

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIRECT BIAS-CORRECTION TERM ESTIMATION FOR AVERAGE TREATMENT EFFECT ESTIMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

This study considers the estimation of the direct bias-correction term for estimating the average treatment effect (ATE). Let $\{(X_i, D_i, Y_i)\}_{i=1}^n$ be the observations, where $X_i \in \mathbb{R}^K$ denotes K -dimensional covariates, $D_i \in \{0, 1\}$ denotes a binary treatment assignment indicator, and $Y_i \in \mathbb{R}$ denotes an outcome. In ATE estimation, $h_0(D_i, X_i) := \frac{\mathbb{1}[D_i=1]}{e_0(X_i)} - \frac{\mathbb{1}[D_i=0]}{1-e_0(X_i)}$ is called the bias-correction term, where $e_0(X_i)$ is the propensity score. The bias-correction term is also referred to as the Riesz representer or clever covariates, depending on the literature, and plays an important role in construction of efficient ATE estimators. In this study, we propose estimating h_0 by directly minimizing the Bregman divergence between its model and h_0 , which includes squared error and Kullback–Leibler divergence as special cases. Our proposed method is inspired by direct density ratio estimation methods and generalizes existing bias-correction term estimation methods, such as covariate balancing weights, Riesz regression, and nearest neighbor matching. Importantly, under specific choices of bias-correction term models and Bregman divergence, we can automatically ensure the covariate balancing property. Thus, our study provides a practical modeling and estimation approach through a generalization of existing methods.

1 INTRODUCTION

We consider the problem of estimating the average treatment effect (ATE) in causal inference (Imbens & Rubin, 2015). Methods for estimating ATEs are typically designed to eliminate bias arising from treatment assignment and the estimation of nuisance parameters, aiming for (asymptotic) unbiasedness and efficiency.

1.1 ATE ESTIMATORS AND BIAS CORRECTION

We begin by formulating the problem. There are two treatments, denoted by 1 and 0.¹ For each treatment $d \in \{1, 0\}$, let $Y(d) \in \mathbb{R}$ denote the potential outcome under treatment d . The treatment assignment indicator is denoted by $D \in \{1, 0\}$, and the observed outcome is given by $Y = \mathbb{1}[D=1]Y(1) + \mathbb{1}[D=0]Y(0)$, meaning that we observe $Y(d)$ only if the unit is actually assigned to treatment d . Each unit is characterized by K -dimensional covariates $X \in \mathcal{X} \subset \mathbb{R}^K$, where \mathcal{X} denotes the covariate space. For n units indexed by $1, 2, \dots, n$, let $\mathcal{D} := \{(X_i, D_i, Y_i)\}_{i=1}^n$ denote the observed data, where each (X_i, D_i, Y_i) is an i.i.d. copy of (X, D, Y) generated from an underlying distribution P_0 . Our goal is to estimate the ATE, defined as

$$\tau_0 := \mathbb{E}[Y(1) - Y(0)],$$

where the expectation is taken over the distribution P_0 . Note that we can also apply our method for the ATE for the treated group (ATT). For the details about ATT estimation, see Appendix C.

Let $e_0(X) = P_0(D=1 | X)$ denote the probability of assigning treatment 1 given covariates X , which is known as the *propensity score*. Throughout this study, we impose the following conditions, commonly referred to as the unconfoundedness and common support assumptions.

Assumption 1.1. *It holds that $(Y(1), Y(0)) \perp\!\!\!\perp D | X$. There exists a constant $C > 0$ independent of n such that $C < e_0(x) < 1 - C$ for all $x \in \mathcal{X}$.*

When $e_0(x)$ is not constant, a distributional shift arises between the observed outcomes in the treatment and control groups, denoted by \mathcal{G}_1 and \mathcal{G}_0 , respectively, where $\mathcal{G}_d := \{i \in \{1, 2, \dots, n\} : D_i = d\}$. This shift induces bias in the

¹In some cases, only treatment 1 is referred to as the treatment, while treatment 0 is referred to as the control. For simplicity, we refer to them as treatment 1 and treatment 0 throughout this study.

sample mean, $\frac{1}{|\mathcal{G}_d|} \sum_{i \in \mathcal{G}_d} Y_i = \frac{1}{|\mathcal{G}_d|} \sum_{i \in \mathcal{G}_d} Y_i(d)$, which deviates from $\mathbb{E}[Y(d)]$ and thus prevents the sample mean difference, $\frac{1}{|\mathcal{G}_1|} \sum_{i \in \mathcal{G}_1} Y_i - \frac{1}{|\mathcal{G}_0|} \sum_{i \in \mathcal{G}_0} Y_i$, from being an unbiased estimator of the ATE.

To address this issue, several debiased estimators have been proposed under standard regularity conditions. In this section, we introduce two representative estimators, the inverse probability weighting (IPW) estimator and the augmented IPW (AIPW) estimator, as follows:

IPW estimator. $\tilde{\tau}^{\text{IPW}} := \frac{1}{n} \sum_{i=1}^n \left(\frac{\mathbb{1}[D_i=1]Y_i}{e_0(X_i)} - \frac{\mathbb{1}[D_i=0]Y_i}{1-e_0(X_i)} \right) = \frac{1}{n} \sum_{i=1}^n \left(\frac{\mathbb{1}[D_i=1]}{e_0(X_i)} - \frac{\mathbb{1}[D_i=0]}{1-e_0(X_i)} \right) Y_i.$

AIPW estimator. $\tilde{\tau}^{\text{AIPW}} := \frac{1}{n} \sum_{i=1}^n \left(\left(\frac{\mathbb{1}[D_i=1]}{e_0(X_i)} - \frac{\mathbb{1}[D_i=0]}{1-e_0(X_i)} \right) (Y_i - \mu_0(D_i, X_i)) + \mu_0(1, X_i) - \mu_0(0, X_i) \right)$, where $\mu_0(d, X)$ is the expected conditional outcome $\mathbb{E}[Y(d) | X]$ of treatment d given X . The AIPW estimator is also known as the doubly robust (DR) estimator (Bang & Robins, 2005).

Bias-correction term. In both estimators, the term

$$h_0(D, X) := h(D, X) := \frac{\mathbb{1}[D=1]}{e_0(X)} - \frac{\mathbb{1}[D=0]}{1-e_0(X)}$$

is crucial. This term, referred to as the *bias-correction term*, is central to ATE estimation (Schuler & van der Laan, 2024). A common approach is to estimate e_0 using logistic regression and then plug the resulting estimate \hat{e}_n^L into h . Note that the bias-correction term is also referred to as the Riesz representer (Chernozhukov et al., 2021) or the clever covariates (van der Laan, 2006). We use the term bias-correction term because the Riesz representer is closely connected to the automatic debiased machine learning literature, and the clever covariates is closely connected to the targeted maximum likelihood estimation (TMLE) literature.

For example, in a typical one-step bias correction, we first construct an ATE estimator as $\hat{\tau}_n^{\text{DM}} := \frac{1}{n} \sum_{i=1}^n (\hat{\mu}_n(1, X) - \hat{\mu}_n(0, X))$, where $\hat{\mu}_n$ is an estimator of μ_0 . This estimator is known as the direct method (DM) or naive plug-in estimator. To obtain an efficient estimator, we add the bias-correction term $\frac{1}{n} \sum_{i=1}^n h_0(D_i, X_i)(Y_i - \hat{\mu}_n(D_i, X_i))$ to the first-stage DM estimator $\hat{\tau}_n^{\text{DM}}$, yielding the AIPW estimator.

In this study, we propose a method to estimate the bias-correction term, also called the Riesz representer or the clever covariates. For example, we can estimate the bias-correction term by estimating the propensity score e_0 using the maximum likelihood estimation. However, our interest is not in propensity score estimation but in bias-correction term estimation. As the well-known Vapnik principle states, we should avoid such an intermediate problem and ideally aim to estimate the target objective in a more direct manner (Vapnik, 1998). Following this principle, this study considers estimating $h_0(D, X)$ by directly minimizing the estimation error for the true $h_0(D, X)$.

The technical challenge is that the target objective h_0 is unknown. To address this issue, we employ techniques developed in the direct density-ratio estimation (DRE) literature (Sugiyama et al., 2012). In direct DRE, the goal is to minimize the empirical risk between the true density ratio and its model, even though the true density ratio is unknown. It is known that empirical risk minimization is feasible even without knowledge of the true propensity score. Since the inverse propensity score can be viewed as a density ratio, we can extend these existing methods to our setting. For causal inference researchers who are unfamiliar with DRE, we review the DRE literature in Appendix A.

Our motivation is also closely aligned with studies on Riesz regression (Chernozhukov et al., 2021) and covariate balancing weights (Imai & Ratkovic, 2013b; Deville & Särndal, 1992), which also aim to estimate the bias-correction term in a direct manner. Studies in covariate balancing focus on the balancing property of propensity score estimator and estimate them using the property. Chernozhukov et al. (2021) proposes Riesz regression which represents the bias-correction term as the Riesz representer. Although the derivation process is different, we derive the objective function that is the same as Chernozhukov et al. (2021) by using the DRE techniques. Further, we generalize our objective by using the Bregman divergence as well as DRE in Sugiyama et al. (2011). **From this generalization, we further connect our approach to the covariate balancing by showing the equivalence between our objective and empirical balancing through the duality arguments discussed in Zhao (2019) and Bruns-Smith et al. (2025).**

1.2 OUR CONTRIBUTIONS

This study has the following four contributions: (i) a general framework for directly estimating the bias-correction term (also called the Riesz representer or clever covariates) via Bregman divergence minimization; (ii) our proposed framework includes Riesz regression in Chernozhukov et al. (2021) and the tailored loss in Zhao (2019) as special cases; (iii) under our framework, we show that there are appropriate choices of bias-correction term models and

108 Bregman divergences under which covariate balancing is automatically realized as the dual of the Bregman divergence
 109 minimization problem (*automatic covariate balancing*); (iv) we provide a theoretical analysis of the estimator.
 110

111 Our first contribution is the proposal of a framework for direct bias-correction term estimation via **Bregman divergence**
 112 **minimization**. We estimate the bias-correction term by directly minimizing the estimation error of the true bias-
 113 correction function h_0 , measured by the Bregman divergence, $\text{BR}_g^\dagger(h_0 | h) := \mathbb{E}[g(h_0(D, X)) - g(h(D, X)) -$
 114 $\partial g(h(D, X))(h_0(D, X) - h(D, X))]$, where g is a differentiable and strictly convex function. By changing g , we can
 115 measure the error using various metrics, such as the squared loss or KL divergence loss. Since the Bregman divergence
 116 involves the unknown function h_0 , direct optimization is infeasible. To address this issue, we propose minimizing an
 117 alternative objective function, defined as $\text{BR}_g(h) := \mathbb{E}[-g(h(D, X)) + \partial g(h(D, X))h(D, X) - \partial g(h(1, X)) -$
 118 $\partial g(h(0, X))]$. Minimizing the original Bregman divergence $\text{BR}_g^\dagger(h)$ is equivalent to minimizing $\text{BR}_g(h)$, which
 119 does not depend on the unknown function. That is, we establish the equivalence: $h^* := \arg \min_{h \in \mathcal{H}} \text{BR}_g^\dagger(h_0 | h) =$
 120 $\arg \min_{h \in \mathcal{H}} \text{BR}_g(h)$. The resulting objective function can then be approximated using an empirical risk function.
 121

122 Our second contribution is the unification of existing literature. Our proposed Bregman divergence minimization
 123 objective includes Riesz regression in Chernozhukov et al. (2021) (when using the squared loss) and the tailored loss in
 124 Zhao (2019) (when using the KL divergence loss). Furthermore, our framework also integrates covariate balancing
 125 methods (Imai & Ratkovic, 2013a; Hainmueller, 2012; Zubizarreta, 2015; Chan et al., 2015; Wong & Chan, 2017). If we
 126 use linear models to approximate the bias-correction term and train the model with the squared loss (Riesz regression),
 127 the dual problem coincides with the optimization problem in stable balancing weights. If we model the bias-correction
 128 term via the propensity score with logistic models and train the model with the KL divergence loss (tailored loss), the
 129 dual problem becomes the same as the optimization problem in entropy balancing weights. Kato (2025a), a subsequent
 130 work of this study, refers to this property as *automatic covariate balancing*. See Table 1 in Section 2 and Figure 1 in
 131 Appendix.
 132

133 Our third main contribution is the theoretical analysis of the estimator obtained via direct bias-correction term estimation.
 134 Since we estimate r_0 using empirical risk minimization, we establish bounds on the estimation error using empirical
 135 process theory. Furthermore, we present examples of ATE estimators that incorporate the bias-correction term estimated
 136 using our framework and conduct simulation studies. Using standard ATE estimation techniques, we demonstrate that
 137 our method yields a \sqrt{n} -consistent ATE estimator.
 138

139 As a side product of our contributions, we find that we can import various existing results from the DRE literature.
 140 Since Riesz regression is essentially the same as LSIF, various results about convergence rate analysis and optimization
 141 methods have already been established. For example, Kanamori et al. (2012) shows the convergence rate when using
 142 a reproducing kernel hilbert space (RKHS) for the density ratio, or equivalently the bias-correction term. Kato &
 143 Teshima (2021) shows the rate when using neural networks, which has been further refined in Zheng et al. (2022).
 144 Rhodes et al. (2020) and Kato & Teshima (2021) point out the overfitting problem characteristic of DRE estimation and
 145 propose techniques to avoid the problem. Lin et al. (2023) finds that nearest neighbor matching can be interpreted as
 146 density ratio estimation, and it can also be interpreted as a special case of LSIF or Riesz regression (See Appendix H).
 147 These findings not only help deepen our understanding of Riesz regression, but also prevent unnecessary reinvention.
 148 For example, the covariate adaption method proposed in Chernozhukov et al. (2025) uses Riesz regression, but it is
 149 essentially the same as covariate adaption with a density ratio estimated via LSIF (Kanamori et al., 2009), except for
 150 the regression adjustment. While Chernozhukov et al. (2022a) proposes neural networks and random forests for Riesz
 151 regression, the techniques for estimating the density ratio have also been proposed in the DRE literature (Kanamori
 152 et al., 2012; Abe & Sugiyama, 2019; Rhodes et al., 2020; Kato & Teshima, 2021).
 153

154 2 BIAS-CORRECTION TERM ESTIMATION VIA BREGMAN DIVERGENCE MINIMIZATION

155 In this study, we consider estimating h_0 by minimizing the empirical risk associated with the Bregman divergence
 156 between h_0 and its estimator $h: \{1, 0\} \times \mathcal{X} \rightarrow \mathbb{R}$.
 157

158 2.1 POPULATION BREGMAN DIVERGENCE MINIMIZATION

159 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable and strictly convex function. Given $d \in \{1, 0\}$, we define the Bregman divergence
 160 between h_0 and h as $\text{br}_g^\dagger(h_0(d, x) | h(d, x)) := g(h_0(d, x)) - g(h(d, x)) - \partial g(h(d, x))(h_0(d, x) - h(d, x))$, where
 161 ∂g denotes the derivative of g . Then, we define the average Bregman divergence as $\text{BR}_g^\dagger(h_0 | h) := \mathbb{E}[g(h_0(D, X)) -$

162 $g(h(D, X)) - \partial g(h(d, X))(h_0(D, X) - h(D, X))\Big].$ Then, we estimate h_0 by $h^* = \arg \min_{h \in \mathcal{H}} \text{BR}_g^\dagger(h_0 | h).$ By
 163 dropping the term that is irrelevant to learning, we have
 164

$$165 \quad h^* = \arg \min_{h \in \mathcal{H}} \text{BR}_g(h),$$

$$167 \quad \text{where } \text{BR}_g(h) := \mathbb{E}\Big[-g(h(D, X)) + \partial g(h(D, X))h(D, X) - \partial g(h(1, X)) + \partial g(h(0, X))\Big].$$

168 This can be shown as follows:
 169

$$170 \quad h^* = \arg \min_{h \in \mathcal{H}} \sum_{d \in \{1, 0\}} \mathbb{E}\Big[\mathbb{1}[D = d] \Big(g(h_0(d, X)) - g(h(d, X)) - \partial g(h(d, X))(h_0(d, X) - h(d, X))\Big)\Big]$$

$$171 \quad = \arg \min_{r \in \mathcal{H}} \sum_{d \in \{1, 0\}} \mathbb{E}\Big[\mathbb{1}[D = d] \Big(-g(h(d, X)) - \partial g(h(d, X))(h_0(d, X) - h(d, X))\Big)\Big]$$

$$172 \quad = \arg \min_{r \in \mathcal{H}} \sum_{d \in \{1, 0\}} \left(\mathbb{E}\Big[\mathbb{1}[D = d] (-g(h(d, X)) + \partial g(h(d, X))h(d, X))\Big] - \mathbb{E}\Big[\mathbb{1}[D = d] \partial g(h(d, X))h_0(d, X)\Big]\right)$$

$$173 \quad = \arg \min_{r \in \mathcal{H}} \left\{\mathbb{E}\Big[(-g(h(D, X)) + \partial g(h(D, X))h(d, X))\Big] - \mathbb{E}\Big[\partial g(h(1, X))\Big] + \mathbb{E}\Big[\partial g(h(0, X))\Big]\right\}.$$

174 Here, we dropped terms irrelevant to the optimization and used $\mathbb{E}[\mathbb{1}[D = 1]h_0(1, X) | X] = \mathbb{E}[e_0(X)h_0(1, X) | X] = 1$ and $\mathbb{E}[\mathbb{1}[D = 0]h_0(0, X) | X] = -1.$
 175

176 Thus, surprisingly, we demonstrate that the least squares estimate for the unknown true bias-correction term h_0 can be
 177 defined by an objective function that does not explicitly include h_0 itself. As discussed in the following subsection, this
 178 objective function can be easily approximated using observations.
 179

180 2.2 EMPIRICAL BREGMAN DIVERGENCE MINIMIZATION

181 Then, we estimate the bias-correction term h_0 by minimizing an empirical Bregman divergence as
 182

$$183 \quad \hat{h}_n := \arg \min_{h \in \mathcal{H}} \widehat{\text{BR}}_g(h) + \lambda J(h),$$

184 where $J(h)$ is some regularization function and
 185

$$186 \quad \widehat{\text{BR}}_g(h) := \frac{1}{n} \sum_{i=1}^n \Big(-g(h(D_i, X_i)) + \partial g(h(D_i, X_i))h(D_i, X_i) - \partial g(h(1, X_i) + \partial g(h(0, X_i))\Big).$$

187 2.3 LOSSES FOR THE BIAS-CORRECTION TERM ESTIMATION

188 By changing g , we can obtain various loss functions for estimating the bias-correction term, as shown in the subsequent
 189 subsections. In particular, if we use the squared loss in the Bregman divergence, we obtain Riesz regression in
 190 Chernozhukov et al. (2021), which is originally called Least-Squares Importance Fitting (LSIF) in the DRE literature
 191 Kanamori et al. (2009). Note that kernel mean matching by Gretton et al. (2009) is also the same as, or a variant of,
 192 LSIF. If we use the KL divergence, we obtain the tailored loss in Zhao (2019), which is originally called KLIEP in the
 193 DRE literature Sugiyama et al. (2008). Furthermore, as we discuss in Section 3, if we use linear models for h_0 and
 194 train them with the squared loss, the covariate balancing property is automatically obtained, as shown in Bruns-Smith
 195 et al. (2025). If we model h_0 using the propensity score e_0 approximated via logistic models and train it with the
 196 tailored loss, the covariate balancing property is automatically obtained, as shown in Zhao (2019). We demonstrate
 197 the correspondence of the existing methods in Table 1. Also see Figure 1 in Appendix for the relationship among
 198 bias-correction term estimation via Bregman divergence minimization, density ratio estimation, and covariate balancing,
 199 summarized in Kato (2025a) and Kato (2025c).
 200

201 2.4 SQUARED LOSS

202 Our least squares method for direct bias-correction term estimation can be obtained by using a squared loss $g^{\text{SL}}(h) =$
 203 $(h - 1)^2.$ By substituting this function into the Bregman divergence, we formulate the estimation problem as $h^* :=$
 204 $\arg \min_{h \in \mathcal{H}} \text{BR}_{g^{\text{SL}}}(h)$, where
 205

$$206 \quad \text{BR}_{g^{\text{SL}}}(h) = \mathbb{E}\Big[-2(h(1, X) - h(0, X)) + h(D, X)^2\Big].$$

Table 1: Correspondence among DRE methods and bias-correction term estimation methods (BCE).

DRE method	BCE method	$g(t)$
LSIF (Kanamori et al., 2009)	Riesz regression (Chernozhukov et al., 2021)	$(t-1)^2/2$
Kernel Mean Matching (Gretton et al., 2009)	Stable balancing weights (Zubizarreta, 2015)	
UKL (Nguyen et al., 2010)	Tailored loss (Zhao, 2019)	$t \log(t) - t$
KLIEP (Sugiyama et al., 2008)	Entropy balancing weights (Hainmueller, 2012)	$t \log(t) - (1+t) \log(1+t)$
Binary KL divergence		$C \log(1-t)$
PULogLoss (Kato et al., 2019)		$+Ct(\log(t) - \log(1-t))$ for $0 < t < 1$

Then, we estimate the bias-correction term as $\hat{h}_n := \arg \min_{h \in \mathcal{H}} \widehat{\text{BR}}_{g^{\text{SL}}}(h) + \lambda J(h)$, where $\widehat{\text{BR}}_{g^{\text{SL}}}(h) = \frac{1}{n} \sum_{i=1}^n (-2(h(1, X_i) - h(0, X_i)) + h(D_i, X_i)^2)$. This objective function is the same as the one used in Chernozhukov et al. (2021). This type of estimation method is referred to as LSIF in density-ratio estimation (Kanamori et al., 2009).

2.5 KL DIVERGENCE LOSS

Consider $g^{\text{KL}}(h) = |h| \log |h| - |h|$, which is a convex function. By substituting this function into the Bregman divergence, we formulate the estimation problem as $h^* := \arg \min_{h \in \mathcal{H}} \text{BR}_{g^{\text{KL}}}(h)$, where

$$\text{BR}_{g^{\text{KL}}}(h) := \mathbb{E} \left[|h(D_i, X_i)| - \log(|h(1, X)|) - \log(|h(0, X)|) \right].$$

Then, we estimate the bias-correction term as $\hat{h}_n := \arg \min_{h \in \mathcal{H}} \widehat{\text{BR}}_{g^{\text{KL}}}(h) + \lambda J(h)$, where $\widehat{\text{BR}}_{g^{\text{KL}}}(h) = \frac{1}{n} \sum_{i=1}^n (|h(D_i, X_i)| - \log(|h(1, X_i)|) - \log(|h(0, X_i)|))$. This estimation method corresponds to unnormalized Kullback–Leibler (UKL) minimization in DRE (Nguyen et al., 2010), which generalizes the KL importance estimation procedure (KLIEP). Also see Appendix B.

2.6 TAILORED LOSS (A VARIANT OF THE KL DIVERGENCE LOSS)

Next, as a variant of the KL divergence loss, we propose the tailored loss. Let us redefine a model \mathcal{H} as a set of functions $h(1, \cdot) : \mathcal{X} \rightarrow (1, \infty)$ and $h(0, \cdot) : \mathcal{X} \rightarrow (-1, -\infty)$; that is, we restrict the space of h . This restriction is justified from the form of h_0 and the common support assumption. Let us consider $g^{\text{TL}}(h) = (|h| - 1) \log(|h| - 1) - |h|$. By substituting this function, we obtain

$$\text{BR}_{g^{\text{TL}}}(h) := \mathbb{E} \left[\log(|h(D, X)| - 1) + |h(D, X)| - \log(|h(1, X)| - 1) - \log(|h(0, X)| - 1) \right].$$

Note that it holds that $\text{BR}_{g^{\text{TL}}}(h) := \mathbb{E} \left[-\mathbb{1}[D=0] \log(|h(1, X)| - 1) - \mathbb{1}[D=1] \log(|h(0, X)| - 1) + \mathbb{1}[D=1]h(1, X) - \mathbb{1}[D=0]h(0, X) \right]$. Then, we estimate the bias-correction term as $\hat{h}_n := \arg \min_{h \in \mathcal{H}} \widehat{\text{BR}}_{g^{\text{TL}}}(h)$, where the empirical Bregman divergence becomes $\widehat{\text{BR}}_{g^{\text{TL}}}(h) = \frac{1}{n} \sum_{i=1}^n (\mathbb{1}[D_i=0] \log(|h(1, X_i)| - 1) + \mathbb{1}[D_i=1] \log(|h(0, X_i)| - 1) + \mathbb{1}[D_i=1]|h(1, X_i)| - \mathbb{1}[D_i=0]|h(0, X_i)|)$.

3 AUTOMATIC COVARIATE BALANCING

Under specific choices of Riesz regression models and Bregman divergence, we can automatically enforce the covariate balancing property. The key tool is the duality relationship between the Bregman divergence minimization problem and the covariate balancing optimization problem. This result is shown in Kato (2025a), and we introduce the result for reference.

3.1 LINEAR MODELS AND SQUARED LOSS

Consider a linear model

$$h_{\beta}(D, X) = \Phi(D, X)^{\top} \beta,$$

where $\Phi : \{1, 0\} \times \mathcal{X} \rightarrow \mathbb{R}^p$ is a basis function. For this model, using the squared loss (Riesz regression) automatically achieves covariate balancing, as discussed in Bruns-Smith et al. (2025).

270 Specifically, under linear models, by duality, this MSE minimization problem is equivalent to solving
 271

$$272 \min_{w \in \mathbb{R}^n} \|w\|_2^2 \quad \text{s.t.} \quad \sum_{i=1}^n w_i \Phi(D_i, X_i) - \left(\sum_{i=1}^n (\Phi(1, X_i) - \Phi(0, X_i)) \right) = \mathbf{0}_p,$$

273 where $\mathbf{0}_p$ is the p -dimensional zero vector. This optimization problem matches that used to obtain stable weights
 274 (Zubizarreta, 2015).

275 It enforces the covariate balancing condition $\sum_{i=1}^n \widehat{w}_i \Phi(D_i, X_i) - \left(\sum_{i=1}^n (\Phi(1, X_i) - \Phi(0, X_i)) \right) = \mathbf{0}_p$, where
 276 $\widehat{w}_i = \Phi(D_i, X_i)^\top \widehat{\beta}$.

277 Another advantage of using linear models is that we can write the entire ATE estimation with a single linear model, as
 278 shown by Bruns-Smith et al. (2025).

282 3.2 LOGISTIC MODELS AND TAILORED LOSS

283 We can model the Riesz representer by modeling the propensity score as

$$284 h_\beta(D, X) = \mathbb{1}[D = 1]r_\beta(1, X) - \mathbb{1}[D = 0]r_\beta(0, X),$$

285 where $r_\beta(1, X) = \frac{1}{e_\beta(X)}$, $r_\beta(0, X) = \frac{1}{1-e_\beta(X)}$, $e_\beta(X) := \frac{1}{1+\exp(-\beta^\top \Phi(X))}$, and $\Phi: \mathcal{X} \rightarrow \mathbb{R}^p$ is a basis function.

286 Note that we do not include D , unlike the basis function used in linear models. For this model, if we use the KL-
 287 divergence-flavored convex function defined in Section 2.6, which corresponds to the tailored loss in Zhao (2019), we
 288 automatically achieve covariate balancing.

289 Define $\widehat{\beta} := \arg \min_\beta \frac{1}{n} \sum_{i=1}^n \sum_{d \in \{1, 0\}} (\mathbb{1}[D_i = d] \left(-\log \left(\frac{1}{r_\beta(d, X_i)} \right) + r_\beta(d, X_i) \right))$, and denote $r_{\widehat{\beta}}$ by \widehat{r} . Under logistic models, by duality, the KL divergence-flavored loss is equivalent to solving

$$290 \min_{w \in (1, \infty)^n} \sum_{i=1}^n (w_i - 1) \log(w_i - 1) \quad \text{s.t.} \quad \left(\sum_{i=1}^n (\mathbb{1}[D_i = 1]w_i \Phi(X_i) - \mathbb{1}[D_i = 0]w_i \Phi(X_i)) \right) = \mathbf{0}_p.$$

291 This optimization problem matches that used in entropy balancing (Hainmueller, 2012). Note that this objective function
 292 is derived from $\widehat{\text{BR}}_{g^{\text{TL}}}(h)$ when we use the logistic model specified in this section.

293 As a result, we obtain $\sum_{i=1}^n (\mathbb{1}[D_i = 1]\widehat{w}_i \Phi(X_i) - \mathbb{1}[D_i = 0]\widehat{w}_i \Phi(X_i)) = \mathbf{0}_p$, where $\widehat{w}_i = \widehat{r}(X_i)$.

294 This model has the advantage that we can use a basis function $\Phi(X)$ independent of D . Moreover, it naturally achieves
 295 covariate balance in the sense that the covariate distributions match between the treated and control groups. Additionally,
 296 it allows us to automatically impose nonnegativity on $h(1, X)$ and $-h(0, X)$, which may be violated in linear models.
 297 Note that $h_0(1, X) = \frac{1}{e(X)}$ and $h_0(0, X) = \frac{1}{1-e(X)}$.

300 3.3 COMPARISON

301 We first discuss the advantages of using logistic models over linear models. One benefit of using logistic models
 302 is that we can simplify the basis function by making it independent of D . Furthermore, we can express covariate
 303 balancing in a clearer form as $\sum_{i=1}^n (\mathbb{1}[D_i = 1]\widehat{w}_i \Phi(X_i) - \mathbb{1}[D_i = 0]\widehat{w}_i \Phi(X_i)) = \mathbf{0}_p$, while under linear models,
 304 $\sum_{i=1}^n \widehat{w}_i \Phi(D_i, X_i) - \left(\sum_{i=1}^n (\Phi(1, X_i) - \Phi(0, X_i)) \right) = \mathbf{0}_p$ is attained, but it is somewhat harder to interpret.
 305 Moreover, using logistic models incorporates more information about the form of the bias-correction term, which
 306 includes the inverse propensity function. Logistic models also naturally impose restrictions such that $h(1, X) \in (1, \infty)$
 307 and $h(0, X) \in (-\infty, -1)$ under the common support assumption.

308 In contrast, if we use linear models, we can express the entire ATE estimator with a single linear model, as shown
 309 in Bruns-Smith et al. (2025). Furthermore, we can obtain the estimator of the bias-correction term as a closed-form
 310 solution. In addition, as discussed in Kato (2025b), a subsequent work of this study, nearest neighbor matching is also
 311 an instance of linear models trained via Riesz regression (squared loss). We introduce the result in Appendix H for
 312 reference.

313 Ultimately, there is no clear dominance between the use of linear and logistic models. Moreover, we can also use
 314 more complex models, such as random forests and neural networks. The choice of model should be made based on the

324 data and application, and once the model is selected, we can determine appropriate specifications that ensure covariate
 325 balancing automatically.
 326

327 **4 ESTIMATION ERROR ANALYSIS**

328 This section provides an estimation error analysis for h_0 estimated by the direct bias-correction term estimation method.
 329 We can use various models for \mathcal{H} , including RKHS and neural networks.
 330

331 **4.1 MODEL**

332 We define a model of the bias-correction term h_0 by $h(D, X) = \zeta^{-1} \circ f(D, X) = \zeta^{-1}(f(D, X))$, where ζ is a
 333 continuously differentiable and globally Lipschitz link function, and f is some basic model. For example, if we use
 334 linear model for the bias-correction term h_0 , we can write $h(D, X) = \Phi(D, X)^\top \beta$, where ζ is the identity function,
 335 $f(D, X) = \Phi(D, X)^\top \beta$, Φ is some basis function and β is the corresponding parameter. If we use logistic model for
 336 the bias-correction term h_0 , we can use logistic link for ζ , and $f(D, X) = \Phi(X)^\top \beta$.
 337

338 **4.2 RKHS**

339 First, we investigate the case with RKHS regression. Let $\mathcal{F}^{\text{RKHS}}$ be a class of RKHS functions, and define $\hat{f}_n^{\text{RKHS}} :=$
 340 $\arg \min_{f \in \mathcal{F}^{\text{RKHS}}} \hat{\mathcal{L}}_n(\zeta^{-1} \circ f) + \lambda \|f\|_{\mathcal{F}}^2$, where $\|\cdot\|_{\mathcal{F}}^2$ is the RKHS norm. Then, we define an estimator as $h^{\text{RKHS}} :=$
 341 $\zeta^{-1} \circ \hat{f}_n^{\text{RKHS}}$. We analyze the estimation error by employing the results in Kanamori et al. (2012), which study RKHS-
 342 based LSIF in DRE. We define the following localized class of RKHS functions as a technical device: $\mathcal{F}_M^{\text{RKHS}} := \{f \in$
 343 $\mathcal{F}^{\text{RKHS}} : I(f) \leq M\}$ for some norm $I(f)$ of f . We also define $\mathcal{H}^{\text{RKHS}} := \{\zeta^{-1} \circ f : f \in \mathcal{F}^{\text{RKHS}}\}$. We then make the
 344 following assumption using this localized class.
 345

346 **Assumption 4.1.** *There exist constants $0 < \gamma < 2$, $0 \leq \beta \leq 1$, $c_0 > 0$, and $A > 0$ such that for all $M \geq 1$, it
 347 holds that $H_B(\delta, \mathcal{F}_M^{\text{RKHS}}, P_0) \leq A \left(\frac{M}{\delta}\right)^\gamma$, where $H_B(\delta, \mathcal{F}_M^{\text{RKHS}}, P_0)$ is the bracketing entropy with radius $\delta > 0$ for the
 348 function class $\mathcal{F}_M^{\text{RKHS}}$ and the distribution P_0 .*
 349

350 For the details of the definition of the bracketing entropy, see Appendix F and Definition 2.2 in van de Geer (2000).
 351

352 Under these preparations, we establish an estimation error bound.
 353

354 **Theorem 4.1** (L_2 -norm estimation error bound). *Suppose that g is μ -strongly convex and there exist constant $C > 0$
 355 such that $|g''(t)| \leq C \quad \forall t \in \mathbb{R}$. Assume also that $\zeta^{-1}(0)$ is finite. Suppose that Assumptions 1.1 and 4.1 hold. Set the
 356 regularization parameter $\lambda = \lambda_n$ so that $\lim_{n \rightarrow \infty} \lambda_n = 0$ and $\lambda_n^{-1} = O(n^{1-\delta})$ ($n \rightarrow \infty$). If $h_0 \in \mathcal{H}^{\text{RKHS}}$, then we
 357 have $\left\| \hat{h}_n^{\text{RKHS}}(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 = O_{P_0}(\lambda^{1/2})$.*
 358

359 The proof is provided in Appendix F, following the approach of Kanamori et al. (2012). The parameter γ is determined
 360 by the function class to which f_0 belongs.
 361

362 **4.3 NEURAL NETWORKS**

363 Second, we provide an estimation error analysis when we use neural networks for \mathcal{H} . Our analysis is mostly based on
 364 Kato & Teshima (2021) and Zheng et al. (2022). We define Feedforward neural networks (FNNs) as follows:
 365

366 **Definition 4.1** (FNNs. From Zheng et al. (2022)). *Let \mathcal{D} , \mathcal{W} , \mathcal{U} , and $\mathcal{S} \in (0, \infty)$ be parameters that can depend on n .
 367 Let $\mathcal{F}^{\text{FNN}} := \mathcal{F}_{M, \mathcal{D}, \mathcal{W}, \mathcal{U}, \mathcal{S}}^{\text{FNN}}$ be a class of ReLU-activated FNNs with parameter θ , depth \mathcal{D} , width \mathcal{W} , size \mathcal{S} , number
 368 of neurons \mathcal{U} , satisfies the following conditions: (i) the number of hidden layers is \mathcal{D} ; (ii) the maximum width of the
 369 hidden layers is \mathcal{W} ; (iii) the number of neurons in e_θ is \mathcal{U} ; (iv) the total number of parameters in e_θ is \mathcal{S} .*
 370

371 For the model \mathcal{F}^{FNN} , we define $\hat{f}_n^{\text{FNN}} := \arg \min_{f \in \mathcal{F}^{\text{FNN}}} \hat{\mathcal{L}}_n(\zeta^{-1} \circ f)$. Then, we define an estimator as $\hat{h}_n^{\text{FNN}} :=$
 372 $\zeta^{-1} \circ \hat{f}_n^{\text{FNN}}$.
 373

374 For the estimator, we can prove an estimation error bound. Let us make the following assumption.
 375

376 **Assumption 4.2.** *There exists a constant $0 < M < \infty$ such that $\|f_0\|_\infty < M$, and $\|f\|_\infty \leq M$ for any $f \in \mathcal{F}^{\text{FNN}}$.*
 377

378 Let $\text{Pdim}(\mathcal{F}^{\text{FNN}})$ be the pseudo-dimension of \mathcal{F}^{FNN} . For the definition, see Anthony & Bartlett (1999) and Definition 3
 379 in Zheng et al. (2022). Then, we prove the following estimation error bound:
 380

378 **Theorem 4.2** (Estimation error bound for neural networks). *Suppose that g is μ -strongly convex and there exist constant $C > 0$ such that $|g''(t)| \leq M \ \forall t \in \mathbb{R}$. Assume also that $\zeta^{-1}(0)$ is finite. Suppose that Assumption 4.2 holds. For f_0 such that $h_0 = \zeta^{-1} \circ f_0$, also assume $f_0 \in \Sigma(\beta, M, [0, 1]^d)$ with $\beta = k + a$, where $k \in \mathbb{N}^+$ and $a \in (0, 1]$, and \mathcal{F}^{FNN} has width \mathcal{W} and depth \mathcal{D} such that $\mathcal{W} = 38(\lfloor \beta \rfloor + 1)^2 d^{\lfloor \beta \rfloor + 1}$ and $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 \lceil n^{\frac{d}{2(d+2\beta)}} \log_2(8n^{\frac{d}{2(d+2\beta)}}) \rceil$. Then, for $M \geq 1$ and $n \leq \text{Pdim}(\mathcal{F}^{\text{FNN}})$, it holds that*

384
$$\left\| \widehat{h}_n^{\text{FNN}}(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 = C_0(\lfloor \beta \rfloor + 1)^9 d^{2\lfloor \beta \rfloor + (\beta \wedge 3)} n^{-\frac{2\beta}{d+2\beta}} \log^3 n, \text{ where } C_0 > 0 \text{ is a constant independent of } n.$$

387 The proof is provided in Appendix G, following the approach of Zheng et al. (2022). This result directly implies the
388 minimax optimality of the proposed method when f_0 belongs to a Hölder class.
389

390 5 EXAMPLE ABOUT THE AIPW ESTIMATOR

393 This section introduces the AIPW estimator with nuisance parameters estimated using our proposed direct bias-
394 correction term estimation. We prove that under certain conditions, the proposed estimator is asymptotically normal.
395 Note that this result is well known in the literature except for the use of nuisance parameters estimated via our direct
396 bias-correction term estimation. The purpose of this section is not to provide novel methodological or theoretical results
397 but to present an application of our proposed method.

398 We analyze the AIPW estimator with an estimated propensity score. Recall that the AIPW estimator is defined as
399 $\tilde{\tau}_n^{\text{AIPW}} = \frac{1}{n} \sum_{i=1}^n (\widehat{h}_n(D_i, X_i)(Y_i - \widehat{\mu}_n(D_i, X_i)) + \widehat{\mu}_n(1, X_i) - \widehat{\mu}_n(0, X_i))$, which is also called the DR estimator.
400

401 We first make the following assumption.

402 **Assumption 5.1** (Donsker condition or cross fitting). *Either of the followings holds: (i) the hypothesis classes \mathcal{H} and
403 \mathcal{M} belong to the Donsker class, or (ii) $\widehat{\mu}_n$ and \widehat{h}_n are estimated via cross fitting.*

405 For example, the Donsker condition holds when the bracketing entropy of \mathcal{H} is finite. In contrast, it is violated in
406 high-dimensional regression or series regression settings where the model complexity diverges as $n \rightarrow \infty$. For neural
407 networks, the assumption holds if both the number of layers and the width are finite. However, if these quantities grow
408 with the sample size, the assumption is no longer valid.

409 Even if the Donsker condition does not hold, we can still establish asymptotic normality by employing sample
410 splitting (Klaassen, 1987). There are various ways to implement sample splitting, and one of the most well-known
411 is cross-fitting, used in double machine learning (DML, Chernozhukov et al., 2018). In DML, the dataset is split
412 into several folds, and the nuisance parameters are estimated using only a subset of the folds. This ensures that in
413 $\widehat{h}_n(D_i, X_i)(Y_i - \widehat{\mu}_n(D_i, X_i)) + \widehat{\mu}_n(1, X_i) - \widehat{\mu}_n(0, X_i)$, the observations (X_i, D_i, Y_i) are not used to construct $\widehat{\mu}_n$
414 and \widehat{r}_n . For more details, see Chernozhukov et al. (2018).

415 **Assumption 5.2** (Convergence rate). $\|\widehat{h} - h_0\|_2 = o_p(1)$, $\|\widehat{\mu} - \mu_0\|_2 = o_p(1)$, and $\|\widehat{h} - h_0\|_2 \|\widehat{\mu} - \mu_0\|_2 = o_p(1/\sqrt{n})$.

417 Under these assumptions, we show the asymptotic normality of $\tilde{\tau}_n^{\text{AIPW}}$. We omit the proof. For details, see Schuler &
418 van der Laan (2024), for example.

419 **Theorem 5.1** (Asymptotic normality). *Suppose that Assumptions 1.1, and 5.1–5.2 hold. Then, the AIPW estimator
420 converges in distribution to a normal distribution as $\sqrt{n}(\tilde{\tau}_n^{\text{AIPW}} - \tau_0) \xrightarrow{d} \mathcal{N}(0, V^*)$, where V^* is the efficiency bound
421 defined as $V^* := \mathbb{E} \left[\frac{\sigma^2(1, X)}{e_0(X)} + \frac{\sigma^2(0, X)}{1-e_0(X)} + (\tau_0(X) - \tau_0)^2 \right]$ and $\tau_0(X) := \mathbb{E}[Y(1) - Y(0) | X]$.*

424 Here, V^* matches the efficiency bound given as the variance of the efficient influence function (van der Vaart, 1998).
425 Thus, this estimator is efficient.

427 5.1 COMPARISON WITH THE STANDARD DRE APPROACHES

429 If we follow the standard DRE approach, we may formulate the problem as the direct estimation of $r_0(1, X)$. For
430 example, when using LSIF, the risk is given by $\mathbb{E}[-2r(1, X)] + \mathbb{E}[\mathbb{1}[D=1]r(1, X)^2]$, which corresponds to a part of
431 our risk: $\mathbb{E}[-2r(1, X) - 2r(0, X) + \mathbb{1}[D=1]r(1, X)^2 + \mathbb{1}[D=0]r(0, X)^2]$. Thus, our proposed method is closely

432

433 Table 2: Experimental results. We report the empirical MSE and Bias of each method.

434 Data	435 Dimension	436 DM		437 DBC (LS)		438 DBC (KL)		439 MLE		440 CBPS		441 RieszNet		442 DM	
		443 IPW		444 DR		445 IPW		446 DR		447 IPW		448 DR		449 Dragonnet	
436 Model 1	$K = 3$	MSE	0.006	0.392	0.005	0.374	0.005	0.330	0.004	1.429	0.006	0.017	0.021	0.040	2.781
	$K = 3$	Bias	-0.037	-0.299	-0.024	-0.316	-0.023	-0.257	-0.022	-0.747	-0.037	-0.027	-0.025	-0.053	-0.197
	$K = 3$	MSE	0.521	1.956	0.481	2.779	0.478	6.510	0.507	3.570	0.515	0.464	0.510	0.379	7.511
	$K = 10$	Bias	0.094	-0.930	0.086	-0.822	0.088	-0.268	0.091	-1.422	0.089	-0.093	-0.106	-0.017	0.101
439 Model 2	$K = 3$	MSE	0.048	0.343	0.033	0.819	0.037	2.838	0.045	1.848	0.044	0.030	0.034	0.051	2.866
	$K = 3$	Bias	-0.009	-0.275	-0.011	-0.382	-0.010	-0.403	-0.011	-0.781	-0.012	-0.022	-0.020	-0.057	-0.214
	$K = 3$	MSE	0.517	2.006	0.474	2.980	0.477	6.517	0.507	3.816	0.512	0.407	0.446	0.424	7.482
	$K = 10$	Bias	0.085	-0.944	0.082	-0.823	0.085	-0.269	0.089	-1.410	0.084	-0.087	-0.096	-0.012	0.093

442
443
444 connected to LSIF. However, the standard DRE approach does not address whether it is suitable for bias-correction term
445 estimation. In fact, we can estimate r_0 by minimizing the LSIF risk, but our proposed method adopts a different risk:
446 the sum of $\mathbb{E}[-2r(1, X)] + \mathbb{E}[\mathbb{1}[D = 1]r(1, X)^2]$ and $\mathbb{E}[-2r(0, X)] + \mathbb{E}[\mathbb{1}[D = 0]r(0, X)^2]$, which is directly
447 related to the bias-correction term.

448
449
450

451 6 SIMULATION STUDIES

452
453
454 We assess the performance of our method through simulation studies, evaluating ATE estimation error. We denote
455 our direct bias-correction term estimation methods as DBC (LS) when using the squared loss, and DBC (TL) when
456 using the tailored loss. We compare our approach with ATE estimators using propensity score estimated by maximum
457 likelihood estimation (MLE), CBPS (Imai & Ratkovic, 2013a), and RieszNet (Chernozhukov et al., 2022a). Because our
458 DBC (LS) is equivalent to Resz regression, we include RieszNet primarily as a numerical check of equivalence, noting
459 architectural differences. In this section, for simplicity, we do not apply cross-fitting. We also conduct experiments in
460 Appendices I and J using synthetic and semi-synthetic data, respectively, in which we apply cross-fitting.

461 We consider two different dimensions for X , setting $K = 3$ and $K = 10$, and two different outcome models. This results
462 in a total of four experimental settings. In all cases, the true ATE is fixed at $\tau_0 = 5.0$. To generate synthetic data, we first
463 sample covariates X_i from a multivariate normal distribution $\mathcal{N}(0, I_K)$, where I_K denotes the $K \times K$ identity matrix.
464 The propensity score is then defined as $e_0(X_i) = \frac{1}{1 + \exp(-h(X_i))}$, where $h(X_i) = \sum_{j=1}^3 \alpha_j X_{i,j} + \sum_{j=1}^3 \beta_j X_{i,j}^2 +$
465 $\gamma_1 X_{i,1} X_{i,2} + \gamma_2 X_{i,2} X_{i,3} + \gamma_3 X_{i,1} X_{i,3}$. The coefficients α_j , β_j , and γ_j are independently drawn from $\mathcal{N}(0, 0.5)$. Given
466 these propensity scores, the treatment assignment D is sampled accordingly. The outcome is then generated under two
467 models, referred to as Model 1 and Model 2. In Model 1, we specify $Y_i = (X_i^\top \beta)^2 + 1.1 + \tau_0 D_i + \varepsilon_i$, where $\varepsilon_i \sim \mathcal{N}(0, 1)$
468 and $\tau_0 = 5.0$. In Model 2, the outcome is generated as $Y_i = X_i^\top \beta + (X_i^\top \beta)^2 + 3 \sin(X_{i,1}) + 1.1 + \tau_0 D_i + \varepsilon_i$.

469 We model h_0 by modeling e_0 . To model e_0 , we use a three-layer neural network with an Exponential Linear Unit (ELU)
470 activation function for each hidden layer (100 nodes per layer). The final output layer applies a sigmoid function to
471 ensure that the estimated propensity scores remain in $(0, 1)$. We use this model for our method, logistic regression, and
472 CBPS. For RieszNet, we adopt the DragonNet architecture proposed in Shi et al. (2019), following Chernozhukov et al.
473 (2022b). For each method, including ours, we compute both the IPW and AIPW estimators using the estimated scores.
474 Additionally, we include the direct method (DM) estimator with neural networks for comparison. In each case, the
475 expected conditional outcomes are estimated using a three-layer neural network (100 nodes per hidden layer, with ELU
476 activation). As a baseline, we also consider the DM estimator with linear models.

477 The sample size is fixed at $n = 3000$. As noted earlier, we evaluate two values of K ($K = 3$ and $K = 10$) and two
478 outcome-model specifications (Model 1 and Model 2), resulting in four experimental configurations. Each setting is
479 repeated 500 times. We report the MSEs and biases of the resulting ATE estimates in Table 2 for $n = 3000$. Overall, the
480 results indicate that our direct bias-correction approach achieves competitive or superior estimation accuracy compared
481 with logistic regression and CBPS, highlighting the benefits of explicitly estimating the bias-correction term in the ATE
482 context. RieszNet tends to outperform our method, but we consider this to be partly due to differences in the regression
483 models. While RieszNet employs DragonNet, we use a simpler implementation. We do not employ such models, as
484 model complexity is not our primary focus. Nevertheless, we emphasize that our method outperforms most existing
485 approaches while exhibiting comparable performance to RieszNet.

486 7 CONCLUSION
487

488 This study proposed direct bias-correction term estimation in ATE estimation. Instead of focusing on estimating the
489 propensity score itself, our approach directly minimizes the estimation error of the bias-correction term, leveraging
490 empirical risk minimization techniques. We demonstrated that this direct approach enhances estimation accuracy by
491 avoiding the intermediate step of propensity score estimation. Additionally, our method was analyzed through the lens
492 of Bregman divergence minimization, providing a generalized framework.

493
494 REFERENCES
495

496 Masahiro Abe and Masashi Sugiyama. Anomaly detection by deep direct density ratio estimation, 2019. openreview.

497 Martin Anthony and Peter L. Bartlett. *Neural Network Learning: Theoretical Foundations*. Cambridge University
498 Press, 1999.

499 Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal inference models. *Biometrics*,
500 61(4):962–973, 2005.

501 Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. *The Annals of Statistics*,
502 33(4):1497 – 1537, 2005.

503 David Bruns-Smith, Oliver Dukes, Avi Feller, and Elizabeth L Ogburn. Augmented balancing weights as linear
504 regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 04 2025.

505 Kwun Chuen Gary Chan, Sheung Chi Phillip Yam, and Zheng Zhang. Globally efficient non-parametric inference of
506 average treatment effects by empirical balancing calibration weighting. *Journal of the Royal Statistical Society Series
507 B: Statistical Methodology*, 78(3):673–700, 2015.

508 kuang-Fu Cheng and C. K. Chu. Semiparametric density estimation under a two-sample density ratio model. *Bernoulli*,
509 10, 08 2004.

510 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James
511 Robins. Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 2018.

512 Victor Chernozhukov, Whitney K. Newey, Victor Quintas-Martinez, and Vasilis Syrgkanis. Automatic debiased machine
513 learning via riesz regression, 2021. arXiv:2104.14737.

514 Victor Chernozhukov, Whitney Newey, Víctor M Quintas-Martínez, and Vasilis Syrgkanis. RieszNet and ForestRiesz:
515 Automatic debiased machine learning with neural nets and random forests. In *International Conference on Machine
516 Learning (ICML)*, 2022a.

517 Victor Chernozhukov, Whitney K. Newey, and Rahul Singh. Automatic debiased machine learning of causal and
518 structural effects. *Econometrica*, 90(3):967–1027, 2022b.

519 Victor Chernozhukov, Michael Newey, Whitney K Newey, Rahul Singh, and Vasilis Srygkanis. Automatic debiased
520 machine learning for covariate shifts, 2025. arXiv: 2307.04527.

521 Jean-Claude Deville and Carl-Erik Särndal. Calibration estimators in survey sampling. *Journal of the American
522 Statistical Association*, 87(418):376–382, 1992.

523 A. Gretton, A. J. Smola, J. Huang, Marcel Schmittfull, K. M. Borgwardt, and B. Schölkopf. Covariate shift by kernel
524 mean matching. *Dataset Shift in Machine Learning*, 131-160 (2009), 01 2009.

525 Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples
526 in observational studies. *Political Analysis*, 20(1):25–46, 2012.

527 Masayuki Henmi and Shinto Eguchi. A paradox concerning nuisance parameters and projected estimating functions.
528 *Biometrika*, 2004.

529 Keisuke Hirano, Guido Imbens, and Geert Ridder. Efficient estimation of average treatment effects using the estimated
530 propensity score. *Econometrica*, 2003.

531 Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex J. Smola. Correcting sample
532 selection bias by unlabeled data. In *NeurIPS*, pp. 601–608. MIT Press, 2007.

540 Kosuke Imai and Marc Ratkovic. Covariate balancing propensity score. *Journal of the Royal Statistical Society Series*
 541 *B: Statistical Methodology*, 76(1):243–263, 07 2013a. ISSN 1369-7412.

542

543 Kosuke Imai and Marc Ratkovic. Estimating treatment effect heterogeneity in randomized program evaluation. *The*
 544 *Annals of Applied Statistics*, 7(1):443–470, 2013b.

545

546 Guido W. Imbens and Donald B. Rubin. *Causal Inference for Statistics, Social, and Biomedical Sciences: An*
 547 *Introduction*. Cambridge University Press, 2015.

548

549 Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct importance estimation.
 550 *Journal of Machine Learning Research*, 10(Jul.):1391–1445, 2009.

551

552 Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. Statistical analysis of kernel-based least-squares density-ratio
 553 estimation. *Mach. Learn.*, 86(3):335–367, March 2012. ISSN 0885-6125.

554

555 Masahiro Kato. Direct debiased machine learning via bregman divergence minimization, 2025a. arXiv: 2510.23534.

556

557 Masahiro Kato. Nearest neighbor matching as least squares density ratio estimation and riesz regression, 2025b. arXiv:
 558 2510.24433.

559

560 Masahiro Kato. A unified theory for causal inference: Direct debiased machine learning via bregman-riesz regression,
 561 2025c.

562

563 Masahiro Kato and Takeshi Teshima. Non-negative bregman divergence minimization for deep direct density ratio
 564 estimation. In *International Conference on Machine Learning (ICML)*, 2021.

565

566 Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data with a selection bias. In
 567 *International Conference on Learning Representations (ICLR)*, 2019.

568

569 Masahiro Kato, Masaaki Imaizumi, and Kentaro Minami. Unified perspective on probability divergence via the
 570 density-ratio likelihood: Bridging kl-divergence and integral probability metrics. In *International Conference on*
 571 *Artificial Intelligence and Statistics (AISTATS)*, pp. 5271–5298, 2023.

572

573 Chris A. J. Klaassen. Consistent estimation of the influence function of locally asymptotically linear estimators. *Annals*
 574 *of Statistics*, 15, 1987.

575

576 Zhexiao Lin, Peng Ding, and Fang Han. Estimation based on nearest neighbor matching: from density ratio to average
 577 treatment effect. *Econometrica*, 91(6):2187–2217, 2023.

578

579 XuanLong Nguyen, Martin Wainwright, and Michael Jordan. Estimating divergence functionals and the likelihood
 580 ratio by convex risk minimization. *IEEE*, 2010.

581

582 Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models. *Biometrika*, 85(3):619–630,
 583 1998.

584

585 Benjamin Rhodes, Kai Xu, and Michael U. Gutmann. Telescoping density-ratio estimation. In *Advances in Neural*
 586 *Information Processing Systems (NeurIPS)*, 2020.

587

588 Alejandro Schuler and Mark van der Laan. Introduction to modern causal inference, 2024. URL <https://alejandroschuler.github.io/mci/introduction-to-modern-causal-inference.html>.

589

590 Claudia Shi, David M. Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment effects. In
 591 *International Conference on Neural Information Processing Systems*. Curran Associates Inc., 2019.

592

593 B. W. Silverman. On the estimation of a probability density function by the maximum penalized likelihood method.
 594 *The Annals of Statistics*, 10(3):795 – 810, 1982.

595

596 Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bünnau, and Motoaki Kawanabe.
 597 Direct importance estimation for covariate shift adaptation. *Annals of the Institute of Statistical Mathematics*, 60(4):
 598 699–746, 2008.

599

600 Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio matching under the bregman divergence: A
 601 unified framework of density ratio estimation. *Annals of the Institute of Statistical Mathematics*, 64, 10 2011.

594 Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. *Density Ratio Estimation in Machine Learning*. Cambridge
595 University Press, 2012.

596

597 Sara van de Geer. *Empirical Processes in M-Estimation*, volume 6. Cambridge University Press, 2000.

598 van der Laan. Targeted maximum likelihood learning, 2006. U.C. Berkeley Division of Biostatistics Working Paper
599 Series. Working Paper 213. <https://biostats.bepress.com/ucbbiostat/paper213/>.

600

601 Aad W. van der Vaart. *Asymptotic Statistics*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
602 University Press, 1998.

603

604 Vladimir Naumovich Vapnik. *Statistical Learning Theory*. Wiley, September 1998.

605

606 Raymond K W Wong and Kwun Chuen Gary Chan. Kernel-based covariate functional balancing for observational
607 studies. *Biometrika*, 105(1):199–213, 12 2017.

608

609 Qingyuan Zhao. Covariate balancing propensity score by tailored loss functions. *The Annals of Statistics*, 47(2):965 –
993, 2019.

610

611 Siming Zheng, Guohao Shen, Yuling Jiao, Yuanyuan Lin, and Jian Huang. An error analysis of deep density-ratio
612 estimation with bregman divergence, 2022. URL <https://openreview.net/forum?id=dfOBSd3tF9p>.

613 José R. Zubizarreta. Stable weights that balance covariates for estimation with incomplete outcome data. *Journal of the
614 American Statistical Association*, 110(511):910–922, 2015.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

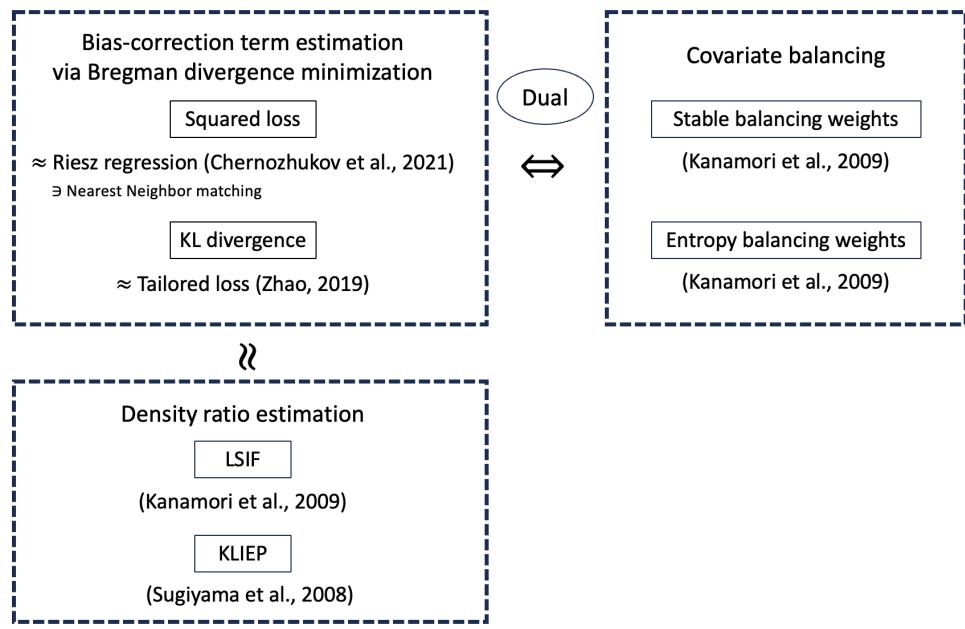


Figure 1: Relationship among bias-correction term estimation via Bregman divergence minimization, density ratio estimation, and covariate balancing. This figure is made using the results in Kato (2025a) and Kato (2025c).

A DENSITY-RATIO ESTIMATION (DRE)

Given two probability distributions P and Q over a common space \mathcal{X} , the density ratio function is defined as

$$r_0(x) := \frac{p(x)}{q(x)},$$

where $p(x)$ and $q(x)$ denote the density functions of P and Q , respectively. DRE is a fundamental problem in statistical learning, with applications in importance sampling, anomaly detection, and covariate shift adaptation.

In DRE, estimating the two densities separately can magnify estimation errors, whereas directly modeling and estimating the density ratio can lead to improved accuracy. Thus, the aim of DRE is to estimate the density ratio in an end-to-end manner by directly optimizing a single objective. Various methods for DRE have been proposed (Huang et al., 2007; Gretton et al., 2009; Qin, 1998; Cheng & Chu, 2004; Nguyen et al., 2010; Kato et al., 2019), many of which can be generalized as instances of Bregman divergence minimization (Sugiyama et al., 2011; Kato & Teshima, 2021).

Let \mathcal{R} be a hypothesis class for r_0 , consisting of functions $r: \mathcal{X} \rightarrow \mathbb{R}$. The goal of direct DRE is to find an optimal function $r^* \in \mathcal{R}$ that best approximates r_0 . A natural approach is to minimize the expected squared error:

$$\mathbb{E}_P \left[(r_0(X) - r(X))^2 \right].$$

However, since $r_0(x)$ is unknown, direct minimization of this objective is infeasible.

Instead, we derive an equivalent formulation that does not require knowledge of r_0 . Specifically, we show that minimizing the expected squared error is equivalent to minimizing the following alternative objective:

$$-2\mathbb{E}_Q [r(X)] + \mathbb{E}_P [r(X)^2].$$

This transformation enables empirical risk minimization without explicit access to the true density ratio.

Furthermore, we extend this framework by providing theoretical guarantees on the estimation error using tools from empirical process theory. From the perspective of Bregman divergence minimization, we establish a generalized methodology for DRE that accommodates various estimation strategies.

Finally, we present numerical experiments that demonstrate the effectiveness of our approach in practical scenarios, including importance weighting and outlier detection.

702 B SILVERMAN'S TRICK

704 Note that minimization of the Bregman divergence with the KL divergence loss is equal to

706 $r^* = \arg \max_{r \in \mathcal{R}} \sum_{d \in \{1,0\}} \mathbb{E}[\log r(d, X)] \quad \text{s.t. } \mathbb{E}[\mathbb{1}[D=1]r(1, X_i)] = \mathbb{E}[\mathbb{1}[D=0]r(0, X_i)] = 1.$

708 This technique is known as Silverman's trick (Silverman, 1982). For details, see Theorem 3.3 in Kato et al.
709 (2023). We can replace the expected values with the sample means and define the estimation problem as $\hat{r}_n =$
710 $\arg \max_{r \in \mathcal{R}} \frac{1}{n} \sum_{i=1}^n \sum_{d \in \{1,0\}} \log r(d, X_i) \quad \text{s.t. } \frac{1}{n} \sum_{i=1}^n \mathbb{1}[D_i=1]r(1, X_i) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[D_i=0]r(0, X_i) = 1.$

712 C ESTIMATION OF THE AVERAGE TREATMENT EFFECT FOR THE TREATED (ATT)

714 Our method can also be applied to other estimands, such as the ATT, which is defined as

716 $\alpha_0 := \mathbb{E}[Y(1) - Y(0) \mid D = 1].$

718 The IPW and AIPW estimators designed for the ATT are given by

720 **IPW estimator.** $\tilde{\alpha}^{\text{IPW}} := \frac{1}{n} \sum_{i=1}^n \left(\frac{\mathbb{1}[D_i=1]Y_i}{\pi_0} - \frac{e_0(X_i)\mathbb{1}[D_i=0]Y_i}{\pi_0(1-e_0(X_i))} \right) = \frac{1}{n} \sum_{i=1}^n \left(\frac{\mathbb{1}[D=1]}{\pi_0} - \frac{e_0(X)\mathbb{1}[D=0]}{\pi_0(1-e_0(X))} \right) Y_i.$

722 **AIPW estimator.** $\tilde{\alpha}^{\text{AIPW}} := \frac{1}{n} \sum_{i=1}^n \left(\frac{\mathbb{1}[D=1]}{\pi_0} - \frac{e_0(X)\mathbb{1}[D=0]}{\pi_0(1-e_0(X))} \right) (Y_i - \mu_0(0, X_i)),$

724 where $\pi_0 = \mathbb{E}[\mathbb{1}[D=1]].$

725 Thus, the bias-correction term for ATT estimation is given as

727 $\tilde{h}_0(D, X) := \frac{\mathbb{1}[D=1]}{\pi_0} - \frac{e_0(X)\mathbb{1}[D=0]}{\pi_0(1-e_0(X))},$

730 where $\pi_0 = \mathbb{E}[\mathbb{1}[D=1]].$

731 Let $w_0(x) := \frac{e_0(x)}{(1-e_0(x))}$. Then, we denote the bias-correction term as

733 $\tilde{h}_0(D, X) := \frac{\mathbb{1}[D=1]}{\pi_0} - \frac{w_0(X)\mathbb{1}[D=0]}{\pi_0}.$

736 Let \mathcal{W} be a set of functions $w: \mathcal{X} \rightarrow \mathbb{R}_+$. Then, we define the following least squares:

738 $w^* := \arg \min_{r \in \mathcal{R}} \mathbb{E} \left[(\tilde{h}(D, X; r_0, \pi_0) - \tilde{h}(D, X; r, \pi_0))^2 \right].$

740 Note that we use π_0 itself. We can show that this least squares is equivalent to

742 $w^* = \arg \min_{r \in \mathcal{R}} \left\{ -2\mathbb{E}[w(X)] + \mathbb{E}[w(X)^2 \mathbb{1}[D=0]] \right\},$

744 where \mathbb{E}_1 is expectation over the treated group ($p(x \mid d=1)$). The empirical version of this risk is given as

746 $\hat{w} := \arg \min_{r \in \mathcal{R}} \left\{ -2 \frac{1}{\sum_{i=1}^n \mathbb{1}[D_i=1]} \sum_{i=1}^n \mathbb{1}[D_i=1]w(X_i) + \frac{1}{n} \sum_{i=1}^n w(X_i)^2 \right\},$

749 We can demonstrate the equivalence between the two least-squares formulations as follows:

751 $w^* = \arg \min_{r \in \mathcal{R}} \mathbb{E} \left[(\tilde{h}(D, X; r_0, \pi_0) - \tilde{h}(D, X; r, \pi_0))^2 \right]$
752 $= \arg \min_{r \in \mathcal{R}} \mathbb{E} \left[(w_0(X)\mathbb{1}[D=0] - w(X)\mathbb{1}[D=0])^2 \right]$
754 $= \arg \min_{r \in \mathcal{R}} \mathbb{E} \left[-2w_0(X)w(X)\mathbb{1}[D=0] + w(X)^2 \mathbb{1}[D=0] \right].$

756 To see this equivalence, consider
 757

$$\begin{aligned}
 & \mathbb{E}[w_0(X)w(X)\mathbb{1}[D=0]] \\
 &= \mathbb{E}[\mathbb{E}[w_0(X)w(X)(1-e_0(X))]] \\
 &= \mathbb{E}[e_0(X)w(X)/\pi_0] \\
 &= \int \frac{1}{\pi_0} e_0(x)w(x)p_0(x)dx \\
 &= \int \frac{1}{\pi_0} \frac{\pi_0 p_0(x \mid d=1)}{p_0(x)} w(x)p_0(x)dx \\
 &= \int p_0(x \mid d=1)w(x)dx.
 \end{aligned}$$

768 This confirms the equivalence between the two least-squares objectives.
 769

770 D PRELIMINARY

773 This section introduces notions that are useful for the theoretical analysis.
 774

775 D.1 RADEMACHER COMPLEXITY

777 Let $\sigma_1, \dots, \sigma_n$ be n independent Rademacher random variables; that is, independent random variables for which
 778 $P(\sigma_i = 1) = P(\sigma_i = -1) = 1/2$. Let us define
 779

$$\mathfrak{R}_n f := \frac{1}{n} \sum_{i=1}^n \sigma_i f(W_i).$$

783 Additionally, given a class \mathcal{F} , we define

$$\mathfrak{R}_n \mathcal{F} := \sup_{f \in \mathcal{F}} \mathfrak{R}_n f.$$

786 Then, we define the Rademacher average as $\mathbb{E}[\mathfrak{R}_n \mathcal{F}]$ and the empirical Rademacher average as $\mathbb{E}_\sigma[\mathfrak{R}_n \mathcal{F} \mid X_1, \dots, X_n]$.
 787

788 D.2 LOCAL RADEMACHER COMPLEXITY BOUND

790 Let \mathcal{F} be a class of functions that map \mathcal{X} into $[a, b]$. For $f \in \mathcal{F}$, let us define
 791

$$\begin{aligned}
 P f &:= \mathbb{E}[f(W)], \\
 P_n f &:= \frac{1}{n} \sum_{i=1}^n f(W_i).
 \end{aligned}$$

796 We introduce the following result about the Rademacher complexity.
 797

Proposition D.1 (From Theorem 2.1 in Bartlett et al. (2005)). *Let \mathcal{F} be a class of functions that map \mathcal{X} into $[a, b]$. Assume that there is some $r > 0$ such that for every $f \in \mathcal{F}$, $\text{Var}(f(W)) \leq r$. Then, for every $z > 0$, with probability at least $1 - \exp(-z)$, it holds that*

$$\sup_{f \in \mathcal{F}} (P f - P_n f) \leq \inf_{\alpha > 0} \left\{ 2(1 + \alpha) \mathbb{E}[\mathfrak{R}_n f] + \sqrt{\frac{2rx}{n}} + (b - a) \left(\frac{1}{3} + \frac{1}{\alpha} \right) \frac{z}{n} \right\}.$$

804 D.3 BRACKETING ENTROPY

806 We define the bracketing entropy. For a more detailed definition, see Definition 2.2 in van de Geer (2000).
 807

Definition D.1. *Bracketing entropy. Given a class of functions \mathcal{F} , the logarithm of the smallest number of balls in a norm $\|\cdot\|_{2,P}$ of radius $\delta > 0$ needed to cover \mathcal{F} is called the δ -entropy with bracketing of \mathcal{F} under the $L_2(P)$ metric, denoted by $H_B(\delta, \mathcal{F}, P)$.*

810 D.4 TALAGRAND'S CONCENTRATION INEQUALITY
811

812 We introduce Talagrand's lemma.

813 **Proposition D.2** (Talagrand's Lemma). *Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz continuous function with a Lipschitz constant
814 $L > 0$. Then, it holds that*

815
$$\mathfrak{R}_n(\phi \circ \mathcal{F}) \leq L \mathfrak{R}_n(\mathcal{F}).$$

816

817 E BASIC INEQUALITIES
818819 E.1 STRONG CONVEXITY
820821 **Lemma E.1** (L_2 distance bound from Lemma 4 in Kato & Teshima (2021)). *If $\inf_{h \in (-\infty), \infty} g''(h) > 0$, then there
822 exists $\mu > 0$ such that for all $h \in \mathcal{H}$,*

823
$$\|h - h_0\|_2^2 \leq \frac{2}{\mu} (\text{BR}_g(h) - \text{BR}_g(h_0))$$

824

825 *holds.*826 From the strong convexity and Lemma E.1, we have
827

828
$$\frac{\mu}{2} \|\hat{h}_n - h_0\|_2^2 \leq \text{BR}_g(\hat{h}_n) - \text{BR}_g(h_0).$$

829

830 Recall that we have defined an estimator \hat{r} as follows:
831

832
$$\hat{h} := \arg \min_{h \in \mathcal{H}} \hat{\mathcal{L}}_n(h) + \lambda J(h),$$

833

834 where $J(h)$ is some regularization term.
835836 E.2 PRELIMINARY
837838 **Proposition E.2.** *The estimator \hat{r} satisfies the following inequality:*

839
$$\widehat{\text{BR}}_g(\hat{h}) + \lambda J(\hat{h}) \leq \widehat{\text{BR}}_g(h^*) + \lambda J(h^*),$$

840

841 *where recall that*

842
$$\widehat{\text{BR}}_g(h) := \frac{1}{n} \sum_{i=1}^n \left(-g(h(D_i, X_i)) + \partial g(h(D_i, X_i))h(D_i, X_i) - \partial g(h(1, X_i)) - \partial g(h(0, X_i)) \right).$$

843

844 Let $Z \in \mathcal{Z}$ be a random variable with a space \mathcal{Z} , and $\{Z_i\}_{i=1}^n$ be its realizations. For a function $f: \mathcal{Z} \rightarrow \mathbb{R}$ and X
845 following P , let us denote the sample mean as
846

847
$$\widehat{\mathbb{E}}[f(Z)] := \frac{1}{n} \sum_{i=1}^n f(Z_i).$$

848

849 We also denote $\widehat{\mathbb{E}}[f(Z)] - \mathbb{E}[f(Z)] = (\widehat{\mathbb{E}} - \mathbb{E})f(Z)$
850851 E.3 RISK BOUND
852853 Recall that
854

855
$$\widehat{\text{BR}}_g(h) = \frac{1}{n} \sum_{i=1}^n \left(-g(h(D_i, X_i)) + \partial g(h(D_i, X_i))h(D_i, X_i) - \partial g(h(1, X_i)) - \partial g(h(0, X_i)) \right).$$

856

857 Let us define
858

859
$$L(h, D, X) := -g(h(D, X)) + \partial g(h(D, X))h(D, X) - \partial g(h(1, X)) - \partial g(h(0, X)),$$

860

864 and we can write

$$\widehat{\text{BR}}_g(h) = \widehat{\mathbb{E}}[L(h, D, X)]$$

865 Then, from Proposition E.2, we have

$$\widehat{\mathbb{E}}[L(h^*, D, X)] - \widehat{\mathbb{E}}[L(\widehat{h}_n, D, X)] + \lambda J(\widehat{h}) - \lambda J(h^*) \geq 0.$$

866 Throughout the proof, we use the following basic inequalities that hold for \widehat{h} .

867 **Proposition E.3.** *The estimator \widehat{r} satisfies the following inequality:*

$$\begin{aligned} 868 \quad & \frac{\mu}{2} \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 \\ 869 \quad & \leq \left(\mathbb{E} - \widehat{\mathbb{E}} \right) [L(\widehat{h}_n, D, X) - L(h_0, D, X)] + \widehat{\mathbb{E}} [L(h^*, D, X) - L(h_0, D, X)] + \lambda J(r_0) - \lambda J(\widehat{r}). \end{aligned}$$

870 Proof of Proposition E.2 is trivial. We prove Proposition E.3 below.

871 *Proof.* From the strong convexity and Lemma E.1, we have

$$872 \quad \frac{\mu}{2} \|\widehat{h}_n - h_0\|_2^2 \leq \text{BR}_g(\widehat{h}_n) - \text{BR}_g(h_0) = \mathbb{E} [L(\widehat{h}_n, D, X) - L(h_0, D, X)].$$

873 From Proposition E.2, we have

$$\begin{aligned} 874 \quad & \frac{\mu}{2} \left\| \widehat{h}(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 \\ 875 \quad & \leq \mathbb{E} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 876 \quad & = \mathbb{E} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 877 \quad & \quad - \widehat{\mathbb{E}} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 878 \quad & \quad + \widehat{\mathbb{E}} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 879 \quad & \leq \mathbb{E} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 880 \quad & \quad - \widehat{\mathbb{E}} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 881 \quad & \quad + \widehat{\mathbb{E}} [L(\widehat{h}_n, D, X) - L(h_0, D, X)] \\ 882 \quad & \quad - \widehat{\mathbb{E}} [L(\widehat{h}_n, D, X) - L(h^*, D, X)] + \lambda J(\widehat{h}) - \lambda J(h_0). \end{aligned}$$

883 \square

904 F PROOF OF THEOREM 4.1

905 We show Theorem 4.1 by bounding

$$906 \quad \left(\mathbb{E} - \widehat{\mathbb{E}} \right) [L(\widehat{h}_n, D, X) - L(h_0, D, X)], \quad (1)$$

907 in Proposition E.3. We can bound this term by using the empirical-process arguments.

908 Note that since $h_0 \in \mathcal{H}$, it holds that $h^* = h_0$, which implies that

913 F.1 PRELIMINARY

914 We introduce the following propositions from van de Geer (2000), Kanamori et al. (2012) and Kato & Teshima (2021).

915 **Definition F.1** (Derived function class and bracketing entropy (from Definition 4 in Kato & Teshima (2021))). *Given a*
 916 *real-valued function class \mathcal{F} , define $\ell \circ \mathcal{F} := \{\ell \circ f : f \in \mathcal{F}\}$. By extension, we define $I : \ell \circ \mathcal{H} \rightarrow [1, \infty)$ by $I(\ell \circ h) =$
 917 $I(h)$ and $\ell \circ \mathcal{H}_M := \{\ell \circ h : h \in \mathcal{H}_M\}$. Note that, as a result, $\ell \circ \mathcal{H}_M$ coincides with $\{\ell \circ h \in \ell \circ \mathcal{H} : I(\ell \circ h) \leq M\}$.*

918 **Proposition F.1.** Let $\ell: \mathbb{R} \rightarrow \mathbb{R}$ be a v -Lipschitz continuous function. Let $H_B(\delta, \mathcal{F}, \|\cdot\|_{L_2(P_0)})$ denote the bracketing
 919 entropy of \mathcal{F} with respect to a distribution P . Then, for any distribution P , any $\gamma > 0$, any $M \geq 1$, and any $\delta > 0$, we
 920 have

$$922 \quad H_B(\delta, \ell \circ \mathcal{H}, \|\cdot\|_{L_2(P_0)}) \leq \frac{(s+1)(2v)^\gamma}{\gamma} \left(\frac{M}{\delta} \right)^\gamma.$$

924 Moreover, there exists $M > 0$ such that for any $M \geq 1$ and any distribution P ,

$$926 \quad \sup_{\ell \circ h \in \ell \circ \mathcal{H}_M} \|\ell \circ h - \ell \circ h^*\|_{L_2(P_0)} \leq c_0 v M,$$

$$928 \quad \sup_{\substack{\ell \circ h \in \ell \circ \mathcal{H}_M \\ \|\ell \circ h - \ell \circ h^*\|_{L_2(P_0)} \leq \delta}} \|\ell \circ h - \ell \circ h^*\|_\infty \leq c_0 v M, \quad \text{for all } \delta > 0.$$

930 **Proposition F.2** (Lemma 5.13 in van de Geer (2000), Proposition 1 in Kanamori et al. (2012)). Let $\mathcal{F} \subset L^2(P)$ be
 931 a function class and the map $I(f)$ be a complexity measure of $f \in \mathcal{F}$, where I is a non-negative function on \mathcal{F} and
 932 $I(f_0) < \infty$ for a fixed $f_0 \in \mathcal{F}$. We now define $\mathcal{F}_M = \{f \in \mathcal{F} : I(f) \leq M\}$ satisfying $\mathcal{F} = \bigcup_{M \geq 1} \mathcal{F}_M$. Suppose that
 933 there exist $c_0 > 0$ and $0 < \gamma < 2$ such that

$$935 \quad \sup_{f \in \mathcal{F}_M} \|f - f_0\| \leq c_0 M, \quad \sup_{\substack{f \in \mathcal{F}_M \\ \|f - f_0\|_{L_2(P)} \leq \delta}} \|f - f_0\|_\infty \leq c_0 M, \quad \text{for all } \delta > 0,$$

938 and that $H_B(\delta, \mathcal{F}_M, P) = O((M/\delta)^\gamma)$. Then, we have

$$939 \quad \sup_{f \in \mathcal{F}} \frac{|f(f - f_0) d(P - P_n)|}{D(f)} = O_p(1), \quad (n \rightarrow \infty),$$

942 where $D(f)$ is defined by

$$944 \quad D(f) = \max \frac{\|f - f_0\|_{L^2(P)}^{1-\gamma/2} I(f)^{\gamma/2}}{\sqrt{n}} \frac{I(f)}{n^{2/(2+\gamma)}}.$$

946 **Proposition F.3.** Let $g: \mathcal{K} \rightarrow \mathbb{R}$ be twice continuously differentiable and strictly convex for the space \mathcal{K} of h_0 , and
 947 suppose that there exists $M > 0$ such that

$$948 \quad |g''(t)| \leq M \quad \text{for all } t \in \mathbb{R}.$$

950 Let $\zeta^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and globally Lipschitz, that is, there exists $L_\zeta > 0$ such that

$$951 \quad |\zeta^{-1}(s) - \zeta^{-1}(t)| \leq L_\zeta |s - t| \quad \text{for all } s, t \in \mathbb{R}.$$

953 Assume also that $\zeta^{-1}(0)$ is finite, and define

$$954 \quad a_0 := |\zeta^{-1}(0)|, \quad a_1 := L_\zeta,$$

956 so that

$$957 \quad |\zeta^{-1}(u)| \leq a_0 + a_1 |u| \quad \text{for all } u \in \mathbb{R}.$$

959 Let h be a bounded real-valued function on the domain of (D, X) , and write

$$960 \quad \|h\|_\infty := \sup_{d, x} |h(d, x)|.$$

962 Let L be a linear functional acting on bounded functions, such that for some constant $C_L > 0$,

$$964 \quad |L(f)| \leq C_L (1 + \|f\|_\infty) \quad \text{for all bounded } f.$$

966 Define

$$967 \quad L(\zeta^{-1} \circ f) = g(\zeta^{-1} \circ f(D, X)) + \partial g(\zeta^{-1} \circ f(D, X)) \zeta^{-1} \circ h(D, X) \\ 968 \quad - \partial g(\zeta^{-1} \circ f(1, X)) - \partial g(\zeta^{-1} \circ f(0, X)).$$

970 Then there exists a constant $C > 0$ (depending only on g , ζ^{-1} and C_L) such that

$$971 \quad |L(\zeta^{-1} \circ f)| \leq C(1 + \|f\|_\infty^2).$$

972 F.2 UPPER BOUND USING THE EMPIRICAL-PROCESS ARGUMENTS
973974 From Propositions F.1–F.3, we obtain the following result.
975976 **Proposition F.4.** *Under the conditions of Theorem 4.1, for any $0 < \gamma < 2$, we have*

977
$$d\left(\mathbb{E} - \widehat{\mathbb{E}}\right) \left[L(\widehat{h}_n, D, X) - L(h_0, D, X) \right]$$

978
$$= O_p \left(\max \left\{ \frac{\|\widehat{h}_n - h^*\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{h}_n\|_{\mathcal{H}}\right)^{1+\gamma/2}}{\sqrt{n}}, \frac{\left(1 + \|\widehat{h}_n\|_{\mathcal{H}}\right)^2}{n^{2/(2+\gamma)}} \right\} \right),$$

982

983 as $n \rightarrow \infty$.
984985 F.3 PROOF OF THEOREM 4.1
986987 We prove Theorem 4.1 following the arguments in Kanamori et al. (2012).
988989 *Proof.* From Proposition E.3 and $h_0 \in \mathcal{H}^{\text{RKHS}}$, we have
990

991
$$\begin{aligned} & \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 + \lambda \|\widehat{h}\|_{\mathcal{H}}^2 \\ & \leq \left(\mathbb{E} - \widehat{\mathbb{E}} \right) \left[L(\widehat{h}_n, D, X) - L(h_0, D, X) \right] + \lambda \|f_0\|_{\mathcal{H}}^2. \end{aligned}$$

995

996 From Proposition F.4, we have
997

998
$$\begin{aligned} & \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 + \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 \\ & = \mathcal{O}_p \left(\max \left\{ \frac{\|\widehat{h} - h_0\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{f}\|_{\mathcal{H}}\right)^{1+\gamma/2}}{\sqrt{n}}, \frac{\left(1 + \|\widehat{h}\|_{\mathcal{H}}\right)^2}{n^{2/(2+\gamma)}} \right\} \right) + \lambda \|r_0\|_{\mathcal{H}}^2. \end{aligned}$$

1004

1005 We consider the following three possibilities:
1006

1007
$$\left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 + \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p(\lambda), \quad (2)$$

1008

1009
$$\left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 + \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p \left(\frac{\|\widehat{f} - f_0\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{f}\|_{\mathcal{H}}\right)^{1+\gamma/2}}{\sqrt{n}} \right), \quad (3)$$

1010

1011
$$\left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 + \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p \left(\frac{\left(1 + \|\widehat{f}\|_{\mathcal{H}}\right)^2}{n^{2/(2+\gamma)}} \right). \quad (4)$$

1012

1013 The above inequalities are analyzed as follows:
10141015 **Case (2).** We have
1016

1017
$$\begin{aligned} & \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 = O_p(\lambda), \\ & \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p(\lambda). \end{aligned}$$

1018

1019 Therefore, we have $\left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{P_0} = O_p(\lambda^{1/2})$ and $\|\widehat{f}\|_{\mathcal{H}} = O_p(1)$.
1020

1026 **Case (3).** We have
 1027

$$\begin{aligned} 1028 \quad & \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 = O_p \left(\frac{\|\widehat{f}_n - f_0\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^{1+\gamma/2}}{\sqrt{n}} \right), \\ 1029 \\ 1030 \quad & \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p \left(\frac{\|\widehat{f}_n - f_0\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^{1+\gamma/2}}{\sqrt{n}} \right). \\ 1031 \end{aligned}$$

1032 From the first inequality, we have
 1033

$$1034 \quad \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{P_0} = \sum_{d \in \{1, 0\}} O_p \left(\frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^{1+\gamma/2}}{n^{1/(2+\gamma)}} \right).$$

1035 By using this result, from the second inequality, we have
 1036

$$\begin{aligned} 1037 \quad & \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p \left(\frac{\|\widehat{f}_n - f_0\|_{L^2(P_0)}^{1-\gamma/2} \left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^{1+\gamma/2}}{\sqrt{n}} \right) \\ 1038 \\ 1039 \quad & = O_p \left(\left(\frac{1 + \|\widehat{f}_n\|_{\mathcal{F}}}{n^{1/(2+\gamma)}} \right)^{1-\gamma/2} \frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^{1+\gamma/2}}{\sqrt{n}} \right) \\ 1040 \\ 1041 \quad & = O_p \left(\frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^2}{n^{2/(2+\gamma)}} \right). \\ 1042 \end{aligned}$$

1043 This implies that
 1044

$$1045 \quad \|\widehat{f}\|_{\mathcal{H}} = O_p \left(\frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^2}{\lambda^{1/2} n^{2/(2+\gamma)}} \right) = o_p(1).$$

1046 Therefore, the following inequality is obtained.
 1047

$$1048 \quad \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{P_0} = O_p \left(\frac{1}{n^{1/(2+\gamma)}} \right) = O_p(\lambda^{1/2}).$$

1049 **Case 4.** We have
 1050

$$\begin{aligned} 1051 \quad & \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 = O_p \left(\frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^2}{n^{2/(2+\gamma)}} \right), \\ 1052 \\ 1053 \quad & \lambda \|\widehat{f}_n\|_{\mathcal{H}}^2 = O_p \left(\frac{\left(1 + \|\widehat{f}_n\|_{\mathcal{F}}\right)^2}{n^{2/(2+\gamma)}} \right). \\ 1054 \end{aligned}$$

1055 As well as the argument in (3), we have $\|\widehat{r}\|_{\mathcal{H}} = o_p(1)$. Therefore, we have
 1056

$$1057 \quad \left\| \widehat{h}_n(D, X) - h_0(D, X) \right\|_{P_0} = O_p \left(\frac{1}{n^{1/(2+\gamma)}} \right) = O_p(\lambda^{1/2}).$$

1058 \square
 1059

1080 **G PROOF OF THEOREM 4.2**
 1081

1082 Our proof procedure mainly follows those in Kato & Teshima (2021) and Zheng et al. (2022). In particular, we are
 1083 inspired by the proof in Zheng et al. (2022).

1084 We prove Theorem 4.2 by proving the following lemma:

1085 **Lemma G.1.** *Suppose that Assumption 4.2 holds. For any $n \geq \text{Pdim}(\mathcal{F}^{\text{FNN}})$, there exists a constant $C > 0$ depending
 1086 on (μ, σ, M) such that for any $\gamma > 0$, with probability at least $1 - \exp(-\gamma)$, it holds that*

$$1087 \quad \|\widehat{f}_n - f_0\|_2 \leq C \left(\sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}} + \|f^* - f_0\|_2 + \sqrt{\frac{\gamma}{n}} \right).$$

1091 As shown in Zheng et al. (2022), we can bound $\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)$ by specifying neural networks and obtain
 1092 Theorem 4.2.

1093 **G.1 PROOF OF LEMMA G.1**
 1094

1095 We prove Lemma G.1 by bounding (1) in Proposition E.3.

1096 To bound (1), we show several auxiliary results. Define

$$1097 \quad \widehat{\mathcal{F}}^{f^*,u} := \{f \in \mathcal{F}^{\text{FNN}} : \frac{1}{n} \sum_{i=1}^n (f(D_i, X_i) - f^*(D_i, X_i))^2 \leq u\},$$

$$1098 \quad \overline{\mathcal{G}}^{f^*,u} := \left\{ (f - f^*) : f \in \widehat{\mathcal{F}}^{f^*,u} \right\},$$

$$1099 \quad \kappa_n^u(u) := \mathbb{E}_\sigma \left[\mathfrak{R}_n \overline{\mathcal{G}}^{f^*,u} \right],$$

$$1100 \quad u^\dagger := \inf \{u \geq 0 : \kappa_n^u(s) \leq s^2 \quad \forall s \geq u\}.$$

1101 Here, we show the following two lemmas:

1102 **Lemma G.2** (Corresponding to (26) in Zheng et al. (2022)). *Suppose that the conditions in Lemma G.1 hold. Then, for
 1103 any $z > 0$, with probability $1 - \exp(-z)$ it holds that*

$$1104 \quad \widehat{\mathbb{E}} \left[L(\widehat{h}_n, D, X) - L(h_0, D, X) \right]$$

$$1105 \quad \leq C \left(\|f^*(D, X) - f_0(D, X)\|_2^2 + \|f^*(D, X) - f_0(D, X)\|_2 \sqrt{\frac{z}{n}} + \frac{16Mz}{3n} \right).$$

1106 **Lemma G.3** (Corresponding to (29) in Zheng et al. (2022)). *Suppose that the conditions in Lemma G.1 hold. If there
 1107 exists $u_0 > 0$ such that*

$$1108 \quad \|\widehat{f}(D, X) - f^*(D, X)\|_2 \leq u_0,$$

1109 *then it holds that*

$$1110 \quad \left(\mathbb{E} - \widehat{\mathbb{E}} \right) \left[L(\widehat{h}_n, D, X) - L(h_0, D, X) \right]$$

$$1111 \quad \leq C \left(\mathbb{E}_\sigma \left[\mathfrak{R}_n \overline{\mathcal{G}}^{f^*,u_0} \right] + u_0 \sqrt{\frac{z}{n}} + \frac{Mz}{n} \right).$$

1112 Additionally, we use the following three propositions directly from Zheng et al. (2022).

1113 **Proposition G.4** (From (32) in Zheng et al. (2022)). *Let $u > 0$ be a positive value such that*

$$1114 \quad \|f - f_0\|_2 \leq u$$

1115 *for all $f \in \mathcal{F}$. Then, for every $z > 0$, with probability at least $1 - 2 \exp(-z)$, it holds that*

$$1116 \quad \sqrt{\frac{1}{n} \sum_{i=1}^n (f(X_i) - f_0(X_i))^2} \leq 2u.$$

1134 **Proposition G.5** (Corresponding to (36) in Step 3 of Zheng et al. (2022)). *Suppose that the conditions in Lemma G.1 hold. Then, there exists a universal constant $C > 0$ such that*

$$1137 \quad u^\dagger \leq CM\sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}}.$$

1139 **Proposition G.6** (Upper bound of the Rademacher complexity). *Suppose that the conditions in Lemma G.1 hold. If*
 1140 *$n \geq \text{Pdim}(\mathcal{F}^{\text{FNN}})$, $u_0 \geq 1/n$, and $n \geq (2eM)^2$, we have*

$$1142 \quad \mathbb{E}_\sigma \left[\mathfrak{R}_n \bar{\mathcal{G}}^{f^*, u_0} \right] \leq Cr_0 \sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log n}{n}}.$$

1144 Then, we prove Lemma G.1 as follows:

1147 *Proof of Lemma G.1.* If there exists $u_0 > 0$ such that

$$1149 \quad \|\hat{f}(X) - f^*(X)\|_2 \leq u_0,$$

1150 then from (1) and Lemmas G.2 and G.3, for every $z > 0$, there exists a constant $C > 0$ independent n such that

$$1152 \quad \left\| \hat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 \\ 1153 \quad \leq C \left(\|f^* - f_0\|_2 \sqrt{\frac{z}{n}} + \frac{16Mz}{3n} + u_0 \sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log n}{n}} + u_0 \sqrt{\frac{z}{n}} + \frac{Mz}{n} \right). \quad (5)$$

1157 This result implies that if $\sqrt{\text{Pdim}(\mathcal{F}^{\text{FNN}})}$, then there exists n_0 such that for all $n > n_0$, there exists $u_1 < u_0$ such that

$$1159 \quad \left\| \hat{h}_n(D, X) - h_0(D, X) \right\|_{L_2(P_0)}^2 \leq u_1.$$

1162 For any $z > 0$, define \bar{u} as

$$1163 \quad \bar{u}_z \geq \max \left\{ \sqrt{\log(n)/n}, 4\sqrt{3}M\sqrt{z/n}, u^\dagger \right\}.$$

1165 Define a subspace of \mathcal{F}^{FNN} as

$$1167 \quad \mathcal{S}^{\text{FNN}}(f_0, \bar{u}_z) := \{f \in \mathcal{F}^{\text{FNN}} : \|f - f_0\| \leq \bar{u}_z\}.$$

1169 Define

$$1170 \quad \ell := \lfloor \log_2(2M/\sqrt{\log(n)/n}) \rfloor.$$

1172 Using the definition of subspaces, we divide \mathcal{F}^{FNN} into the following $\ell + 1$ subspaces:

$$1173 \quad \bar{\mathcal{S}}_0^{\text{FNN}} := \mathcal{S}^{\text{FNN}}(f_0, \bar{u}), \\ 1174 \quad \bar{\mathcal{S}}_1^{\text{FNN}} := \mathcal{S}^{\text{FNN}}(f_0, \bar{u}) \setminus \mathcal{S}^{\text{FNN}}(f_0, \bar{u}), \\ 1175 \quad \vdots \\ 1178 \quad \bar{\mathcal{S}}_\ell^{\text{FNN}} := \mathcal{S}^{\text{FNN}}(f_0, 2^\ell \bar{u}) \setminus \mathcal{S}^{\text{FNN}}(f_0, 2^{\ell-1} \bar{u}).$$

1180 Since $\bar{u}_z > u^\dagger$, from the definition of u^\dagger , we have

$$1182 \quad \bar{u}_z^2 \leq \kappa_n^u(\bar{u}).$$

1184 If there exists $j \leq \ell$ such that $\hat{f} \in \bar{\mathcal{S}}_j^{\text{FNN}}$, then from (5), for every $z > 0$, with probability at least $1 - 8 \exp(-z)$, there
 1185 exists a constant $C > 0$ independent of n such that

$$1187 \quad \left\| \hat{h}_n(D, X) - h_0(D, X) \right\|_2^2$$

$$1188 \leq C \left(2^{\ell-1} \bar{u} \left(\sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}} + \sqrt{\frac{z}{n}} \right) + \|f^* - f_0\|_2^2 + \|f^* - f_0\|_2 \sqrt{\frac{z}{n}} + \frac{Mz}{n} \right). \quad (6)$$

1191 Additionally, if

$$1193 C \left(\sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}} + \sqrt{\frac{z}{n}} \right) \leq \frac{1}{8} 2^j \bar{u}, \quad (7)$$

$$1196 C \left(\|f^* - f_0\|_2^2 + \|f^* - f_0\|_2 \sqrt{\frac{z}{n}} + \frac{Mz}{n} \right) \leq \frac{1}{8} 2^{2j} \bar{u}^2 \quad (8)$$

1198 hold, then

$$1200 \left\| \hat{h}_n(D, X) - h_0(D, X) \right\|_2 \leq 2^{j-1} \bar{u}. \quad (9)$$

1202 Here, to obtain (9), we used $\bar{u} \geq \max \left\{ \sqrt{\log(n)/n}, 4\sqrt{3}M\sqrt{z/n}, u^\dagger \right\}$, (6), (7), and (8).

1204 From Proposition G.5, it holds that

$$1206 u^\dagger \leq CM \sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}}.$$

1208 Therefore, we can choose \bar{u} as

$$1209 \bar{u} := C \left(\sqrt{\frac{\text{Pdim}(\mathcal{F}^{\text{FNN}}) \log(n)}{n}} + \sqrt{\log(n)/n} + 4\sqrt{3}M\sqrt{z/n} \right),$$

1212 where $C > 0$ is a constant independent of n . □

1214 G.2 PROOF OF LEMMA G.2

1216 From Proposition D.1, we have

$$1218 \widehat{\mathbb{E}} \left[L(\hat{h}_n, D, X) - L(h_0, D, X) \right] \\ 1220 \leq \mathbb{E} \left[L(\hat{h}_n, D, X) - L(h_0, D, X) \right] + \sqrt{2}C \|f^*(X) - f_0(X)\| \sqrt{\frac{z}{n}} + \frac{16C_1 Mz}{3n}.$$

1222 This is a direct consequence of Proposition D.1. Note that h^* and h_0 are fixed, and it is enough to apply the standard
1223 law of large numbers; that is, we do not have to consider the uniform law of large numbers. However, we can still apply
1224 Proposition D.1, which is a general than the standard law of large numbers, with ignoring the Rademacher complexity
1225 part.

1226 We have

$$1228 \widehat{\mathbb{E}} \left[L(\hat{h}_n, D, X) - L(h_0, D, X) \right] \\ 1229 \leq \mathbb{E} \left[L(\hat{h}_n, D, X) - L(h_0, D, X) \right] \\ 1231 + \sqrt{2}C_1 \|f^* - f_0\| \sqrt{\frac{z}{n}} + \frac{16C_2 Mz}{3n} + \sqrt{2}C_2 \|f^* - f_0\| \sqrt{\frac{z}{n}} + \frac{16C_2 Mz}{3n} \\ 1233 \leq C \left(\|f^* - f_0\|_2^2 + \|f^* - f_0\| \sqrt{\frac{z}{n}} + \frac{16CMz}{3n} \right).$$

1237 G.3 PROOF OF LEMMA G.3

1238 Let $g := (f - f^*)^2$. From the definition of FNNs, we have

$$1240 g \leq 4M^2$$

1241 Additionally, we assumed that $\|\hat{f} - f^*\|_2 \leq u_0$ holds. Then, it holds that $\text{Var}_{P_0}(g) \leq 4M^2 u_0^2$.

1242 Here, we note that the followings hold for all $f(r)$:

$$1244 \quad L(h) - L(h^*) \leq C |f(d, x) - f^*(d, x)|,$$

1245 where $C > 0$ is some constant

1246 Then, from Proposition D.1, for every $z > 0$, with probability at least $1 - \exp(-z)$, it holds that

$$1248 \quad \begin{aligned} & \left(\mathbb{E} - \widehat{\mathbb{E}} \right) \left[L(\widehat{h}_n, D, X) - L(h_0, D, X) \right] \\ 1249 & \leq C \left(\mathbb{E}_\sigma \left[\mathfrak{R}_n \bar{\mathcal{G}}^{f^*, u_0} \right] + r_0 \sqrt{\frac{z}{n}} + \frac{Mz}{n} \right). \end{aligned}$$

1253 H NEAREST NEIGHBOR MATCHING

1256 In this section, we show that nearest neighbor (NN) matching for the ATE can be interpreted as a special case of our
1257 direct bias-correction term estimation with the squared loss, that is, Riesz regression or LSIF. This result is shown in
1258 Kato (2025b), a subsequent work of this study.

1259 The key step is to express the ATE bias-correction term $h_0(D, X)$ in terms of density ratios with respect to the marginal
1260 covariate distribution and then to approximate these density ratios via nearest neighbor cells, following the density-ratio
1261 interpretation in Lin et al. (2023).

1263 H.1 ATE BIAS-CORRECTION TERM AND DENSITY RATIOS

1265 Let p_X denote the marginal density of X and $p_{X|D=d}$ the conditional density of X given $D = d$. Let $\pi_1 := P_0(D = 1)$
1266 and $\pi_0 := P_0(D = 0) = 1 - \pi_1$. By Bayes' rule,

$$1267 \quad p_{X|D=d}(x) = \frac{p_X(x)P_0(D = d | X = x)}{P_0(D = d)} = \frac{p_X(x)e_0(x)^d(1 - e_0(x))^{1-d}}{\pi_d},$$

1270 where $\pi_d = P_0(D = d)$ and $e_0(x) = P_0(D = 1 | X = x)$.

1271 Define the density ratios with respect to the marginal distribution of X by

$$1273 \quad r_1(x) := \frac{p_X(x)}{p_{X|D=1}(x)}, \quad r_0(x) := \frac{p_X(x)}{p_{X|D=0}(x)}.$$

1275 From the expression above,

$$1276 \quad r_1(x) = \frac{\pi_1}{e_0(x)}, \quad r_0(x) = \frac{\pi_0}{1 - e_0(x)}.$$

1278 Therefore, the ATE bias-correction term

$$1279 \quad h_0(D, X) = \frac{\mathbb{1}[D = 1]}{e_0(X)} - \frac{\mathbb{1}[D = 0]}{1 - e_0(X)}$$

1282 can be written in terms of r_1 and r_0 as

$$1283 \quad h_0(D, X) = \mathbb{1}[D = 1] \frac{r_1(X)}{\pi_1} - \mathbb{1}[D = 0] \frac{r_0(X)}{\pi_0}. \quad (10)$$

1285 Thus, estimating h_0 is equivalent to estimating the pair (r_1, r_0) , the density ratios between the marginal covariate
1286 distribution and the treated and control covariate distributions.

1288 H.2 SQUARED LOSS OBJECTIVE AND DECOMPOSITION INTO TWO LSIF PROBLEMS

1290 Recall that when we choose the squared loss $g^{\text{SL}}(h) = (h - 1)^2$, the population Bregman divergence objective for h is

$$1292 \quad \text{BR}_{g^{\text{SL}}}(h) = \mathbb{E} \left[-2(h(1, X) - h(0, X)) + h(D, X)^2 \right].$$

1294 Consider the parameterization

$$1295 \quad h(D, X) = \mathbb{1}[D = 1] \frac{r_1(X)}{\pi_1} - \mathbb{1}[D = 0] \frac{r_0(X)}{\pi_0},$$

1296 with r_1, r_0 defined above. Substituting this into $\text{BR}_{g^{\text{SL}}}(h)$ and using the law of total expectation, we obtain
 1297

$$1298 \quad \text{BR}_{g^{\text{SL}}}(h) = C - 2\mathbb{E}\left[\frac{r_1(X)}{\pi_1} + \frac{r_0(X)}{\pi_0}\right] + \mathbb{E}[h(D, X)^2], \quad (11)$$

1300 where C is a constant independent of (r_1, r_0) . The last term can be decomposed as
 1301

$$1302 \quad \mathbb{E}[h(D, X)^2] = \pi_1 \mathbb{E}\left[\left(\frac{r_1(X)}{\pi_1}\right)^2 \mid D = 1\right] + \pi_0 \mathbb{E}\left[\left(\frac{r_0(X)}{\pi_0}\right)^2 \mid D = 0\right].$$

1304 Rewriting (11) in terms of expectations with respect to p_X and $p_{X|D=d}$ and dropping constants gives
 1305

$$1306 \quad \text{BR}_{g^{\text{SL}}}(h) := -2\mathbb{E}_X[r_1(X)] + \mathbb{E}_{X|D=1}[r_1(X)^2] - 2\mathbb{E}_X[r_0(X)] + \mathbb{E}_{X|D=0}[r_0(X)^2]. \quad (12)$$

1307 Hence minimizing $\text{BR}_{g^{\text{SL}}}(h)$ over (r_1, r_0) is equivalent to solving two independent LSIF-type problems
 1308

$$1309 \quad r_1^* = \arg \min_{r_1} \{-2\mathbb{E}_X[r_1(X)] + \mathbb{E}_{X|D=1}[r_1(X)^2]\},$$

$$1311 \quad r_0^* = \arg \min_{r_0} \{-2\mathbb{E}_X[r_0(X)] + \mathbb{E}_{X|D=0}[r_0(X)^2]\},$$

1313 and then plugging (r_1^*, r_0^*) into (10).

1314 At the sample level, with \mathcal{G}_1 and \mathcal{G}_0 defined as in the Introduction, the empirical LSIF objectives are
 1315

$$1316 \quad \hat{J}_1(r_1) := -\frac{2}{n} \sum_{i=1}^n r_1(X_i) + \frac{1}{|\mathcal{G}_1|} \sum_{i \in \mathcal{G}_1} r_1(X_i)^2, \quad (13)$$

$$1319 \quad \hat{J}_0(r_0) := -\frac{2}{n} \sum_{i=1}^n r_0(X_i) + \frac{1}{|\mathcal{G}_0|} \sum_{i \in \mathcal{G}_0} r_0(X_i)^2. \quad (14)$$

1322 Minimizing \hat{J}_1 and \hat{J}_0 and then using (10) yields an LSIF (Riesz regression) estimator of the ATE bias-correction term
 1323 h_0 .

1325 H.3 NEAREST-NEIGHBOR PARTITION AND HISTOGRAM MODEL

1326 To connect this LSIF formulation to nearest neighbor matching, we now choose a simple histogram-type model for
 1327 (r_1, r_0) based on nearest neighbor cells. Let us consider the M -nearest neighbor partition induced by the sample
 1328 $\{X_i\}_{i=1}^n$.

1329 For each treated unit $i \in \mathcal{G}_1$, let $N_M^{(0)}(i) \subset \mathcal{G}_0$ denote the set of M nearest control units to X_i . Similarly, for each
 1330 control unit $j \in \mathcal{G}_0$, let $N_M^{(1)}(j) \subset \mathcal{G}_1$ denote the set of M nearest treated units to X_j . We define the neighbor counts
 1331

$$1333 \quad K_M^{(1)}(k) := |\{i \in \mathcal{G}_1 : k \in N_M^{(0)}(i)\}|, \quad K_M^{(0)}(k) := |\{j \in \mathcal{G}_0 : k \in N_M^{(1)}(j)\}|.$$

1334 Thus $K_M^{(1)}(k)$ counts how often unit k is selected as a control neighbor of treated units, and $K_M^{(0)}(k)$ counts how often
 1335 it is selected as a treated neighbor of control units. The total numbers of neighbor links are
 1336

$$1337 \quad \sum_{k=1}^n K_M^{(1)}(k) = M|\mathcal{G}_1|, \quad \sum_{k=1}^n K_M^{(0)}(k) = M|\mathcal{G}_0|.$$

1340 We now approximate each density ratio r_d by a histogram that is constant on the Voronoi cells induced by the sample:
 1341

$$1342 \quad r_d(x) = \sum_{k=1}^n \theta_k^{(d)} \psi_k(x),$$

1343 where $\{\psi_k\}_{k=1}^n$ is the partition of \mathcal{X} such that $\psi_k(x) = 1$ if x lies in the cell associated with X_k and $\psi_k(x) = 0$
 1344 otherwise. Approximating the integrals in (13) and (14) by assigning each observation X_i to the nearest cell, the
 1345 empirical objectives become (up to constants)

$$1348 \quad \hat{J}_1(\theta^{(1)}) \approx -\frac{2}{n} \sum_{k=1}^n K_M^{(X)}(k) \theta_k^{(1)} + \frac{1}{|\mathcal{G}_1|} \sum_{k=1}^n \mathbb{1}[k \in \mathcal{G}_1] (\theta_k^{(1)})^2, \quad (15)$$

1350
 1351 Table 3: Results of additional simulation studies. CR denotes the coverage ratio of 95% confidence intervals; that is,
 1352 values close to 0.95 are better. DM denotes the direct method, which is independent of the direct bias-correction term
 1353 estimation methods; therefore, in theory, the results of the DM estimator should not differ across DBC (LS), DBC (KL),
 1354 and DBC (TL). Since we compute the DM estimator when constructing the AIPW estimator in each of DBC (LS), DBC
 1355 (KL), and DBC (TL), we also report the DM estimator results for reference.

	True			DBC (LS)			DBC (KL)			DBC (TL)		
	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW
MSE	0.00	1.10	0.01	0.30	0.59	0.11	0.30	0.41	0.08	0.31	0.36	0.09
CR	1.00	0.92	0.97	0.17	0.97	0.87	0.11	0.97	0.88	0.11	0.92	0.87

$$\widehat{J}_0(\theta^{(0)}) \approx -\frac{2}{n} \sum_{k=1}^n K_M^{(X)}(k) \theta_k^{(0)} + \frac{1}{|\mathcal{G}_0|} \sum_{k=1}^n \mathbb{1}[k \in \mathcal{G}_0] (\theta_k^{(0)})^2, \quad (16)$$

1364 where $K_M^{(X)}(k)$ denotes the number of times X_k is selected as a nearest neighbor when we run the M -NN search over
 1365 the whole sample $\{X_i\}_{i=1}^n$.²

1366 Minimizing the quadratic objectives (15) and (16) with respect to each $\theta_k^{(d)}$ yields the closed-form solutions

$$\theta_k^{(1)*} \propto K_M^{(X)}(k) \mathbb{1}[k \in \mathcal{G}_1], \quad \theta_k^{(0)*} \propto K_M^{(X)}(k) \mathbb{1}[k \in \mathcal{G}_0].$$

1370 Therefore, up to a common normalization constant,

$$r_1(X_k) \propto K_M^{(X)}(k) \mathbb{1}[k \in \mathcal{G}_1], \quad r_0(X_k) \propto K_M^{(X)}(k) \mathbb{1}[k \in \mathcal{G}_0].$$

1373 Substituting these expressions into (10) gives

$$h^{\text{NN}}(D_k, X_k) = (2D_k - 1) \left(1 + \frac{K_M^{(X)}(k)}{M} \right) \times c_n, \quad (17)$$

1374 for some sample-size dependent normalization constant c_n . Equation (17) coincides, up to normalization, with the
 1375 nearest-neighbor based bias-correction weights derived in Lin et al. (2023) for the ATE.

1379 H.4 NEAREST NEIGHBOR MATCHING AS RIESZ REGRESSION

1381 Using the bias-correction term h^{NN} in (17), the corresponding IPW-type ATE estimator becomes

$$\widehat{\tau}^{\text{NN}} = \frac{1}{n} \sum_{k=1}^n h^{\text{NN}}(D_k, X_k) Y_k,$$

1386 which can be expanded to the familiar M -nearest neighbor matching form

$$\widehat{\tau}^{\text{NN}} = \frac{1}{n} \sum_{i \in \mathcal{G}_1} \left(Y_i - \frac{1}{M} \sum_{j \in N_M^{(0)}(i)} Y_j \right) - \frac{1}{n} \sum_{j \in \mathcal{G}_0} \left(Y_j - \frac{1}{M} \sum_{i \in N_M^{(1)}(j)} Y_i \right),$$

1390 that is, a two-sided nearest neighbor matching estimator for the ATE that matches treated units to control units and
 1391 control units to treated units. Therefore, nearest neighbor matching for the ATE is obtained by minimizing the squared-
 1392 loss Bregman divergence within a nearest-neighbor histogram model for the density ratios (r_1, r_0) and then plugging
 1393 the resulting estimator into the bias-correction term $h(D, X)$.

1394 In other words, nearest neighbor matching is a special case of Riesz regression (LSIF) with a particular choice of
 1395 feature dictionary based on nearest neighbor cells. This formally justifies the statement in the main text that nearest
 1396 neighbor matching can be interpreted as a direct bias-correction term estimator obtained from our squared-loss Bregman
 1397 divergence framework.

1399 I ADDITIONAL SIMULATION STUDIES

1400 In this section, we conduct additional simulation studies to more closely examine the finite sample behavior of our direct
 1401 bias-correction approach under different choices of Bregman divergence. We focus on the three representative losses

1402
 1403 ²For a detailed derivation of this approximation, see the analysis of histogram LSIF in Lin et al. (2023).

introduced in Section 2: the squared loss corresponding to Riesz regression (denoted by DBC (LS)), the KL divergence loss (DBC (KL)), and the tailored loss (DBC (TL)). We refer to our method collectively as the direct bias-correction (DBC) approach.

Unlike the simulation design in Section 2 (Simulation studies), here we explicitly use cross fitting in the sense of Assumption 5.1. This setting illustrates how our framework can be combined with modern high-capacity models without requiring the Donsker assumption.

I.1 DESIGN AND IMPLEMENTATION

We consider the same basic ATE setting as in the previous simulations. The covariates are three dimensional, $K = 3$, and we fix the sample size at $n = 3000$. In each Monte Carlo replication, we generate covariates $X_i \in \mathbb{R}^3$ from a multivariate normal distribution $\mathcal{N}(0, I_3)$, and construct a nonlinear propensity score model with polynomial and interaction terms, as in the main simulation study. Treatment assignments D_i are then sampled from the resulting Bernoulli distribution with success probability $e_0(X_i)$. The outcome Y_i is generated from a nonlinear regression model that includes both squared terms and a nonlinear transformation, with the true ATE fixed at $\tau_0 = 5.0$. The noise term is standard normal. This design yields a moderately complex but smooth data generating process for both the propensity score and the conditional outcome.

To evaluate the efficiency and coverage properties of the estimators, we construct an oracle benchmark that uses the true nuisance functions. For each replication, we compute the infeasible DM, IPW, and AIPW estimators based on the true propensity score and the true conditional expectations of $Y(d)$, and we use their corresponding influence functions to form oracle 95% confidence intervals. The performance of these oracle estimators is summarized in the “True” columns of Table 3.

For our proposed DBC estimators, we estimate the bias-correction term $h_0(D, X)$ using one hidden layer neural networks. In all cases, we use fully connected networks with a single hidden layer of 100 nodes. For DBC (LS), we employ the squared loss objective associated with Riesz regression. For DBC (KL) and DBC (TL), we use the KL divergence loss and the tailored loss introduced in Section 2.6, respectively. The conditional outcome regression $\mu_0(d, X)$ for the DM and AIPW estimators is also modeled by a neural network with one hidden layer and 100 nodes.

In DBC (LS), we model h_0 directly using a neural network with one hidden layer consisting of 100 nodes. In DBC (KL), DBC (TL), and MLE, we model h_0 by estimating the propensity score using a neural network with one hidden layer consisting of 100 nodes.

To avoid relying on the Donsker condition, all nuisance functions (the bias-correction term and the outcome regression) are estimated with two-fold cross fitting. Specifically, in each replication, we split the sample into two folds, estimate the nuisance functions on one fold, evaluate the corresponding scores on the other fold, and then swap the roles of the folds. The final estimators are obtained by aggregating the two cross-fitted folds.

For each loss (LS, KL, TL), we report three estimators:

- the direct method (DM), which depends only on the outcome regression;
- the IPW estimator, constructed using the estimated bias-correction term;
- the AIPW estimator, which combines both the estimated bias-correction term and the outcome regression.

Note that the DM estimator is theoretically independent of the specific loss used to estimate the bias-correction term. In practice, we recompute the DM estimator within each DBC (LS), DBC (KL), and DBC (TL) run to construct the AIPW estimator, and we report the resulting DM performance for reference. Small differences among the DM columns therefore reflect only Monte Carlo variation.

We repeat the experiment 100 times. For each method and each estimator (DM, IPW, AIPW), we compute the empirical mean squared error (MSE) of the ATE estimate and the empirical coverage ratio (CR) of the nominal 95% confidence interval, defined as the fraction of replications in which the interval contains the true effect τ_0 . The results are summarized in Table 3.

I.2 RESULTS

Table 3 reports the MSE and coverage ratio for the oracle estimators (True) and for the three DBC variants. The oracle AIPW estimator achieves a very small MSE (approximately 0.01) and a coverage ratio close to the nominal level (0.97), as expected. The oracle IPW estimator exhibits a larger MSE (around 1.10) and slightly conservative coverage (0.92).

1458
 1459 Table 4: MSE and coverage ratio (CR) of ATE estimators in the semi-synthetic IHDP experiment. We report the mean
 1460 squared error (MSE) and the empirical coverage ratio (CR) of nominal 95% confidence intervals over 1000 replications
 1461 for the direct method (DM), inverse probability weighting (IPW), and augmented IPW (AIPW) estimators. Nuisance
 1462 functions are estimated either by a neural network with one hidden layer of size 100 or by an RKHS regression with 100
 1463 Gaussian basis functions. The columns correspond to different variants of the direct bias-correction (DBC) approach
 1464 based on least squares (LS), Kullback–Leibler (KL), truncated likelihood (TL), and maximum likelihood (MLE) criteria.

	Neural network									RKHS														
	DBC (LS)			DBC (LS)			DBC (TL)			DBC (MLE)			DBC (LS)			DBC (LS)			DBC (TL)			DBC (MLE)		
	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW	DM	IPW	AIPW
MSE	1.52	6.82	0.31	1.57	9.42	0.44	1.55	2.84	0.32	1.58	3.00	0.43	19.98	3.56	19.97	3.50	1.91	4.58	2.59	1.78	4.45	2.48	1.22	2.32
CR	0.03	0.41	1.00	0.06	0.08	1.00	0.03	0.73	0.94	0.01	0.61	0.90	0.00	0.00	0.00	0.34	0.91	0.82	0.48	0.93	0.88	0.39	0.81	0.84

1468
 1469 The oracle DM estimator is unbiased by construction, hence its MSE is essentially zero and its coverage ratio is close to
 1470 one.

1472 For the feasible DBC estimators, the DM columns are nearly identical across DBC (LS), DBC (KL), and DBC (TL),
 1473 with MSE around 0.30 and poor coverage (CR between 0.11 and 0.17). This behavior reflects the well known fact that
 1474 the plug in DM estimator is not debiased and is not suitable for inference in this design, even when the outcome model
 1475 is reasonably flexible.

1476 The IPW estimators based on our direct bias-correction term exhibit substantially reduced MSE relative to the oracle
 1477 IPW benchmark that uses the true propensity score. Such a “paradox” is reported and analyzed in existing studies,
 1478 such as Hirano et al. (2003) and Henmi & Eguchi (2004). Under DBC (LS), the IPW MSE is about 0.59, while DBC
 1479 (KL) and DBC (TL) further reduce it to approximately 0.41 and 0.36, respectively. The coverage ratios for IPW are
 1480 close to the nominal level for all three losses (around 0.97 for DBC (LS) and DBC (KL), and 0.92 for DBC (TL)).
 1481 These results indicate that direct estimation of the bias-correction term can improve both efficiency and coverage for
 1482 IPW, and that the KL and tailored losses provide modest gains over the squared loss in this setting.

1483 The AIPW estimators exhibit the best overall performance. All three DBC variants achieve small MSEs, with values
 1484 around 0.11 for DBC (LS), 0.08 for DBC (KL), and 0.09 for DBC (TL), which are close to the oracle AIPW MSE of
 1485 0.01. The coverage ratios of the AIPW estimators are slightly below the nominal level (between 0.87 and 0.88) but still
 1486 reasonably close, especially given the moderate number of Monte Carlo replications. The differences among the three
 1487 losses are minor, with DBC (KL) and DBC (TL) showing a slight advantage in terms of MSE.

1488 Overall, these additional experiments support our theoretical findings. First, they confirm that direct estimation of the
 1489 bias-correction term via Bregman divergence minimization yields ATE estimators that are close to the oracle benchmark
 1490 when combined with cross fitting. Second, they show that the choice of Bregman divergence (squared loss, KL loss, or
 1491 tailored loss) has only a modest impact on the performance of the AIPW estimator, while the KL and tailored losses can
 1492 provide small efficiency gains in some cases. Third, they illustrate that our framework can be implemented with flexible
 1493 neural network models and cross fitting, without relying on the Donsker condition.

1495 J EXPERIMENTS WITH SEMI-SYNTHETIC DATASETS

1498 We next evaluate the proposed estimators on a semi-synthetic benchmark based on the Infant Health and Development
 1499 Program (IHDP) data, following Chernozhukov et al. (2022a). The IHDP was a randomized trial that investigated the
 1500 effect of an early childhood intervention on subsequent developmental and health outcomes. Following the standard
 1501 setting “A” implemented in the `npci` package, we generate 1000 semi-synthetic datasets, each consisting of $n = 747$
 1502 observations with a binary treatment T , an outcome Y , and $p = 25$ continuous and binary covariates X . The estimand
 1503 of interest is the average treatment effect (ATE) of the intervention on Y .

1504 For each semi-synthetic dataset we compute three ATE estimators: the direct method (DM), the inverse probability
 1505 weighting (IPW) estimator, and the augmented IPW (AIPW) estimator. All estimators use our direct bias-correction
 1506 (DBC) approach for estimating the Riesz representer or density ratio. We consider several variants of DBC based
 1507 on different divergence criteria, including least squares (LS), Kullback–Leibler (KL), truncated likelihood (TL), and
 1508 maximum likelihood (MLE).

1509 The nuisance functions are estimated either by a feedforward neural network or by a reproducing kernel Hilbert space
 1510 (RKHS) regression. The neural network has a single hidden layer with 100 units and is trained for 100 epochs. For
 1511 the RKHS learner we use 100 Gaussian basis functions; the bandwidth of the Gaussian kernel as well as the ridge
 regularization parameter are chosen by cross validation.

1512 To assess estimation accuracy and uncertainty quantification, we report the mean squared error (MSE) of each ATE
1513 estimator and the empirical coverage ratio (CR) of nominal 95% Wald-type confidence intervals across the 1000
1514 replications. Here, CR is defined as the proportion of replications in which the confidence interval contains the true
1515 ATE, so values close to 0.95 indicate well calibrated intervals. The results are summarized in Table 4.

1516 Overall, when neural networks are used for nuisance estimation, the AIPW estimator combined with our DBC
1517 schemes achieves substantially smaller MSE than the corresponding DM and IPW estimators, while its CR is close
1518 to one, indicating slightly conservative but reliable inference. The DM estimator exhibits noticeable bias and severe
1519 undercoverage, and the IPW estimator can be unstable, especially for some DBC variants. When RKHS learners are
1520 employed, the IPW estimator performs relatively well in terms of both MSE and CR, whereas the DM and AIPW
1521 estimators are more sensitive to the choice of DBC method and can suffer from larger MSE or poor coverage. These
1522 findings suggest that, in this IHDP benchmark, DBC-based AIPW with neural network nuisance learners provides the
1523 most accurate and well calibrated ATE estimates.

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565