êLn into
h. Note that the bias-correction term is also referred to as the Riesz representer (Chernozhukov et al., 2021) or the
clever covariates (van der Laan, 2006). We use the term bias-correction term because the Riesz representer is closely
connected to the automatic debiased machine learning literature, and the clever covariates is closely connected to the
targeted maximum likelihood estimation (TMLE) literature.

For example, in a typical one-step bias correction, we first construct an ATE estimator as τ̂DM
n :=

1
n

∑n
i=1 (µ̂n(1, X)− µ̂n(0, X)), where µ̂n is an estimator of µ0. This estimator is known as the direct method (DM)

or naive plug-in estimator. To obtain an efficient estimator, we add the bias-correction term 1
n

∑n
i=1 h0(Di, Xi)(Yi −

µ̂n(Di, Xi)) to the first-stage DM estimator τ̂DM
n , yielding the AIPW estimator.

In this study, we propose a method to estimate the bias-correction term, also called the Riesz representer or the clever
covariates. For example, we can estimate the bias-correction term by estimating the propensity score e0 using the
maximum likelihood estimation. However, our interest is not in propensity score estimation but in bias-correction term
estimation. As the well-known Vapnik principle states, we should avoid such an intermediate problem and ideally aim
to estimate the target objective in a more direct manner (Vapnik, 1998). Following this principle, this study considers
estimating h0(D,X) by directly minimizing the estimation error for the true h0(D,X).

The technical challenge is that the target objective h0 is unknown. To address this issue, we employ techniques
developed in the direct density-ratio estimation (DRE) literature (Sugiyama et al., 2012). In direct DRE, the goal is to
minimize the empirical risk between the true density ratio and its model, even though the true density ratio is unknown.
It is known that empirical risk minimization is feasible even without knowledge of the true propensity score. Since
the inverse propensity score can be viewed as a density ratio, we can extend these existing methods to our setting. For
causal inference researchers who are unfamiliar with DRE, we review the DRE literature in Appendix A.

Our motivation is also closely aligned with studies on Riesz regression (Chernozhukov et al., 2021) and covariate
balancing weights (Imai & Ratkovic, 2013b; Deville & Särndal, 1992), which also aim to estimate the bias-correction
term in a direct manner. Studies in covariate balancing focus on the balancing property of propensity score estimator
and estimate them using the property. Chernozhukov et al. (2021) proposes Riesz regression which represents the
bias-correction term as the Riesz representer. Although the derivation process is different, we derive the objective
function that is the same as Chernozhukov et al. (2021) by using the DRE techniques. Further, we generalize our
objective by using the Bregman divergence as well as DRE in Sugiyama et al. (2011). From this generalization, we
further connect our approach to the covariate balancing by showing the equivalence between our objective and empirical
balancing through the duality arguments discussed in Zhao (2019) and Bruns-Smith et al. (2025).

1.2 OUR CONTRIBUTIONS

This study has the following four contributions: (i) a general framework for directly estimating the bias-correction
term (also called the Riesz representer or clever covariates) via Bregman divergence minimization; (ii) our proposed
framework includes Riesz regression in Chernozhukov et al. (2021) and the tailored loss in Zhao (2019) as special
cases; (iii) under our framework, we show that there are appropriate choices of bias-correction term models and
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Bregman divergences under which covariate balancing is automatically realized as the dual of the Bregman divergence
minimization problem (automatic covariate balancing); (iv) we provide a theoretical analysis of the estimator.

Our first contribution is the proposal of a framework for direct bias-correction term estimation via Bregman divergence
minimization. We estimate the bias-correction term by directly minimizing the estimation error of the true bias-
correction function h0, measured by the Bregman divergence, BR†

g

(
h0 | h

)
:= E

[
g
(
h0(D,X)

)
− g
(
h(D,X)

)
−

∂g
(
h(d,X)

)(
h0(D,X)− h(D,X)

)]
, where g is a differentiable and strictly convex function. By changing g, we can

measure the error using various metrics, such as the squared loss or KL divergence loss. Since the Bregman divergence
involves the unknown function h0, direct optimization is infeasible. To address this issue, we propose minimizing an
alternative objective function, defined as BRg

(
h
)
:= E

[
− g
(
h(D,X)

)
+ ∂g

(
h(D,X)

)
h(D,X)− ∂g

(
h(1, X)

)
−

∂g
(
h(0, X)

)]
. Minimizing the original Bregman divergence BR†

g

(
h
)

is equivalent to minimizing BRg

(
h
)
, which

does not depend on the unknown function. That is, we establish the equivalence: h∗ := argminh∈H BR†
g

(
h0 | h

)
=

argminh∈H BRg

(
h
)
. The resulting objective function can then be approximated using an empirical risk function.

Our second contribution is the unification of existing literature. Our proposed Bregman divergence minimization
objective includes Riesz regression in Chernozhukov et al. (2021) (when using the squared loss) and the tailored loss in
Zhao (2019) (when using the KL divergence loss). Furthermore, our framework also integrates covariate balancing
methods (Imai & Ratkovic, 2013a; Hainmueller, 2012; Zubizarreta, 2015; Chan et al., 2015; Wong & Chan, 2017). If we
use linear models to approximate the bias-correction term and train the model with the squared loss (Riesz regression),
the dual problem coincides with the optimization problem in stable balancing weights. If we model the bias-correction
term via the propensity score with logistic models and train the model with the KL divergence loss (tailored loss), the
dual problem becomes the same as the optimization problem in entropy balancing weights. Kato (2025a), a subsequent
work of this study, refers to this property as automatic covariate balancing. See Table 1 in Section 2 and Figure 1 in
Appendix.

Our third main contribution is the theoretical analysis of the estimator obtained via direct bias-correction term estimation.
Since we estimate r0 using empirical risk minimization, we establish bounds on the estimation error using empirical
process theory. Furthermore, we present examples of ATE estimators that incorporate the bias-correction term estimated
using our framework and conduct simulation studies. Using standard ATE estimation techniques, we demonstrate that
our method yields a

√
n-consistent ATE estimator.

As a side product of our contributions, we find that we can import various existing results from the DRE literature.
Since Riesz regression is essentially the same as LSIF, various results about convergence rate analysis and optimization
methods have already been established. For example, Kanamori et al. (2012) shows the convergence rate when using
a reproducing kernel hilbert space (RKHS) for the density ratio, or equivalently the bias-correction term. Kato &
Teshima (2021) shows the rate when using neural networks, which has been further refined in Zheng et al. (2022).
Rhodes et al. (2020) and Kato & Teshima (2021) point out the overfitting problem characteristic of DRE estimation and
propose techniques to avoid the problem. Lin et al. (2023) finds that nearest neighbor matching can be interpreted as
density ratio estimation, and it can also be interpreted as a special case of LSIF or Riesz regression (See Appendix H).
These findings not only help deepen our understanding of Riesz regression, but also prevent unnecessary reinvention.
For example, the covariate adaption method proposed in Chernozhukov et al. (2025) uses Riesz regression, but it is
essentially the same as covariate adaption with a density ratio estimated via LSIF (Kanamori et al., 2009), except for
the regression adjustment. While Chernozhukov et al. (2022a) proposes neural networks and random forests for Riesz
regression, the techniques for estimating the density ratio have also been proposed in the DRE literature (Kanamori
et al., 2012; Abe & Sugiyama, 2019; Rhodes et al., 2020; Kato & Teshima, 2021).

2 BIAS-CORRECTION TERM ESTIMATION VIA BREGMAN DIVERGENCE MINIMIZATION

In this study, we consider estimating h0 by minimizing the empirical risk associated with the Bregman divergence
between h0 and its estimator h : {1, 0} × X → R.

2.1 POPULATION BREGMAN DIVERGENCE MINIMIZATION

Let g : R → R be a differentiable and strictly convex function. Given d ∈ {1, 0}, we define the Bregman divergence
between h0 and h as br†g

(
h0(d, x) | h(d, x)

)
:= g

(
h0(d, x)

)
− g
(
h(d, x)

)
− ∂g

(
h(d, x)

)(
h0(d, x)− h(d, x)

)
, where

∂g denotes the derivative of g. Then, we define the average Bregman divergence as BR†
g

(
h0 | h

)
:= E

[
g
(
h0(D,X)

)
−

3
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g
(
h(D,X)

)
− ∂g

(
h(d,X)

)(
h0(D,X)− h(D,X)

)]
. Then, we estimate h0 by h∗ = argminh∈H BR†

g

(
h0 | h

)
. By

dropping the term that is irrelevant to learning, we have

h∗ = argmin
h∈H

BRg

(
h
)
,

where BRg

(
h
)
:= E

[
− g
(
h(D,X)

)
+ ∂g

(
h(D,X)

)
h(D,X)− ∂g

(
h(1, X)

)
+ ∂g

(
h(0, X)

)]
.

This can be shown as follows:

h∗ = argmin
h∈H

∑
d∈{1,0}

E
[
1[D = d]

(
g(h0(d,X))− g(h(d,X))− ∂g(h(d,X))

(
h0(d,X)− h(d,X)

))]
= argmin

r∈H

∑
d∈{1,0}

E
[
1[D = d]

(
−g(h(d,X))− ∂g(h(d, x))

(
h0(d,X)− h(d,X)

)) ]
= argmin

r∈H

∑
d∈{1,0}

(
E
[
1[D = d] (−g(h(d,X)) + ∂g(h(d,X))h(d,X))

]
− E

[
1[D = d]∂g(h(d, x))h0(d,X)

])
= argmin

r∈H

{
E
[
(−g(h(D,X)) + ∂g(h(D,X))h(d,X))

]
− E

[
∂g(h(1, X))

]
+ E

[
∂g(h(0, X))

]}
.

Here, we dropped terms irrelevant to the optimization and used E[1[D = 1]h0(1, X) | X] = E[e0(X)h0(1, X) | X] =
1 and E[1[D = 0]h0(0, X) | X] = −1.

Thus, surprisingly, we demonstrate that the least squares estimate for the unknown true bias-correction term h0 can be
defined by an objective function that does not explicitly include h0 itself. As discussed in the following subsection, this
objective function can be easily approximated using observations.

2.2 EMPIRICAL BREGMAN DIVERGENCE MINIMIZATION

Then, we estimate the bias-correction term h0 by minimizing an empirical Bregman divergence as

ĥn := argmin
h∈H

B̂Rg

(
h
)
+ λJ(h),

where J(h) is some regularization function and

B̂Rg(h) :=
1

n

n∑
i=1

(
− g(h(Di, Xi)) + ∂g(h(Di, Xi))h(Di, Xi)− ∂g(h(1, Xi) + ∂g(h(0, Xi))

)
.

2.3 LOSSES FOR THE BIAS-CORRECTION TERM ESTIMATION

By changing g, we can obtain various loss functions for estimating the bias-correction term, as shown in the subsequent
subsections. In particular, if we use the squared loss in the Bregman divergence, we obtain Riesz regression in
Chernozhukov et al. (2021), which is originally called Least-Squares Importance Fitting (LSIF) in the DRE literature
Kanamori et al. (2009). Note that kernel mean matching by Gretton et al. (2009) is also the same as, or a variant of,
LSIF. If we use the KL divergence, we obtain the tailored loss in Zhao (2019), which is originally called KLIEP in the
DRE literature Sugiyama et al. (2008). Furthermore, as we discuss in Section 3, if we use linear models for h0 and
train them with the squared loss, the covariate balancing property is automatically obtained, as shown in Bruns-Smith
et al. (2025). If we model h0 using the propensity score e0 approximated via logistic models and train it with the
tailored loss, the covariate balancing property is automatically obtained, as shown in Zhao (2019). We demonstrate
the correspondence of the existing methods in Table 1. Also see Figure 1 in Appendix for the relationship among
bias-correction term estimation via Bregman divergence minimization, density ratio estimation, and covariate balancing,
summarized in Kato (2025a) and Kato (2025c).

2.4 SQUARED LOSS

Our least squares method for direct bias-correction term estimation can be obtained by using a squared loss gSL(h) =
(h− 1)2. By substituting this function into the Bregman divergence, we formulate the estimation problem as h∗ :=
argminh∈H BRgSL

(
h
)
, where

BRgSL

(
h
)
= E

[
− 2
(
h(1, X)− h(0, X)

)
+ h(D,X)2

]
.
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Table 1: Correspondence among DRE methods and bias-correction term estimation methods (BCE).
DRE method BCE method g(t)
LSIF (Kanamori et al., 2009) Riesz regression (Chernozhukov et al., 2021)

(t− 1)2/2Kernel Mean Matching (Gretton et al., 2009) Stable balancing weights (Zubizarreta, 2015)
UKL (Nguyen et al., 2010) Tailored loss (Zhao, 2019)

t log(t)− tKLIEP (Sugiyama et al., 2008) Entropy balancing weights (Hainmueller, 2012)
Binary KL divergence t log(t)− (1 + t) log(1 + t)

PULogLoss (Kato et al., 2019) C log (1− t)
+Ct (log (t)− log (1− t)) for 0 < t < 1

Then, we estimate the bias-correction term as ĥn := argminh∈H B̂RgSL

(
h
)
+λJ(h), where B̂RgSL(h) = 1

n

∑n
i=1

(
−

2
(
h(1, Xi) − h(0, Xi)

)
+ h(Di, Xi)

2
)
. This objective function is the same as the one used in Chernozhukov et al.

(2021). This type of estimation method is referred to as LSIF in density-ratio estimation (Kanamori et al., 2009).

2.5 KL DIVERGENCE LOSS

Consider gKL(h) = |h| log |h| − |h|, which is a convex function. By substituting this function into the Bregman
divergence, we formulate the estimation problem as h∗ := argminh∈H BRgKL

(
h
)
, where

BRgKL

(
h
)
:= E

[
|h(Di, Xi)| − log(|h(1, X)|)− log(|h(0, X)|)

]
.

Then, we estimate the bias-correction term as ĥn := argminh∈H B̂RgKL

(
h
)
+ λJ(h), where B̂RgKL(h) =

1
n

∑n
i=1

(
|h(Di, Xi)| − log

(
|h(1, Xi)|

)
− log

(
|h(0, Xi)|

))
. This estimation method corresponds to unnormalized

Kullback–Leibler (UKL) minimization in DRE (Nguyen et al., 2010), which generalizes the KL importance estimation
procedure (KLIEP). Also see Appendix B.

2.6 TAILORED LOSS (A VARIANT OF THE KL DIVERGENCE LOSS)

Next, as a variant of the KL divergence loss, we propose the tailored loss. Let us redefine a model H as a set of functions
h(1, ·) : X → (1,∞) and h(0, ·) : X → (−1,−∞); that is, we restrict the space of h. This restriction is justified
from the form of h0 and the common support assumption. Let us consider gTL(h) = (|h| − 1) log (|h| − 1)− |h|. By
substituting this function, we obtain

BRgTL

(
h
)
:= E

[
log (|h(D,X)| − 1) + |h(D,X)| − log (|h(1, X)| − 1)− log (|h(0, X)| − 1)

]
.

Note that it holds that BRgTL

(
h
)
:= E

[
− 1[D = 0] log (|h(1, X)| − 1) − 1[D = 1] log (|h(0, X)| − 1) + 1[D =

1]h(1, X) − 1[D = 0]h(0, X)
]
. Then, we estimate the bias-correction term as ĥn := argminh∈H B̂RgTL

(
h
)
,

where the empirical Bregman divergence becomes B̂RgTL(h) = 1
n

∑n
i=1

(
1[Di = 0] log

(
|h(1, Xi)| − 1

)
+ 1[Di =

1] log
(
|h(0, Xi)| − 1

)
+ 1[Di = 1]|h(1, Xi)| − 1[Di = 0]|h(0, Xi)|

)
.

3 AUTOMATIC COVARIATE BALANCING

Under specific choices of Riesz regression models and Bregman divergence, we can automatically enforce the covariate
balancing property. The key tool is the duality relationship between the Bregman divergence minimization problem and
the covariate balancing optimization problem. This result is shown in Kato (2025a), and we introduce the result for
reference.

3.1 LINEAR MODELS AND SQUARED LOSS

Consider a linear model
hβ(D,X) = Φ(D,X)⊤β,

where Φ: {1, 0} × X → Rp is a basis function. For this model, using the squared loss (Riesz regression) automatically
achieves covariate balancing, as discussed in Bruns-Smith et al. (2025).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Specifically, under linear models, by duality, this MSE minimization problem is equivalent to solving

min
w∈Rn

∥w∥22 s.t.
n∑

i=1

wiΦ(Di, Xi)−

(
n∑

i=1

(
Φ(1, Xi)− Φ(0, Xi)

))
= 0p,

where 0p is the p-dimensional zero vector. This optimization problem matches that used to obtain stable weights
(Zubizarreta, 2015).

It enforces the covariate balancing condition
∑n

i=1 ŵiΦ(Di, Xi) −
(∑n

i=1

(
Φ(1, Xi)− Φ(0, Xi)

))
= 0p, where

ŵi = Φ(Di, Xi)
⊤β̂.

Another advantage of using linear models is that we can write the entire ATE estimation with a single linear model, as
shown by Bruns-Smith et al. (2025).

3.2 LOGISTIC MODELS AND TAILORED LOSS

We can model the Riesz representer by modeling the propensity score as

hβ(D,X) = 1[D = 1]rβ(1, X)− 1[D = 0]rβ(0, X),

where rβ(1, X) = 1
eβ(X) , rβ(0, X) = 1

1−eβ(X) , eβ(X) := 1

1+exp
(
−β⊤Φ(X)

) , and Φ: X → Rp is a basis function.

Note that we do not include D, unlike the basis function used in linear models. For this model, if we use the KL-
divergence–flavored convex function defined in Section 2.6, which corresponds to the tailored loss in Zhao (2019), we
automatically achieve covariate balancing.

Define β̂ := argminβ
1
n

∑n
i=1

∑
d∈{1,0}

(
1[Di = d]

(
− log

(
1

rβ(d,Xi)−1

)
+ rβ(d,Xi)

))
, and denote rβ̂ by r̂. Un-

der logistic models, by duality, the KL divergence-flavored loss is equivalent to solving

min
w∈(1,∞)n

n∑
i=1

(wi − 1) log(wi − 1) s.t.

(
n∑

i=1

(
1[Di = 1]wiΦ(Xi)− 1[Di = 0]wiΦ(Xi)

))
= 0p.

This optimization problem matches that used in entropy balancing (Hainmueller, 2012). Note that this objective function
is derived from B̂RgTL(h) when we use the logistic model specified in this section.

As a result, we obtain
∑n

i=1

(
1[Di = 1]ŵiΦ(Xi)− 1[Di = 0]ŵiΦ(Xi)

)
= 0p, where ŵi = r̂(Xi).

This model has the advantage that we can use a basis function Φ(X) independent of D. Moreover, it naturally achieves
covariate balance in the sense that the covariate distributions match between the treated and control groups. Additionally,
it allows us to automatically impose nonnegativity on h(1, X) and −h(0, X), which may be violated in linear models.
Note that h0(1, X) = 1

e(X) and h0(1, X) = 1
1−e(X) .

3.3 COMPARISON

We first discuss the advantages of using logistic models over linear models. One benefit of using logistic models
is that we can simplify the basis function by making it independent of D. Furthermore, we can express covariate
balancing in a clearer form as

∑n
i=1

(
1[Di = 1]ŵiΦ(Xi)− 1[Di = 0]ŵiΦ(Xi)

)
= 0p, while under linear models,∑n

i=1 ŵiΦ(Di, Xi) −
(∑n

i=1

(
Φ(1, Xi)− Φ(0, Xi)

))
= 0p is attained, but it is somewhat harder to interpret.

Moreover, using logistic models incorporates more information about the form of the bias-correction term, which
includes the inverse propensity function. Logistic models also naturally impose restrictions such that h(1, X) ∈ (1,∞)
and h(0, X) ∈ (−∞,−1) under the common support assumption.

In contrast, if we use linear models, we can express the entire ATE estimator with a single linear model, as shown
in Bruns-Smith et al. (2025). Furthermore, we can obtain the estimator of the bias-correction term as a closed-form
solution. In addition, as discussed in Kato (2025b), a subsequent work of this study. nearest neighbor matching is also
an instance of linear models trained via Riesz regression (squared loss). We introduce the result in Appendix H for
reference.

Ultimately, there is no clear dominance between the use of linear and logistic models. Moreover, we can also use
more complex models, such as random forests and neural networks. The choice of model should be made based on the
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data and application, and once the model is selected, we can determine appropriate specifications that ensure covariate
balancing automatically.

4 ESTIMATION ERROR ANALYSIS

This section provides an estimation error analysis for h0 estimated by the direct bias-correction term estimation method.
We can use various models for H, including RKHS and neural networks.

4.1 MODEL

We define a model of the bias-correction term h0 by h(D,X) = ζ−1 ◦ f(D,X) = ζ−1(f(D,X)), where ζ is a
continuously differentiable and globally Lipschitz link function, and f is some basic model. For example, if we use
linear model for the bias-correction term h0, we can write h(D,X) = Φ(D,X)⊤β, where ζ is the identity function,
f(D,X) = Φ(D,X)⊤β, Φ is some basis function and β is the corresponding parameter. If we use logistic model for
the bias-correction term h0, we can use logistic link for ζ, and f(D,X) = Φ(X)⊤β.

4.2 RKHS

First, we investigate the case with RKHS regression. Let FRKHS be a class of RKHS functions, and define f̂RKHS
n :=

argminf∈FRKHS L̂n(ζ
−1 ◦ f) + λ∥f∥2F , where ∥ · ∥2F is the RKHS norm. Then, we define an estimator as hRKHS :=

ζ−1 ◦ f̂RKHS
n We analyze the estimation error by employing the results in Kanamori et al. (2012), which study RKHS-

based LSIF in DRE. We define the following localized class of RKHS functions as a technical device: FRKHS
M :=

{
f ∈

FRKHS : I(f) ≤M
}

for some norm I(f) of f . We also define HRKHS :=
{
ζ−1 ◦ f : f ∈ FRKHS

}
. We then make the

following assumption using this localized class.
Assumption 4.1. There exist constants 0 < γ < 2, 0 ≤ β ≤ 1, c0 > 0, and A > 0 such that for all M ≥ 1, it
holds that HB(δ,FRKHS

M , P0) ≤ A
(
M
δ

)γ
, where HB(δ,FRKHS

M , P0) is the bracketing entropy with radius δ > 0 for the
function class FRKHS

M and the distribution P0.

For the details of the definition of the bracketing entropy, see Appendix F and Definition 2.2 in van de Geer (2000).

Under these preparations, we establish an estimation error bound.
Theorem 4.1 (L2-norm estimation error bound). Suppose that g is µ-strongly convex and there exist constant C > 0
such that |g′′(t)| ≤ C ∀t ∈ R. Assume also that ζ−1(0) is finite. Suppose that Assumptions 1.1 and 4.1 hold. Set the
regularization parameter λ = λn so that limn→∞ λn = 0 and λ−1

n = O(n1−δ) (n → ∞). If h0 ∈ HRKHS, then we

have
∥∥∥ĥRKHS

n (D,X)− h0(D,X)
∥∥∥2
L2(P0)

= OP0

(
λ1/2

)
.

The proof is provided in Appendix F, following the approach of Kanamori et al. (2012). The parameter γ is determined
by the function class to which f0 belongs.

4.3 NEURAL NETWORKS

Second, we provide an estimation error analysis when we use neural networks for H. Our analysis is mostly based on
Kato & Teshima (2021) and Zheng et al. (2022). We define Feedforward neural networks (FNNs) as follows:
Definition 4.1 (FNNs. From Zheng et al. (2022)). Let D, W , U , and S ∈ (0,∞) be parameters that can depend on n.
Let FFNN := FFNN

M,D,W,U,S be a class of ReLU-activated FNNs with parameter θ, depth D, width W , size S, number
of neurons U , satisfies the following conditions: (i) the number of hidden layers is D; (ii) the maximum width of the
hidden layers is W; (iii) the number of neurons in eθ is U; (iv) the total number of parameters in eθ is S.

For the model FFNN, we define f̂FNN
n := argminf∈FFNN L̂n(ζ

−1 ◦ f). Then, we define an estimator as ĥFNN
n :=

ζ−1 ◦ f̂FNN
n .

For the estimator, we can prove an estimation error bound. Let us make the following assumption.
Assumption 4.2. There exists a constant 0 < M <∞ such that ∥f0∥∞ < M , and ∥f∥∞ ≤M for any f ∈ FFNN.

Let Pdim(FFNN) be the pseudo-dimension of FFNN. For the definition, see Anthony & Bartlett (1999) and Definition 3
in Zheng et al. (2022). Then, we prove the following estimation error bound:
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Theorem 4.2 (Estimation error bound for neural networks). Suppose that g is µ-strongly convex and there ex-
ist constant C > 0 such that |g′′(t)| ≤ M ∀t ∈ R. Assume also that ζ−1(0) is finite. Suppose that As-
sumption 4.2 holds. For f0 such that h0 = ζ−1 ◦ f0, also assume f0 ∈ Σ(β,M, [0, 1]d) with β = k + a,
where k ∈ N+ and a ∈ (0, 1], and FFNN has width W and depth D such that W = 38

(
⌊β⌋ + 1

)2
d⌊β⌋+1

and D = 21
(
⌊β⌋ + 1

)2⌈n d
2(d+2β) log2

(
8n

d
2(d+2β)

)
⌉. Then, for M ≥ 1 and n ≤ Pdim(FFNN), it holds that∥∥∥ĥFNN

n (D,X)− h0(D,X)
∥∥∥2
L2(P0)

= C0

(
⌊β⌋+ 1

)9
d2⌊β⌋+(β∧3)n−

2β
d+2β log3 n, where C0 > 0 is a constant indepen-

dent of n.

The proof is provided in Appendix G, following the approach of Zheng et al. (2022). This result directly implies the
minimax optimality of the proposed method when f0 belongs to a Hölder class.

5 EXAMPLE ABOUT THE AIPW ESTIMATOR

This section introduces the AIPW estimator with nuisance parameters estimated using our proposed direct bias-
correction term estimation. We prove that under certain conditions, the proposed estimator is asymptotically normal.
Note that this result is well known in the literature except for the use of nuisance parameters estimated via our direct
bias-correction term estimation. The purpose of this section is not to provide novel methodological or theoretical results
but to present an application of our proposed method.

We analyze the AIPW estimator with an estimated propensity score. Recall that the AIPW estimator is defined as
τ̃AIPW
n = 1

n

∑n
i=1

(
ĥn(Di, Xi) (Yi − µ̂n(Di, Xi)) + µ̂n(1, Xi)− µ̂n(0, Xi)

)
, which is also called the DR estimator.

We first make the following assumption.

Assumption 5.1 (Donsker condition or cross fitting). Either of the followings holds: (i) the hypothesis classes H and
M belong to the Donsker class, or (ii) µ̂n and ĥn are estimated via cross fitting.

For example, the Donsker condition holds when the bracketing entropy of H is finite. In contrast, it is violated in
high-dimensional regression or series regression settings where the model complexity diverges as n→ ∞. For neural
networks, the assumption holds if both the number of layers and the width are finite. However, if these quantities grow
with the sample size, the assumption is no longer valid.

Even if the Donsker condition does not hold, we can still establish asymptotic normality by employing sample
splitting (Klaassen, 1987). There are various ways to implement sample splitting, and one of the most well-known
is cross-fitting, used in double machine learning (DML, Chernozhukov et al., 2018). In DML, the dataset is split
into several folds, and the nuisance parameters are estimated using only a subset of the folds. This ensures that in
ĥn(Di, Xi) (Yi − µ̂n(Di, Xi)) + µ̂n(1, Xi)− µ̂n(0, Xi), the observations (Xi, Di, Yi) are not used to construct µ̂n

and r̂n. For more details, see Chernozhukov et al. (2018).

Assumption 5.2 (Convergence rate).
∥∥ĥ−h0∥∥2 = op(1),

∥∥µ̂−µ0

∥∥
2
= op(1), and

∥∥ĥ−h0∥∥2∥∥µ̂−µ0

∥∥
2
= op(1/

√
n).

Under these assumptions, we show the asymptotic normality of τ̃AIPW
n . We omit the proof. For details, see Schuler &

van der Laan (2024), for example.

Theorem 5.1 (Asymptotic normality). Suppose that Assumptions 1.1, and 5.1–5.2 hold. Then, the AIPW estimator
converges in distribution to a normal distribution as

√
n
(
τ̃AIPW
n − τ0

)
d−→ N (0, V ∗), where V ∗ is the efficiency bound

defined as V ∗ := E
[
σ2(1,X)
e0(X) + σ2(0,X)

1−e0(X) +
(
τ0(X)− τ0

)2]
and τ0(X) := E[Y (1)− Y (0) | X].

Here, V ∗ matches the efficiency bound given as the variance of the efficient influence function (van der Vaart, 1998).
Thus, this estimator is efficient.

5.1 COMPARISON WITH THE STANDARD DRE APPROACHES

If we follow the standard DRE approach, we may formulate the problem as the direct estimation of r0(1, X). For
example, when using LSIF, the risk is given by E

[
− 2r(1, X)

]
+E

[
1[D = 1]r(1, X)2

]
, which corresponds to a part of

our risk: E
[
− 2r(1, X)− 2r(0, X) + 1[D = 1]r(1, X)2 + 1[D = 0]r(0, X)2

]
. Thus, our proposed method is closely

8
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Table 2: Experimental results. We report the empirical MSE and Bias of each method.
Data Dimension DM DBC (LS) DBC (KL) MLE CBPS RieszNet DM

Three-layer perceptron Dragonnet Linear model
IPW DR IPW DR IPW DR IPW DR IPW DM DR

Model 1

K = 3 MSE 0.006 0.392 0.005 0.374 0.005 0.330 0.004 1.429 0.006 0.017 0.021 0.040 2.781
K = 3 Bias -0.037 -0.299 -0.024 -0.316 -0.023 -0.257 -0.022 -0.747 -0.037 -0.027 -0.025 -0.053 -0.197

K = 3 MSE 0.521 1.956 0.481 2.779 0.478 6.510 0.507 3.570 0.515 0.464 0.510 0.379 7.511
K = 10 Bias 0.094 -0.930 0.086 -0.822 0.088 -0.268 0.091 -1.422 0.089 -0.093 -0.106 -0.017 0.101

Model 2

K = 3 MSE 0.048 0.343 0.033 0.819 0.037 2.838 0.045 1.848 0.044 0.030 0.034 0.051 2.866
K = 3 Bias -0.009 -0.275 -0.011 -0.382 -0.010 -0.403 -0.011 -0.781 -0.012 -0.022 -0.020 -0.057 -0.214

K = 3 MSE 0.517 2.006 0.474 2.980 0.477 6.517 0.507 3.816 0.512 0.407 0.446 0.424 7.482
K = 10 Bias 0.085 -0.944 0.082 -0.823 0.085 -0.269 0.089 -1.410 0.084 -0.087 -0.096 -0.012 0.093

connected to LSIF. However, the standard DRE approach does not address whether it is suitable for bias-correction term
estimation. In fact, we can estimate r0 by minimizing the LSIF risk, but our proposed method adopts a different risk:
the sum of E

[
− 2r(1, X)

]
+ E

[
1[D = 1]r(1, X)2

]
and E

[
− 2r(0, X)

]
+ E

[
1[D = 0]r(0, X)2

]
, which is directly

related to the bias-correction term.

6 SIMULATION STUDIES

We assess the performance of our method through simulation studies, evaluating ATE estimation error. We denote
our direct bias-correction term estimation methods as DBC (LS) when using the squared loss, and DBC (TL) when
using the tailored loss. We compare our approach with ATE estimators using propensity score estimated by maximum
likelihood estimation (MLE), CBPS (Imai & Ratkovic, 2013a), and RieszNet (Chernozhukov et al., 2022a). Because our
DBC (LS) is equivalent to Resz regression, we include RieszNet primarily as a numerical check of equivalence, noting
architectural differences. In this section, for simplicity, we do not apply cross-fitting. We also conduct experiments in
Appendices I and J using synthetic and semi-synthetic data, respectively, in which we apply cross-fitting.

We consider two different dimensions forX , settingK = 3 andK = 10, and two different outcome models. This results
in a total of four experimental settings. In all cases, the true ATE is fixed at τ0 = 5.0. To generate synthetic data, we first
sample covariates Xi from a multivariate normal distribution N (0, IK), where IK denotes the K ×K identity matrix.
The propensity score is then defined as e0(Xi) =

1

1+exp
(
−h(Xi)

) , where h(Xi) =
∑3

j=1 αjXi,j +
∑3

j=1 βjX
2
i,j +

γ1Xi,1Xi,2+γ2Xi,2Xi,3+γ3Xi,1Xi,3. The coefficients αj , βj , and γj are independently drawn from N (0, 0.5). Given
these propensity scores, the treatment assignment D is sampled accordingly. The outcome is then generated under two
models, referred to as Model 1 and Model 2. In Model 1, we specify Yi =

(
X⊤

i β
)2
+1.1+τ0Di+εi, where εi ∼ N (0, 1)

and τ0 = 5.0. In Model 2, the outcome is generated as Yi = X⊤
i β +

(
X⊤

i β
)2

+ 3 sin(Xi,1) + 1.1 + τ0Di + εi.

We model h0 by modeling e0. To model e0, we use a three-layer neural network with an Exponential Linear Unit (ELU)
activation function for each hidden layer (100 nodes per layer). The final output layer applies a sigmoid function to
ensure that the estimated propensity scores remain in (0, 1). We use this model for our method, logistic regression, and
CBPS. For RieszNet, we adopt the DragonNet architecture proposed in Shi et al. (2019), following Chernozhukov et al.
(2022b). For each method, including ours, we compute both the IPW and AIPW estimators using the estimated scores.
Additionally, we include the direct method (DM) estimator with neural networks for comparison. In each case, the
expected conditional outcomes are estimated using a three-layer neural network (100 nodes per hidden layer, with ELU
activation). As a baseline, we also consider the DM estimator with linear models.

The sample size is fixed at n = 3000. As noted earlier, we evaluate two values of K (K = 3 and K = 10) and two
outcome-model specifications (Model 1 and Model 2), resulting in four experimental configurations. Each setting is
repeated 500 times. We report the MSEs and biases of the resulting ATE estimates in Table 2 for n = 3000. Overall, the
results indicate that our direct bias-correction approach achieves competitive or superior estimation accuracy compared
with logistic regression and CBPS, highlighting the benefits of explicitly estimating the bias-correction term in the ATE
context. RieszNet tends to outperform our method, but we consider this to be partly due to differences in the regression
models. While RieszNet employs DragonNet, we use a simpler implementation. We do not employ such models, as
model complexity is not our primary focus. Nevertheless, we emphasize that our method outperforms most existing
approaches while exhibiting comparable performance to RieszNet.
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7 CONCLUSION

This study proposed direct bias-correction term estimation in ATE estimation. Instead of focusing on estimating the
propensity score itself, our approach directly minimizes the estimation error of the bias-correction term, leveraging
empirical risk minimization techniques. We demonstrated that this direct approach enhances estimation accuracy by
avoiding the intermediate step of propensity score estimation. Additionally, our method was analyzed through the lens
of Bregman divergence minimization, providing a generalized framework.
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Figure 1: Relationship among bias-correction term estimation via Bregman divergence minimization, density ratio
estimation, and covariate balancing. This figure is made using the results in Kato (2025a) and Kato (2025c).

A DENSITY-RATIO ESTIMATION (DRE)

Given two probability distributions P and Q over a common space X , the density ratio function is defined as

r0(x) :=
p(x)

q(x)
,

where p(x) and q(x) denote the density functions of P and Q, respectively. DRE is a fundamental problem in statistical
learning, with applications in importance sampling, anomaly detection, and covariate shift adaptation.

In DRE, estimating the two densities separately can magnify estimation errors, whereas directly modeling and estimating
the density ratio can lead to improved accuracy. Thus, the aim of DRE is to estimate the density ratio in an end-to-end
manner by directly optimizing a single objective. Various methods for DRE have been proposed (Huang et al., 2007;
Gretton et al., 2009; Qin, 1998; Cheng & Chu, 2004; Nguyen et al., 2010; Kato et al., 2019), many of which can be
generalized as instances of Bregman divergence minimization (Sugiyama et al., 2011; Kato & Teshima, 2021).

Let R be a hypothesis class for r0, consisting of functions r : X → R. The goal of direct DRE is to find an optimal
function r∗ ∈ R that best approximates r0. A natural approach is to minimize the expected squared error:

EP

[(
r0(X)− r(X)

)2]
.

However, since r0(x) is unknown, direct minimization of this objective is infeasible.

Instead, we derive an equivalent formulation that does not require knowledge of r0. Specifically, we show that
minimizing the expected squared error is equivalent to minimizing the following alternative objective:

−2EQ [r(X)] + EP

[
r(X)2

]
.

This transformation enables empirical risk minimization without explicit access to the true density ratio.

Furthermore, we extend this framework by providing theoretical guarantees on the estimation error using tools from
empirical process theory. From the perspective of Bregman divergence minimization, we establish a generalized
methodology for DRE that accommodates various estimation strategies.

Finally, we present numerical experiments that demonstrate the effectiveness of our approach in practical scenarios,
including importance weighting and outlier detection.
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B SILVERMAN’S TRICK

Note that minimization of the Bregman divergence with the KL divergence loss is equal to

r∗ = argmax
r∈R

∑
d∈{1,0}

E [log r(d,X)] s.t. E
[
1[D = 1]r(1, Xi)

]
= E

[
1[D = 0]r(0, Xi)

]
= 1.

This technique is known as Silverman’s trick (Silverman, 1982). For details, see Theorem 3.3 in Kato et al.
(2023). We can replace the expected values with the sample means and define the estimation problem as r̂n =
argmaxr∈R

1
n

∑n
i=1

∑
d∈{1,0} log r(d,Xi) s.t. 1

n

∑n
i=1 1[Di = 1]r(1, Xi) =

1
n

∑n
i=1 1[Di = 0]r(0, Xi) = 1.

C ESTIMATION OF THE AVERAGE TREATMENT EFFECT FOR THE TREATED (ATT)

Our method can also be applied to other estimands, such as the ATT, which is defined as

α0 := E
[
Y (1)− Y (0) | D = 1

]
.

The IPW and AIPW estimators designed for the ATT are given by

IPW estimator. α̃IPW := 1
n

∑n
i=1

(
1[Di=1]Yi

π0
− e0(Xi)1[Di=0]Yi

π0(1−e0(Xi))

)
= 1

n

∑n
i=1

(
1[D=1]

π0
− e0(X)1[D=0]

π0(1−e0(X))

)
Yi.

AIPW estimator. α̃AIPW := 1
n

∑n
i=1

(
1[D=1]

π0
− e0(X)1[D=0]

π0(1−e0(X))

)
(Yi − µ0(0, Xi)),

where π0 = E[1[D = 1]].

Thus, the bias-correction term for ATT estimation is given as

h̃0(D,X) :=
1[D = 1]

π0
− e0(X)1[D = 0]

π0(1− e0(X))
,

where π0 = E[1[D = 1]].

Let w0(x) :=
e0(X)

(1−e0(X)) . Then, we denote the bias-correction term as

h̃0(D,X) :=
1[D = 1]

π0
− w0(X)1[D = 0]

π0
.

Let W be a set of functions w : X → R+. Then, we define the following least squares:

w∗ := argmin
r∈R

E
[(
h̃(D,X; r0, π0)− h̃(D,X; r, π0)

)2]
.

Note that we use π0 itself. We can show that this least squares is equivalent to

w∗ = argmin
r∈R

{
−2E [w(X)] + E

[
w(X)21[D = 0]

]}
,

where E1 is expectation over the treated group (p(x | d = 1)). The empirical version of this risk is given as

ŵ := argmin
r∈R

{
−2

1∑n
i=1 1[Di = 1]

n∑
i=1

1[Di = 1]w(Xi) +
1

n

n∑
i=1

w(Xi)
2

}
,

We can demonstrate the equivalence between the two least-squares formulations as follows:

w∗ = argmin
r∈R

E
[(
h̃(D,X; r0, π0)− h̃(D,X; r, π0)

)2]
= argmin

r∈R
E
[(
w0(X)1[D = 0]− w(X)1[D = 0]

)2]
= argmin

r∈R
E
[
−2w0(X)w(X)1[D = 0] + w(X)21[D = 0]

]
.
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To see this equivalence, consider

E [w0(X)w(X)1[D = 0]]

= E [E [w0(X)w(X)(1− e0(X))]]

= E [e0(X)w(X)/π0]

=

∫
1

π0
e0(x)w(x)p0(x)dx

=

∫
1

π0

π0p0(x | d = 1)

p0(x)
w(x)p0(x)dx

=

∫
p0(x | d = 1)w(x)dx.

This confirms the equivalence between the two least-squares objectives.

D PRELIMINARY

This section introduces notions that are useful for the theoretical analysis.

D.1 RADEMACHER COMPLEXITY

Let σ1, . . . , σn be n independent Rademacher random variables; that is, independent random variables for which
P (σi = 1) = P (σi = −1) = 1/2. Let us define

Rnf :=
1

n

n∑
i=1

σif(Wi).

Additionally, given a class F , we define
RnF := sup

f∈F
Rnf.

Then, we define the Rademacher average as E[RnF ] and the empirical Rademacher average as Eσ[RnF | X1, . . . , Xn].

D.2 LOCAL RADEMACHER COMPLEXITY BOUND

Let F be a class of functions that map X into [a, b]. For f ∈ F , let us define

Pf := E[f(W )],

Pnf :=
1

n

n∑
i=1

f(Wi).

We introduce the following result about the Rademacher complexity.

Proposition D.1 (From Theorem 2.1 in Bartlett et al. (2005)). Let F be a class of functions that map X into [a, b].
Assume that there is some r > 0 such that for every f ∈ F , Var(f(W )) ≤ r. Then, for every z > 0, with probability at
least 1− exp(−z), it holds that

sup
f∈F

(
Pf − Pnf

)
≤ inf

α>0

{
2(1 + α)E[Rnf ] +

√
2rx

n
+ (b− a)

(
1

3
+

1

α

)
z

n

}
.

D.3 BRACKETING ENTROPY

We define the bracketing entropy. For a more detailed definition, see Definition 2.2 in van de Geer (2000).

Definition D.1. Bracketing entropy. Given a class of functions F , the logarithm of the smallest number of balls in a
norm ∥ · ∥2,P of radius δ > 0 needed to cover F is called the δ-entropy with bracketing of F under the L2(P ) metric,
denoted by HB(δ,F , P ).
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D.4 TALAGRAND’S CONCENTRATION INEQUALITY

We introduce Talagrand’s lemma.

Proposition D.2 (Talagrand’s Lemma). Let ϕ : R → R be a Lipschitz continuous function with a Lipschitz constant
L > 0. Then, it holds that

Rn(ϕ ◦ F) ≤ LRn(F).

E BASIC INEQUALITIES

E.1 STRONG CONVEXITY

Lemma E.1 (L2 distance bound from Lemma 4 in Kato & Teshima (2021)). If infh∈(−∞),∞ g′′(h) > 0, then there
exists µ > 0 such that for all h ∈ H,

∥h− h0∥22 ≤ 2

µ

(
BRg(h)− BRg(h0)

)
holds.

From the strong convexity and Lemma E.1, we have
µ

2
∥ĥn − h0∥22 ≤ BRg(ĥn)− BRg

(
h0
)
.

Recall that we have defined an estimator r̂ as follows:

ĥ := argmin
h∈H

L̂n(h) + λJ(h),

where J (h) is some regularization term.

E.2 PRELIMINARY

Proposition E.2. The estimator r̂ satisfies the following inequality:

B̂Rg(ĥ) + λJ(ĥ) ≤ B̂Rg(h
∗) + λJ(h∗),

where recall that

B̂Rg(h) :=
1

n

n∑
i=1

(
− g(h(Di, Xi)) + ∂g(h(Di, Xi))h(Di, Xi)− ∂g(h(1, Xi))− ∂g(h(0, Xi))

)
.

Let Z ∈ Z be a random variable with a space Z , and {Zi}ni=1 be its realizations. For a function f : Z → R and X
following P , let us denote the sample mean as

Ê[f(Z)] :=
1

n

n∑
i=1

f(Zi).

We also denote Ê[f(Z)]− E[f(Z)] = (Ê− E)f(Z)

E.3 RISK BOUND

Recall that

B̂Rg(h) =
1

n

n∑
i=1

(
− g(h(Di, Xi)) + ∂g(h(Di, Xi))h(Di, Xi)− ∂g(h(1, Xi))− ∂g(h(0, Xi))

)
.

Let us define

L(h,D,X) := −g(h(D,X)) + ∂g(h(D,X))h(D,X)− ∂g(h(1, X))− ∂g(h(0, X)),

16
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and we can write
B̂Rg(h) = Ê

[
L(h,D,X)

]
Then, from Proposition E.2, we have

Ê
[
L(h∗, D,X)

]
− Ê

[
L(ĥn, D,X)

]
+ λJ(ĥ)− λJ(h∗) ≥ 0.

Throughout the proof, we use the following basic inequalities that hold for ĥ.
Proposition E.3. The estimator r̂ satisfies the following inequality:

µ

2

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

≤
(
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]
+ Ê [L(h∗, D,X)− L(h0, D,X)] + λJ(r0)− λJ(r̂).

Proof of Proposition E.2 is trivial. We prove Proposition E.3 below.

Proof. From the strong convexity and Lemma E.1, we have
µ

2
∥ĥn − h0∥22 ≤ BRg(ĥn)− BRg

(
h0
)
= E

[
L(ĥn, D,X)− L(h0, D,X)

]
.

From Proposition E.2, we have

µ

2

∥∥∥ĥ(D,X)− h0(D,X)
∥∥∥2
L2(P0)

≤ E
[
L(ĥn, D,X)− L(h0, D,X)

]
= E

[
L(ĥn, D,X)− L(h0, D,X)

]
− Ê

[
L(ĥn, D,X)− L(h0, D,X)

]
+ Ê

[
L(ĥn, D,X)− L(h0, D,X)

]
≤ E

[
L(ĥn, D,X)− L(h0, D,X)

]
− Ê

[
L(ĥn, D,X)− L(h0, D,X)

]
+ Ê

[
L(ĥn, D,X)− L(h0, D,X)

]
− Ê

[
L(ĥn, D,X)− L(h∗, D,X)

]
+ λJ(ĥ)− λJ(h0).

F PROOF OF THEOREM 4.1

We show Theorem 4.1 by bounding (
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]
, (1)

in Proposition E.3. We can bound this term by using the empirical-process arguments.

Note that since h0 ∈ H, it holds that h∗ = h0, which implies that

F.1 PRELIMINARY

We introduce the following propositions from van de Geer (2000), Kanamori et al. (2012) and Kato & Teshima (2021).
Definition F.1 (Derived function class and bracketing entropy (from Definition 4 in Kato & Teshima (2021))). Given a
real-valued function class F , define ℓ◦F := {ℓ◦f : f ∈ F}. By extension, we define I : ℓ◦H → [1,∞) by I(ℓ◦h) =
I(h) and ℓ ◦ HM := {ℓ ◦ h : h ∈ HM}. Note that, as a result, ℓ ◦ HM coincides with {ℓ ◦ h ∈ ℓ ◦ H : I(ℓ ◦ h) ≤M}.
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Proposition F.1. Let ℓ : R → R be a v-Lipschitz continuous function. Let HB

(
δ,F , ∥ · ∥L2(P0)

)
denote the bracketing

entropy of F with respect to a distribution P . Then, for any distribution P , any γ > 0, any M ≥ 1, and any δ > 0, we
have

HB

(
δ, ℓ ◦ H, ∥ · ∥L2(P0)

)
≤ (s+ 1)(2v)γ

γ

(
M

δ

)γ

.

Moreover, there exists M > 0 such that for any M ≥ 1 and any distribution P ,

sup
ℓ◦h∈ℓ◦HM

∥ℓ ◦ h− ℓ ◦ h∗∥L2(P0) ≤ c0vM,

sup
ℓ◦h∈ℓ◦HM

∥ℓ◦h−ℓ◦h∗∥L2(P0)≤δ

∥ℓ ◦ h− ℓ ◦ h∗∥∞ ≤ c0vM, for all δ > 0.

Proposition F.2 (Lemma 5.13 in van de Geer (2000), Proposition 1 in Kanamori et al. (2012)). Let F ⊂ L2(P ) be
a function class and the map I(f) be a complexity measure of f ∈ F , where I is a non-negative function on F and
I(f0) <∞ for a fixed f0 ∈ F . We now define FM = {f ∈ F : I(f) ≤M} satisfying F =

⋃
M≥1 FM . Suppose that

there exist c0 > 0 and 0 < γ < 2 such that

sup
f∈FM

∥f − f0∥ ≤ c0M, sup
f∈FM

∥f−f0∥L2(P )≤δ

∥f − f0∥∞ ≤ c0M, for all δ > 0,

and that HB(δ,FM , P ) = O ((M/δ)γ). Then, we have

sup
f∈F

∣∣∫ (f − f0)d(P − Pn)
∣∣

D(f)
= Op(1), (n→ ∞),

where D(f) is defined by

D(f) = max
∥f − f0∥1−γ/2

L2(P ) I(f)
γ/2

√
n

I(f)

n2/(2+γ)
.

Proposition F.3. Let g : K → R be twice continuously differentiable and strictly convex for the space K of h0, and
suppose that there exists M > 0 such that

|g′′(t)| ≤M for all t ∈ R.

Let ζ−1 : R → R be continuously differentiable and globally Lipschitz, that is, there exists Lζ > 0 such that

|ζ−1(s)− ζ−1(t)| ≤ Lζ |s− t| for all s, t ∈ R.

Assume also that ζ−1(0) is finite, and define

a0 := |ζ−1(0)|, a1 := Lζ ,

so that
|ζ−1(u)| ≤ a0 + a1|u| for all u ∈ R.

Let h be a bounded real-valued function on the domain of (D,X), and write

∥h∥∞ := sup
d,x

|h(d, x)|.

Let L be a linear functional acting on bounded functions, such that for some constant CL > 0,

|L(f)| ≤ CL

(
1 + ∥f∥∞

)
for all bounded f.

Define

L(ζ−1 ◦ f) = g
(
ζ−1 ◦ f(D,X)

)
+ ∂g

(
ζ−1 ◦ f(D,X)

)
ζ−1 ◦ h(D,X)

− ∂g
(
ζ−1 ◦ f(1, X)

)
− ∂g

(
ζ−1 ◦ f(0, X)

)
.

Then there exists a constant C > 0 (depending only on g, ζ−1 and CL) such that

|L(ζ−1 ◦ f)| ≤ C
(
1 + ∥f∥2∞

)
.
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F.2 UPPER BOUND USING THE EMPIRICAL-PROCESS ARGUMENTS

From Propositions F.1–F.3, we obtain the following result.

Proposition F.4. Under the conditions of Theorem 4.1, for any 0 < γ < 2, we have

d
(
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]

= Op

max


∥ĥn − h∗∥1−γ/2

L2(P0)

(
1 +

∥∥∥ĥn∥∥∥
H

)1+γ/2

√
n

,

(
1 +

∥∥∥ĥn∥∥∥
H

)2
n2/(2+γ)


 ,

as n→ ∞.

F.3 PROOF OF THEOREM 4.1

We prove Theorem 4.1 following the arguments in Kanamori et al. (2012).

Proof. From Proposition E.3 and h0 ∈ HRKHS, we have∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

+ λ∥ĥ∥2H

≤
(
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]
+ λ∥f0∥2H.

From Proposition F.4, we have∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

+ λ∥f̂n∥2H

= Øp

max


∥ĥ− h0∥1−γ/2

L2(P0)

(
1 +

∥∥∥f̂∥∥∥
H

)1+γ/2

√
n

,

(
1 +

∥∥∥ĥ∥∥∥
H

)2
n2/(2+γ)


+ λ∥r0∥2H.

We consider the following three possibilities:∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

+ λ∥f̂n∥2H = Op(λ), (2)

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

+ λ∥f̂n∥2H = Op

∥f̂ − f0|1−γ/2
L2(P0)

(
1 +

∥∥∥f̂∥∥∥
H

)1+γ/2

√
n

 , (3)

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

+ λ∥f̂n∥2H = Op


(
1 +

∥∥∥f̂∥∥∥
H

)2
n2/(2+γ)

 . (4)

The above inequalities are analyzed as follows:

Case (2). We have ∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

= Op(λ),

λ∥f̂n∥2H = Op(λ).

Therefore, we have
∥∥∥ĥn(D,X)− h0(D,X)

∥∥∥
P0

= Op(λ
1/2) and ∥r̂∥H = Op(1).
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Case (3). We have

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

= Op

∥f̂n − f0)∥1−γ/2
L2(P0)

(
1 +

∥∥∥f̂n∥∥∥
F

)1+γ/2

√
n

 ,

λ∥f̂n∥2H = Op

∥f̂n − f0)∥1−γ/2
L2(P0)

(
1 +

∥∥∥f̂n∥∥∥
F

)1+γ/2

√
n

 .

From the first inequality, we have

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥
P0

=
∑

d∈{1,0}

Op


(
1 +

∥∥∥f̂n∥∥∥
F

)1+γ/2

n1/(2+γ)

 .

By using this result, from the second inequality, we have

λ∥f̂n∥2H = Op

∥f̂n − f0)∥1−γ/2
L2(P0)

(
1 +

∥∥∥f̂n∥∥∥
F

)1+γ/2

√
n



= Op


1 +

∥∥∥f̂n∥∥∥
F

n1/(2+γ)

1−γ/2 (
1 +

∥∥∥f̂n∥∥∥
F

)1+γ/2

√
n


= Op


(
1 +

∥∥∥f̂n∥∥∥
F

)2
n2/(2+γ)

 .

This implies that

∥f̂∥H = Op


(
1 +

∥∥∥f̂n∥∥∥
F

)2
λ1/2n2/(2+γ)

 = op(1).

Therefore, the following inequity is obtained.∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥
P0

= Op

(
1

n1/(2+γ)

)
= Op(λ

1/2).

Case 4. We have

∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

= Op


(
1 +

∥∥∥f̂n∥∥∥
F

)2
n2/(2+γ)

 ,

λ∥f̂n∥2H = Op


(
1 +

∥∥∥f̂n∥∥∥
F

)2
n2/(2+γ)

 .

As well as the argument in (3), we have ∥r̂∥H = op(1). Therefore, we have∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥
P0

= Op

(
1

n1/(2+γ)

)
= Op(λ

1/2).
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G PROOF OF THEOREM 4.2

Our proof procedure mainly follows those in Kato & Teshima (2021) and Zheng et al. (2022). In particular, we are
inspired by the proof in Zheng et al. (2022).

We prove Theorem 4.2 by proving the following lemma:

Lemma G.1. Suppose that Assumption 4.2 holds. For any n ≥ Pdim(FFNN), there exists a constant C > 0 depending
on (µ, σ,M) such that for any γ > 0, with probability at least 1− exp(−γ), it holds that∥∥∥f̂n − f0

∥∥∥
2
≤ C

(√
Pdim(FFNN) log(n)

n
+
∥∥f∗ − f0

∥∥
2
+

√
γ

n

)
.

As shown in Zheng et al. (2022), we can bound Pdim(FFNN) log(n) by specifying neural networks and obtain
Theorem 4.2.

G.1 PROOF OF LEMMA G.1

We prove Lemma G.1 by bounding (1) in Proposition E.3.

To bound (1), we show several auxiliary results. Define

F̂f∗,u := {f ∈ FFNN :
1

n

n∑
i=1

(f(Di, Xi)− f∗(Di, Xi))
2 ≤ u},

Gf∗,u
:=
{
(f − f∗) : f ∈ F̂f∗,u

}
,

κun(u) := Eσ

[
RnG

f∗,u
]
,

u† := inf
{
u ≥ 0: κun(s) ≤ s2 ∀s ≥ u

}
.

Here, we show the following two lemmas:

Lemma G.2 (Corresponding to (26) in Zheng et al. (2022)). Suppose that the conditions in Lemma G.1 hold. Then, for
any z > 0, with probability 1− exp(−z) it holds that

Ê
[
L(ĥn, D,X)− L(h0, D,X)

]
≤ C

(
∥f∗(D,X)− f0(D,X)∥22 + ∥f∗(D,X)− f0(D,X)∥2

√
z

n
+

16Mz

3n

)
.

Lemma G.3 (Corresponding to (29) in Zheng et al. (2022)). Suppose that the conditions in Lemma G.1 hold. If there
exists u0 > 0 such that

∥f̂(D,X)− f∗(D,X)∥2 ≤ u0,

then it holds that (
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]
≤ C

(
Eσ

[
RnG

f∗,u0
]
+ u0

√
z

n
+
Mz

n

)
.

Additionally, we use the following three propositions directly from Zheng et al. (2022).

Proposition G.4 (From (32) in Zheng et al. (2022)). Let u > 0 be a positive value such that

∥f − f0∥2 ≤ u

for all f ∈ F . Then, for every z > 0, with probability at least 1− 2 exp(−z), it holds that√√√√ 1

n

n∑
i=1

(
f(Xi)− f0(Xi)

)2 ≤ 2u.
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Proposition G.5 (Corresponding to (36) in Step 3 of Zheng et al. (2022)). Suppose that the conditions in Lemma G.1
hold. Then, there exists a universal constant C > 0 such that

u† ≤ CM

√
Pdim(FFNN) log(n)

n
.

Proposition G.6 (Upper bound of the Rademacher complexity). Suppose that the conditions in Lemma G.1 hold. If
n ≥ Pdim(FFNN), u0 ≥ 1/n, and n ≥ (2eM)2, we have

Eσ

[
RnG

f∗,u0
]
≤ Cr0

√
Pdim(FFNN) logn

n
.

Then, we prove Lemma G.1 as follows:

Proof of Lemma G.1. If there exists u0 > 0 such that

∥f̂(X)− f∗(X)∥2 ≤ u0,

then from (1) and Lemmas G.2 and G.3, for every z > 0, there exists a constant C > 0 independent n such that∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥2
L2(P0)

≤ C

(
∥f∗ − f0∥2

√
z

n
+

16Mz

3n
+ u0

√
Pdim(FFNN) logn

n
+ u0

√
z

n
+
Mz

n

)
. (5)

This result implies that if
√
Pdim(FFNN), then there exists n0 such that for all n > n0, there exists u1 < u0 such that∥∥∥ĥn(D,X)− h0(D,X)

∥∥∥2
L2(P0)

≤ u1.

For any z > 0, define u as

uz ≥ max
{√

log(n)/n, 4
√
3M
√
z/n, u†

}
.

Define a subspace of FFNN as

SFNN(f0, uz :=
{
f ∈ FFNN : ∥f − f0∥ ≤ uz

}
.

Define
ℓ := ⌊log2(2M/

√
log(n)/n)⌋.

Using the definition of subspaces, we divide FFNN into the following ℓ+ 1 subspaces:

SFNN

0 :=SFNN(f0, u),

SFNN

1 :=SFNN(f0, u)\SFNN(f0, u),

...

SFNN

ℓ :=SFNN(f0, 2
ℓu)\SFNN(f0, 2

ℓ−1u).

Since uz > u†, from the definition of u†, we have

u2z ≤ κun(u).

If there exists j ≤ ℓ such that f̂ ∈ SFNN

j , then from (5), for every z > 0, with probability at least 1− 8 exp(−z), there
exists a constant C > 0 independent of n such that∥∥∥ĥn(D,X)− h0(D,X)

∥∥∥2
2
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≤ C

(
2ℓ−1u

(√
Pdim(FFNN) log(n)

n
+

√
z

n

)
+ ∥f∗ − f0∥22 + ∥f∗ − f0∥2

√
z

n
+
Mz

n

)
. (6)

Additionally, if

C

(√
Pdim(FFNN) log(n)

n
+

√
z

n

)
≤ 1

8
2ju, (7)

C

(
∥f∗ − f0∥22 + ∥f∗ − f0∥2

√
z

n
+
Mz

n

)
≤ 1

8
22ju2 (8)

hold, then ∥∥∥ĥn(D,X)− h0(D,X)
∥∥∥
2
≤ 2j−1u. (9)

Here, to obtain (9), we used u ≥ max
{√

log(n)/n, 4
√
3M
√
z/n, u†

}
, (6), (7), and (8).

From Proposition G.5, it holds that

u† ≤ CM

√
Pdim(FFNN) log(n)

n
.

Therefore, we can choose u as

u := C

(√
Pdim(FFNN) log(n)

n
+
√
log(n)/n+ 4

√
3M
√
z/n

)
,

where C > 0 is a constant independent of n.

G.2 PROOF OF LEMMA G.2

From Proposition D.1, we have

Ê
[
L(ĥn, D,X)− L(h0, D,X)

]
≤ E

[
L(ĥn, D,X)− L(h0, D,X)

]
+

√
2C∥f∗(X)− f0(X)∥

√
z

n
+

16C1Mz

3n
.

This is a direct consequence of Proposition D.1. Note that h∗ and h0 are fixed, and it is enough to apply the standard
law of large numbers; that is, we do not have to consider the uniform law of large numbers. However, we can still apply
Proposition D.1, which is a general than the standard law of large numbers, with ignoring the Rademacher complexity
part.

We have

Ê
[
L(ĥn, D,X)− L(h0, D,X)

]
≤ E

[
L(ĥn, D,X)− L(h0, D,X)

]
+
√
2C1∥f∗ − f0∥

√
z

n
+

16C2Mz

3n
+
√
2C2∥f∗ − f0∥

√
z

n
+

16C2Mz

3n

≤ C

(
∥f∗ − f0∥22 + ∥f∗ − f0∥

√
z

n
+

16CMz

3n

)
.

G.3 PROOF OF LEMMA G.3

Let g := (f − f∗)2. From the definition of FNNs, we have

g ≤ 4M2

Additionally, we assumed that ∥f̂ − f∗∥2 ≤ u0 holds. Then, it holds that VarP0
(g) ≤ 4M2u20.
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Here, we note that the followings hold for all f (r):

L(h)− L(h∗) ≤ C
∣∣∣f(d, x)− f∗(d, x)

∣∣∣,
where C > 0 is some constant

Then, from Proposition D.1, for every z > 0, with probability at least 1− exp(−z), it holds that(
E− Ê

) [
L(ĥn, D,X)− L(h0, D,X)

]
≤ C

(
Eσ

[
RnG

f∗,u0
]
+ r0

√
z

n
+
Mz

n

)
.

H NEAREST NEIGHBOR MATCHING

In this section, we show that nearest neighbor (NN) matching for the ATE can be interpreted as a special case of our
direct bias-correction term estimation with the squared loss, that is, Riesz regression or LSIF. This result is shown in
Kato (2025b), a subsequent work of this study.

The key step is to express the ATE bias-correction term h0(D,X) in terms of density ratios with respect to the marginal
covariate distribution and then to approximate these density ratios via nearest neighbor cells, following the density-ratio
interpretation in Lin et al. (2023).

H.1 ATE BIAS-CORRECTION TERM AND DENSITY RATIOS

Let pX denote the marginal density of X and pX|D=d the conditional density of X given D = d. Let π1 := P0(D = 1)
and π0 := P0(D = 0) = 1− π1. By Bayes’ rule,

pX|D=d(x) =
pX(x)P0(D = d | X = x)

P0(D = d)
=
pX(x)e0(x)

d(1− e0(x))
1−d

πd
,

where πd = P0(D = d) and e0(x) = P0(D = 1 | X = x).

Define the density ratios with respect to the marginal distribution of X by

r1(x) :=
pX(x)

pX|D=1(x)
, r0(x) :=

pX(x)

pX|D=0(x)
.

From the expression above,
r1(x) =

π1
e0(x)

, r0(x) =
π0

1− e0(x)
.

Therefore, the ATE bias-correction term

h0(D,X) =
1[D = 1]

e0(X)
− 1[D = 0]

1− e0(X)

can be written in terms of r1 and r0 as

h0(D,X) = 1[D = 1]
r1(X)

π1
− 1[D = 0]

r0(X)

π0
. (10)

Thus, estimating h0 is equivalent to estimating the pair (r1, r0), the density ratios between the marginal covariate
distribution and the treated and control covariate distributions.

H.2 SQUARED LOSS OBJECTIVE AND DECOMPOSITION INTO TWO LSIF PROBLEMS

Recall that when we choose the squared loss gSL(h) = (h− 1)2, the population Bregman divergence objective for h is

BRgSL(h) = E
[
− 2
(
h(1, X)− h(0, X)

)
+ h(D,X)2

]
.

Consider the parameterization

h(D,X) = 1[D = 1]
r1(X)

π1
− 1[D = 0]

r0(X)

π0
,
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with r1, r0 defined above. Substituting this into BRgSL(h) and using the law of total expectation, we obtain

BRgSL(h) = C − 2E
[r1(X)

π1
+
r0(X)

π0

]
+ E

[
h(D,X)2

]
, (11)

where C is a constant independent of (r1, r0). The last term can be decomposed as

E
[
h(D,X)2

]
= π1E

[(r1(X)

π1

)2 ∣∣∣ D = 1
]
+ π0E

[(r0(X)

π0

)2 ∣∣∣ D = 0
]
.

Rewriting (11) in terms of expectations with respect to pX and pX|D=d and dropping constants gives

BRgSL(h) := −2EX [r1(X)] + EX|D=1

[
r1(X)2

]
− 2EX [r0(X)] + EX|D=0

[
r0(X)2

]
. (12)

Hence minimizing BRgSL(h) over (r1, r0) is equivalent to solving two independent LSIF-type problems

r∗1 = argmin
r1

{
−2EX [r1(X)] + EX|D=1[r1(X)2]

}
,

r∗0 = argmin
r0

{
−2EX [r0(X)] + EX|D=0[r0(X)2]

}
,

and then plugging (r∗1 , r
∗
0) into (10).

At the sample level, with G1 and G0 defined as in the Introduction, the empirical LSIF objectives are

Ĵ1(r1) := − 2

n

n∑
i=1

r1(Xi) +
1

|G1|
∑
i∈G1

r1(Xi)
2, (13)

Ĵ0(r0) := − 2

n

n∑
i=1

r0(Xi) +
1

|G0|
∑
i∈G0

r0(Xi)
2. (14)

Minimizing Ĵ1 and Ĵ0 and then using (10) yields an LSIF (Riesz regression) estimator of the ATE bias-correction term
h0.

H.3 NEAREST-NEIGHBOR PARTITION AND HISTOGRAM MODEL

To connect this LSIF formulation to nearest neighbor matching, we now choose a simple histogram-type model for
(r1, r0) based on nearest neighbor cells. Let us consider the M -nearest neighbor partition induced by the sample
{Xi}ni=1.

For each treated unit i ∈ G1, let N (0)
M (i) ⊂ G0 denote the set of M nearest control units to Xi. Similarly, for each

control unit j ∈ G0, let N (1)
M (j) ⊂ G1 denote the set of M nearest treated units to Xj . We define the neighbor counts

K
(1)
M (k) :=

∣∣{i ∈ G1 : k ∈ N
(0)
M (i)}

∣∣, K
(0)
M (k) :=

∣∣{j ∈ G0 : k ∈ N
(1)
M (j)}

∣∣.
Thus K(1)

M (k) counts how often unit k is selected as a control neighbor of treated units, and K(0)
M (k) counts how often

it is selected as a treated neighbor of control units. The total numbers of neighbor links are
n∑

k=1

K
(1)
M (k) =M |G1|,

n∑
k=1

K
(0)
M (k) =M |G0|.

We now approximate each density ratio rd by a histogram that is constant on the Voronoi cells induced by the sample:

rd(x) =

n∑
k=1

θ
(d)
k ψk(x),

where {ψk}nk=1 is the partition of X such that ψk(x) = 1 if x lies in the cell associated with Xk and ψk(x) = 0
otherwise. Approximating the integrals in (13) and (14) by assigning each observation Xi to the nearest cell, the
empirical objectives become (up to constants)

Ĵ1(θ
(1)) ≈ − 2

n

n∑
k=1

K
(X)
M (k) θ

(1)
k +

1

|G1|

n∑
k=1

1[k ∈ G1]
(
θ
(1)
k

)2
, (15)
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Table 3: Results of additional simulation studies. CR denotes the coverage ratio of 95% confidence intervals; that is,
values close to 0.95 are better. DM denotes the direct method, which is independent of the direct bias-correction term
estimation methods; therefore, in theory, the results of the DM estimator should not differ across DBC (LS), DBC (KL),
and DBC (TL). Since we compute the DM estimator when constructing the AIPW estimator in each of DBC (LS), DBC
(KL), and DBC (TL), we also report the DM estimator results for reference.

True DBC (LS) DBC (KL) DBC (TL)
DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW

MSE 0.00 1.10 0.01 0.30 0.59 0.11 0.30 0.41 0.08 0.31 0.36 0.09
CR 1.00 0.92 0.97 0.17 0.97 0.87 0.11 0.97 0.88 0.11 0.92 0.87

Ĵ0(θ
(0)) ≈ − 2

n

n∑
k=1

K
(X)
M (k) θ

(0)
k +

1

|G0|

n∑
k=1

1[k ∈ G0]
(
θ
(0)
k

)2
, (16)

where K(X)
M (k) denotes the number of times Xk is selected as a nearest neighbor when we run the M -NN search over

the whole sample {Xi}ni=1.2

Minimizing the quadratic objectives (15) and (16) with respect to each θ(d)k yields the closed-form solutions

θ
(1)∗
k ∝ K

(X)
M (k)1[k ∈ G1], θ

(0)∗
k ∝ K

(X)
M (k)1[k ∈ G0].

Therefore, up to a common normalization constant,

r1(Xk) ∝ K
(X)
M (k)1[k ∈ G1], r0(Xk) ∝ K

(X)
M (k)1[k ∈ G0].

Substituting these expressions into (10) gives

hNN(Dk, Xk) = (2Dk − 1)
(
1 +

K
(X)
M (k)

M

)
× cn, (17)

for some sample-size dependent normalization constant cn. Equation (17) coincides, up to normalization, with the
nearest-neighbor based bias-correction weights derived in Lin et al. (2023) for the ATE.

H.4 NEAREST NEIGHBOR MATCHING AS RIESZ REGRESSION

Using the bias-correction term hNN in (17), the corresponding IPW-type ATE estimator becomes

τ̂NN =
1

n

n∑
k=1

hNN(Dk, Xk)Yk,

which can be expanded to the familiar M -nearest neighbor matching form

τ̂NN =
1

n

∑
i∈G1

(
Yi −

1

M

∑
j∈N

(0)
M (i)

Yj

)
− 1

n

∑
j∈G0

(
Yj −

1

M

∑
i∈N

(1)
M (j)

Yi

)
,

that is, a two-sided nearest neighbor matching estimator for the ATE that matches treated units to control units and
control units to treated units. Therefore, nearest neighbor matching for the ATE is obtained by minimizing the squared-
loss Bregman divergence within a nearest-neighbor histogram model for the density ratios (r1, r0) and then plugging
the resulting estimator into the bias-correction term h(D,X).

In other words, nearest neighbor matching is a special case of Riesz regression (LSIF) with a particular choice of
feature dictionary based on nearest neighbor cells. This formally justifies the statement in the main text that nearest
neighbor matching can be interpreted as a direct bias-correction term estimator obtained from our squared-loss Bregman
divergence framework.

I ADDITIONAL SIMULATION STUDIES

In this section, we conduct additional simulation studies to more closely examine the finite sample behavior of our direct
bias-correction approach under different choices of Bregman divergence. We focus on the three representative losses

2For a detailed derivation of this approximation, see the analysis of histogram LSIF in Lin et al. (2023).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

introduced in Section 2: the squared loss corresponding to Riesz regression (denoted by DBC (LS)), the KL divergence
loss (DBC (KL)), and the tailored loss (DBC (TL)). We refer to our method collectively as the direct bias-correction
(DBC) approach.

Unlike the simulation design in Section 2 (Simulation studies), here we explicitly use cross fitting in the sense of
Assumption 5.1. This setting illustrates how our framework can be combined with modern high-capacity models
without requiring the Donsker assumption.

I.1 DESIGN AND IMPLEMENTATION

We consider the same basic ATE setting as in the previous simulations. The covariates are three dimensional, K = 3,
and we fix the sample size at n = 3000. In each Monte Carlo replication, we generate covariates Xi ∈ R3 from
a multivariate normal distribution N (0, I3), and construct a nonlinear propensity score model with polynomial and
interaction terms, as in the main simulation study. Treatment assignments Di are then sampled from the resulting
Bernoulli distribution with success probability e0(Xi). The outcome Yi is generated from a nonlinear regression model
that includes both squared terms and a nonlinear transformation, with the true ATE fixed at τ0 = 5.0. The noise term is
standard normal. This design yields a moderately complex but smooth data generating process for both the propensity
score and the conditional outcome.

To evaluate the efficiency and coverage properties of the estimators, we construct an oracle benchmark that uses the true
nuisance functions. For each replication, we compute the infeasible DM, IPW, and AIPW estimators based on the true
propensity score and the true conditional expectations of Y (d), and we use their corresponding influence functions to
form oracle 95% confidence intervals. The performance of these oracle estimators is summarized in the “True” columns
of Table 3.

For our proposed DBC estimators, we estimate the bias-correction term h0(D,X) using one hidden layer neural
networks. In all cases, we use fully connected networks with a single hidden layer of 100 nodes. For DBC (LS),
we employ the squared loss objective associated with Riesz regression. For DBC (KL) and DBC (TL), we use the
KL divergence loss and the tailored loss introduced in Section 2.6, respectively. The conditional outcome regression
µ0(d,X) for the DM and AIPW estimators is also modeled by a neural network with one hidden layer and 100 nodes.

In DBC (LS), we model h0 directly using a neural network with one hidden layer consisting of 100 nodes. In DBC
(KL), DBC (TL), and MLE, we model h0 by estimating the propensity score using a neural network with one hidden
layer consisting of 100 nodes.

To avoid relying on the Donsker condition, all nuisance functions (the bias-correction term and the outcome regression)
are estimated with two-fold cross fitting. Specifically, in each replication, we split the sample into two folds, estimate
the nuisance functions on one fold, evaluate the corresponding scores on the other fold, and then swap the roles of the
folds. The final estimators are obtained by aggregating the two cross-fitted folds.

For each loss (LS, KL, TL), we report three estimators:

• the direct method (DM), which depends only on the outcome regression;

• the IPW estimator, constructed using the estimated bias-correction term;

• the AIPW estimator, which combines both the estimated bias-correction term and the outcome regression.

Note that the DM estimator is theoretically independent of the specific loss used to estimate the bias-correction term.
In practice, we recompute the DM estimator within each DBC (LS), DBC (KL), and DBC (TL) run to construct the
AIPW estimator, and we report the resulting DM performance for reference. Small differences among the DM columns
therefore reflect only Monte Carlo variation.

We repeat the experiment 100 times. For each method and each estimator (DM, IPW, AIPW), we compute the
empirical mean squared error (MSE) of the ATE estimate and the empirical coverage ratio (CR) of the nominal 95%
confidence interval, defined as the fraction of replications in which the interval contains the true effect τ0. The results
are summarized in Table 3.

I.2 RESULTS

Table 3 reports the MSE and coverage ratio for the oracle estimators (True) and for the three DBC variants. The oracle
AIPW estimator achieves a very small MSE (approximately 0.01) and a coverage ratio close to the nominal level (0.97),
as expected. The oracle IPW estimator exhibits a larger MSE (around 1.10) and slightly conservative coverage (0.92).
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Table 4: MSE and coverage ratio (CR) of ATE estimators in the semi-synthetic IHDP experiment. We report the mean
squared error (MSE) and the empirical coverage ratio (CR) of nominal 95% confidence intervals over 1000 replications
for the direct method (DM), inverse probability weighting (IPW), and augmented IPW (AIPW) estimators. Nuisance
functions are estimated either by a neural network with one hidden layer of size 100 or by an RKHS regression with 100
Gaussian basis functions. The columns correspond to different variants of the direct bias-correction (DBC) approach
based on least squares (LS), Kullback–Leibler (KL), truncated likelihood (TL), and maximum likelihood (MLE) criteria.

Neural network RKHS
DBC (LS) DBC (LS) DBC (TL) DBC (MLE) DBC (LS) DBC (LS) DBC (TL) DBC (MLE)

DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW DM IPW AIPW
MSE 1.52 6.82 0.31 1.57 9.42 0.44 1.55 2.84 0.32 1.58 3.00 0.43 19.98 3.56 19.97 3.50 1.91 4.58 2.59 1.78 4.45 2.48 1.22 2.32
CR 0.03 0.41 1.00 0.06 0.08 1.00 0.03 0.73 0.94 0.01 0.61 0.90 0.00 0.00 0.00 0.34 0.91 0.82 0.48 0.93 0.88 0.39 0.81 0.84

The oracle DM estimator is unbiased by construction, hence its MSE is essentially zero and its coverage ratio is close to
one.

For the feasible DBC estimators, the DM columns are nearly identical across DBC (LS), DBC (KL), and DBC (TL),
with MSE around 0.30 and poor coverage (CR between 0.11 and 0.17). This behavior reflects the well known fact that
the plug in DM estimator is not debiased and is not suitable for inference in this design, even when the outcome model
is reasonably flexible.

The IPW estimators based on our direct bias-correction term exhibit substantially reduced MSE relative to the oracle
IPW benchmark that uses the true propensity score. Sucha a “paradox” is reporeted and analyzed in existing studies,
such as Hirano et al. (2003) and Henmi & Eguchi (2004). Under DBC (LS), the IPW MSE is about 0.59, while DBC
(KL) and DBC (TL) further reduce it to approximately 0.41 and 0.36, respectively. The coverage ratios for IPW are
close to the nominal level for all three losses (around 0.97 for DBC (LS) and DBC (KL), and 0.92 for DBC (TL)).
These results indicate that direct estimation of the bias-correction term can improve both efficiency and coverage for
IPW, and that the KL and tailored losses provide modest gains over the squared loss in this setting.

The AIPW estimators exhibit the best overall performance. All three DBC variants achieve small MSEs, with values
around 0.11 for DBC (LS), 0.08 for DBC (KL), and 0.09 for DBC (TL), which are close to the oracle AIPW MSE of
0.01. The coverage ratios of the AIPW estimators are slightly below the nominal level (between 0.87 and 0.88) but still
reasonably close, especially given the moderate number of Monte Carlo replications. The differences among the three
losses are minor, with DBC (KL) and DBC (TL) showing a slight advantage in terms of MSE.

Overall, these additional experiments support our theoretical findings. First, they confirm that direct estimation of the
bias-correction term via Bregman divergence minimization yields ATE estimators that are close to the oracle benchmark
when combined with cross fitting. Second, they show that the choice of Bregman divergence (squared loss, KL loss, or
tailored loss) has only a modest impact on the performance of the AIPW estimator, while the KL and tailored losses can
provide small efficiency gains in some cases. Third, they illustrate that our framework can be implemented with flexible
neural network models and cross fitting, without relying on the Donsker condition.

J EXPERIMENTS WITH SEMI-SYNTHETIC DATASETS

We next evaluate the proposed estimators on a semi-synthetic benchmark based on the Infant Health and Development
Program (IHDP) data, following Chernozhukov et al. (2022a). The IHDP was a randomized trial that investigated the
effect of an early childhood intervention on subsequent developmental and health outcomes. Following the standard
setting “A” implemented in the npci package, we generate 1000 semi-synthetic datasets, each consisting of n = 747
observations with a binary treatment T , an outcome Y , and p = 25 continuous and binary covariates X . The estimand
of interest is the average treatment effect (ATE) of the intervention on Y .

For each semi-synthetic dataset we compute three ATE estimators: the direct method (DM), the inverse probability
weighting (IPW) estimator, and the augmented IPW (AIPW) estimator. All estimators use our direct bias-correction
(DBC) approach for estimating the Riesz representer or density ratio. We consider several variants of DBC based
on different divergence criteria, including least squares (LS), Kullback–Leibler (KL), truncated likelihood (TL), and
maximum likelihood (MLE).

The nuisance functions are estimated either by a feedforward neural network or by a reproducing kernel Hilbert space
(RKHS) regression. The neural network has a single hidden layer with 100 units and is trained for 100 epochs. For
the RKHS learner we use 100 Gaussian basis functions; the bandwidth of the Gaussian kernel as well as the ridge
regularization parameter are chosen by cross validation.
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To assess estimation accuracy and uncertainty quantification, we report the mean squared error (MSE) of each ATE
estimator and the empirical coverage ratio (CR) of nominal 95% Wald-type confidence intervals across the 1000
replications. Here, CR is defined as the proportion of replications in which the confidence interval contains the true
ATE, so values close to 0.95 indicate well calibrated intervals. The results are summarized in Table 4.

Overall, when neural networks are used for nuisance estimation, the AIPW estimator combined with our DBC
schemes achieves substantially smaller MSE than the corresponding DM and IPW estimators, while its CR is close
to one, indicating slightly conservative but reliable inference. The DM estimator exhibits noticeable bias and severe
undercoverage, and the IPW estimator can be unstable, especially for some DBC variants. When RKHS learners are
employed, the IPW estimator performs relatively well in terms of both MSE and CR, whereas the DM and AIPW
estimators are more sensitive to the choice of DBC method and can suffer from larger MSE or poor coverage. These
findings suggest that, in this IHDP benchmark, DBC-based AIPW with neural network nuisance learners provides the
most accurate and well calibrated ATE estimates.
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