Preference-based Reinforcement Learning beyond
Pairwise Comparisons: Benefits of Multiple Options

Joongkyu Lee Seouh-won Yi Min-hwan Oh
Seoul National University Seoul National University Seoul National University
jklee0717@snu.ac.kr uniqueseouh@snu.ac.kr minoh@snu.ac.kr

Abstract

We study online preference-based reinforcement learning (PbRL) with the goal
of improving sample efficiency. While a growing body of theoretical work has
emerged—motivated by PbRL’s recent empirical success, particularly in align-
ing large language models (LLMs)—most existing studies focus only on pairwise
comparisons. A few recent works [9651,[79] have explored using multiple compar-
isons and ranking feedback, but their performance guarantees fail to improve—and
can even deteriorate—as the feedback length increases, despite the richer informa-
tion available. To address this gap, we adopt the Plackett—Luce (PL) model for
ranking feedback over action subsets and propose M-AUPQ, an algorithm that selects
multiple actions by maximizing the average uncertainty within the offered subset.

We prove that M-AUPO achieves a suboptimality gap of o (%4 /23;1 \Siltl)’ where

T is the total number of rounds, d is the feature dimension, and |S;| is the size of
the subset at round ¢. This result shows that larger subsets directly lead to improved
performance and, notably, the bound avoids the exponential dependence on the
unknown parameter’s norm, which was a fundamental limitation in most previous

works. Moreover, we establish a near-matching lower bound of {2 (KL\/?) , where

K is the maximum subset size. To the best of our knowledge, this is the first
theoretical result in PbRL with ranking feedback that explicitly shows improved
sample efficiency as a function of the subset size.

1 Introduction

The framework of Preference-based Reinforcement Learning (PbRL) [12} 83184} [72]] was introduced
to address the difficulty of designing effective reward functions, which often demands substantial
and complex engineering effort [82, [84]. PbRL has been successfully applied in diverse domains,
including robot training, stock prediction, recommender systems, and clinical trials [30}167,[18L138}54].
Notably, PbRL also serves as a foundational framework for Reinforcement Learning from Human
Feedback (RLHF) when feedback is provided in the form of preferences rather than explicit scalar
rewards. This preference-based approach has proven highly effective in aligning Large Language
Models (LLMs) with human values and preferences [[18} 59, [64].

Given its practical success, the field has also seen significant theoretical advances [16} 49} 72,96, |89|
94,193\ 186, (74, 153} 13} 166} 22| [19, 151} [77), 1731 79, 188, 14, |39]. However, despite this progress, most
existing models remain limited to handling only pairwise comparison feedback. A few works [96 51}
79] explore the more general setting of multiple comparisons, offering a strict extension beyond the
pairwise case. Zhu et al. [96] study the offline setting, where a dataset of questions (or contexts) along
with corresponding ranking feedback over K answers (or actions), labeled by human annotators,
is available. Mukherjee et al. [S1] investigate the online learning-to-rank problem [63]], where a
dataset of questions with K candidate answers is provided, but no feedback is initially available.
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Table 1: Comparisons of settings and theoretical guarantees in related works on PbRL with ranking
feedback. Here, T" denotes the number of rounds (or the number of data points in the offline setting),
K is the (maximum) size of the offered action set (i.e., assortment), and d is the feature dimension,
and 1/k = O(eP). p represents the unknown context distribution. Here, O hides logarithmic factors
and polynomial dependencies on B. “Sq. Pred. Error” refers to the squared prediction error.

Setting Context Assortment Measure Result
Zhu et al. [96] Offline Accessible X' Given Suboptimality o (lf ﬁ)
Mukherjee et al. [51] Online Accessible X Given Pred. Error 1) /"\;%
Thekumparampil et al. [79] Online No context Select K Pred. Error 1) ﬁ;%;
This work (Theorem Online Sampled z ~ p  Select < K Suboptimality 1) (% Zthl I Sld)
This work (Theorem Lower Bound Sampledz ~ p  Select < K Suboptimality Q (#)

Thekumparampil et al. [79] consider a context-free setting (i.e., a singleton context), and the goal is
to learn the ranking of N > K answers based on ranking feedback obtained from subsets of size K.
However, all of their theoretical performance guarantees fail to show that using multiple comparisons
provides any advantage over the pairwise setting (see Table[I)). This is counterintuitive, as ranking
feedback is inherently more informative than pairwise feedback. Specifically, since a ranking over K
actions provides (12( ) pairwise comparisons, it should, in principle, enable faster learning and lead to
stronger performance guarantees. Thus, the following fundamental question remains open:

Can we design an algorithm that achieves a strictly better theoretical guarantee under
multiple-option feedback compared to the pairwise comparisons in the online PbRL setting?

In this paper, we assume that the ranking feedback follows the Plackett-Luce (PL) model 62} 47],
where, in each round, the learner receives ranking feedback over a subset of up to K actions (with
K < N) selected from a universe of IV actions. This problem setup is closely related to that of
Thekumparampil et al. [79]; however, unlike their work, which focuses solely on a context-free
setting (or equivalently, a fixed singleton context), we study a more general setting where contexts
are diverse and drawn from an unknown distribution.

Under this problem setup, we provide an affirmative answer to the above question by introducing
a novel algorithm, Maximizing Average Uncertainty for Preference Optimization (M-AUPQ), which
explicitly exploits the richer information available from ranking feedback under the Plackett—Luce
(PL) model. M-AUPO selects action subsets by maximizing average uncertainty and achieves a
suboptimality gap that strictly improves upon what is attainable with pairwise comparisons. In
particular, we show that its suboptimality gap decreases with longer ranking feedback.

Furthermore, our suboptimality gap eliminates the exponential dependence on the parameter norm
bound, O(e?), in the leading term, by employing novel matrix concentration inequalities for
the Hessian matrix H; (see the proof sketch in Section [5.1] for details). This represents a sig-
nificant improvement over most prior works, where performance guarantees typically depend on
(’)(eB) 68l [72] 196} 189], 194, 19, 88l 79, [39]]. Very recently, a few works [14} 20] have successfully
avoided the O(e?) dependency by relying on auxiliary techniques or additional information—such as
specialized sampling schemes [14] or prior knowledge of s [20]—which, however, are often imprac-
tical. Moreover, their methods are limited to pairwise comparison settings. In contrast, our approach
eliminates the O(e?) dependency without using any auxiliary techniques and considers more general
ranking feedback beyond pairwise comparisons. Our main contributions are summarized as follows:

* Improved sample efficiency via larger subsets: We propose M-AUPOQ, a novel algorithm
for online PbRL (or RLHF) with PL ranking feedback, which achieves a suboptimality gap

of O (%4 /Zthl ‘Siltl) , where | S| is the size of the action subset offered at round ¢. This

result provides the first rigorous theoretical guarantee that larger subsets directly improve
sample efficiency. To the best of our knowledge, this is the first theoretical work in PbRL
that explicitly demonstrates performance improvements as a function of the subset size |.S;|.



* Free of O(e?) dependency: Our result eliminates the exponential dependence on the
parameter norm bound, O(e), in the leading term, without relying on any auxiliary tech-
niques. This demonstrates that the O(e?) dependence commonly observed in PbRL (or
RLHF) and dueling bandit analyses is not fundamentally necessary, but rather an artifact
of loose analysis. We believe that our key lemmas (Lemmas [I] and [E.T)) can be directly
applied to existing PbRL or dueling bandit analyses—including regret-minimization set-
tings—whenever elliptical potential lemmas are used, without requiring any modification
to the original algorithm. To the best of our knowledge, this is the first PbORL work with
ranking feedback involving more than two options that avoids O(e?) dependence.

d

* Lower bound: We establish a near-matching lower bound of 2 (K—ﬁ) under the Plack-

ett—Luce (PL) model with ranking feedback, matching our upper bound up to a factor of
K. This result demonstrates that incorporating richer ranking information (i.e., larger K)
provably enhances sample efficiency.

* Experiment: We empirically evaluate M-AUPO on both synthetic and real-world datasets,
showing its improved performance for larger K and its superiority over existing baselines.

2 Related Works

Fueled by the remarkable success of LLMs [18 159, 164], the theoretical study of PbRL has rapidly
emerged as a central focus within the research community. Early work in this area traces back to the
dueling bandits literature [91} 9870, [8]].

Dueling bandits. The dueling bandit framework, introduced by Yue et al. [91]], departs from the
classical multi-armed bandit setting by requiring the learner to select two arms and observe only
their pairwise preference. For general preferences, a single best arm that is globally dominant may
not exist. To address this, various alternative winners have been proposed, including the Condorcet
winner [97,136], Copeland winner [98] 85| 37], Borda winner [31} 25} 28| 71} 87, and von Neumann
winner [63} 24, [7]], each with its own corresponding performance metric.

To address scalability and contextual information, Saha [68]] proposed a structured contextual dueling
bandit setting in which preferences are modeled using a Bradley—Terry—Luce (BTL) model [[11]
based on the unknown intrinsic rewards of each arm. In a similar setting, Bengs et al. [9] studied a
contextual linear stochastic transitivity model, and Di et al. [21] proposed a layered algorithm that
achieves variance-aware regret bounds. However, most prior dueling bandit works suffer from an
exponential dependency of O(e?). In recent work, only a few studies [20} [14] have succeeded in
eliminating the O(e?) dependency by incorporating additional complex subroutines.

Preference-based reinforcement learning (PbRL). Building upon this line of work, subsequent
research has extended the dueling bandit framework to the RL framework, considering both on-
line [90, 154} [16} 72}, 186] and offline settings [96} 194} |46]]. More recently, under the active learning
framework—where the full set of contexts X is accessible—many studies aim to improve sample
efficiency by selecting prompts either based on the differences in estimated rewards for their re-
sponses [52] or through D-optimal design methods [49] 7319, 511 [79} 39]. However, most of these
works focus exclusively on pairwise preference feedback and cannot be extended to more general
ranking feedback cases. Mukherjee et al. [S1] study the online learning-to-rank problem when
prompts are given along with K candidate answers, while Thekumparampil et al. [7/9] investigate
learning to rank N > K answers from partial rankings over K answers, but under a context-free
setting. In this paper, we consider a stochastic contextual setting (more general than Thekumparampil
et al. [79]), where contexts are sampled from an unknown but fixed distribution, and aim to minimize
the suboptimality gap using ranking feedback of up to length K.

For further related work, see Appendix [A]

3 Problem Setting and Preliminaries

Notations. Given a set X', we use |X'| to denote its cardinality. For a positive integer n, we denote
[n] := {1,2,...,n}. For areal-valued matrix A, we let |A[2 := sup,.|,,-1 [Az|]2 which is the



maximum singular value of A. We write A > A" if A — A’ is positive semidefinite. For a univariate
function f, we denote f as its derivative.

We have a set of contexts (or prompts), denoted by X, and a set of possible actions (or answers),
denoted by A := {ay,...,a N}ﬂ We consider preference feedback in the form of partial rankings
over subsets of .4, and model this feedback using the Plackett-Luce (PL) distribution:

Definition 1 (PL model). Let S := {S < A | 2 < |S| < K} be the collection of all action subsets
whose sizes range from 2 to K. For any S € S, let o denote the labeler’s ranking feedback—that is,

a permutation of the elements in S. We write o; for the j-th most preferred action under o. We model
the distribution of such rankings using the Plackett-Luce (PL) model [62| |47, defined as:

S| )
P(o|z, S;60%) = H exp (re-(2,0,)) ,  where (x,5)e X x S. (1)
j=1 Zk —; €Xp (ro=(x,01))
Here, rg« represents a reward model parameterized by the unknown parameter 6*.

When K =2, this reduces to the pairwise comparison framework considered in the Bradley-Terry-
Luce (BTL) model [11]. The probability that a is preferred to a’ given x can be expressed as:

exp (ro+(x,a)) _ /
exp (1« (z,a)) + exp (1o« (z,a’)) #(rer(@,0) =ro-(z,0)), @

where pu(w) = H% is the sigmoid function. In this work, we assume a linear reward model:

Assumption 1. Let ¢ : X x A — R? be a known feature map satisfying max, o |¢(z,a)|2 < 1,
and let 0* € RY denote the true but unknown parameter. The reward is assumed to follow a linear
structure given by 1o+ (x,a) = ¢(z,a) ' 0*. To ensure identifiability of 0*, we assume that 8* € 6,
where © := {0 € R? | |0, < B}. Without loss of generality, we assume B > 1.

P(a > d|z;0%) =

At each round ¢ € [T], a context z;; € X" is drawn from a fixed but unknown distribution p. Given
the context x, the learning agent selects a subset of actions S; € S—referred to as an assortment
throughout the paper—and receives a ranking over S; as feedback, generated according to the PL
model. After T rounds of interaction with the labeler, the goal is to output a policy 77 : X — A that
minimizes the suboptimality gap, defined as:

SubOpt(T) := Eqg~p [ro- (z,77(2)) — 1o+ (z, 7r(2))],
where 7* (x) = argmax, r¢«(, a) is the optimal policy under the true reward rg-.

3.1 Loss Functions and Rank Breaking
In this paper, we consider two different losses for estimating the parameter: one directly induced by
the PL model, and the other obtained by splitting the ranking feedback into pairwise comparisons.

Plackett-Luce (PL) loss. The PL loss function for round ¢ is defined as follows:

S| -
Z f ), where Egj)(a)Z:—log (leixp (¢(9€t70t;) 0) > .

fsy €XD (B(1, k) T 6))

3)

Here, 6,9 ) (0) denotes the negative log-likelihood loss under the Multinomial Logit (MNL) model [48],
conditioned on the assortment being the remaining actions in .S; after removing the previously selected
actions oy1, . .., 0y(j—1)—that is, over the set S;\{o¢1, ..., 04(;—1)}-

Rank-Breaking (RB) loss. In addition to this standard approach, one can replace the full |S;|-action
ranking with its (‘S;l) pairwise comparisons. This technique, referred to as rank breaking (RB),
decomposes (partial) ranking data into individual pairwise comparisons, treating each comparison as
independent [6} 34,132, 169]. Thus, the RB loss is defined as:

[Se|—1 |S:]

Z Z (9(6).  where ggj,k)(e)::10g< exp (¢(x¢,045)"6) ) “)

J=1 k=j+1 Zme{j,k} exp (¢(zt, Otm) ' 0)

This approach is applied in the current RLHF for LLM (e.g., Ouyang et al. [59]) and is also studied
in the theoretical RLHF paper [96] under the offline setting.

"For simplicity, we assume a stationary action space .4, though it may depend on the context z € X.



Procedure 1 0MD-PL, OMD for PL Loss Procedure 2 0MD-RB, OMD for RB Loss

Input: 0At(1), Sy, Hy Input: 0At(1’2), Sy, Hy
for j = 1to|S;| do forj =1t0|S;|—1do
Update H7, 09 via (3) for k = 210 [Si|do
end for Update HZ®, 09% 1) via ()
return 0(|S"+1) end for
end for

return 0(|Sf\ 1,[S¢[+1)

3.2 Online Parameter Estimation

Motivated by recent advances in Multinomial Logit (MNL) bandits [95} 41} 43]], we adopt an online
mirror descent (OMD) algorithm to estimate the underlying parameter 8*, instead of relying on
maximum likelihood estimation (MLE). This enables a constant per-round computational cost, in
contrast to the MLE-based approach, whose cost grows linearly with the number of rounds ¢.

OMD update for PL loss. For the the PL loss @I), we estimate the true parameter 6™ as follows:
67" = argmin (v (67)), 6) + fHe 0 %, G =1 lSH, 5)
where we write éilst‘ﬂ) = ét(i)l, and 7 is the step-size parameter to be specified later. The matrix
ﬁt(j) is given by flt(j) = H; + n2§,=1 V2€§j )(é,fj )), where
t—1[Ss|

Hy= Y Y020 (69+Y) + ALy, A > 0. (6)
s=1j=1
The optimization problem (5)) can be solved using a single projected gradient step [57]], which enjoys
a computational cost of only O (K d®)—independent of ¢ [50], unlike MLE—and requires only O(d?)
storage, thanks to the incremental updates of H t('” and H;.

OMD update for RB loss. Similarly, for the RB loss @), we estimate the underlying parameter as:

A~ . ~ e 1
eE“’“*”=argmin<vd““><0§”>>,e>+%ne 0w, 1<i<k<ISl (D

0cO
where we set OAU |Sel+1) é(j+1’j+2) forall j < |S¢| — 1 and for the final pair, let ét(lst‘_l’ls“’q) =
Ht(H) Also, the matrix H“’ ) is defined as 9™ .= H, + N2 k) <Gik) V209K (g )),
where

—11Sa]-
Z Z Z 0UR(@UHFTDY 4 AT, A > 0. (8)

Remark 1 (Computational cost of OMD). The per-round computational cost of the PL parameter
update is O(K2d?), since the parameter is updated |S;| < K times per round. Similarly, the cost for

the RB parameter update is O(K3d®), as the parameter is updated (‘Sgl) times per round.

4 M-AUPO: Maximizing Average Uncertainty

In this section, we propose a new algorithm, M-AUPQ, designed to select an assortment that maximizes
average uncertainty of Sy, thereby leveraging the potential benefits of a large K. At each round ¢, a
context x; is drawn from a fixed but unknown distribution p. The algorithm then selects a reference

>We write (j', k') < (4, k) to indicate lexicographic order, i.e., j < jor j' = j and k' < k.



Algorithm 3 M-AUPO: Maximizing Average Uncertainty for Preference Optimization

—

Inputs: maximum assortment size K, regularization parameter \, step size

2: Initialize: H, = A4, 6, € ©

3: forround ¢ = 1to T do

4: Observe z, and select (G, S¢) via (9)

5: Observe ranking feedback o, for Sy

6: 0.1 < OMD-PL(O;, Si, H;) (Proc = or OMD-RB(6;, S;, Hy) (Proc. if RB loss
7 Update Hy 1 «— H, + lefl VQE (0 jH)) via (6) = or via (8) if RB loss
8: end for

9:

Return: 77 (z) < argmax,. 4 ¢(z,a) 0741

action-assortment pair (ay, S¢) by maximizing the average feature uncertainty—measured in the
H; '-norm—relative to a candidate reference action a (Line E])

Z | (¢, a) — ¢zt a )HH;L ©

aesS

(at, St) = argmax argmax
acA SesS ‘S |
aesS
By construction, the reference action a; is always included in the selected assortment S;. This
selection strategy plays a key role in our algorithm, as it promotes rapid reduction in reward uncer-
tainty—particularly when the assortment size |S;| is large—by encouraging informative comparisons
centered around the reference action. Importantly, the assortment selection rule in Equation (9) can

be computed efficiently, without enumerating all ( ) possible subsets.

Remark 2 (Computational cost of S;-selection). The optimization in Equation () can be efficiently
solved with a computational cost ofO(NzK) (see Appendix @for details). Furthermore, in Ap-
pendix[H 1| we will show that the reference action @, can be chosen arbitrarily, which further reduces
the computational cost to O(NK).

Then, we observe the ranking feedback o; from a labeler and update the parameter according to
Procedure E] if using the PL loss, or Procedure E] if using the RB loss (Line @ After T rounds, the
algorithm returns the final policy 77, which selects actions by maximizing the estimated reward

under the final parameter estimate, i.e., T (z) := argmax, ¢(z, a)TéTH (Line .

5 Main Results

In this section, we present our main theoretical contributions. In Section @ we show that M- AUPQO
achieves a suboptimality gap that decreases with the size of the presented assortment |.S;|, implying
improved performance when larger action subsets are offered for ranking feedback. In Section[5.2}
we establish the near-matching lower bound.

5.1 Suboptimality Gap of M-AUPO

We begin by presenting the online confidence bound for the PL loss, derived by extending the results
of Lee and Oh [43]], who analyzed the MNL model [48]]. Since the PL. model constructs ranking
probabilities as a product of MNL probabilities, their confidence bound can be directly applied to our

setting by replacing the round ¢ with the cumulative number of updates 22:1 |Ss]-

Corollary 1 (Online confidence bound for PL loss). Let § € (0,1]. We set n = (1 + 3v/2B)/2 and
A\ = max{12v/2Bn, 144nd, 2}. Then, under Assumption with probability at least 1 — 0, we have

169 — 6"y < Bu(6) = O (B/dlog(tK/3) + BVX), vt =1,j < S,
where Ht( D= Hy + Zj, ! vy (0 G H)) + AL

This confidence bound is free of any polynomial dependency on K, which is primarily made possible
by the improved self-concordant-like properties proposed by Lee and Oh [43]]. Moreover, for the RB
loss, we can derive a confidence bound of the same order (see Corollary [E.T). Based on this confidence
bound, we derive the suboptimality gap for M-AUPO, with the proof deferred to Appendix D]



Theorem 1. Let § € (0,1]. We set X = Q(dlog(KT/6) + n(B + d)) and n = (1 + 3v2B).
Define k := e85, IfAssumptionholds, then, with probability at least 1 — §, M-AUPO (Algorithm
achieves the following suboptimality gap:

d2K?
kT

SubOpt(T) = O

NI =

Discussion of Theorem|[T} For sufficiently large 7', the second (non-leading) term becomes neghglble
and Theorem ]] I shows that the suboptimality gap of M-AUPO decreases as the assortment size | S|
increases. This establishes a strict advantage of receiving ranking feedback over larger assortments.
Moreover, our result does not involve any O(e?) dependency in the leading term, a harmful depen-
dency that commonly appears in prior works [68 72,196/ 89,194, [19, [79} 39]. Although very recent
studies [20, [14]] also achieve O(e?)-free performance in the leading term, they rely on auxiliary
techniques and are restricted to pairwise preference feedback. To the best of our knowledge, this
is the first theoretical study that simultaneously establishes (i) the performance benefits of utilizing
richer ranking feedback over larger assortments, and (ii) the elimination of the O(e?) dependence in
the leading term of the PbRL framework when accommodating multiple (i.e., more than two) options.

Proof sketch of Theorem [l We provide a proof sketch of Theorem [T} For simplicity, the main
paper assumes that the term ||¢ (4, a) — ¢ (24, d@y) | 41+ remains sufficiently small for all a during

all rounds. This is justified because the regret incurred in the rounds where this condition fails is
bounded by lower-order terms and thus has a negligible impact (see Lemma [D.4]and [D.5).

1) Regret decomposition and assortment selection. The proof begins by decomposing the subopti-
mality gap into two components: the realized regrets and a martingale difference sequence (MDS).
Since the MDS term can be readily bounded using the Azuma—Hoeffding inequality, the analysis
focuses on bounding the realized regrets.

SubOpt(7T)

T
= (0T @) — 6 Fr () 00 4 ZMDSt
t=1 realized regret of 7t at round ¢ \A(_/

=0(1/VT)

S ~ <1
F 267 @0) = 9 e et |y 0~ Braly, +0 ()
=0(v/d)

Z/\

In the inequality, we first use the fact that ¢ (x4, T (9%))T (§T+1 — 0*) > 0, which follows from
definition of 77, and then apply Holder’s inequality together with the inequality Hr 1 > H;. We

now apply Corollary [1{to upper bound |6* — O iy BY O(+/d). Next, using our assortment

selection rule @), we can bound ||¢ (¢, 7* (24)) — ¢ (24, T (24)) HH’I as follows:

1
) H¢(93t77l'*(517t)) ¢ (w1, 7 (74) HH’I < |S| Z Héb Ty, a) — ¢ (24, Gy HH;I' (10)

a€eSy

Hence, the performance is expected to improve as the subset size |S¢| increases.

2) Avoiding O(e?) by matrix concentration. To further bound the right-hand side of Equation (T0),
we first express Hy as follows:

= 1 2 2 (a a’)~P§j)><P§j) I:((b(xsv a) - gzb(xs,a/)) (d)(l's,a) - ¢(xsa a,))T] + )\Ida

where Ps(j ) denote the (true) MNL distribution over the remaining actions in .S after removing the first
p . . () L exp(qﬁ(ms,a)TB*) (])
j — 1 selected actions, i.e., Ps”'’(a) := S @) 6 where a € S5’ := {04, ...,043,}-



Furthermore, we define the regularized sample covariance matrix of feature differences, A;, which,
unlike H;, does not incorporate local information:

A = Z Z P(xs,a) — ¢(xs,as)) (¢(zs,a) — Pz, ds))T + AL,

sE[t—1]\T™ a€Ss

where 7Y := {t € [T]: maxeea [d(zt, a) — $(xe, @) | -1 = m} is the set up warm-up

rounds. Aside from the very recent works [20, [14], which avoid the O(e?) dependency but only
in pairwise comparison settings, most previous works on linear contextual dueling bandits and
PbRL [68] [72} 96, [89, 194, [19] [79] 139]] exhibit performance (either in terms of cumulative regret
or suboptimality gap) that depends on O(Ke?) (or O(e?) in the case of pairwise comparisons).
This dependency arises because these works apply a crude lower bound on H,; by using the in-

equality Ps(j ) (a)Ps(j ) (a) = K2162 5. As aresult, they derive H; X ﬁAt, which further implies

| (x4, 0) — ¢ (w4, a) | ;1 < KeP|¢ (ze,a) — ¢ (2¢,a4) | 1. This leads directly to performance
t t

bounds that scale with O(Ke?).

To tackle this problem, we leverage the concentration lemma for covariance matrices (Corollary [FI))

and for PSD matrices (Lemma [F.4). The following lemma shows that, even without introducing

additional algorithmic complexities specifically designed to avoid the O(e?) dependency—as done

in Di et al. [20] and Chen et al. [[14]—the standard analysis techniques are sufficient to eliminate the
O(KeP) dependency. In particular, we establish that H; approximates A; up to a constant factor.

Lemma 1. Let \ = Q(dlog(KT/d)). Then, with probability at least 1 — 0, we have

1
Ht > %At

Remark 3 (Applicability of Lemma [I). Lemma [I]is expected to readily apply to most existing
PbRL (or RLHF) and dueling bandit algorithms without requiring any modification to their original
formulations, thereby eliminating the O(e?) dependency in the leading term.

By applying Lemma T[] and Cauchy-Schwartz inequality, we obtain:

1 T
T Z Z H¢ T, a th,at HHt_l < f ;

aeSt

Z ”¢ Ty, a) — ¢ (24, Gy Hit—l-

a€eSy

=0(Vd)
Finally, applying the elliptical potential lemma (Lemma|[D.3)), we concludes the proof.

Furthermore, we establish a similar suboptimality gap when using the RB loss (4) in place of the PL
loss (3). The proof is provided in Appendix [E]

Theorem 2. Under the same setting as Theorem let k := S——. Then, with probability at least
1 — &, M-AUPO (Algorithm[3) achieves the following suboptzmalzty gap:

SubOpt(T) = O | =

Discussion of Theorem 2} For sufficiently large 7", the suboptimality gap in Theorem [2] matches the
leading-order term of Theoreml 1] while its second (non-leading) term is tighter by a factor of O(K?).
However, the per-round computational cost of the RB parameter update is K times higher than that
of the PL parameter update (see Remark[T). Despite this, the result is particularly notable as it offers
a rigorous theoretical explanation for the empirical success of RLHF in LLMs (e.g., Ouyang et al.
[59]), where ranking feedback is decomposed into pairwise comparisons for parameter estimation.

5.2 Lower Bound

In this subsection, we derive a lower bound for our setting: PbRL with linear rewards under ranking
feedback generated by a Plackett-Luce (PL) model. The proof is deferred to Appendix



Theorem 3 (Lower bound). Suppose T > d?/(8K?). Define the feature space as ® := S~!, the

unit sphere in R, and let the parameter space be © = {—p, u}?, where i = +/d/(8K2T). Then, for
any policy T € N\g returned after collecting T samples (using any sampling policy), the expected
suboptimality gap is lower bounded as:

SubOpt(T) = O <Kii/T) .

Discussion of Theorem [3} Theorem 3] provides theoretical support for our upper bounds, particularly
with respect to the dependency on K. Compared to the upper bounds in Theorems |l| and |2} the

remaining gap is only a factor of \/% Closing this gap remains an open problem for future work. To

the best of our knowledge, this is the first lower bound on the suboptimality gap that incorporates PL
ranking feedback in PbRL and formally shows that the suboptimality gap can diminish as K grows,
highlighting the advantage of utilizing ranking feedback over simple pairwise comparisons.

6 Numerical Experiments

We conduct two sets of experiments to empirically validate our theoretical findings: (i) one using
synthetic data (Subsection @, and (ii) another using two real-world datasets (Subsection @ We
compare our proposed algorithm, M-AUPO, against three baselines: (i) DopeWolfe [79]], which selects
K actions in a non-contextual setting; (ii) Uniform, which uniformly samples assortments of size
K at random; and (iii) Best&Ref constructs an action pair (|.S¢| = 2) by combining the action that
maximizes the current reward estimate with another sampled from a reference policy (e.g., uniform
random or SFT), following the setup in Online GSHF [89]] and XPO [88]]. In our experiments, the
reference policy for Best&Ref is set to the uniform random policy.

6.1 Synthetic Data

In the synthetic data experiment, for each instance, we sample the underlying parameter 8* ~
N(0,1,;) and normalize it to ensure that |6* |2 < 1. At every round ¢, a context z € X is drawn
uniformly at random, and its feature vector ¢(z, -) lies within the unit ball. We setd = 5, |A| =
N =100, and |X| = 100. We measure the suboptimality gap every 25 rounds and report the mean
over 20 independent runs, together with one standard error.

The first two plots in Figure [T] show the suboptimality gap of M-AUPO under both the PL loss (3) and
RB loss (4) as the maximum assortment size K varies. The results clearly show that performance
improves as K increases, supporting our theoretical findings. In the third plot of Figure[I] we compare
the performance of M-AUPQ with other three baselines under the PL loss with K = 5 at the final
round, demonstrating that our algorithm outperforms other baselines significantly. While DopeWolfe
also considers the selection of K actions from N actions, it treats each context x independently
and is specifically designed for the context-free setting (i.e., a singleton context). As a result,
DopeWolfe cannot leverage information sharing across varying contexts and performs poorly in our
setting. Furthermore, M-AUPQO outperforms naive assortment selection strategies such as Uniform
and Best&Ref, as it explicitly chooses assortments that maximize the expected uncertainty, thereby
achieving more efficient exploration. See Appendix[[.1|for additional experimental details and results.

6.2 Real-World Dataset

We also conduct experiments using real-world datasets from TREC Deep Learning (TREC—DL
and NECTARﬂ The TREC-DL dataset provides 100 candidate answers for each question, while the
NECTAR dataset offers 7 candidate answers per question. We sample |X'| = 5000 prompts from
each dataset, with the corresponding set of actions (100 or 7 actions, respectively).

We use the gemma—Zlﬂ [78] LLM to construct the feature ¢(z, a). Specifically, ¢(x, a) is obtained
by extracting the embedding of the concatenated prompt and response from the last hidden layer of

3https://microsoft.github.io/msmarco/TREC-Deep-Learning
“https://huggingface.co/datasets/berkeley-nest/Nectar
>https://huggingface.co/google/gemma-2b-it
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Figure 1: Synthetic data experiment: suboptimality gap of M-AUPO under varying K, evaluated with
PL loss (left) and RB loss (middle), along with comparison against DopeWolfe (right).
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Figure 2: Real-world dataset experiment: suboptimality gap of M-AUPQO under varying K on the TREC-
DL dataset (left) and the NECTAR dataset (middle), along with comparison against DopeWolfe
(right). The results are rescaled to align the performances between the two datasets.

the LLM, with size d = 2048. Additionally, we use the Mistral-7B [33]] reward modelﬂ as the true
reward model rg« to generate ranking feedback and compute the suboptimality gap accordingly. We
measure the suboptimality gap every 2,500 rounds and report the average over 10 independent runs,
along with the standard error. In these experiments, we present only the results under the PL loss, as
the performance difference between the PL and RB losses is negligible, as shown in Figure

The first two plots in Figure 2] show the suboptimality gap of M-AUPO under the PL loss on two real-
world datasets as the maximum assortment size K varies. Consistent with our theoretical findings,
the performance improves as K increases. In the third plot of Figure[2] we compare the performance
of M-AUPO with other baselines under the PL loss with K = 3 at the final round, showing that
M-AUPO outperforms baselines by a large margin, consistent with the results from the synthetic data
experiment. See Appendix [[.2|for additional experimental details and results.

7 Conclusion

To the best of our knowledge, this work presents the first theoretical result in online PbRL showing
that the suboptimality gap decreases as more options are revealed to the labeler for ranking feedback.
By demonstrating its statistical efficiency, our results provide a solid theoretical foundation for
moving beyond the prevalent reliance on pairwise comparisons. We hope this finding will encourage
future research to explore richer feedback formats beyond pairwise comparisons.

Moreover, our analysis eliminates the O(e?) dependency in the leading term without introducing
any additional algorithm. This result implies that all existing PbRL and dueling bandit algorithms
can likewise avoid this harmful dependency without modification—indicating that the limitation lies
in their analyses rather than in the optimality of the algorithms themselves. The key takeaway is that
in PbRL, the O(e?) dependency is theoretically avoidable and thus no longer poses a limitation.

We believe that these two implications are both conceptually significant and provide meaningful
contributions toward a deeper theoretical understanding of PbRL.

Shttps://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
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A Further Related Work

In this section, we provide additional related work that complements Section 2]

Logistic and MNL bandits. Our work is also closely related to logistic bandits and multinomial logit
(MNL) bandits. The logistic bandit problem 2127, 144, is a special case of the MNL bandit
model in which the agent offers only a single item (i.e., K = 1) at each round and receives binary
feedback indicating whether the item was selected (1) or not (0). Faury et al. [26] examined how the
regret in logistic bandits depends on the non-linearity parameter ~ of the logistic link function and
proposed the first algorithm whose regret bound eliminates explicit dependence on 1/x = O(e?).
Abeille et al. further improved the theoretical dependency on 1/x and established a matching,
problem-dependent lower bound. Building on this, Faury et al. [27] developed a computationally
efficient algorithm whose regret still matches the lower bound established by Abeille et al. [2]).

Multinomial logit (MNL) bandits tackle a more sophisticated problem than logistic bandits. In-
stead of offering a single item and observing binary feedback, the learner chooses a subset of
items—underscoring the combinatorial nature of the task—and receives non-uniform rewards driven
by an MNL choice model [55} 4, 58, [T5] 55} 56, [61}, (3, 411, 43]]. A recent breakthrough by Lee and
Oh closed a long-standing gap by providing a computationally efficient algorithm that attains

24



Procedure A.1 Greedy Selection of Reference Action and Assortment

1: Input: z¢, H; ', A K
2: Initialize: (a}, S}, max_avg) < (None, None, —0)
3: foralla e Ado

4: Initialize S — {a}, prev_avg <« 0
5 while |S| < K do
6: Find
a* < argmax Hgb(xtv a) - ¢($t, C_l) HH;1
acA\S
7: Tentatively update S" — S U {a*}
8: Compute
1
cur_avg <« @ Z o(ze, a) — P4, ‘_1)“}1;1
aeS’
9: if cur_avg < prev_avg then
10: break
11: else
12: S5
13: prev_avg < cur_avg
14: end if
15: end while
16: if prev_avg > max_avg then
17: (a;, Sf,max_avg) < (a, S, prev_avg)
18: end if
19: end for

20: return (a;, S;)

the minimax-optimal regret for this setting. Building on this result, Lee and Oh [43]] further re-
duced the regret bound by a factor polynomial in B and logarithmic in K, and established the first
variance-dependent regret bounds for MNL bandits.

Our work extends the online confidence bound analysis of Lee and Oh [43] to the Plackett—Luce (PL)
model. This extension is natural because the PL probability distribution decomposes into a sequence
of MNL probabilities over successive choices. Crucially, we leverage their key insight—that the
MNL loss exhibits an £,-self-concordant property—to eliminate the harmful O(e?) dependence.
This is one of the main contributions of our work (see LemmaD.2).

RL with MNL models. Recent work has extended the Multinomial Logit (MNL) framework beyond
bandit formulations to reinforcement learning. Lee and Oh [42] introduced combinatorial RL with
preference feedback, a framework in which an agent learns to select subsets of items so as to maximize
long-term cumulative rewards.

Another line of research incorporates MNL models directly into the transition dynamics. Hwang and
Oh [29] proposed MNL-MDPs, a class of Markov decision processes whose transition probabilities
follow an MNL parameterization. Building upon this formulation, Cho et al. [17]] improved the regret
bounds by improving the exponential dependence on B, and Park et al. [[60] extended the analysis to
the infinite-horizon setting.

B Efficient Assortment Selection

In this section, we describe how the assortment selection rule in Equation (9)) can be solved efficiently.

Given 1z, the reference action—assortment pair (a;, S¢) is selected by evaluating each candidate
reference action a € A. For each @, we construct an assortment .S beginning with the singleton @, and
iteratively add actions a € A\{a} in decreasing order of their uncertainty relative to a, measured by

H¢ ('rt7a) - ¢ (zta a)”H:l .

Let as;(a) denote the action with the k-th highest uncertainty with respect to a at round ¢. For
example, a1 (@) = argmax,e 4\ (ay |6 (¢, @) — ¢ (24, EL)||H:1. We add actions greedily to the set .S,
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as long as the average uncertainty continues to increase:

5] Z |¢ (z¢,a) — & (x4, a )HHfl ,  where g€ S.

aesS

Among all candidates a € A, we select the pair (a;, S;) that achieves the highest average uncertainty.
The pseudocode is given in Procedure [A.T]

For each candidate reference action, the algorithm incrementally constructs a subset of actions
by greedily adding those with the highest uncertainty relative to the reference—stopping once the
average uncertainty no longer increases. This greedy strategy guarantees that, for each reference, the
selected subset maximizes the average uncertainty. By applying this procedure across all possible
reference actions and selecting the pair that achieves the highest score, the algorithm obtains the
global optimum over all reference—assortment combinations.

As for the computational cost, each greedy addition step involves searching over O(N) candidate
actions, resulting in a total of O (N K) operations per each reference action a. Repeating this process
for all NV candidate references yields a total cost of O(N?K).

C Notation

Let T denote the total number of rounds, with ¢ € [T'] representing the current round. We use N for
the total number of items, K for the maximum assortment size, d for the feature vector dimension,
and B as an upper bound on the norm of the unknown parameter. For notational convenience, we
provide Table [C.T]

For clarity, we derive the first- and second-order derivatives (i.e., gradients and Hessians) of the loss

(4)

functions. For the PL loss at round ¢ for the j’th ranking, let y,;” = 1if ¢ = j, and yizj ) = 0 for

otherwise. Then, we have

() exp (¢(zt,0¢;)"6) L exp (¢(z1,01;)" )
67(0) = ~log | g - =2 v log | s =
ke €XP (¢(2¢,04k) 7)) i=j Zk s exp (¢(ae, o) 10))
=P (00)
[St]
= Zyij)logpt({o) (04),
() o) ()
Ve (8) = 2 (Pt,]e (04i) — yii )925(%,%)7
1=j
[S¢] [Se| St
EP“) Utz xtagtz xt70tz Z Z Ptg Utz t9(Utk)(b(xtaati)(b(xt;atk)—r
i=j k=j
\S, [St| T
= Z > P (01:) P (o) (¢lr, 04i) — (e, 00n)) (e, 045) — d(we, o11))
i=3 k=j

For the RB loss at round ¢ for the pairwise comparison between o;; and oy, let yU k)

and yEJ k) = 0 for otherwise (i.e., when 7 = k). Then, we have

G exp (¢(z4,045)"6)
o) = s (exp (¢(x1,015) T0) + exp (P(1, 01k) T 0)
1

= —10gﬂ<(¢(33t70tj) - ¢($ta‘7t’f))T0) » where pu(w) = 1+4e v’
vk g) = (u((cb(%atj) - ¢($t,0tk))T9) - ) ($(@r,01) — $lar, o))
V2N 0) = (6w, 005) = 91, 00)) ' 0) (61, 05) = Blww, o)) (6w, 015) = S, o)

=1lifi=j,
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Table C.1: Symbols

X, AS context (prompt) space, action (answer) space, assortment space
¢(x,a) e R?  feature representation of context-action pair (, a)
Ztjk = ¢(24,045) — (24, o4, feature difference between o; and oy, under context x4
St assortment chosen by an algorithm at round ¢
) - ) exp(¢(z, ot )TB) . .

£7(0) = —log ST cxp (o m;tk)w)) , PL loss at round ¢ for j’th ranking

ik xp(p(ze,0 To .
ZEJ k) (9) = —log Zm:] E}(Sip(t¢(;t),am)7)76) > , RB loss at round ¢ for comparison o vs o

. T
v2/9) (g [Sul S5l op((¢(weom) té@ow)0) T
t ( ) Z k'=j Q(Z\ks/t:\] eXp(qb(zt,Utk/)Te))z Ztkk Ztkk

V2é§.i,k)(0) = (th},ﬁ) thkZzT,-k, where pu(w) = 1+ — 1s sigmoid function
§§J 1) online parameter estimate using PL loss at round ¢, after j’th update
§§f h+1) online parameter estimate using RB loss at round ¢, after (j, k)’th comparison update
n = %(1 + 3v/2B), step-size parameter
A := Q(dlog(KT/5) + n(B + d)), regularization parameter
H, = N0 35 VR (07 Y) ALy (o T ST TS RO (67Y) 4+ ALy
aY = H, +13%,_, v209)(89)) (for PL loss)
=k "'/,k/ A‘,-/,k/
Uk = He + 020 ky<(iok) V207K (@)Y (for RB loss)
B4(0) =0 B«/dlog (tK /) + Bﬁ), confidence radius for 8, at round ¢
Tw = { i maXaes |¢(2s,a) — ¢(13t7‘_1t)HH;1 > m}, warTm—up rounds
At Z [t— 1]\7’w Zaes ( ('L37 a) - ¢(-7:s7a’5)) ((]5(157 CL) - ¢('Ts>as)) + )\Id
To = { : 2iaes, 10 (xe,a) — & (e, @)y -1 = 1.}, large EP rounds

D Proof of Theorem/I]
In this section, we present the proof of Theorem

D.1 Main Proof of Theorem 1]

PL loss and OMD. We begin by recalling the loss function and the parameter update rule. Specifically,
we use the PL loss defined in Equation (3) and update the parameter according to Equation (3)).

[St| St
((0) = )~ log (Zixp Ao og) 3) ) N0

j=1 k jexp( ¢(w,001) 7 0)) j=1

=9 (0)

and

Uty — argrgin<V€§j)(0At(j)), 0) to H0 O(J)HHQ)’ J=1 08,
6

where G(IS”H) 0( ) ,and 7 : %(1 + 3v/2B) is the step-size parameter. The matrix H,’ ) i given
by Y = H, + nzj V2€§J )(69)), where
t—1 15| o
Hyi= Y Y V2907 D) + Mg, A >0.
s=1j=1

Online confidence bound for PL loss. Now, we present the confidence bound for online parameter
estimation in MNL models, as recently proposed by Lee and Oh [43].
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Lemma D.1 (Online confidence bound, Theorem 4.2 of Lee and Oh[43). Ler § € (0,1]. We set

n = (1+3v2B)/2 and A\ = max{12v/2Bn, 144nd, 2}. Then, under Assumption with probability
at least 1 — 0, we have

16: — 0" 1, < Bi(6) = O (B/dlog(t/6) + BVA), vt 1,

We now extend this result to our setting. Since the total number of updates up to round ¢ is 22:1 |Ss,
the corresponding confidence bound can be expressed as follows:
Corollary D.1 (Restatement of Corollary l 1] Online confidence bound for PL loss). Let d € (0,1].

We setn = (1 + 3+/2B)/2 and X\ = max{12+/2Bn, 144nd,2}. Then, under Assumpnonl 1| with
probability at least 1 — §, we have

18 ~ 0" 100 < Bu(d) = (B«Aibgtkj&—%Bwf) Vt>1,j < |9
where Ht( D= H, + Zj/ 11 v2eY (0 G H)) + A\ and §§1) =0,

Useful definitions. We define the set of warm-up rounds, denoted by 7%, which consists of rounds
with large uncertainty, as follows:

1
TY = {t € [T] : max | ¢(z¢,a) — d(xe, ar)| -1 = } , (D.1)
acA H, 3v2B741(0)
where [S7.1(0) denotes the confidence radius as defined in Corollary Furthermore, we define
the regularized sample covariance matrix of feature differences (with respect to ¢(x, as)) over the
non-warm-up rounds as:

A= 2 3 (6w, 0) = 3w, 5)) ($(5,0) — d(24,02)) T + Mg (D2)

se[t—1]\T ™ a€S,

To control the elliptical potentials, we also define the set of large elliptical potential (EP) rounds,
denoted by 7, as follows:

76 = { Z H¢ xta (xtaat)HA_ = 1}7 (D3)

aESf

Key lemmas. We now present key lemmas needed to prove Theoreml 1] The following lemma, one
of our main contributions, is crucial for avoiding the 1/x = O(e?) dependency in the leading term.

Lemma D.2 (Restatement of Lemma [I). Let A; be defined as in Equation (D.2). Set A =
O(dlog(KT/0)). Then, for all t € [T, with probability at least 1 — ¢, we have

mz%m

The proof is deferred to Appendix

The following lemma is a variant of the elliptical potential lemma [1]], adapted specifically to the
assortment offering setting. For completeness, we provide the proof tailored to our setting.
Lemma D.3 (Elliptical potential lemma for S;). Let {24 }t>1,aes, be a bounded sequence in R?

t—1

satisfying maxi>1 ||2ell2 < X. Foranyt > 1, we define Ay := Y. _; €S, ZsaZay + ANy with

A > 0. Then, we have

T 2
X2KT
in<{1 a?2i ¥ < 2dlog (1 .
;mm{ NP |} og (142557 )

a€S;

The proof is deferred to Appendix [D.2.2]

The cardinality of the set Ty can be bounded by a variant of the elliptical potential counting lemma [40}
33].
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Lemma D.4 (Elliptical potential count lemma for S;). Let {z4}1>1,ae5, be a bounded sequence in
R? satisfying max;>1 |zll2 < X. Forany t = 1, we define A; := 22;11 acs., ZsaZay + Mg with

A > 0. Let Ty < [T] be the set of indices where 3. s, ”Zta”i—l > L. Then,

2d XK
< — 1 1+ ———+ .
Mol < g+ 1y o8 ( Tog(1 + L)A)
The proof is deferred to Appendix [D:2.3]
The size of the set 7% n (7)€ is bounded as described in the following lemma:
Lemma D.5. Let To := {t € [T] : X g, |¢ (21,0) — ¢(Z‘t,(lt)”A;1 > 1}and TV = {t e [T] :
maxXged |P(z¢, a) — Pz, a4)| -1 = m} Define k := e~ *B. Then, the size of the set
t T41

T n (To)¢ is bounded as follows:

2KT

2
%5%&(5)25“0% <1 + dA) :

1T " (To)| <
The proof is deferred to Appendix
We are now ready to provide the proof of Theorem |}

Proof of Theorem[I] To begin, we define a martingale difference sequence (MDS) ¢; as follows:
* ~ T * * ~ T *
G =By | (6 (2,7 (@) = 6 (@, 70(2)) ) 07| = (& (27" (20)) = 6 (w1, Fr(0))) 0",
which satisfies |(;| < 2B. Then, by the definition of the suboptimality gap, we have

SubOpt(7) (6 (.7 () = 6 (2, 7r(2))) "7

Il
=
8
4
°

I
Nl =
1~

-+
Il
-

T
(¢ (@, 7 (1)) = & (w1, Ar (1)) )TG* + ;g Gt (Def. of ¢;)

)
Nl =
D1~

-+
Il
-

* ~ * N 1 a
(6 o (@) = 0 o Fr@) " (67 = raa) + 7 236

(Fr(z:) = argmax,e 4 ¢(z4,a) Or41)

(6 (0, 7 (1)) — ¢ (w0, Rr(2)) | (0* — §T+1> +0 (\/17> , (D4

-
I
—_

)
Nl
D=

where the last inequality follows from the Azuma—Hoeffding inequality. Specifically, for any 7" > 1,
with probability at least 1 — §, we have

% S < %\/832Tlog(1/<§) _o (\}T) .

To complete the proof, it remains to bound the first term in Equation (D-4).

Recall the definitions of the set of large elliptical potential (EP) rounds (Equation (D.3)), denoted by
7o, and the set of warm-up rounds (Equation (D-T)), denoted by 7*:

To = {t e[T]: ), 16 (ze.a) = ¢ (zr,a0)] 5 > 1}, (large EP rounds)
a€Sy
TY = {t € [T]: max [¢(xr,a) — ¢z, @) | 1 > m} » (warm-up rounds)

where A is defined in Equation (D.2). Then, by applying the elliptical potential count lemma
(Lemma and the bound on the cardinality of the set |[7* n (75)¢| lemma (Lemma [D.5), we
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obtain

'ﬂ \

i ¢ (i, m — ¢ (4, T (1)) )T (0* - §T+1)
= 2 3 (@ @)~ o fr()) " (6~ 6rp)

te%

Z (¢ (e, 7" (1)) — ¢ (1, T (1)) )—r (0* — §T+1>

teT A (To)°

FE Y @) — oG re@)) (600 6

t¢7'0u7"w
_ 1B 1 ) ) T
DT+ T (T4 5 Y (0w @) - oo tr() " (67— 6r)
tgTouTw
(Assumption|[T)
8B 2K 48v2BK? 2KT
< ——— §)%dlog [ 1+ ==~
1og(2)leOg (1+ log(2)/\> * KT Br1(0) og( * dX >
(Lemma[D.4]and[D.3)
(D.5)

+
Nl =

Y (@) - o) (6 Bra).

t¢TouTw

To further bound the last term of Equation (D.3)), we get

- Z (¢ (ze, 7 (2¢)) — ¢ (24, T (24)) )T (9* — §T+1)

T t¢TouTw

<z O Ioent @)~ o Ar@)

t¢TouTw

‘9* — 011

Hriq

(Holder’s ineq.)

T+1

(Hry1 = Hy)

<= Y b @) — 6 (o Ar(ed)]

tgTouTw

1) ~
<0 S o e (@) - 6 ()
tgTouTw
(Corollary [D-1] with prob. 1 — §)

We denote S} = {n*(x¢), 7r(x:)}. Then, we have

ﬁ%(é) > (e (@0) = ¢ (@ e (@)l s

t¢TouTw
)
= IO S o (arna) — 6 B g
tgTouT Y aeS}
5 St 7
_ /”}1() 2 : i' 2 @ (e a) = ¢ (@, Fr(22)) | g
t¢TouT™ €Sy
2 5
- ﬁT;() Z IS¢ Z | (we,a) = ¢ (@, Tr (@) | 1 (D.6)
t¢TouTw aeS}
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where the last equality holds due to the fact that |S}| = 2. To proceed, by our efficient assortment
selection rule in Equation @]) we obtain

Bra®) 5 S 1)~ o)
t¢TOUT“’| aeS}

2

<Pl 5 S It~ sl

t¢TouTw | aeS
(S selection rule, Eqn. (9))

<2ﬁ”£(5)\ S () 8, XS 16tena - eteuant

t¢TouTw t¢gTouT ™ aeS
(Cauchy-Schwartz ineq.)

_ 2Bra(9) <1>2 - 1
T \MOZWU, S| | f|\/ > 2 e a) — b anl; -

t¢TouT ™ aeSy
(Lemma|D.2] with prob. 1 — §)

L Y ¢ (wr,a) = d(xr, at)li;l}

a€eSy
2KT
1 + d)\) (Lemma@[)
dlog (KT) |. (D.7)

By combining Equations (D-4), (D-3), and (D7), and setting S7.1(6) = O(By/dlog(KT) +

B\/X), we derive that, with probability at least 1 — 3 (omitting logarithmic terms and polynomial
dependencies on B for brevity),

d’K?

Substituting 6 — é, we conclude the proof of Theorem

D.2 Proofs of Lemmas for Theorem 1]
D.2.1 Proof of Lemma[D.2]
Proof of Lemma|D.2] Recall the definition of H,.

t=1 15| EX
Ho= Y Y VD@0 ) + AL = Y DV (00H)) + AL,

s=1j=1 se[t—1\Tw j=1
Here, we can equivalently express the MNL loss at step j and round s, denoted by v%j ) ((39 +1))
as follows:

NTpli+l)
() (HU+1) CXP ((b(xs’% ) 05 ) B exp (as;)
Es (05 ) - _1Og A ~G+1) = —lOg V
Zk =j €xXp ( (.TS, Usk)Tesj )) Zk =j €xXp (ask)
=10 (al), (D.8)

>
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where a,; = ¢(x4,04,)T0Y ™, a) = (a, )‘S ‘| € RIS:I=3+1, Define the matrix
¢($870$j)T
B0 ; e RUS: =i +1)xd
¢(xsvas|SSI)T

where each row corresponds to the feature vector of an action ranked from position j to |.Ss| in the
ranking ;. Moreover, we define a%; = ¢(s, 0s;) 0%, a »0) _ (a% )lS ol e RISsI=5+1

Then, using the ¢,,-norm self-concordant property of the MNL loss [43]], for any s € [t — I|\T*, we
obtain

V2€gj)(§§j+1)) = (ng))T v? @gj)(agj)) (I,gj) (Eqn. (D))
N NT

> e3V2[al)—al V| (q)gj)) V2 7U) (a2 () ) (Lemma|FT)
1 N\ T _. . . . .
(W) 2 9(7) (g% () ) () _ %) 1

>~ (@) Vi (ar )@y () —ar |, < 51
1 N

= —V2(0"), (Eqn. (D))

where the last inequality holds because, for any s € [t — 1]\7* and j < |S;|, the following holds:

a9 D]y = max_ |o(er,00)T (60 —6°)
k=j,...,|Ss]
< max | ¢(ag, o) g1 Ag’”l) - 0" (Holder’s inequality)
k:j,...,|Ss| s H,
1 ~
<——— max |0%tD _g* s¢ TV Hy < H§k+1)
3V2Br41(6) k=gl Se 17 aery GF ‘ )
Br+1(9) : .
< —F—= (Corollary[D.1] 3,(6) is non-decreasing)
38v2Br11() t
1
3v2'
Therefore, we get
|Ss| 1 |Ss|
He>= > Y vHO@™)+A;=- > Y vHO(6) + M. (DY)
se[t—1]\Tw j=1 € seft—i)\Tw j=1

Now, for better presentation, we define the Multinomial Logit (MNL) choice probability [48] for a
given assortment .S at round s as follows:

exp (gf)(xs, a)TB)

P,(alS;0) := , Yaes§.
@18:6) 1= 5 oxp (0w @) T6)
Let S = {051, .-, O SS|}~ Thus, the PL model in Equation (]I[) can be rewritten as follows:
(0'5|.’L’5,SS,6> P(031|Ss; )'P(Us2|Ss\{USI};9)' Ps( )
ISs|

H US]|{USJ,...7US‘SS‘};0).

For simplicity, we define ng ) .= {osjs- s ol SSI}’ and let Ps(j ) denote the (true) MNL dis-
tribution over the remaining actions in S, after removing the first 7 — 1 selected actions, i.e.,

pY) = Ps('|S§j ). 0*). Then, to further lower bound the right-hand side of Equation (D.9), we
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proceed as follows:

S| ‘ 1551 1Ss1 15:1 exp ( (Pp(xs, osk) + ¢<x87ask’))T 0
Y vrieny =3 ) ( g ) ——
=t j=lk=jk'=j 2 (Z‘;«i‘] exp (¢(xs,askf)T9*))
EAREAREN ]
= 5 Z Z Z P 05k|S ) (USk/|S(j) 0" )ZSkk?'Zskk’
j=lk=jk'=j
1 S| .
Y By bt [ (600, — 9 ) (61,0) — b)) .
Jj=1

(D.10)

where zgp = (x4, 051) — ¢(2s,04). Let the action @, € S, be ranked at position k in the
ranking o. That is,

o = (a’sl, <Ok —1> as,@gfcs-&-l’ s O'S\Ss\*l)'
—_———
ks—1 actions

Note that a, € S ) for j < k,. We also note that P(] ) is measurable with respect to the filtration
Foqj1 = a' (S1,011,012,...,56,0s1,...05j—1) . Then, by plugging Equation (]m into
Equation and applying the covariance matrlx concentration result (Corollary [F1)), since A =
Q(dlog(K T/6)) we have, with probability at least 1 — 4,

S|
o, > zie 2 Z E(y b x p [(¢(xs, a) — ¢(zs,a")) (d(s, a) — ¢($57a’))T] + Mg
seft—1] \T“’J 1
> Z Z E(a of P(J)XP(J) |:(¢(1‘3, Cl) — ¢($5, a/)) (¢(xsa a/) - (b(xm a/))T] + )\Id
se[t—1\Tw j=1
ks < [Ss)
> ]_i()e Z Z ‘rSa Usj ¢(m57a’5)) (d)(xs’ Usj) o ¢<:I;S7&S)>T + Ma

se[t—1]\Tw j=1
(Corollary | Gy € SV for j < ky)

3K 1 ks
=1Oe< Y w2 (B on) - 6las, @) (9, 0g) - Blesa) md)

se[t—1\Tw = j=1

=:X(0s)
Here, {X (Us)}se[t_u\Tw is a sequence of positive semi-definite (PSD) random matrices, where each
matrix X (o) depends on the sampled ranking o, and satisfies Apax (X (05)) < 1.

Note that the ranking o is drawn from the PL distribution P(- | x4, Ss; 8*), which is measurable
with respect to the filtration 51 = o(S1,01,...,95s). Furthermore, X (o) is measurable with
respect to o (Fs_1, 05). Then, by applying the concentration lemma for PSD matrices (Lemma
two times, with probability at least 1 — 26, we get

3K

Ho= 1| ) X(02)+ M
€ \sep e
K
= 10e Z Eonp(lo,,5.0%) [X(0)] + Mg (Lemmal[F4)
se[t—1]\Tw
K
= % Z X(Gs) + Ala | (Lemmal[F4)
€ \sep e
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where o5 denotes an arbitrary ranking in which as is placed last. For example, 5 =
(01,5 04k, 1505k, +15Os|S,|-1,Gs). Note that G, is a possible virtual ranking feedback for
the assortment S, whereas o4 denotes the actual ranking feedback observed at round s. Hence, since
as occupies the final position in the virtual sequence o, it follows that:

3K

Hex=oo | ) X(6:)+ M
se[t—1\Tw
3 |Ss] §
" 50e D 2 (B Fg) = Blas, @s)) (s, 55) — ls,@s)) - + ALy
se[t—1]\Tw j=1
] W T
g | B3 (#0n) o ) (8o = o))+ M
se[t—1\T™ a€Ss
_iA>iA (Def. of A, Eqn. (D2))
T B0e TR0 ef. of A;, Eqn. (D.
By substituting & — &, we conclude the proof of Lemma 0

D.2.2 Proof of Lemma[D.Jl
Proof of Lemma|D.3] By the definition of A;, we have

det (A¢41) = det (At + Z zmz;>

aESt

> det At (1 + Z HzmHA_ >

a€eSy

t
> det (AL,) ]_[ <1+ > zsali;1>

a€S;
t
> det (AL) [ | <1 +min{1, > ||zsai_1}> : (D.11)
s=1 a€eSy

Then, using the fact that a < 2log(1 + a) for any a € [0, 1], we get

T T
Z min {1, Z |Ztail} <2 Z log (1 + min {1, Z HzmHi,l })
t=1

a€eSy t=1 a€eSy

det (AT+1)
<21 —_ Eqn. (D.11
o (et (Eqn. [©TT)

X2KT
<2dlog(1+ Y >,

where the last inequality holds because

A1+ + )\d d . .
det (Ari1) < — (A1, -+, Aq are eigenvalues of A1, AM-GM ineq.)

_ ((trace(Arsn) )
- d
T d
(MASE S alB) [, KTV
d b d
This concludes the proof of Lemma[D.3] O
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D.2.3 Proof of Lemma[D.4]

Proof of Lemma[D4] Let W; := A\ + Y seTy <t 2acs. ZsaZa, + ALg. Then, we have

d
(A . szK)d . (Ad + Ziers aes, |zta|%>

d d

_ (trace(Wr ) ¢

B d

> det(Wr4q) (AM-GM ineq.)

= det(\y) H <1 + Z Ztaﬁ/vtl) (update equality for det.)
teTo a€S;

= det()\Id) 1_[ <1 + Z Zta|il> (Wt < At)
teTo a€S; ¢

> (14 L)l (Sues, |2tal2 1 = Liort e To)

Hence, we get

2
X76|K> (D.12)

d
< —
7ol log(1+ L) log <1 * X

st = () = o (- )

<@+ d o 2d L+X2K
S Tloglr L) B\elogl+ L) \[Tol T ax ) )

which implies that

2d 2d 1 X2K
7ol < log(1 + L) log (elog(l + L) (T0| R )) ' (D.13)

Now, we fix ¢ > 0 and consider two cases:

e Case l: |Ty| < cd
In this case, from Equation (D.12), we have |7g| < m log (1 + XQ)\CK).

* Case 2: |Ty| = cd
In this case, from Equation (D.13), we have |7y| < 1og(21d+L) log (elog(21+L) (% + X;"\K)).

By setting ¢ = m, we obtain
2d XK
<— % g1+ ——2 ),
7ol < iy 1o ( T gl 1 L)A)
which concludes the proof of Lemma [D.4] O
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D.2.4 Proof of Lemma[D.5

Proof of Lemma|D-3) For simplicity, let 7,;* = {s € [t — 1] | s € T™ ~ (T5)¢}. Clearly, ’7~’7€”+1 =
T* n (To)¢. Recall that by the definition of H;, we have

t=11Ss] IS:] 1S:] exp <(¢($s,05k) + 65, 0ak)) §§j+l))

. 2
s=1j=1k=jk'=j 2( l sl , exp (qﬁ( T, Jsk/)TO‘(ng)))

. Zskk;lz;rkk:/ + )\Id

I
g
g
]

\'%
E
[ V)
N
»
™
X
N
)
k‘
X
+
>
[
ISH
~~
=
I
ml
N
o
~

4

Q

m

A
—
=
8
M
Q
~—
-
—
8
2
IS
S—"
~—
—
<
—~
8
M
Q
S~—"
=
&
“Q
@
=
+
>
[
IS
~~
S
[
m
n
oy
<
sl
e
=
@

— $(s, ) (D5, ) — $(ws,85)) " + AL |, (D.14)

I\
&
=N
[\v]
— |
Ring
g
—
>
&
2

v

where Zskk! = ¢($3, Usk) - ¢(x57 Usk’)~

Let a; = argmax,¢ 4 |¢(x¢,a) — (x4, ar)| ;-1 Then, we get
t

Y, max|ota, o) = ola )l

te7N’T“ﬁrl

< ) letnan) = élzea)ly

te%%u+1
< Y2 e a) = dlasan)l, - (@, @, € S, by Eqn. ©))
tETw aESf

2K?
<= D Dl leara) —dlenalf, - (Eqn. (D-13))

teTw, , €5t A

2K G ~
< Tk mln{ Z H¢ Tty @ (xtaat)H( )1} (t ¢ To and 7—71’U+1 = [T])
t=1 a€eSy AY
2
< £allog (1 + 2dK)\T> . (Lemma[D3)
K

On the other hand, for ¢ € 7~'73”+1 =T n (To)° we know that

) 78]
>, max |p(a,a) — $or, a3 > m '

teT, Tl
By combining the two results above, we obtain

~ 12v2K? OKT
T2 = [T A (To)°| < fTﬁT+1(5)2d10g (1 4 d}\) 7

which concludes the proof. O
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E Proof of Theorem 2

E.1 Main Proof of Theorem 2]

In this section, we present the proof of Theorem 2] which is obtained by using the RB loss () instead
of the PL loss (@). Note that this approach is based on the concept of rank breaking (RB), which
decomposes (partial) ranking data into individual pairwise comparisons, treats each comparison as
independent, and has been extensively studied in previous works [6} 34, [32] |69]. Moreover, this
RB approach is applied in the current RLHF for LLM (e.g., Ouyang et al. [59]]) and is also studied
theoretically in Zhu et al. [96] under the offline setting.

RB loss and OMD. We begin by recalling the loss function and the parameter update rule. Specifically,
we use the PL loss defined in Equation (@) and update the parameter according to Equation (7).

[St|—1 |Se] exp (¢(l’t70tj)-r0) [Se|—1 |Se] ik
Z Z _1 g <eXp ((b(xt,a'tj)TH) +€XP (¢(xt,0—tk; T0 ) Z Z gj

Jj=1k=j+1 =1 k=j+1

=% (@)

and

0" Y = argmin (VLM (971), 0) + nue 0 o, 1<j<k<IS,

0O

, we set é(j’kH) = §(j+1’j+2) and for the final pair, let 5(‘5”_1 ISel+1) _ g(1:2),

t+1
") is defined as A" := H, + 123 k)< Gik) VZE(] u )(8Y k) I where

—11Ss|—-1 |Ss]
Z 2 Z (OR) (OUHFDY £ ALy, A > 0.
s=1 j=1 k=j+

where if k = |S;
Also, the matrix ﬁt(j '

Online confidence bound for RB loss. Now, we introduce the online confidence bound for RB loss.
Since the total number of updates up to round ¢ is 22:1 (‘5; ‘), a modification of Lemma yields
the following result:

Corollary E.1 (Online confidence bound for RB loss). Let § € (0,1]. We setn = (1 + 3+/2B)/2 and
A\ = max{12v/2Bn, 144nd, 2}. Then, under Assumption with probability at least 1 — 0, we have

\|§,§j”“)—0*\|H§j,k) Bi(6) = (B«/dlog tK /o) +Bf) Vi>1,1<j<k<|S]

~

where HO®) := Hy + 30 1) < V200 (075 +9) 4 My and 6 = 6,

Useful definitions. We use the same or similar definitions for the set of warm-up rounds T (given
in Equation (D.I))), the set of large elliptical potential (EP) rounds Ty (given in Equation (D.3)), and
the regularized covariance matrix A; (given in Equation (D.2)).

T {t e 7] max [0(x:,a) — B, 30) |y > ﬁﬂll(a)} . (warm-up rounds)
To = { Z o (z¢,a (:ct,at)HA_ > 1.} , (large EP rounds)
a€Sy

Ay Z Z (z5,a) — ¢(xs,a5)) (P(zs,a) — gb(xs,&s))T + L.

sE[t—1\T ™ a€Ss

Key Lemmas. We can avoid the 1/k = O(e?) dependency in the leading term, thanks to the
following lemma.

"We write (j7, k') < (4, k) to indicate lexicographic order, i.e., 5 < jorj’ = jand k' < k.
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Lemma E.1. Let A, be defined as in Equation (D:2). Set \ = Q(dlog(KT/5)). Then, forallt € [T,
with probability at least 1 — §, we have

The proof is deferred to Appendix [E2.T]

Lemma E.2. Let To := {t € [T] : Y,eq, |0 (x,0) = ¢ (2, a)| 0 = 1} and TV = {t €
[T] : maxgeq |P(xs,a) — ¢(xt,dt)|\H;1 > m} Define k := 6_443. Then, the size of the set
T* n (To)¢ is bounded as follows:

2 2KT
|7 (To)°| < 25T+1(6)2d10g (1 + d)\) .

The proof is deferred to Appendix [E.2.2]

We are now ready to provide the proof of Theorem 2]

Proof of Theorem[2] The overall proof structure is similar to that of Theorem [, We begin with
Equation (D.3), but apply Lemmal|E.2]instead of Lemma|[D.5] With probability at least 1 — §, we have

SubOpt(T) = E, ., [(¢ (z,7%(2)) — ¢ (z, 7 (@) )Ta*]
1

- 8B 2K 8B ) 2KT
(LemmalE.2))

(6 (20, 7 (20)) — 6 (20, 7 (20)) ) (0* . §T+1) . (E.1)

To further bound the last term of Equation (E:I), by following the same logic from Equation (D.3) to
Equation (D.6), with probability at least 1 — §, we obtain

7 X (@ @)~ o wuFr(@) " (07 bra)
t¢TouTw
< 25%1(5) 2 Z ¢ (z¢,a (fft»WT(xt))HH 1
tgTouTw aeS*
(Sy = {m*(z4), 77 (1) })
D) 51 2 16 (@) — o naly,
t¢TooT™ aeSt

(S selection rule, Eqn. (9))
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To further bound the right-hand side, by applying the Cauchy-Schwartz inequality, we get

9 1
6’1"%1(5) — Z ¢ (24,0 (xhat)”H !
t¢Tou | €St
2 5
< ﬁT%l() 2, (|S |) S, [ 22 D leana (mtaat)HH !
teTouTw tgTouT™ aeSy
(Cauchy-Schwartz ineq.)
2 5
- Pru® sl 0 S % 166na - snali
e TooTw t¢TouT™ aeS,
(Lemmal|E.T] with probability at least 1 — §)
< 23%1(5) min{ Z ¢ (z¢,a (l’taat)”/\ 1}
t— aeSy
(t¢ Toand To U TV < [T))
 2r01(9) 90dlog (1 + 2T —1T"D (Lemma[D23)
T ; d
Bri1(d)

-0 dlog (KT) |. (E.2)

By plugging Equation (E-2) into Equation (E-T) and setting 3741(8) = O(B+/dlog(KT) + BV},
then with probability at least 1 — 39, we derive that

Substituting 6 «— g, we conclude the proof of Theorem O

E.2 Proofs of Lemmas for Theorem

E.2.1 Proof of LemmalE.]|

Proof of Lemmal|E.I} Recall that, under the Bradley—Terry-Luce (BTL) model defined in Equa-
tion (2)), the probability that action a is preferred over action o’ is given by:

exp (qS(xt , a)TG)
oxp (6(21,0) ) + exp (B(wr, @

P(a>d'|z.,;60) =

)76) =H ((()b(xha) - ¢(ﬂft,a/))T9) :
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Then, we can derive a lower bound on the matrix H; as follows:

Ho=> V2R (9UkHDY 4T,
s=1 j=1 k=j+1
1S:1=1 14| .
> D1 VHOR (O 4 A1y
se[t—1\T® j=1 k=j+1
EARREA o
= Z [ (ZsTjkggj,kJrl)) Zsjk«z;rjk + A,
se[t—1\T® j=1 k=j+1
181 -1 15| T (g(j,k+1) o*
> Z fi (24;,0%) € 17\ T gz + AL (Lemma[F.2)

[ (25107 Zejrzdie + Ma, (E.3)

where the last inequality holds because, for any s ¢ 7", the following property is satisfied:

’Z;—jk (é\gj,k-H) _ 9*)

< |o(zs, 055) — O(as, ask)HHs_l Héﬁ,j’kﬂ) - O*HHS (Holder’s inequality)
1

< ——_|@Uk+D) g w g < gUFD
B ligesss (275 = )
B (9)
< (Corollary [E-T))
Br+1(0) Y
< 1. (B:(9) is non-decreasing)

For simplicity, we write Ps(a > a') = P(a > d'|zs;0%). Let Py y, o denote the Bernoulli

distribution over the support {a, a’}, where a occurs with probability p((¢(zs,a) — ¢(zs, a’)) T0*).
Then, to further lower bound the right-hand side of Equation (E.3), we proceed as follows:

[Ss|—1 ]5s]
Do i (200") Zenzig

Jj=1 k=j+1

|Ss|_1 ‘Ssl
= 2 D n(=w0") n(20,0") zsinzd

Jj=1k=j+1

1
=3 Z Z Ps(a > a')Ps(a' > a)(¢(s, a) — ¢(zs,a)) (d(zs, a) — d(s, a’))T

a€Ss a’€Ss

'

% S 9P, (@ > 64)Py(@s > 0) (60, @) — D5, 35)) (B2, ) — Bz0,as))
a€S,
(@s € Ss by Eqn. (O))
Y Bwersr (0 ) = 0la,a) (6land) — oaaa”) |, B

a€Sg oleas)

where P2 | = P, (.41 X Py 4 5.1 denotes the the product distribution over two independent
s,{a,as} s,{a,as} s,{a,as}
samples from P; (, 5, Note that the Bernoulli distribution P; ¢, 5.}, where a € S;, is measurable

with respect to the filtration Fs_; = o (S1,01,...,Ss-1,05_1, Ss). Then, plugging Equation (E.4)
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into Equation (E3)), we get
H,

IY

Y X B [0 ) — 6ea") (0, o) — 6(aa) T+ AL

se[t—1\T v a€S;

=0 (BB (6l o) (o) b))+

e[t—1]\T ™ a€Ss
=A,
(covariance matrix concentration lemma (Corollary [F.I)))
1
> —A
“10"
which conclude the proof of Lemma [E.T} O

E.2.2 Proof of LemmalE.2l

Proof of Lemmal|E.2} For simplicity, let T ={selt—1]|se T (Ty)}. Clearly, 7~Eﬁ"+1 =
T* n (To)¢. Recall that by the definition of H;, we have
t—11Ss]=1 |Ss]

Z Z Z V2 7,k) ]7k+1))+>\1d

s=1 j=1 k=j+1

t—118s|—1 |Ss]

=R Z Z Z ZSijsTjk + Ay (k = 4B /4)
s=1 j=1 k=j+1
t—1

z K 2 ((b(:cs,a) - (b(xs»d\s)) (¢($57a) - ¢($S7ds))T + )\Id (&5 c Ss)
s=1a€eS;

=K ( Z Z (¢(x37a) — ¢(ws, C_ls)) (@b(x.w a) — ¢(xs, as))T + Al |- (E.5)

=:AyY
Let 4, = argmax, ¢ 4 | ¢(x¢, a) — d(xy, th)HH;l. Then, we get

> max|é(ae,a) = dlav,a)l}

teTH,

< )] Hgb(:z:t,&t)—qﬁ(zt,&t)\\i];l

teT
< 2 2 I a) = dlaran)f (@, a € S; by Eqn. ©))
tETT acSt
< Z Z |o(2t, a (xtvat)H(Aw)—l (Eqn. (E3))
teT“’ a€Sy

1 . ~
< - Z mln{ 2 (s, a) — p(ar, ar)|? 1} (t #Toand T3, < [T])
K t=1 aeSt ( t )
2 2KT
< =dlog (14— ). (Lemma|[D.3)
K dA
On the other hand, for t € 7~'7§”+1 =T"Y n (To)¢, we know that
_ N2 | +1‘
Z max H¢ Ti, Q ) (b(xha‘t)“H;l = ﬂT+1( )2'
teTr
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By combining the two results above, we get

Fu 1< 2 2KT
Trial < ;5T+1(5)2d10g <1 + d)\> ’

which concludes the proof. O

F Technical Lemmas

Lemma F.1 (Proposition B.5 of Lee and Oh 43). The Hessian of the multinomial logistic loss
0 : RM — R satisfies that, for any a1, a; € RM, we have:

€—3ﬁ\\a1—az\|xv2[(a1> < V2(as) < 63\/5\\a1—a2|\oov2g(a1)_

Lemma F.2 (Lemma 9 of Abeille et al. ). Let f be a strictly increasing function such that | f| < f
and let Z be any bounded interval of R. Then, for all z1, zo € Z, we have

f(z2) exp (—[22 — 21]) < f(21) < f(22) exp (|22 — 21|) -

Lemma F.3 (Concentration of covariances, Lemma 39 of Zanette et al. 92). Let u; be the con-
ditional distribution of ¢ € R? given the sampled ¢i,...,¢; 1. Assume |¢|o < 1. Define
¥ = %Z?zl Epmp, 00 . If X = Q(dlog(n/d)), then, with probability at least 1 — 5, for any
n = 1, we have

1 n T 5
5 (M2 + 1) < ; 6i0] + Al < 5 (nT + ALy) .1

We now generalize the setting by allowing ¢, ..., ¢;_1 to represent a virtual sequence—that is,
samples drawn from the distributions y1, . . ., ¢t;—1 but not necessarily the actual realized observations.
Let F;_; be an arbitrary filtration (not necessarily containing ¢1, ..., ¢;—1). Define the enlarged
filtration G; 1 := F;—1 v o(¢1,. .., $;—1). Working under G;_1, we can apply the Bernstein-type
inequality (e.g., Lemma[F.3)) to obtain the same result.

Corollary F.1 (Concentration of covariances for possibly virtual sequences). Let (F;);>0 be an
arbitrary filtration, and let y; denote the F;_i-measurable conditional distribution of ¢ € R%. At
each round 1, we independently draw ¢; ~ ;, where ¢; may not be F;-measurable (e.g., it may be a
virtual sample that does not coincide with the sequence used to generate JF;). Assume that || ;|2 < 1
foralli. Define X = L3 By, 00" If A = Q(dlog(n/8)), then with probability at least 1 — 6,

foranyn = 1, we have

1 d 5
5 (15 + M) < Dldid] + A < 5 (15 + 1),

i=1

Note that Corollary [FI] also applies to the realized sample sequence as a special case. Hence, it
provides a more general result than Lemma[F3]

We also provide a concentration lemma for positive semi-definite (PSD) random matrices, applicable
to (possibly) virtual sequences.

Lemma F.4 (Concentration of PSD matrices for possibly virtual sequences). Let (F;);>o be an
arbitrary filtration, and let 11; denote the conditional distribution of a positive semi-definite M e R4*4
conditioned on the filtration F;_1. At each round i, we independently draw M; ~ ;, where M; may
not be F;-measurable (e.g., it may be a virtual sample that does not coincide with the sequence used
to generate F;). Assume Amax(M) < 1. Define M := 137" | Eppo, M. If X = Q(dlog(n/9)),
then with probability at least 1 — 0, for any n > 1,

(RM + Mg) < Y M; + My < g (nM + M) .

i=1

wl

Proof of Lemma The overall structure of the proof closely follows that of Lemma 39 in Zanette
et al. 92l For completeness, we provide the full proof below.
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Fix z € R such that |z[2 = 1. Let M; = Epg~y, M and M = L 32" | M;. Then, we have
EMNPH{I?TMQL’ = xTIEMNMMx = CUTMi(E.

Since M is a positive semi-definite matrix, the random variable x Mz is non-negative, and it satisfies
2T Mz < Mpax(M)|x|3 < 1. Thus, the conditional variance is at most = | M,z because

Varns~p, (x"Mz) < Enrep, (x"Mz)? < IEMNMxTMx =2 M;z.

Note that M; may be either a virtual or a realized draw from p; and need not be F;-measurable.
Define the enlarged filtration G; := F; v (M, ..., M;). Applying Lemmawith the filtration
G;, we obtain that, with probability at least 1 — §, there exists a universal constant ¢ such that

( \/ernm og(2/5) + 10g3()i/5)> |

Zx Mz — 2" Mz| <

i x Mx—a:TMa:

3\>—‘

Now, we will show that if A = Q(log(1/4)), we can derive

—
¢ <\/2x nMx log(2/6) + bgéi””) < % (xTMx + 2) . (E.1)

Casel.z' Mz < 2.
In this case, it is sufficient to satisfy for some constants ¢/, ¢

\/W \[ —  Qlog(1/9)) <

log?()i/cS) " <n> «— Q(log(1/5))

Case2. z' Mz > 2.
In this case, it is sufficient to satisfy for some constants ¢, ¢

\/QxTnMx los(2/8) < " (2) > Qlog(1/6)) < A
log(2/0) _ (A

3n n

"

) «—  Qlog(1/8)) < A

Therefore, Equation (EI) is satisfied. Since ||x|2 < 1, this implies

(egmn)fe

We denote the boundary of the unit ball by 08 = {|z|2 = 1}. Then, for any x € 088, we know there
exists a 2’ in the e-covering such that ||z — 2’|, < e. Let N, be the e-covering number of 0. Then,
by the covering number of Euclidean ball lemma (Lemma[F.6)), we get

d
N, < (3> . (F3)

€

(M + AId> (F2)
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Taking a union bound over z’ and the number of samples 7, with probability at least 1 — nA/_d, we

obtain
1 ¢ — 1 ¢
=Y M — M)z < ~N'M; — M | o — M M
1 —
NNT - szM !
el (3 -7 )
171
<|@)' [ =) M — M| 2|+ 4e.
w7 (S0 01)
(Jo = 2’2 < eand M;, | M| <
1 — A
< i(sc’)T (M + Id) z' + 4de (Eqn. (F2)
n
1 — A
<£L’T<M+Id>x+96 (Jz — 2|2 < eand | M| <
2 n 2
2 A
<37 T(M+ 1d> (sete = O(2))

where A = Q (log (22=)). By substituting § < &/(n\, +1) and combining this with Equation (F3),
we obtain:

1 A A 5 A
M+ 21 <7 M “g< o M+

which concludes the proof. O

Lemma F.5 (Bernstein for martingales, Theorem 1 of Beygelzimer et al.|10/and Lemma 45 of Zanette
et al.[92). Consider the stochastic process {X,,} adapted to the filtration {F,,}. Assume EX,, = 0
and cX,, < 1 for every n; then for every constant z # 0 it holds that

(ZX” Z (X2 | Fo) + 1og(1s>>1—5.

By optimizing the bound as a function of z, we also have

X, < E(X2 | Fo)log~ +log= | > 16
; ey| 25 B(XE | Fa)log < +log

n=1

Lemma F.6 (Covering number of Euclidean ball). For any ¢ > 0, the e-covering number of the
Euclidean ball in R? with radius R > 0 is upper bounded by (1 + 2R/¢)>.

G Proof of Theorem 3

G.1 Main Proof of Theorem

Throughout the proof, we consider the setting where the context space is a singleton, i.e., X = {x}.
As a result, the problem reduces to a context-free setting, and we focus solely on the action space A.
Note that this is equivalent to assuming that p is a Dirac distribution.

We first present the following theorem, which serves as the foundation for our analysis.

Theorem G.1 (Lower bound on adaptive PL model parameter estimation). Let ® = S?~! be the unit
sphere in R, and let © = {—p, u}? for some € (0,1/+/d). We consider a query model where, at
each round t = 1,...,T, the learner selects a subset S; = ® of feature vectors, with cardinality
satisfying 2 < |S¢| < K, and then receives a ranking feedback oy drawn from the Plackett—Luce (PL)
model defined as:

P(0,S,:0) = lf—f exp (94,9)

Jj= 1ZL)St_] eXp( Utke)
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where oy = (041, . .., 0ys,|) is a permutation of the actions in Si, ¢, € ® denotes the feature vector
associated with action a € A in the selected subset at round t, and 0 € ©. Then, we have

) ~ 2 du? 2K2Tu?
inf axcEa [ |6 - 01| > - (1 - d> ,

where the infimum is over all measurable estimators 0 and measurable (but possibly adaptive) query
rules m, and Bg[-] denotes the expectation over the randomness in the observations and decision

rules if 0 is the true instance. In particular, if T > g;d%: by choosing 1 = +/d/(8K?T), we obtain

. 0> d2
inf e Bo (|6 - B15] > 3577

Proof of Theorem The analysis of this result closely follows the proof of Theorem 3 in Shamir
[75]. The key distinction lies in the input structure: our setting involves a set of feature vectors, while
theirs is restricted to a single feature vector.

To begin with, since the worst-case expected regret with respect to 8 can be lower bounded by the
average regret under the uniform prior over ©, we have:

rgleag)( Eg [HH — é\Hz] = IE0~Unif(@)]E‘9 [Ha - é\Hz]
= Eg~unite)Eo lzd: (9 - é)ﬂ
iz1

d
> 12 - Egvmito)Eo [Z 1 {ei@ < 0}] . (G.1)

i=1

As in Shamir [75]], we assume that the query strategy is deterministic conditioned on the past: that is,
S; is a deterministic function of the previous queries and observations, i.e., S1,01,...,St—1,0¢_1.
This assumption is made without loss of generality, since any randomized querying strategy can be
viewed as a distribution over deterministic strategies. Therefore, a lower bound that holds uniformly
for all deterministic strategies also applies to any randomized strategy. Then, we use the following
lemma.

Lemma G.1 (Lemma 4 of Shamir [75). Let 8 be a random vector, none of whose coordinates is

supported on 0, and let yy,ya, . . ., yr be a sequence of queries obtained by a deterministic strategy
returning a point 0 (that is, 1; is a deterministic function of ¥1,y1,...,¥i_1,Yyt—1, and 0 is a
deterministic function of y1, . . . ,yr). Then, we have

d
Eg~unit(@)Ee lZ I {91'51' < 0}1 > g 1—
=1

where

Uy = esul};)&‘DKL(P(yt\ai > 0,{0;} i, {ys 7‘;11) | P(yt|9i <0,{0;}j2i {ys 2;11)) :
3] 7

In our setting, we interpret y; = oy, and ¥y = {Pq tacs, S P. Then, we can write Uy; as follows:

Ui = Jup Dy (P (04]St;0; > 0,{0;} i, ) [P (04]Se;0; < 0,{0;}5:,)) -
jJ#

For simplicity, let Pg(c|S) = P (0]S;0). Then, we can upper bound Uy; using the following lemma.

Lemma G.2. Forany 0,0’ € R?, let Po(- | S) denote the PL distribution over rankings induced by
the action set S and parameter vector 0. Then, we have

Di (Bol(19)[Bor(15)) < 5 (67(6' —0))°

aesS
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The proof is deferred to Appendix [G.2.1]
By applying Lemma|[G.2] we have

d K d 2 d
Z Ui < 5 Z Z = 2K,u2 Z Z(M’a]l)z
i=1aes,

i=1 aeS; i=1

=2Ku2 - |8 (¢q € S41)
<2K*pc. (I5:] < K)
Hence, by Lemma|G.1] we get

d
Eg~unit(e)Ee lZ H{Hiéi < 0}] > g

i=1
2 2
_d (1 B M) | G2

Combining Equation (G.I) and (G.2), we prove the first inequality of Theorem [G.I} The second
inequality directly follows by choosing 1 = +/d/(8K?T). O

We are now ready to present the proof of Theorem 3]

Proof of Theorem[3] The structure of our proof is similar to that of Theorem 2 in Wagenmaker et al.
[81]. However, while they consider the linear bandit setting, we focus on the Plackett—Luce (PL)
bandit setting.

We adopt the same instance construction as in Theorem where ® = S4 1 and © = {—p, u}<.
Define ¢*(0) = argmax,. 4 ¢, 6. Then, since ¢*(0) € ® and 8 € 9, it is clear that

¢*(0) = 0/|6]> = 6/(Vdp), and ¢*(6)'6 = Vdp. (G.3)
Fix the suboptimality gap € > 0. By definition, a policy m € Ag is said to be e-optimal if it satisfies
T *
Epor [070] = (Egur [0]) 0= ¢"(0)70 — €= Vidp—e. (G.4)
—
=:¢x
Moreover, by Jensen’s inequality, we have
[6x13 < Egnr [[013] =

Let A = ¢ — ¢*(6). Then, we get
1= 613 = 0" (8) + A5 =1+ |A]3 + 2% (8) A
N 1
— ¢"(0)"A < -5 |A[3

— 0"'A < \/7/1

NEs (Eqn. (G.3))

Hence, if a policy 7 is e-optimal for a parameter 0, then the following bound holds:

f
—e<— “HAHQ (Eqn. (G3))
26
— ||A|2 < ==, where 0 = Vdu(¢r — A).
IA[2 Vin (e )
We now assume that we are given an e-optimal policy 7. Define (;AS := ¢# and the following estimator
b o’ if 36’ € © with @ = V/du(¢ — A') for some A’ € RY, | A/|2 < \/232;
~ |any®' € © otherwise.
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If 7 is indeed e-optimal for some @ € O, then the first condition is satisfied, and we have:

16— 6], = |Vdu(d - A') — Vdu(é — A)|, < 2Vdp, /\/231 = \/8Vdpe.  (G.5)

We denote £ as the event that 7 is e-optimal for 6 € O. Then, we get
Eo 10— 015] o |10 - 0[5 1€} + [0 - 0]} - 1(e7}
< 8Vdpe + Eg [HBA - 6“3 : ]I{SC}] (Eqn. (G3))

< 8Vdpe + 2dp? - Po[€°). (max{|0]3, |6]3} < dy?)

On the other hand, by Theorem|G.1] there exists a parameter 6 € © such that, if we collect 7" samples
and set 4 = /d/(8 K2T'), then the following lower bound holds:

o [16-02] > o

To satisfy both inequalities, we require:

24/2d d? d?
L+7.p9[50]>7
VKT 4K2T 32K2T
1 4v2KNT
— Pg[(‘:c] > - — \/77\/76
8 d
It follows that if
1 4V2KW\Te 0.0252  d?
-——— 201 = . =T,
8 d 32 K22

then we have that Pp[£¢] = 0.1. In words, this means that with constant probability, any algorithm
2
must either collect more than c - KdTg samples, or output a policy that is not e-optimal. This implies

that T = Q(4 P 2) samples are necessary to guarantee an e-optimal policy. Equivalently, after T’
rounds, the suboptimality gap e is lower bounded as

SubOpt(T) — O <Kil/f) .

This concludes the proof of Theorem 3] O

G.2 Proof of Lemmas for Theorem
G.2.1 Proof of LemmalG.2]

Proof of Lemma By the definition of KL divergence, we have

|S] le‘ (,ZSTkG
Dxi. (Po(-|9)[Por (-]S)) = Eonry (1) 2 ¢q. (0—6') —log W - (GO
j=1 k=j € 7

Fix a stage j and a ranking o. We define

. L) EE P
P (0) := , where k' € {j,..., ,
Sl exp (64,0)
which corresponds to the Multinomial Logit (MNL) probability of selecting action o at position j,
given the parameter 8 and the choice set .S. Moreover, we define




Then, by applying the mean value form of Taylor’s theorem, there exists @ = (1 — ¢)8 + c6’ for
some ¢ € (0, 1) such that

Z\SI 02,0
~log SIS = 1(0) - f(6)
S e?oil
=Vof(0)" (0'—6) + % C ) 5f(0) (6’ —6) (Taylor’s theorem)
S|
1
<Vef(8)T (0= 6) +5 Y, pul6) (67,6’ — 0))°
k=j
S| )
< 3, m(O)07, (0'=0)+ 3 3 (610~ 0)", (G.7)
k=j aeS
where the first inequality holds because
El El E T

Vaf(0 Zpk )0, Gy, — Zpk )b Zpk )bor Zpk: )P0 By, -

Plugging Equatlon (G.7) into Equation (G.6), we get
Dy (Po(-|5)[Per (-]S))

<EU~P6(-|S)l|i (¢ ‘ZSl‘pk (0—6) + 3 Z (%T(G’—G))Q)]

j=1 aesS
S| S|
_EJ~P9(.|S)[ZE@[ Zpk 0 0) ‘01,...,03»_1]1
j=1
=0
(Tower rule)
ISI T(
(¢a (
K T 2
<5 2 (@0 -8), (15| < K)
aesS

which concludes the proof.

H Additional Discussions

In this section, we provide additional discussion of our approach. In Subsection [H.T| we propose
a more efficient assortment selection rule than Equation (9), by using an arbitrary reference action
a; € A instead of selecting the one that maximizes average uncertainty. In Subsection[H.2] we show
that under a sufficient feature diversity condition, selecting .S; uniformly at random can still achieve
a comparable suboptimality gap. Finally, in Subsection [H.3] we extend our approach to the active
learning setting, as studied in [19].

H.1 Arbitrary Reference Action for More Efficient Assortment Selection

As described in the main paper, the reference action a; is selected to maximize the average uncertainty
across the subset S;, according to Equation (@). This selection incurs a computational cost of
O(N?K) (see Remark .

However, in this subsection, we show that a, can, in fact, be selected arbitrarily—i.e., any a; € A is
valid. Specifically, we modify our assortment selection rule as follows:

2 |6 (z1,a) = d(x, ar)| g1, forany a; € A. (H.1)

aesS

Sy = argmax
S|

atGS
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This results in only a constant-factor increase (specifically, by a factor of 2) in the suboptimality
gap, while reducing the computational cost to O(N K), as it removes the need to enumerate over all
possible reference actions.

To show this explicitly, we return to Equation (D.6). Let a; be an arbitrary action in A (e.g., selected
uniformly at random). Then, we have

Bl S0 o (a,n*) — 6 e Frle) £ 6 (o a0y

T t¢gTouT™

< O S (o (arm (@) — 6 (@) s + 16 (e Frw0)) — 6 (i)

T t¢TouTw

5

- o0y (2 16 (2e,0) = 6 (eesae) s + Y nas(xt,a’)—¢><wt,at>|},,t1>
t¢TouT® \ aeS} a’eS,

(Let S} := {m* (1), @} and Sy 1= {Fp(2y),ae})

S 6 (@na) — d(anadly . (St selection rule, Eqn. (LT))

< 4B741(0)
tETouTw Skl aeS;

T

/

The remaining steps of the proof follow exactly as in the proof of Theorem [I] (or Theorem 2).

H.2 Suboptimality Gap Under Sufficient Diversity Condition

So far, we have considered the general case where the feature vectors ¢ are not required to be diverse,
and as a result, the induced matrix H; — A\l (or A; — AI;) may be singular. In this subsection, we
discuss the case where the following diversity assumption holds:

Assumption H.1 (Diverse features). Forany S € S and a’ € S, there exists a constant \g > 0 such

that Min (Eunp | i Sues(6(2.a) = 6(.a)) (6. a) = bz, @) |) = .

Under this condition, it is sufficient to randomly select exactly K actions, rather than solving the
optimization problem in Equation (9) to construct the assortment. Specifically, we can select S; as:

S, ~Unif({Sc A:|S|=K}), Vte[T] (H.2)

Theorem H.1 (Suboptimality Gap of Random Assortment Selection Under Diversity). Let T* :=
{t € [T] : maxgea ||¢(xr, a) — Sy, aQ)HHt_l = m} where o} € S, is an arbitrary action
selected from the assortment Sy. Suppose T = Q(log(dT)/Xo) and T > |T"|. Then, under the same

setting as Theorem|l|and Assumption if St is randomly selected according to Equation (H.2),
then with probability at least 1 — 6, we have:

i d 5 d
SubOpe() = © ( A(TWDK) ¢ W 3o (T — min{ (K2, T — 1})K> |

Discussion of Theorem [H.I} Theorem [H.I] shows that for sufficiently large T' (i.e., T =
Q((dK)?/k + log(dT)/Ao)), the suboptimality gap under the uniform random assortment selec-

tion strategy achieves (5(4 / /\0%) This result suggests that when the feature space is sufficiently

diverse, uniform random selection is effective for learning. It also provides a theoretical explana-
tion for the empirical success of many RLHF implementations [[76,159], where the feature space is
sufficiently diverse and prompt-action (sub)set pairs are often selected uniformly at random.

Note that the lower bound we establish in Theorem |3| does not rely on the diversity assumption
(Assumption [H.T). As a result, deriving a lower bound under the diversity assumption remains an
open question, which we leave for future work.

Proof of Theorem[H.1| To provide the proof of Theorem [H.T] we first introduce useful concentration
inequalities.
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Lemma H.1 (Matrix Chernoff, Adapted Sequence from Tropp 80). Consider a finite adapted
sequence { X} with filtratio {F;}i=0 of positive-semi definite matrices with dimension d, and
suppose that Amax(Xy) < R almost surely. Define the finite series

Y::;Xk, and W::;Ek,le.

Then, for all . = 0, we have
-5

e u/R
1_6> , 0€][0,1).

P{Amin(Y) < (1 =98)p and Apin(W) = pu} <d ((1—6)

By setting 0 = %, 1= Aot, R = Tmax in Lemma we obtain the following result.
Corollary H.1 (Eigenvalue Growth of Adaptive Gram Matrix). If |X;|e < @max and
Amin (IE [XiXiT | .7-},1]) > Ao, then, with probability at least 1 — d exp (—01 Aot ),

t
A

i=1

holds for some absolute constant c;.

Now we are ready to provide the proof of Theorem[H.1] For simplicity, we present only the case of
the PL loss, since the extension to the RB loss directly follows from similar arguments in the proof of
Theorem[2] By the definition of the suboptimality gap, we have

SubOpt(T) = E, ., [(¢ (z,7*(2)) — ¢ (z, 7 (@) )To*]
<Eny [(6@7" (@) — 0 (2 70(2))) " (67~ 61|

(7ir(z) = argmax ¢ 4 ¢(z, a)T§T+1)

< [Enp [0 (27" (@) = & (@ Rr(@)] 2, |67 = Brs

< Br41(0) [Banp [¢ (2,77 (2) = & (2, T (@) g2 -
(Corollary[D.1] with prob. 1 — §)

To proceed, we slightly modify the definition of A;, as we no longer compute the reference action
explicitly. Let a’, be an arbitrary action selected from S, which can simply be chosen by sampling
uniformly from S,. Additionally, the regularization term A is no longer required. Then, we redefine
A; as follows:

Ay = Z Z (¢(zs,a) — P(xs,a))) (P(2s,a) — d)(xs,a;,))-r, a,e S

sE[t—1\T ™ a€Ss

(Holder’s ineq.)

T+1

where

Tv = {’f € [T]: max |@(x1,a) — oz, )| 1 > ﬁ }

Then, by Lemma[D.2] we obtain

By [6 (2.7 (2)) — & (2. R (@)]] g1 < VEO[Esmy [0 (2,7 (@) — & (. Br (@) -0
(Lemma|[D.2] with prob. 1 — 9)
10v/2
Amin (A7+1)
Under the diversity assumption (Assumption , forT > /\—CO log % with some constant ¢ > 0, by
Corollary we have, with probability at least 1 — 9,
Ao

)\min (AT+1) = Z(T - |Tw|)K

(lp(z,a)ll2 < 1)

S
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Suppose T' — | 7| > 0. Then, combining the above results, we get

SubOpt(T) < Br+1(0) 20v2 =0 < )\O(Td>

(T — [T*NK —|TvNK

_0 d
Bl Xo(T — min{(dK)?/k, T — 1})K |’

where in the last inequality we use the fact that it holds that | 7| < |7 ~ (T0)¢|+|To| = O (de—K2> ,
which follows from Lemmas and This concludes the proof of Theorem [H.1] O

H.3 Extension to Active Learning Setting

In this subsection, we consider a different setting—referred to as the active learning setting—where
the learner has access to the entire context set X', and the objective is to minimize the following
worst-case suboptimality gap, defined as:

WorstSubOpt(T') := max [ror (z, 7" (x)) — ro+ (x,7(x))].

This setting has received increasing attention in recent work [52, 149} 73|19, 511,79} 139]. However,
most existing approaches focus exclusively on pairwise preference feedback. Mukherjee et al. [51]]
study an online learning-to-rank problem where, for each context, a fixed set of K actions is provided,
and the goal is to recover the true ranking based on feedback over these K actions. In contrast,
we consider a more general setting in which, for each context, a set of IV actions is available. The
learner selects at most K actions from this set and receives ranking feedback over the selected subset.
Thekumparampil et al. [79] investigate the problem of ranking N > K items using partial rankings
over K candidates, but under a context-free setting. In contrast, we study a stochastic contextual
setting, where contexts are drawn from an unknown (and fixed) distribution.

In the active learning setting, the algorithm jointly selects the context z;—which is no longer given but
actively chosen—and the assortment S; by maximizing the average uncertainty objective. For com-
putational efficiency, we employ the arbitrary reference action strategy described in Equation (H.IJ.
(Note that one may alternatively use the reference action selection method from Equation (9), which
selects a; to maximize uncertainty. )

(¢, St) = argmax argmax
reX |S|

atES

2 |6 (z,a) = ¢ (2,a)| -1, foranya; € A. (H.3)

aeS

The rest of the algorithm proceeds in the same manner as Algorithm [3] With the above context-
assortment selection strategy, M- AUPO achieves the following bound on the worst-case suboptimality
gap, matching the order established in Theorem|[I](and in Theorem 2)):

Theorem H.2. Under the same setting as Theorem[l|and 2] with probability at least 1 — 6, M-AUPO
achieves the following worst-case suboptimality gap:

( m diIJEQ) ) (PL loss)
0 (%m+ 37) (RB loss)

Proof of Theorem[H.2] We present only the proof using the PL loss (3)), as extending it to the RB
loss case (@) follows similarly to the extension from Theorem [I]to Theorem [2]

WorstSubOpt(T) =

By the definition of the worst-cacse suboptimality gap, we have

WorstSubOpt(T) :rglea)?([(gb (z, 7 (2)) — 6 (2, 7p(z ))) 9]

< max [ (6 (¢, 7" (@) — 6 (2 77(2)) ) (0" = Or1a )]
w(x) — argmax,e 4 ¢(z,0) 071

T

= 7 2, max [((b(x,ﬂ*(l’))_¢($>7ATT($)))T (0*_§T+1)]'

zeX
-1 *
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We adopt the same definitions for 7y (Equation (D.3)), 7* (Equation (D.I))), and A, (Equation (D.2)))
as in Theorem([I] Then, we have

zeX
teTwn(To)e

1
T

+ % Z max [(¢ (x, 7 (x)) — ¢ (2, 7r(z)) )T (9* - éT-H)]
1

max [(qﬁ (z,7*(x)) — ¢ (x, 77 (x)) )T (9* - §T+1)]

T ygyore *¥
- 2h 48v2BK? > 2KT
< Wdlog (1 + 1og(2))\> + T Br+1(0)*dlog (1 + d)\>
(Lemma[D.4]and [D3)
o7 max | (¢ (@7 (@) = 6 (2. Fr(@))) (6" = Oraa ) |- (H4)
tETouT reX

To further bound the last term of Equation (H.4), we get

% f;lg[(wx,w*(x)) — ¢ (2, 70(x)))" (9* —§T+1)]

0 — éTH‘

HT+1]

(Holder’s ineq.)

. -
<7 2 %[wm*(x))—ww(x))HTL
t¢TouTw

Br+1(8 x ~
< Il 5 a6 (7 @) — 0 e Fr @) |
xeX t
tgTouT™
(Hp41 > Hy and Corollary [D.1] with prob. 1 — §)

Then, for any arbitrary a; € A, we have

Br+1(9) . ~
e thﬂw max [Hqﬁ (z, 7" (x)) — ¢ (=, ﬂ'T(aj))HHt_l]
1)
< 5T+T1() > max [Héﬁ(az,w*(x)) — ¢ (@, @)y + [ (2, Fr(2)) — ¢($,dt)|\H;1]
tgTouT™
4B741(9) 1 . .
< — Z Il Z ¢ (z¢,a) — ¢($t,at)||H;1 . ((wy, St) selection rule, Eqn. (H:3))

~
T tgTouTw ‘St| a€Sy
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Hence, we further obtain

Bral® 5 LS e el

tgTouTw aES

45%1() Z Si Z o (z¢,a) fgb(sct,at)HH:l (Eqn. (H3))

teTouTw S5l aeS;

200 | 5 (1Y 151 [ 3 3 e - ot al

tgTouTw t¢TouT ™ aeSy

N

N

(Cauchy-Schwartz ineq.)

2
-0 5 () e 3 B eie-etemi;
tgTouTw t|

t¢TouT ™ aesSy
(Lemma[D.2] with prob. 1 — )

aESf
2KT
1+ d)\) (Lemma [D.3)
dlog (KT) |. (H.5)
Plugging Equation (H:3) into Equation (H:4), and setting S7-1(8) = O(By/dlog(KT) + BV\),

with probability at least 1 — 36, we have

SubOpt(T) = O

Substituting § < 2, we conclude the proof of Theorem O

I Experimental Details and Additional Results

L1 Synthetic Data

Setup. In the synthetic data experiment, we sample the true but unknown parameter 8* € R? from
a d-dimensional standard normal distribution, i.e., 8* ~ A(0, I;), and then normalize it to ensure
[6*|2 < 1. We consider four different types of context sets X'

1. Instance 1 (Stochastic contexts): For each x € X, the feature vectors ¢(z, -) are sampled
from a standard normal distribution and then normalized to satisfy |#(z,-)|2 < 1. Here,

|X| = 100.
2. Instance 2 (Non-contextual): A single shared context is used for all rounds, i.e., X = {x1}
and |X| = 1. The corresponding feature vectors ¢(x1, ) are sampled from a standard

normal distribution and then normalized to satisfy ||¢(z1,)]|2 < 1.

3. Instance 3 (Hard-to-learn contexts): For each x € X, the feature vectors ¢(x, ) are
constructed such that most of them are approximately orthogonal to the true parameter ™.
Here, |X| = 100.

4. Instance 4 (Skewed stochastic contexts): For each x € X, the feature vectors ¢(x, -) are
sampled in a skewed or biased manner and then normalized to satisfy ||¢(z, -)||2 < 1. Here,
|X'| = 100. This is our main experimental setup in Section
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Additionally, we set the feature dimension to d = 5 and the number of available actions to |A| =
N = 100. The suboptimality gap is measured every 25 rounds. All results are averaged over 20
independent runs with different random seeds, and standard errors are reported to indicate variability.
The experiments are run on a Xeon(R) Gold 6226R CPU @ 2.90GHz (16 cores).

Baselines. We evaluate our proposed algorithm, M-AUPO, against three baselines: (i) DopeWolfe [79],
a method designed for non-contextual K -subset selection; (ii) Uniform, which selects assortments
of size K uniformly at random; and (iii) Best&Ref, which forms a pair of actions (|S;| = 2) by
combining one action from the current policy with another from a reference policy (e.g., uniform
random or SFT), following the setup in Online GSHF [89]] and XPO [88]].

Thekumparampil et al. [79] propose a D-optimal design approach for the Plackett-Luce objective
to efficiently select informative subsets of items for comparison. Recognizing the computational
complexity inherent in this method, they introduce a randomized Frank-Wolfe algorithm, named
DopeWolfe, which approximates the optimal design by solving linear maximization sub-problems
on randomly chosen variables. This approach reduces computational overhead while maintaining
effective learning performance. However, their approach is specifically tailored to the single-context
setting (e.g., Instance 2) and may not generalize well to the multiple-context scenarios (e.g., Instances
1, 3, and 4). While their original implementation updates the model parameters using a maximum
likelihood estimation (MLE) procedure, we instead adopt an online update strategy (as described in
Procedures [T]and 2)) to ensure a fair comparison across all methods. For sampling size parameter R,

we set R = min{(}), 100, 000}.

The uniform random assortment selection strategy, Uniform, selects K actions uniformly at random
from the available action set .A at each round, without utilizing any uncertainty or reward-based infor-
mation. This approach can be effective when the feature representations are sufficiently diverse (e.g.,
Instances 1, 2, and 4), but may perform poorly when the diversity parameter \y in Assumption
is very small (e.g., Instance 3).

Best&Ref constructs an action pair (]S¢| = 2) by combining two distinct sources of actions. The
first action is chosen to maximize the current reward estimate, while the second is sampled from a
reference policy—such as a uniform random policy or a supervised fine-tuned (SFT) model. This
pairing mechanism follows the framework introduced in Online GSHF [89] and XPO [88]]. In our
experiments, we use the uniform random policy as the reference.

Performance measure. Since computing the exact suboptimality gap is challenging under a general
distribution p, we instead evaluate the average realized regret, which serves as a slightly relaxed
proxy for the suboptimality gap.

T
SubOPL(T) < 3} (0 ) oo () 0+ O (%)

incurred by MDS terms

3 * Tox A 1
t;(qﬁ(%ﬂ (z1)) — ¢ (x4, mi(z1))) 0" +O (\/T)

N

1
<

el

=:average realized regret

where we define 7;(x) := argmax, ¢(z, a)Tét, and let 77 denote the best policy among {m;}7_,,
possibly selected using a validation set.

Results. We present performance comparisons in Figures|[.T|through[[.4] corresponding to Instances
1 through 4, respectively. Overall, our algorithm, M-AUPO, consistently outperforms other baseline
methods. The only exception is in Instance 2 (Figure[[.2)), a special case of the non-contextual setting,
where M-AUPO performs slightly worse than DopeWolfe. This is an expected outcome, as DopeWolfe
leverages a D-optimal design strategy, which is known to be highly effective in the single-context
setting. However, it is important to note that DopeWolfe completely fails in more general contextual
scenarios (Figures[[.T} [I.3] and[[.4), and its computational cost is significantly higher than that of our
approach (see Table L1}

The uniform random assortment selection strategy, Uniform, demonstrates competitive perfor-
mance—though still worse than M-AUPO—in Instances 1, 2, and 4, as illustrated in Figures|[.T]
and [[.4] respectively. However, in Instance 3 (Figure [[.3), where the diversity parameter )¢ is very
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Figure 1.1: Performance comparisons for Instance 1 (Stochastic contexts) with K = 2, 3, and 5,
evaluated under the PL loss (first row) and RB loss (second row).
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Figure 1.2: Performance comparisons for Instance 2 (Non-contextual) with K = 2, 3, and 5, evaluated
under the PL loss (first row) and RB loss (second row).

K DopeWolfe Uniform Best&Ref M-AUPO (ours)
2 7.28 s 0.10s 0.10s 1.94 s
3 99.6 s 0.18s 0.10s 2.37s
5 150.5s 0.35s 0.10s 2.94 s
7 218.8 s 0.58s 0.10s 4.17s

10 331.1s 0.99s 0.10s 4.50s

Table I.1: Runtime comparison over 200 rounds (seconds)

small due to most feature vectors lying within a hyperplane, Uniform performs significantly worse,

as discussed in Appendix [H.2]

The Best&Ref algorithm performs consistently worse than our algorithm and does not benefit from
larger K, since it always selects only a pair of actions.
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Figure 1.3: Performance comparisons for Instance 3 (Hard-to-learn contexts) with K = 2, 3, and 5,
evaluated under the PL loss (first row) and RB loss (second row).
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Figure 1.4: Performance comparisons for Instance 4 (Skewed stochastic contexts) with K = 2, 3, and
5, evaluated under the PL loss (first row) and RB loss (second row).

Moreover, the suboptimality gap consistently decreases with larger K across the three algo-
rithms—M-AUPQ, Uniform, and DopeWolfe—while Best&Ref shows no such improvement. For
both M-AUPQ and Uniform, this trend is consistent with our theoretical results (Theorems|T} 2| and
[H.I). In contrast, the improvement observed for DopeWolfe suggests that its current theoretical
guarantees may be loose, as their bound actually deteriorates with increasing K (recall that their
theoretical guarantee worsens for larger ). This indicates that tighter bounds might be achievable
by incorporating some of the techniques introduced in our work.

Table [L.2| presents the average assortment size |S;| of M-~AUPO for various values of the maximum
assortment size K. In most cases, the algorithm selects the full K actions, i.e., |S;| = K. An
exception occurs when K is large (e.g., 30 or more), which may be impractical in real-world
applications due to the increased annotation burden on human labelers.
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K | 2 3 5 7 10 30 50

PL loss, |S¢| | 2.00 3.00 5.00 7.00 10.00 18.31 18.69
RB loss, |S;| | 200 3.00 5.00 7.00 10.00 1839 18.40

Table 1.2: Assortment size |S¢| of M-AUPQ with varying maximum size K in the synthetic data
experiment

1.2 Real-World Dataset

Setup. In our real-world dataset experiments, we evaluate performance on two widely used benchmark
datasets: TREC Deep Learning (TREC-DL) and NECTAR. The TREC-DL dataset provides 100
candidate answers for each query, offering a rich and diverse set of responses suitable for learning
from listwise feedback. In contrast, the NECTAR dataset presents a more concise setup, with only 7
candidate answers per question. From each dataset, we randomly sample |X'| = 5000 prompts (i.e.,
questions), each paired with its corresponding set of candidate actions—100 for TREC-DL and 7 for
NECTAR.

We use the Gemma-2B language model [78] to construct the feature representation ¢(x, a). To obtain
¢(x, a), we first concatenate the input prompt « and the candidate response a into a single sequence,
which is then fed into Gemma-2B. The resulting feature vector is extracted from the last hidden layer
of the model and has a dimensionality of d = 2048. We then apply ¢; normalization to enhance
numerical stability and ensure consistent scaling. For each round ¢, we sample the context index from
an exponential distribution with rate A = 0.1, which assigns higher probability to smaller indices
and thus biases the selection toward earlier contexts. To generate ranking feedback and evaluate the
suboptimality gap, we use the Mistral-7B reward model [33] as the ground-truth reward function,
denoted by 7g+.

We measure the suboptimality gap every 2,500 rounds throughout the training process and report the
average performance over 10 independent runs, each with a different random seed. Along with the
average, we also include the standard error to indicate variability across runs. In these experiments,
we report results under the PL loss only, since the performance difference between PL and RB losses
is minimal, as demonstrated in the synthetic data experiments. The experiments are conducted on a
Xeon(R) Gold 6226R CPU @ 2.90GHz (16 cores) and a single GeForce RTX 3090 GPU.

Baselines. We use the same set of baselines as in the synthetic data experiments. For DopeWolfe [79],
we set the sampling size parameter R as R = min{ (%), 1000}. Although a small value of R < 1000
may introduce significant approximation error—since the theoretically minimal-error choice is
R=0 ( (%) )—We adopt this smaller value in our experiment to reduce computational overhead.

Performance measure. We measure the average realized regret as in the synthetic experiment
(Appendix [L.T).

Results. We present performance comparisons in Figure Our algorithm, M-AUPO, consistently
outperforms all baselines by a significant margin. As in the synthetic data experiments, the subop-
timality gap for all methods decreases as K increases. Notably, DopeWolfe performs particularly
poorly on the TREC-DL dataset. This may be attributed to the use of a small sampling size R,
which is insufficient compared to the full subset space of size (I]\{[) = O(N¥) » 1000 > R. This
result highlights an important practical limitation of DopeWolfe: despite its use of approximate
optimization to reduce runtime, the method still depends on combinatorial sampling to perform
well, which becomes computationally infeasible in large-scale settings. In contrast, our algorithm,
M-AUPO, maintains strong performance while requiring only O (/N K') computational cost, making it
significantly more scalable and practical for real-world applications.

Table([L.3|reports the actual assortment size |.S; | selected by M-~AUPO on both datasets. In the TREC-DL
experiment, |\S;| is nearly equal to K for all values of K, as the number of available actions is large
(N = 100). In contrast, in the NECTAR experiment, where the number of available actions is much
smaller (N = 7), the actual assortment size |S;| is often smaller than K, especially when K = N.
This reduction occurs because the limited action space constrains the potential informativeness of
larger assortments—for example, it becomes difficult to achieve high average uncertainty when there
are too few actions to choose from.
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Figure 1.5: Performance comparisons on the TREC-DL dataset (top row) and the NECTAR dataset
(bottom row) for varying values of K = 2, 3, and 5.

K 2 3 5 7

TREC-DL dataset, |S¢| | 2.00 3.00 4.99 6.95
NECTAR dataset, |S¢| | 2.00 2.99 431 4.74

Table I.3: Assortment size |S;| of M-AUPQ with varying maximum size K in the real-world dataset
experiment

J Limitations

In this paper, we primarily focus on the online PbRL setting, where contexts are drawn stochastically
from a fixed distribution. We also consider the active learning variant in Appendix [H.3] However, we
do not explore the offline setting [96], which may involve a different set of challenges. As a result, it
remains an open question whether similar improvements—such as better performance with larger

K——can be achieved in the offline setting. We view this as a promising direction for future research
and leave it as an open problem.
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