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Figure 1: Overview of MS-Bench. Our comprehensive benchmark consist of multi-source, multi-scale

manuscripts. Tasks are hierarchically organized to address domain challenges. Multiple question
formats assess LMMs’ effectiveness and robustness.

Abstract

Analyzing ancient manuscripts has traditionally been a labor-intensive and time-
consuming task for philologists. While recent advancements in LMMs have demon-
strated their potential across diverse domains, their effectiveness in manuscript
study remains underexplored. In this paper, we introduce MS-Bench, the first
comprehensive benchmark co-developed with archaeologists, comprising 5,076
high-resolution images from 4th to 14th century and 9,982 expert-curated ques-
tions across nine sub-tasks aligned with archaeological workflows. Through four
prompting strategies, we systematically evaluate 32 LMMs on their effectiveness,
robustness, and cultural contextualization. Our analysis reveals scale-driven perfor-
mance and reliability improvements, prompting strategies’ impact on performance

(CoT has two-sides effect, while visual retrieval-augmented prompts provide consis-
tent boost), and task-specific preferences depending on LMM’s visual capabilities.
Although current LMMs are not yet capable of replacing domain expertise, they

demonstrate promising potential to accelerate manuscript research through future
human-AI collaboration.

*Equal contribution. T Corresponding authors.
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1 Introduction

Ancient manuscripts serve as invaluable witnesses to human civilization, preserving a wealth of first-
hand historical records of cultural traditions, economic activities, scientific advancements, and artistic
evolution. The study of these documents is inherently interdisciplinary, integrating palaeography
which focuses on character and textual analysis, codicology which examines physical restoration, and
iconography which explores visual elements such as illustrations and murals [19]. Traditionally, these
fields have relied on manual approaches facing several challenges: “inefficiency” due to repetitive and
time-consuming tasks, “collaboration gaps” as experts specialize in their own domain, “subjective
bias” that research results may depend on the expertise and experience of individual scholar [35]].

To mitigate these issues, specialized Al models have been developed for manuscript recognition,
restoration, and decipherment across various civilizations, from ancient Greek inscriptions and
Mediterranean scrolls to Asian manuscripts [[7, 122, 1311150} 52]. Although these applications demon-
strate notable progress in automating repetitive workflows, three fundamental limitations persist
in current task-specific approaches. (1) Data Scarcity: existing domain-specific models rely on
extensive expert-annotated training data, yet synthetic datasets may fail to capture paleographic
diversity accurately. (2) Cross-Disciplinary Integration Barrier: complex analytical tasks (e.g.,
fragment restoration and chronological attribution) require synergistic reasoning across domains,
while single-task models struggle to unify visual-language and cross-disciplinary knowledge. (3)
Generalization Constraints: models optimized for specialized tasks are tightly coupled with domain
priors, limiting multi-task generalization or adaptation beyond their pre-defined applications.

The emergence of Large Multimodal Models (LMMs), empowered by large-scale pre-training, enables
end-to-end visual-language processing and zero-shot generalization, positioning them as theoretically
viable solutions to the aforementioned challenges. However, their practical effectiveness in real-world
archaeological research remains untested. First, can current LMMs consistently assist scholars across
diverse manuscript sources, adapting to real-world variability (Operational Effectiveness)? Second,
what inherent limitations arise as task complexity increases and deeper cultural contextualization is
required (Capability Boundary)? Third, how does performance fluctuate across different instruction
types, from direct perception queries to multi-step reasoning and visual retrieval-augmented prompts
requiring cross-modality knowledge integration (Instructional Robustness)? Thus, a systematic
evaluation of LMM effectiveness and reliability in historical document studies is essential, providing
insights into their strengths, weaknesses, and areas for improvement.

To address these challenges, we introduce MS-Bench, the first comprehensive benchmark for
ancient manuscript analysis. Curated from over 15,000 digitized manuscripts spanning the 4th
to 14th centuries, MS-Bench comprises 5,076 high-resolution images alongside 9,982 task-specific
questions, capturing diverse document types across 7 historical periods. As illustrated in Figure[I] our
data sources extensively cover scholarly research publications over past 40 years (e.g., monographs,
journal articles, etc.) and high-quality digitized archives from the past decade (e.g., British Museum,
National Museum of China, etc.). Through a three-year interdisciplinary collaboration involving 12
senior researchers across 18 panels, we structured MS-Bench along Research Workflows reflecting
real-world archaeological methodologies and Cognitive Hierarchy progressing from shallow character-
level perception to holistic cultural reasoning. To ensure a rigorous evaluation of LMM capabilities,
we designed four specialized prompting strategies, including direct Q& A, Multiple-choice, Chain-of-
Thought (CoT) Reasoning, and Retrieval-Augmented Visual Context, to systematically assess LMM’s
effectiveness, robustness, cultural knowledge grounding and cross-image reasoning. Additionally,
human experts validated benchmark data quality and provided manual baselines, enabling a direct
comparison between human and model-generated responses. By integrating computational evaluation
with manuscriptology’s disciplinary depth, MS-Bench establishes a new standard for assessing LMMs
on complex, historically grounded, and previously unseen manuscript tasks.

Our systematic evaluation of 14 closed-source, 18 open-source and 2 reasoning LMMs reveals key
insights into their capabilities and limitations:

(1) LMMs as assistive tools for archaeologists. LMMs excel in standardized tasks such as allograph
recognition and calligraphy style classification, effectively reducing labor-intensive workflows. How-
ever, they remain insufficient for expert-level manuscript discovery, necessitating domain-specific
adaptation and enhanced multimodal alignment for cultural knowledge-intensive tasks.
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Figure 2: Illustration of MS-Bench construction pipeline (data source collection, preprocessing,
question generation, annotation and human expert verification) and LMM evaluation results. LMMs
demonstrate task-specific capability divergence.

(2) LMMs demonstrate scale-driven reliability. Small LMMs (< 10B parameters) hallucinate more
frequently on unfamiliar tasks, producing plausible-but-incorrect guesses due to overconfidence.
In contrast, larger LMMs exhibit calibrated self-awareness, explicitly admitting knowledge gaps.
Additionally, closed-source LMMs (e.g., GPT-40, Gemini, etc.) outperform open-source models in
instruction adherence (structured outputs & stepwise CoT) and visual comprehension, benefiting
significantly from retrieval-augmented prompts for analogical reasoning and knowledge extrapolation.

(3) CoT has a two-sided impact on different multimodal tasks. On the positive side, CoT
mitigates modality bias by realigning LLMs toward visual inputs and reducing their over-reliance
on textual priors. It also helps distinguish genuinely knowledge-based reasoning from random
guessing. However, on the negative side, CoT improves performance in fine-grained visual task
(symbol detection) but hinders tasks requiring holistic perception (calligraphy style classification and
chronological attribution). Even SOTA multimodal reasoning models (Claude-3.7, QVQ) may fail to
demonstrate clear advantages in MS-Bench tasks. Unlike CoT, retrieval-augmented strategy provides
a more stable performance improvement, with variation depending on model’s capabilities.

(4) Task-Driven Capability Divergence. Our benchmark reveals that LMMs exhibit distinct special-
ization patterns: GPT-40 excels in instruction fidelity and generalist problem-solving, but struggles
with ancient Chinese character-level recognition. Gemini demonstrates strong cross-image relational
reasoning yet lacks pre-trained cultural contextualization. Step-10-Vision-32k shows the most ex-
tensive cultural knowledge reserves, but fully unlocking its potential requires careful task-specific
prompting. These findings highlight that no single model universally excels across all tasks. In-
stead, LMM selection should be guided by specific requirements, balancing general adaptability,
visual-semantic precision, and cultural knowledge depth.

2 MS-Bench

2.1 Design Principle

Manuscript studies present distinctive computational challenges: their scholarly requirements demand
both technical precision and historical sensitivity, their task granularity ranges from fine-grained
character-level analysis to holistic interpretation of entire scrolls, and their data diversity spans from
eroded textual fragments to pictorial artifacts. MS-Bench is designed to bridge the gap between
comprehensive LMM evaluation and the intrinsic challenges of manuscript research. We adhere to
the following three principles:

(1) Scholarly-driven Holistic Task Design Philosophy: MS-Bench encapsulates archaeologists’
workflows, from labor-intensive, time-consuming and error-prone process in Textual Recognition &
Analysis, to context-intensive reasoning in Materiality & Cultural Study.

(2) Hierarchical Task Framework: Co-developed with 7 domain experts, MS-Bench categorizes
tasks into 4 vertical tiers and 9 horizontal sub-tasks, as shown in Table[T} progressively increasing in



Table 1: Details of our MS-Bench. Subsequent processing and annotation are detailed in Appendix B}

Category Task Data Format Quantity ~ Avg. Size
Textual Recognition Handwritten Character Recognition Original Manuscript 778 1098 x 1254

Allograph Normalization Cropped Single Characters 970 322x328

Textual Analysis Writing Symbol Detection Cropped Manuscript 521 233x600

o Calligraphy Style Classification Cropped Manuscript 400 470x571

Materiality Study Manuscript Damage Assessment Original Manuscript 332 937x823

Fragmented Manuscript Restoration =~ Multi-Original Manuscripts 854 629x607

Icon Recognition Multiple Images 900 619x549

Cultural Study Chronological Attribution Single Image 276 446x630

Artwork Caption Single Image 45 764 <708

contextual dependency and interpretative depth. To further evaluate LMM adaptability, we incorporate
diverse question formats, simulating the layered inquiry process employed by human scholars.

(3) Large-scale Multi-source Data Curation: Centered on the most extensive and diverse collection
of Dunhuang manuscripts, MS-Bench integrates 5,076 high-resolution images and 9,982 Q&A pairs.
It incorporates decade-long accumulated research, public materials, and academic publications cap-
turing stylistic evolution. The high-quality dataset provides a comprehensive and reliable foundation
for benchmarking LMMs in manuscript studies.

2.2 Benchmark Construction

Data Source. Manuscript research has historically been conducted through isolated case studies due
to a lack of high-fidelity image collections. Only in recent years have early-stage digitization efforts
been initiated across global museums. Given the inherent scarcity of large-scale open datasets with
cross-modal annotations, we integrate a synergistic data source through task-oriented approach. The
foundation is built upon our team’s 40-year Dunhuang specialist-annotated archival collections,
preserving fine-grained paleographic features that are often lost in bulk digitization. These include
allograph characters, cropped writing symbols and verified fragmented matches. We aggregate
open-source institutional repositories from International Dunhuang Programme [32], Dunhuang
Documents Database [[17] and 9 other global museum collections. From these sources, we select
2598 high-quality digitized manuscripts for handwritten character recognition, calligraphy style
classification and materiality studies. To address culturally intensive tasks, we supplement with
academic publications and papers. These scholarly-grounded corpora provide the semantic depth
necessary for manuscript interpretation and visual-textual reasoning.

Preprocessing. Despite rigorous source selection, inherent data heterogeneity persists due to
variations in museum preservation conditions and digitization methods. To ensure data consistency,
we implement a unified preprocessing pipeline tailored to each task, including essential image scale
normalization, color calibration, filtering of small and low-resolution images, super-resolution and
contrast enhancement. The resulting dataset balances scholarly fidelity with computational robustness.

Question Generation. To replicate real-world human-model collaboration and assess LMM prompt
robustness, we design task-specific question formats aligned with archaeologists’ progressive inquiry
process. Our question generation framework follows a cognitive hierarchy principle, progressing
from intuitive perception to complex reasoning: Open-ended Questions allow intuitive free-form
responses, serving as zero-shot baseline for visual perception and multimodal alignment. Binary
Judgment & Multiple-choice Questions provide clear, structured answer choices, enabling exact-
match scoring for factual accuracy evaluation. CoT Prompts require multi-step inference through
structured reasoning paths. Retrieval-augmented Visual Queries assess unseen task adaptation
using in-context examples, measuring LMMs’ ability to perform visual analogical reasoning.

Ground Truth Annotation. We establish task-specific annotation protocols under domain special-
isﬂ supervision, for a balance between computational efficiency and scholarly rigor. For large-scale

’The specialists involved in ground truth data annotation, verification and human baseline experiments, hold
Ph.D degrees with at least 5 years expertize in ancient manuscript philology. Each expert dedicate in a specific
aspect, including text recognition, fragment reassembly, and cultural interpretation.



character annotation, we employ Rushi OCRE] for initial transcription, followed by manual refinement
through expert double-checking. The ground truth for tasks derived from our archived collection is
fully annotated by experts. For the remaining tasks, ground truth annotations are extracted from autho-
rized repositories and publications, initially processed by computer science students, and subsequently
proofread by domain experts.

3 Experiment Results

We conduct extensive experiments on MS-Bench, evaluating 14 closed-source [12, 18 21} 24, |39] and
18 open-source LMMs [[11 9} 14}, 27H29. [34, 42| |47-49], and 2 advanced reasoning LMMs [5, 9]. Our
evaluation follows MS-Bench’s four-tiered hierarchical framework, analyzing model performance
through task-specific metrics tailored to each category. We conduct controlled comparisons to
assess the impact of different prompting strategies. To identify task-specific challenges and current
LMM limitations, we perform in-depth failure case studies and error analysis, pinpointing areas
where models struggle. Finally, we derive practical insights for model selection, outlining capability
thresholds and bottlenecks in scholarly workflows. Following the practices in peer studies [10} 38]],
we utilize either official APIs for LMMs or standard deployments. To ensure deterministic evaluation,
we fix hyperparameters and eliminate randomness. More details for experiment settings are available
in Appendix [Cland[D] We discuss here the common conclusions and insights obtained, and give more
examples and cases in Appendix [E} [K]

3.1 Textual Recognition

Textual Recognition is a core competency in paleography and serves as a prerequisite for in-depth tex-
tual analysis, requiring LMMs to achieve both precise visual localization and robust optical character
recognition (OCR) capabilities. For Handwritten Character Recognition, input manuscripts range
from intact scrolls to fragments in both color and gray-scale conditions. We evaluate with Accuracy
and Levenshtein Edit Distance, comparing LMM output against ground-truth transcriptions.

For the more nuanced Allograph Normalization, we present isolated character instances (cropped
from larger manuscripts) for LMM to map historical allographs to their standardized modern equiv-
alents via fine-grained visual perception. We categorize allographs to three tiers based on their
frequency in ancient documents: easy, medium and hard. Performance is measured using Accuracy,
evaluating the one-to-one correspondence between model predictions and ground truth labels.

Discussion. Handwritten Character Recognition reveals fundamental limitations in LMMs’ OCR ro-
bustness when confronted with paleographic challenges: handwriting style variations, unconventional
vertical layouts, and semantic shifts from modern language. As expected, all models underperformed
relative to their general OCR capabilities. Closed-source LMMs exhibit greater adaptability, achiev-
ing 67.49% average accuracy (v.s. 51.57% for open-source models) and reducing edit distance by
2.5x. This performance gap stems from closed-source LMMs’ superior visual localization and
more accurate text bounding-box grounding. Additionally, they are less prone to repetition errors, a
common issue observed in smaller models (e.g., InternVL2.5 series).

Allograph Normalization evaluates LMM'’s abilities to recognize and infer allograph through charac-
ter structural similarities. Results reveal capability disparities: Step-1o-vision-32k and SenseNova
lead with an impressive 73.34% average accuracy across all subsets. Interestingly, Qwen2-VL-2B
outperforms larger models within its series, a phenomenon also observed in Qwen2.5-VL-3B’s
Writing Symbol Detection task. This deviation from typical scaling trends suggests that model size
alone is not the primary determinant of performance in fine-grained recognition tasks. A detailed
discussion on this anomaly is included in Appendix [H.3]

Two key insights emerge from our analysis. First, LMMs could outperform untrained individuals in
Allograph Normalization, even comparable to intermediate experts. Interestingly, when categorizing
allograph based on philological principles, we find that LMMs excel in recognizing script variations
(i.e., stroke additions or omissions) but struggle with semantic allographs involving radical substitu-
tions. This suggests that current LMMSs only memorize the glyphs instead of learning the intrinsic
structural features or semantic information of ideograph characters, thus lack generalization.

3Specialized in ancient inscribed and handwritten texts, supporting multi-directional layouts of traditional
Chinese characters: https://guji.rushi-ai.net
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Table 2: Performance of LMMs on Textual Recognition. Only top-performance models are listed due
to space limitation, complete results are available in Appendix. The best LMM of each set is bold,
the second-best is underlined. “N/A” indicates such LMM does not accept multiple visual inputs.
“Fail” indicates such LMM could not solve the task (refuse to answer, all return same answers or
generate random guesses). These special notations are maintained in the following tables. For Human
results, we randomly sample a 10% subset from MS-Bench.

Handwritten Character Recognition  Allograph Normalization (Accuracy)

Accuracy T Edit Distance | Easy T Medium 1 Hard 1
GPT-40 Fail Fail 65.41% 39.09% 22.54%
Step-1o-vision-32k 80.19% 125.39 89.04% 77.16% 58.10%
SenseNova 82.88% 113.30 88.70% 74.62% 56.69%
Gemini-2.0-Pro-Exp 76.53% 78.54 61.64% 43.91% 33.80%
Gemini-2.0-Flash 74.80% 60.05 71.23% 47.21% 36.97%
Qwen2.5-VL-3B 64.69% 456.16 52.05% 36.04% 27.11%
Qwen2.5-VL-7B 72.99 % 92.63 61.30% 42.39% 29.23%
Qwen2.5-VL-72B 69.39% 102.99 55.82% 39.85% 26.76%
Qwen2-VL-2B 28.40% 325.51 77.74% 56.85% 38.73%
Qwen2-VL-7B 46.40% 425.25 44.86% 29.70% 25.00%
Qwen2-VL-72B 51.78% 236.30 30.14% 16.75% 11.27%
InternVL2.5-78B N/A N/A 90.41 % 81.98 % 63.73%
Valley-Eagle-7B 34.96% 581.91 80.48% 58.83% 40.85%
Untrained Human/Expert ~ Fail / 91% Fail / 19.65 84% /96% T2%/96% 48% / 84%

Second, we observed overall advancements with LMM version updates (Qwen2.5-VL surpasses
Qwen2-VL by 26.83% in Character Recognition), in accordance to its generalized capability en-
hancement. A similar trend appears across other tasks, reinforcing that continuous LMM iterations
(including scaling, improved training data and refined training methods) would significantly en-
hance both general and domain-specific performance. Specifically, we notice that the latest Qwen
series models with dynamic resolution visual encoder handle irregularly shaped image inputs better.
However, as we continuously increase image sizes and aspect ratios using manuscripts from British
collection, LMM OCR performance significantly degraded. This suggests that dynamic resolution and
more flexible image patching strategies may be a future direction for improving LMM performance.

3.2 Textual Analysis

Textual Analysis refers to the process by which paleographers transcribe, categorize, and analyze
manuscripts, requiring both fine-grained vision-language alignment and broader feature extraction.
These tasks are labor-intensive and context-dependent, posing significant challenges for LMMs.

Writing Symbol Detection evaluates LMMs’ ability to identify editorial and ritual marks, being
critical for accurate transcription. Given a cropped manuscript region containing symbols or Buddhist
mudra indicators, LMMSs must verify symbol presence based on textual prompts (e.g., “Does fragment
contain a circle annotation?”’). Performance is measured by Accuracy across 4 question types.

Calligraphy Style Classification categorizes manuscripts based on four dominant styles: Clerical
Script, Regular Script, Running Script and Cursive Script. Models receive full-page manuscripts and
classify styles based on stroke patterns. Performance is evaluated using Accuracy.

Discussion. Writing Symbol Detection presents LMMs with unique challenges beyond pre-trained
common object detection and feature extraction: recognizing small, ambiguous symbols amid ink
degradation and texture noise. Among all models, Gemini-1.5-Pro achieves the highest average
accuracy of 43.27%, maintaining consistent performance across all four questioning styles. Binary
Judgment questions, when supplemented with explicit symbolic descriptions (e.g., “A Hierarchical
Symbol is a red solid or hollow dot”), significantly mitigated hallucinations. CoT prompting improved
accuracy by 2.99%, as it forced models to explicitly align step-wise textual shape descriptions
with visual symbols, reducing both modality misalignment and random guessing (models were
even allowed to answer “not found” rather than making irresponsible guesses). Visual Retrieval
Augmentation provided the most substantial performance gains (an average of 14.57%), as example
symbol images provided clearer visual references for symbol recognition. This effect was most
pronounced in models with stronger visual capabilities. Gemini-2.0-Pro-Exp achieved a 1.65x



Table 3: Performance of LMMs on Textual Analysis. Best in bold and second-best in underlined.

Writing Symbol Detection (Accuracy) Calligraphy Style Classification (Accuracy)
Q&A T Binary 1 CoT 1T  Retrieval 1 Q&A T CoT 1 Retrieval 1

Step-1o-vision-32k 24.90% 69.29% 26.85% 40.94% 67.33% 77.67% 87.00%
Gemini-2.0-Pro-Exp 22.73% 67.95% 40.12% 37.55% 43.00% 40.50% 63.25%
Gemini-2.0-Flash 6.72% 55.09% 20.55% 34.98% 75.33% 66.00% 83.67%
Gemini-1.5-Pro 29.05% 68.91% 38.93% 36.17% 70.67% 69.33% 44.33%
Claude-3.5-Sonnet 8.45% 48.94% 10.28% 34.98% 70.00% 80.33% 81.00%
GLM-4V-Plus 0.97% 51.06% 0.39% N/A 65.00% 80.67 % 52.67%
Hunyuan-Vision 3.95% 33.78% 9.49% 10.33% 74.33% 63.00% 56.67%
Hunyuan-Turbo-Vision 1.38% 31.67% 8.89% 5.34% 60.67% 76.00% 90.00%
Qwen2.5-VL-3B 31.82% 39.35% 22.13% 13.24% 32.25% 31.50% 25.00%
Qwen2-VL-72B 12.65% 63.53% 13.24% 25.89% 60.00% 49.00% 53.33%
InternVL2.5-8B 2.72% 46.45% 19.26% 20.23% 68.33% 45.33% Fail

InternVL2.5-78B 4.09% 52.21% Fail 32.49% 63.33% 51.33% 44.00%
LLaVA-OneVision-7B Fail 70.44 % 14.40% 18.48% 76.00% 65.67% 57.33%
Phi-3.5-vision Fail 68.33% Fail 39.30% 64.00% 74.00% 52.00%
Claude-3.7 3.84% 50.67% 7.49% 29.17% 58.50% 61.00% 66.00%
Untrained Human/Expert 36% /88% 52% / 98% N/A N/A 40% 1 78% N/A N/A

accuracy gains, indicating that visual augmentation compensates for pre-trained knowledge gaps.
Notably, Phi-3.5-Vision, an open-source model, even surpasses closed-source LMMs with 39.30%
accuracy through this optimized visual prompting. This analogy-driven reasoning format boosted
performance by 2.31x for all LMMs, remains the most effective strategy for this task. As Writing
Symbol Detection is a labor-intensive yet crucial step in transcription and deciphering, LMMs can
serve as viable reference tools, achieving a 3x efficiency gain over human experts in execution time.

Calligraphy Style Classification reveals significant data bias in LMMs, particularly in temporal
misalignment: older fonts, such as Clerical Script, achieved only 1.25% accuracy, whereas scripts
closely resemble modern typography (e.g., Regular Script, 63.42% accuracy) were easier to classify.
This disparity arises from LMMSs’ predominant exposure to modern typography during pretraining, a
trend similarly observed in Chronological Attribution.

Notably, CoT had minimal impact on Calligraphy and Chronological Attribution (<0.5% average
improvement). Moreover, half of the evaluated LMMs even exhibited a decline in accuracy, as deeper
reasoning often led models to respond with “unknown” or default to a single prediction across all
queries (e.g., predict “Regular Script” for all cases). By comparing these two tasks with Writing
Symbol Detection, we identify a key pattern: Excessive CoT reasoning is detrimental to tasks
requiring intuitive, holistic stylistic perception. While CoT enhances fine-grained visual tasks, its
effectiveness remains inferior to retrieval-augmented visual references. This is because CoT does not
introduce new knowledge but rather reinforces pre-existing data biases and reasoning tendencies.

3.3 Materiality Study

Materiality Studies focus on analyzing the physical condition of ancient manuscripts, including
damage assessment and multi-scale fragment restoration. Damage Assessment is a qualitative
classification task where LMMs evaluate fragment degradation severity through multiple-choice
queries. Performance is evaluated through Accuracy.

Fragment Restoration challenges models to infer contour and texture continuity in torn or eroded
manuscripts. LMMs receive fragment pairs and predict whether they can be restored together, using:
Binary Matching (direct yes/no judgment), Probabilistic Scoring (likelihood estimation on a 0-100
scale), orientation inference (relative positioning hypotheses with left/right/top/bottom). These tasks
replicate the painstaking workflows, where manually matching puzzle-like fragments requires weeks
of comparative analysis, relying on fiber texture, calligraphy style, content and contour similarity.

Discussion. Damage Assessment is a crucial pre-filtering step to reduce pairwise matching candidates
in manuscript restoration. Models such as Gemini, GLM-4V-9B, and Qwen2.5-VL-7B exhibit
moderate alignment (== 43% accuracy, compared to 25% random guess) when associating damage
patterns with textual descriptions. However, most LMMs struggle with holistic integrity assessment,
particularly when degradation occurs across multiple regions.



Table 4: Performance of LMMs on Materiality Study.

Damage Assessment(Accuracy) Fragment Restoration (Accuracy)
Multiple Choice 1 Binary T  Probabilistic t  Orientation 1

GPT-4V Fail 64.20% 58.70% 49.20%
GPT-40 11.82% 59.40% 58.00% 72.00%
Step-1o-vision-32k 19.31% 62.50% 60.00 % Fail
SenseNova 20.81% 64.88% 66.23 % 7.29%
Gemini-2.0-Pro-Exp 40.89% Fail 49.60% 42.20%
Gemini-2.0-Flash 43.35% 49.8% 48.80% 48.80%
Qwen2.5-VL-7B 43.84% Fail 50.04% 42.60%
Qwen2.5-VL-72B 12.81% 50.30% 50.00% 48.00%
InternVL2.5-78B 15.76% 50.00% 55.20% 37.60%
MiniCPM-V-2.6-8B 27.09% 45.80% 46.10% 46.20%
Phi-3.5-vision 10.84% 54.20% 58.10% Fail
Ovis1.6-Gemma2-9B 11.33% 52.80% 54.10% 39.20%
Claude-3.7 22.66% 55.20% 48.80% 43.40%
Untrained Human/Expert 28% 1 T14% 66% / 76% 80% / 90% 75% 1 92%
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Figure 3: Qualitative showcases of Fragment Restoration results.

Fragment Restoration presents two persistent challenges in cross-image reasoning. Scale Invariance
Failure: models achieve 47.64% accuracy on fragments of similar size, but collapse to 39.96%
when paring large-to-small pieces (area ratio > 3:1). This suggests that LMMs may rely heavily
on long-contour similarity and struggle with geometric reasoning, particularly when dealing with
eroded or incomplete fragments. Orientation Blindness: while models achieve 52.18% in binary
matching and 50.78% in probabilistic matching accuracy, their ability to predict spatial relationships
is significantly lower (37.48% accuracy). Step-1o-vision-32k and SenseNova, which both achieved
impressive restoration performance in binary and probabilistic matching, performed significantly
worse in orientation inference, suggesting their over-reliance on texture patterns rather than contour
and geometric semantics. We identify GPT-40 as the most reliable reference model, excelling in
binary (59.04%), probabilistic (58.00%), and spatial orientation matching (72.00%), demonstrating
the best alignment with ground truth in fragment positioning. Gemini and Qwen2.5-VL also exhibit
strong consistency across all three question formats, making them promising alternatives. Among
open-source LMMs, while overall performance lags 4.30% behind closed-source LMMs, Phi-Vision-
3.5-4.2B achieved 58.10% accuracy in probabilistic matching, outperforming 67% of closed-source
models.

We further explored that, as the number of input fragments increases, the pairwise restoration task
transforms into a combinatorial optimization problem, where LMMs struggle to maintain accuracy
due to the exponential increase in candidate pairs. Fragments that were previously correctly identified
in pairwise settings are now frequently misclassified, indicating that the combinatorial complexity
overwhelms current LLMs’ capability. Integrating a small model for candidate filtering may reduce
search space, and we leave for future exploration of building a fully autonomous restoring pipeline.

3.4 Cultural Study

To assess LMMs’ multimodal alignment with cultural-historical priors, we design three progressively
complex tasks: Icon Recognition evaluates foundational pattern recognition across 317 cultural
motifs spanning religious icons, emblems and folk patterns. Each test case presents high-resolution
artifact images with multi-choice questions, measured via Accuracy.



Table 5: Performance of LMMs on Cultural Study.

Icon Recognition Chronological Attribution (Accuracy) Artwork Caption
Classification T Classification T  Binary T CoT 1  Retrieval 1 BERTScore 1

GPT-40 92.78% 26.45% 38.80% 35.14% 63.77% 62.16%
Step-1o-vision-32k 83.44% 61.23% 68.58% 54.35% 69.57% 62.01%
SenseNova 96.86 % Fail 56.99% Fail 51.27% 61.65%
Gemini-2.0-Pro-Exp 96.00% 40.58% Fail 38.04% 56.88% 60.63%
JT-VL-Chat N/A 31.88% N/A 31.88% N/A 63.69%
Step-1V-32K 11.22% 38.04% 55.74% 39.86% 48.91% 61.80%
Qwen2.5-VL-3B 31.67% 32.97% Fail Fail 40.22% 63.40%
Qwen2.5-VL-72B 95.33% 32.97% 55.19% 32.25% 43.12% 61.54%
Qwen2-VL-7B 22.56% 31.16% 52.46% 31.88% 26.45% 61.54%
InternVL2.5-2B 3.22% 33.70% Fail 44.20% 19.93% 63.02%
InternVL2.5-8B 40.78% 42.39% 48.63% 44.57% 28.99% 62.31%
InternVL2.5-78B 94.78% 33.70% 50.00% 33.70% 47.10% 62.01%
MiniCPM-0-2.6-8B 49.78% 35.14% 50.27% 36.23% 34.42% 61.27%
Claude-3.7 95.56% 31.88% 51.37% 42.03% 49.28% N/A

Untrained Human/Expert 96% / 100% 12% 1 48% 46% / 54% N/A N/A N/A

Chronological Attribution, challenges models to contextualize artifacts temporally. We also employ
multi-format evaluation: Q&A, Multiple-choice, CoT (style feature verbalization before dating),
Retrieval-augmented Q&A (comparative analysis with reference timelines).

Artwork Caption, assesses generative cultural narration through structured captioning of manuscript
artwork and mural scenes. Beyond standard BERTScore, we introduce manual expert scoring,
capturing the semantic accuracy, fluency, and contextual richness with historical images.

Discussion. Icon Recognition exposes significant gaps in LMMs’ cultural-visual literacy. While
closed-source LMMs achieve 82.93% accuracy (v.s. only 37.05% for open-source), we suspect
this high performance suggests that some models may rely on pattern-based distinctiveness rather
than genuine cross-modal understanding. Thus, we further restricted a two-image comparison
against textual description. SenseNova exhibits consistent performance (96.86% on multiple-choice,
93.33% for binary picking, only a 3.53% drop), indicating robust cross-modal comprehension. In
contrast, open-source LMMs such as Qwen2-VL-72B showed a sharp improvement, achieving 92.22%
accuracy in the two-image selection setting, showed a sharp improvement, achieving 92.22% accuracy
in two-image selection. This suggests that weaker cross-image reasoning previously hindered its
performance, highlighting visual comparison in enhancing cultural recognition accuracy.

Chronological Attribution results indicate that generalized LMMs prioritize statistical prevalence
over true historical reasoning, exhibiting a strong bias toward data-abundant eras (e.g., LMMs over-
predict Tang Dynasty, which dominate the training data with the highest volume and quality of visual
records). To mitigate this bias, we designed relative dating tasks (“Does artifact A predate B?”)
instead of requiring models to assign specific epochs, aligning with archaeological best practices.
However, 45% of open-source models failed completely when random guessing was restricted,
underscoring their failure in temporal reasoning. Step-1o-vision-32k peaked 69.57% through visual
analogy, by matching unknown artifacts to reference examples.

For Artwork Caption, most LMMs produced generalized descriptions derived from pretrained com-
mon knowledge, rather than accurately identifying the specific story or historical event depicted. Thus,
the BERTScore variations among models were minimal. To address this limitation, we incorporated
manual expert scoring to evaluate semantic accuracy and contextual fidelity: GPT-40 and Step-1o
emerged as the most aligned with human assessments (Step-1o0 could even name the image origin).
These findings suggest that current LMMs lack cultural specificity and consistency in historical
reasoning. While few-shot learning offers partial mitigation, the underlying misalignment between
visual and cultural semantics hinders broader application requiring deep historical reasoning. We
further introduced domain-informed dimensions (e.g., religious symbolism, facial expression, period,
event specificity) to provide a more structured and interpretable evaluation of cultural understanding.
Detailed results are included in Appendix [[]



4 Conclusion and Outlook

We have presented MS-Bench, a large-scale, high-quality benchmark for visual-textual tasks in
ancient manuscript analysis. Our hierarchical framework systematically addresses key challenges in
manuscript research, to align with real-world archaeological and philological practices. Experiments
reveal that current LMMs excel in structured, labor-intensive tasks (e.g., Handwritten Character
Recognition, Allograph Normalization, and Calligraphy Style Classification). However, their perfor-
mance in knowledge-intensive tasks remains constrained due to the lack of specialized training data
and limited cultural grounding.

Looking forward, we aim to bridge these performance gaps through targeted domain adaptation and
fine-tuning strategies, integrating extended datasets across diverse historical periods and manuscript
styles. Incorporating smaller, specialized models could complement LMM capabilities. For instance,
a dedicated visual perception module may better handle large aspect ratio manuscripts found in British
collections. Moreover, given the combinatorial nature of multiple fragment matching, embedding a
combinatorial solver alongside LMMs could offer a more structured and effective solution framework.

Further empirical studies involving domain experts and LMMs could yield valuable perspectives,
accelerating the discovery of new manuscript connections and refining historical document analysis.
With LMM-driven assistance, scholars can shift focus from repetitive manual tasks to higher-level
historical analysis, facilitating deeper insights into new findings.
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A Related Work

The interdisciplinary efforts of applying vision technologies in assisting historical document studies
have witnessed increasing attention in recent years. Previous research encompasses a diverse
range of subjects [35]], including Oracle Bones Inscriptions (OBI) [44], ancient manuscripts [23}
531 154]), frescoes and artifacts [5S0]. The associated tasks span traditional human scholarly efforts,
covering palaeography (e.g., character recognition and textual analysis [25] 43| 146]]), codicology
(e.g., fragmented manuscript restoration and attribution [52]]) and visual reconstruction [S0]. OBI,
a representative low-resource ideographic character, have emergent recent attention in deciphering
unknown characters. The most recent effort from Guan et al. [22] proposed conditional diffusion
models for first generate an initial decipherment from initial OBI input then refine with a style-
referenced diffusion model for final OCR output. As for manuscript restoration, researchers typically
adopted a Siamese-Neural Network by pairwise matching fragment candidates from a widespread
type of materials including Oracle Bone [51]], papyrus [30], manuscripts [6], dead sea scroll [31]] and
beyond. By capturing visual semantic information such as material, texture and font style, researchers
achieved success in dating Arabic manuscripts [3], OBI [12] and Cuneiform Tablet [13]. Ancient
relic restoration could be categorized into 2D restoration [[L8] and 3D reconstruction and repair [41]].
Typical visual reconstructions vary from curve frescoes repair, character in-painting [45]] to 3D
fragment reconstruction [33]].

We also acknowledged that some early-stage LLM and LMM applications in ancient manuscript
and cultural heritage processing have emerged recently. [54] pioneered in introducing LMM for
small manuscript pieces restoration in a grid like pattern, however they failed to further delve into
broader LMM candidates and question type influence on matching performance. [11] also proposed
a LLM focusing on various downstream task for ancient Chinese text understanding, including
translation, word explanation and beyond. [49] highlighted its capability to recognize characters from
bamboo slips in its performance demonstration, showcasing the growing interest in expanding LMM
applications for end-to-end ancient artifact analysis.

The most relevant work from [[15] proposed the first benchmark tailor for LMM on OBI processing,
encompassing 5 domains and 4 types of questions (what, why, how, where). The key differences
between OBI-Bench and our work mostly lie in research focus and data source: 1) Scope of
Study: OBI-Bench primarily focuses on Oracle Bone, with 80% of its tasks dedicated to character
identification. In contrast, our MS-Bench encompasses a broader range of tasks, including text
recognition for ancient character transcription, textual analysis for symbols and style classification,
materiality studies focusing on puzzle-like matching (which is a key challenge for manuscript study)
and iconographic analysis. 2) Data Source Difference: benefit from OBI’s earlier research foundation
on character recognition, OBI-Bench primarily integrates and supplements existing public datasets.
In contrast, our benchmark data is mostly curated from sketch with expert guidance. 3) Prompt
Engineering Strategies: We further explore the impact of different prompting strategies, specifically
CoT and Visual Retrieval Augmentation (current cost-efficient solution given the scarcity of domain
data), and compare their effects on LMMs’ performance on both positive and negative sides.

15



B Dataset Details

Here we given more implementation details of our benchmark dataset curation, we elaborate the data
source, preprocessing, annotation, image and data quantity. We performed scale normalization for all
images to ensure a consistent scale around 600 x 600 pixel, to prevent issues caused by excessively
large or small manuscript fragments. We performed color normalization for images sourced from
global museum.

For Handwritten Character Recognition, data source from our collaborated Dunhuang manuscript
research team. We filtered out scrolls with an aspect ratio exceeding 3:1, removing overly long
manuscripts that could distort model evaluation. We applied RushiOCR for initial machine transcrip-
tion, followed by manual double checking to filter out incorrect characters on fragmented image
edges. For Allograph Normalization and Writing Symbol Detection, we implemented super-resolution
since most cropped image have relatively smaller sizes. These tasks use data source from expert
manual collections with human-annotated golden labels.

For Calligraphy Style Classification, half of our data is sourced from publications with ground truth
while the rest source from open-source museum repositories. We uniformly process these images to
grayscale.

For Damage Assessment, our data is sourced from open museum repositories, with its human-
evaluated damage severity serving as ground truth. No further implementation is required.

For Manuscript Restoration, we applied data source from expert collection. We removed fragment
background and transparent alpha channel. All images are transformed to grayscale, because there
exists matching pairs from two distinct museums of both color and grayscale digitized image. We aim
to prevent color from introducing additional biases in the model’s decision-making. Since real-world
ground truth is scarce, we introduced a simulated shredding method for pairwise matching data
augmentation.

For the other tasks, our data is sourced from publications, books and research papers. We cropped
these images, extracted text descriptions and labels manually, followed by minimal adjustments
(resize, color normalization, background removal) to ensure consistent image quality.

Here we provide more detailed analyses of manuscript dynasties, writing styles (fonts), image sources,
manuscript status, and the distribution of writing symbols in Table[6} Some statistics are not available
for every image in our dataset. For example, the dating of certain manuscripts used in the Material
Study task remains under debate among archaeologists, so for consistency and accuracy, we only
include manuscripts used in Chronological Attribution tasks when reporting dynasty-level statistics.
We also acknowledge an imbalance in calligraphic style distribution, this reflects the real-world
composition of the Dunhuang manuscripts, in which over 90% of manuscripts are Buddhist scriptures
written in Regular Script.

Dimension Statistics

Image Source 54.64% Specialist Collection, 24.99% Publications & Research Papers,
12.81% Museum, 7.56% Others

Writing Symbol 48.46% Deletion, 19.90% Repetition, 18.28% Hierarchy,
6.71% Pause, 6.63% Tick

Calligraphy Style 91.38% Regular Script, 2.87% Running Script,
2.87% Clerical Script, 2.87% Cursive Script

Dynasty 33.33% Tang Dynasty, 33.33% Wei-Jin Dynasty,
16.67% Five Dynasties, 16.67% Yuan Dynasty

Manuscript Status  64.91% Damaged, 35.09% Intact

Table 6: Detail dataset statistics.
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C Experiment Details

C.1 Model Selection

We select LMM candidates based on their overall performance on mainstream LMM benchmarks,
according to their performance on OpenVLM Leaderboard [26]. Ranking by Average Score on leader-
board, we included Step-lo-vision-32k [36], SenseNova [34]], GLM-4V-Plus-0111 [21],
HunYuan-Standard-Vision [40], Qwen2.5-VL Series [9]], InternVL-2.5 Series [14], Qwen2-VL
Series [42]], Qwen-VL-Max [8], Gemini Seires [39], JT-VL-Chat [16], Step-1V-32K [37],
GPT-40 [24], Ovisl.6-Gemma2-9B [29], Claude-3.5-Sonnet-20240122 [4]], MiniCPM
Series [49], Claude-3.7 [5], Valley-Eagle-7B [48|], DeepSeek-VL Series [28, 47],
LLaVA-OneVision-7B [27]], GPT-4V [2]]. By the time we perform experiments, the top-tier LMMs
such as TeleMM, BailingMM Series and Taiyi have no public access (either open-source model or
API reference), Phi-3.5-vision Series [[1] is not on the leaderboard. We do not include extensive
comparisons of LMMSs’ backbones and parameter sizes in this paper, since they are more intuitively
organized on leaderboards.

When selecting candidate LMMs, we took the following points into consideration:

1) Prioritizing Strong General-Purpose Models: we provide direct contrast between general multi-
modal proficiency and domain-specific performance in manuscript tasks.

2) Various Open-Source Model Sizes: open-source models were primarily selected within the 7-10B
parameter range, as they are the most commonly used configurations for individual deployment.
Additionally, we included a limited number of larger models (>70B) and smaller device LMMs
(<3B) to evaluate performance in both resource-rich and resource-constrained scenarios.

3) Practical Usability: in some manuscript research tasks (e.g., allograph normalization and calligra-
phy style classification), scholars may prioritize models with easier access, resource-efficient (with
API references), and deployable on edge devices, rather than models requiring complex setups.

D Implementation

To maintain consistence performances and practical usability, we prioritize LMMs’ offical APIs for
experiments if available. The models for API implementation include all closed-source LMMs and
all Qwen2.5-VL and Qwen2-VL series models. We deploy other LMMs on a server equipped with
AMD Processors and NVIDIA A100-PCIE-40GB GPUs. To maintain controllable comparisons with
open-source LMMs’ claimed performance, our deployment and inference were performed under
each LMMs’ standard recommendation in their respective official repository. We set deterministic
parameters when inference ( temperature = 0, top-k = 1) to avoid randomness. For those
API references that we could not explicitly avoid randomness (e.g., GPT-40 APIs would response
slightly differently even with deterministic parameters), we performed two-round experiments and
take the average performance. No LMMs observed significant variation between different rounds of
experiments.

We performed minimal adjustments on our task prompt as preliminary experiments (tested with a
mini-batch of around 30 queries each task) without influencing task design. This allows each LMM
to perform at its optimal capability, providing a fair and comprehensive evaluation.

E Extended Discussion

We acknowledged that there exists differences in instruction following capabilities across LMMs,
smaller models (<10B) tend to get confused with our task instructions more frequently. GPT-4o,
Gemini series, GLM series, InternVL series, Valley-Eagle-7B and Qwen-VL-Max show satisfying
instruction understanding. QVQ, DeepSeek-VL series and MiniCPM series demonstrate notable decline
in adhering to user prompts, frequently failing to comprehend the requirements of our complex task
instructions.

In MS-Bench, closed-source LMMs developed by Chinese researchers outperformed others by an
average of 11.73% in Textual Recognition tasks. Apart from models like MiniCPM, which explicitly
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emphasize ancient character recognition proficiency, we hypothesize that OCR training data selection
may be influenced by the cultural background of dataset curators or researchers.

However, we did not observe significant gap in other multimodal tasks, where performance is more
tightly linked to visual perception capabilities rather than purely cultural knowledge generation.
Notably, inherent visual-textual alignment capabilities play a more decisive role in overall model
performance, as evidenced by strong baselines of Gemini and GPT-4o0. This cultural bias diminishes
as model size increases and with continued iterations, suggesting that scaling and ongoing model
refinement help mitigate pretraining-induced cultural imbalances.

F Extended Discussion on Prompting Strategies across Task Types

Prompt design plays a critical role in the performance of LMMs across different types of manuscript
analysis tasks. We present here an extended discussion of various prompting strategies.

In general, CoT is more effective when task benefits from explicit step-wise reasoning and
disambiguation. For example, in the Writing Symbol Detection task, CoT helps models correctly
disambiguate visual marks by guiding them to focus on regions outside the main text area. This
helps distinguish between small marks like “Tick Symbol” and a larger similar shaped character or
strokes. However, CoT can harm performance in perception-heavy classification tasks that rely
on holistic visual judgment or stylistic intuition. In tasks like Calligraphy Style Classification
or Chronological Attribution, we observed that CoT often led to over-analysis or model hesitation.
For instance, models like Gemini or InternVL under CoT prompts sometimes defaulted to vague
or generic answers such as “Regular Script” or “I am not sure”, due to a misalignment between
expert-designed complex reasoning logic and model’s internal visual judgment. It is inherently
difficult to “teach” models to differentiate subtle holistic patterns through textual descriptions alone
(e.g., between Clerical and Running Script), especially without pretraining on such domain-specific
stylistic variations.

In contrast, V-RAG offers more stable and interpretable improvements by grounding model
predictions in explicit visual comparisons with annotated reference exemplars, reducing re-
liance on free-form textual reasoning. For example, in Writing Symbol Detection, model directly
“compares” given manuscript with reference samples to locate matching patterns, benefiting from its
inherent visual grounding capability without exterior domain knowledge required. In Chronological
Attribution, for example, both “Tang Dynasty” and “Wei-Jin Dynasty” figures may exhibit richer
color palettes, but “Tang” figures are characteristically rounder in facial and body structure. V-RAG
allows models to align unknown inputs with these reference traits, improving relative dating accuracy
without relying solely on unstable textual reasoning. V-RAG thus excels in situations where cultural
distinctions are visually encoded but hard to verbalize.

To evaluate prompt sensitivity, we conducted an ablation comparing simple role-play prompting and
few-shot prompting with reference examples on the Calligraphy Style Classification task. The
results in Table[/|show model-dependent effects:

Model Role-Play Few-Shot
GPT-40 0.6767 0.7467
Step-1o-vision-32k 0.7067 0.7833
Qwen-VL-Max 0.7700 0.7533

Qwen2.5-VL-72B 0.7867 0.8033

Table 7: Performance comparison of prompting strategies on Calligraphy Style Classification.

Based on these results and previous discussions, we offer the following recommendations for re-
searchers future benchmark builders:

1. Role-playing is a simple yet effective strategy that improves task alignment.

2. Provide explicit reasoning steps or focal aspects often works better than relying on the model’s
own decomposition.

3. Clarify task-specific terminology helps reduce ambiguity.
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4. Incorporate multiple prompting strategies, and evaluate not only absolute performance but also
interactions between prompts, task type, and model characteristics (e.g., hallucination resistance,
visual grounding);

5. For culturally grounded tasks, consider co-designing prompts with domain experts and iteratively
refining them.
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Handwritten Character Recognition  Allograph Normalization (Accuracy)

Accuracy 1 Edit Distance | Easy Tt Medium 1 Hard 1

Human (Untrained) Fail Fail 84% 72% 48%
Human (Expert) 91% 19.65 96% 96% 84%
GPT-4V 6.77% 415.01 Fail Fail Fail
GPT-40 Fail Fail 65.41% 39.09% 22.54%
Step-10-vision-32k 80.19% 125.39 89.04% 77.16% 58.10%
SenseNova 82.88% 113.30 88.70% 74.62% 56.69%
JT-VL-Chat Fail Fail 29.79% 11.93% 7.75%
Gemini-2.0-Flash 74.80% 60.05 71.23% 47.21% 36.97%
Gemini-1.5-Pro 72.58% 97.83 39.04% 24.11% 17.61%
Claude-3.5-Sonnet 48.57% 128.85 50.68% 29.19% 20.42%
GLM-4V-Plus 81.31% 81.62 74.66% 52.79% 50.00%
Qwen-VL-Max 59.23% 202.92 71.00% 49.00% 35.21%
Hunyuan-Vision 76.10% 112.74 64.04% 41.37% 36.27%
Hunyuan-Turbo-Vision 76.91% 128.08 66.10% 50.51% 40.49%
Step-1V-32K 57.06% 224.36 60.62% 38.32% 32.04%
Gemini-2.0-Pro-Exp 76.53% 78.54 61.64% 43.91% 33.80%
Qwen2-VL-2B 28.40% 325.51 77.74% 56.85% 38.73%
Qwen2-VL-7B 46.40% 425.25 44.86% 29.70% 25.00%
Qwen2-VL-72B 51.78% 236.80 30.14% 16.75% 11.27%
Deepseek-VL2 Fail Fail 37.33% 20.81% 11.97%
Deepseek-VL Fail Fail Fail Fail Fail
InternVL2.5-2B 40.93% 5444.89 62.33% 49.49% 38.73%
InternVL2.5-8B 43.15% 2311.89 56.51% 48.73% 34.86%
InternVL2.5-78B N/A N/A 90.41%  81.98% 63.73%
GLM-4V-9B 69.16% 299.94 63.36% 41.62% 33.10%
LLaVA-OneVision-7B Fail Fail Fail Fail Fail
MiniCPM-V-2.6-8B 45.42% 920.30 53.77% 24.11% 15.14%
Phi-3.5-vision Fail Fail Fail Fail Fail
Ovisl.6-Gemma2-9B Fail Fail Fail Fail Fail
Valley-Eagle-7B 34.96% 581.91 80.48% 58.83% 40.85%
MiniCPM-0-2.6-8B 46.90% 673.01 33.73% 15.74% 6.34%
Qwen2.5-VL-3B 64.69% 456.16 52.05% 36.04% 27.11%
Qwen2.5-VL-7B 72.99 % 92.63 61.30% 42.39% 29.23%
Qwen2.5-VL-72B 69.39% 102.99 55.82% 39.85% 26.76%
Claude-3.7 Fail Fail 53.77% 34.77% 21.83%
QVQ-72B 46.90% 673.01 32.53% 23.60% 17.61%

Table 8: Overall performance of LMMs on Textual Recognition tasks. The best LMM of each set
is bold, the second-best is underlined. “N/A” indicates such LMM does not accept multiple visual
inputs. “Fail” indicates such LMM could not solve the task (simply refuse to answer, all return same
answers or generate random guesses). These special notations are maintained in the following tables.
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G Extended Handwritten Character Recognition Discussion

G.1 LLM Performance

Our experimental results in Table [§] confirm that LMM OCR performance adhere to scaling law,
where larger LMMs outperform smaller ones. Notably, LMMs less than 10B parameters struggle
to independently complete OCR tasks for ancient handwritten manuscripts. Common failure cases
include:

1) Inaccurate text localization: ancient manuscripts are typically vertically oriented, written from right
to left, which differs from modern reading conventions that dominant in pretraining data distribution.
Even explicitly specified in system and user prompt, open-source smaller LMMs frequently disregard
these instructions (poor instruction following), defaulting to left-to-right output. This is a primary
reason that certain LMMs exhibit abnormally high Edit Distance.

2) Edit Distance and Accuracy not fully correlated: while lower Edit Distance indicates stronger
visual grounding (i.e., better text localization), higher Accuracy reflects superior character-level
recognition performance. Discrepancies between these two metrics suggest that some LMMs excel
at detecting text regions but struggle with precise transcription (e.g., Claude-3.5-Sonnet), whereas
others achieve high OCR accuracy but misaligned text placements (e.g., MiniCPM-V-2.6-8B).

3) Repetitive output and looping errors more frequently appear in this task, because some manuscripts
(particularly Buddhist scriptures) naturally contain poetic structures with repeating phrases. Smaller
LMMs frequently fall into output loops (e.g., InterVL2.5-8B), repeatedly generating the same text
segments.

4) Fragmented manuscripts has more incomplete characters which lead to poor OCR accuracy at
manuscript broken edges and torn contours. This is another major factor contributing to poor OCR
performance besides model inability.

In contrast to traditional OCR models that single-character recognition failure lead to substantial
inaccuracies, end-to-end LMM-based OCR ensures that detected text aligns semantically. However,
this probabilistic text generation approach introduce an inherent trade-off: LMMs favor common
vocabulary over precise text transcription. This automated “correction” based on learned linguistic
patterns, often lead to merging or reordering content according to pretraining biases. This sampling-
based generation mechanism also explains why LMMs perform well on allograph normalization
for script variation: they map unfamiliar characters to more common ones, which is the allograph
normalization target.

H Extended Allograph Normalization Discussion

H.1 Human View

Allographs are not spelling errors but variant forms of the same character. The emergence of
allographs is due to the following reasons: Differences in writing habits and literacy levels among
writers, leading to missing or adding strokes. Simplification of complex characters: difficult-to-write
characters are replaced with a simpler alternative with the same pronounce, also known as Phonetic
Loan Characters. Evolution of characters over time due to historical and linguistic changes. Imperial
naming taboos, which lead to modifications in character radicals. Since Chinese is a meaning-based
writing system, the visual representation of characters has continuously evolved following two
directions. “More Complex”: adding radicals to create more distinct and precise characters due to
limited number of existing symbols. “Simpler”: reducing strokes for ease of writing, often influenced
by popular or informal script styles.

Given the semantic nature of Chinese characters, allographs can be generally categorize into 5 types:
1) Script Variation: changes in stroke addition or omission. 2) Radical Substitution: differences
in the semantic component which lead to totally different meanings. 3) Structural Transformation:
variation in character formation, such as differences in traditional and simplified Chinese. 4) Radical
Repositioning: the radicals shift between left-right to top-bottom structure and beyond. 5) Semantic
Component Variation: different radicals conveying the same meaning, resulting in multiple character
forms.
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H.2 LMM Performance

We constructed random re-sampling among LMM outputs and statistical analysis experimental results,
as in Figure [8| indicates SenseNova and Step-1lo-vision-32k consistently outperformed other
models. Specifically, Step-1lo-vision-32k demonstrates a clear advantage on Script Variation,
Structural Transformation and Radical Repositioning, aligning with its overall superior performance
across the dataset.

Among all allograph types, Script Variation accounts for the largest amount of data and exhibits the
highest overall accuracy. In contrast, LMMs performed significantly worse on Structural Transfor-
mation and Radical Substitution, as these involves substantial changes in character composition and
visual spacial distribution, making recognition extremely challenging. This trend aligns with human
performance, meaning LMMs perform allograph normalization based on visual perceptual inference,
similar to manual visual intuition.

We also noticed that our dataset categorization is based on frequency rather than difficulty or complex-
ity. LMM performance should be relatively uniformed across all three frequency levels. However,
results show otherwise, indicating LMM performance is heavily influenced by pretraining data biases.
This aligns with real-world data distributions, where the most frequent allograph type exists more
frequently in pre-training dataset, and consequently achieves the highest accuracy. While rarer
characters and less common variation types are normally dismissed in pretraining, thus suffering
from lower analogy-based inference accuracy.

H.3 Model Scale Anomaly Discussion

We observed an anomaly where a smaller LMM outperformed a larger one, particularly within the
Script Variation subtype. Based on our analysis, this performance reversal stems from allograph
type-specific sensitivities:

In Script Variation type, which involves subtle stroke-level differences, smaller models sometimes
perform better likely due to their reduced visual sensitivity, which makes them less susceptible to
insignificant changes. In contrast, the larger models perform better on semantic component variation
cases, where deeper reasoning about component-meaning alignment is needed. We propose that
collaborative inference between large and small models may combine their complementary strengths
to improve overall accuracy.

For the more challenging Radical Repositioning cases, where both models struggle due to substantial
allograph deviation, we believe that domain-specific continued pretraining is needed. Given training
efficiency constraints, smaller models may be more practical for targeted fine-tuning.

We therefore view this as a design opportunity, where future systems can combine the efficiency of
smaller models with the stronger overall performance of larger models to achieve more robust and
adaptable solutions. Future research may include model collaboration strategies, selective decoding,
or fine-tuning smaller models under expert supervision.

H.4 Future Direction

In real-world manuscript research, allograph recognition is often coupled with dating analysis and
scribe attribution, as specific allograph styles can assist in indicating particular historical periods and
individuals. Given this strong temporal correlation, we advocate for future work to incorporate a time
dimension into allograph analysis. By further pretraining and instruction tuning, LMMs should be
enhanced to leverage visual features for manuscript dating, enabling a more academically valuable
task.
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Figure 4: Detail statistics of LMM performance across different types of allograph. We randomly
sample a subset from all allographs and categorize by their variation types.
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Figure 5: Cases of LMM results with Allograph Recognition tasks, categorized by allograph types.
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Writing Symbol Detection (Accuracy) Calligraphy Style Classification (Accuracy)

Q&A1 Binary1T CoT{1  Retrieval T Q&AT CoT 1 Retrieval T

Human (Untrained) 36% 52% N/A N/A 40% N/A N/A

Human (Expert) 88% 98% N/A N/A 78% N/A N/A

GPT-4V 10.51% 65.83% 17.32% 35.21% 37.25%  42.75% 54.00%
GPT-40 11.48% 62.38%  12.84% 24.12% 37.25%  40.75% 54.75%
Step-1o-vision-32k 2490% 69.29%  26.85% 40.94% 60.75% 63.50% 66.25%
SenseNova 13.23%  63.53% 9.73% 5.64% 53.44%  52.42% 24.94%
JT-VL-Chat 8.95% 51.06%  4.86% N/A 34.25%  33.75% N/A

Gemini-2.0-Flash 6.72% 55.09%  20.55% 34.98% 53.00% 56.75% 58.25%
Gemini-1.5-Pro 29.05% 6891% 38.93% 36.17% 48.25%  47.50% 45.75%
Claude-3.5-Sonnet 8.45% 4894%  10.28% 34.98% 50.50% 54.25% 64.50%
GLM-4V-Plus 0.97% 51.06% 0.39% N/A 44.86%  39.85% 43.11%
Qwen-VL-Max 12.28%  13.32% 7.20% 25.88% 43.58% 44.08% 49.62%
Hunyuan-Vision 3.95% 33.78% 9.49% 10.33% 47.75%  50.00% 27.00%
Hunyuan-Turbo-Vision  1.38% 31.67% 8.89% 5.34% 57.25%  49.75% 60.00%
Step-1V-32K 11.48% 64.49% 12.84% 25.88% 59.25% 62.00% 61.25%
Gemini-2.0-Pro-Exp 22.73%  67.95% 40.12% 37.55% 43.00% 40.50% 63.25%
Qwen2-VL-2B Fail 38.00% Fail 4.67% Fail 24.94% 24.69%
Qwen2-VL-7B 11.07% 46.64% 10.87% 15.02% 27.00%  28.00% 26.00%
Qwen2-VL-72B 12.65% 63.53% 13.24% 25.89% 44.50%  43.25% 53.50%
Deepseek-VL2 3.16% 48.56% 18.18% 17.59% 27.75%  31.00% 43.50%
Deepseek-VL 0.78% 46.64% 5.84% 16.34% Fail 16.50% Fail

InternVL2.5-2B 4.09% 51.06% 13.23% 5.06% 21.25% Fail 20.75%
InternVL2.5-8B 2.72% 46.45%  19.26% 20.23% 30.25%  31.00% 26.00%
InternVL2.5-78B 4.09% 52.21% Fail 32.49% 40.50%  38.25% 24.75%
GLM-4V-9B 6.23% 50.86% 1.17% N/A 46.50% 49.75% N/A

LLaVA-OneVision-7B Fail 70.44%  14.40% 18.48% 26.75%  29.25% 24.75%
MiniCPM-V-2.6-8B 9.73% 45.49% 7.20% 15.76% 41.75% 41.75% 44.25%
Phi-3.5-vision 0.19% 68.33% Fail 39.30% 25.25%  24.75% 25.00%
Ovisl.6-Gemma2-9B 2.14% 38.20% 2.72% 8.95% 39.00% 35.75% 32.00%
Valley-Eagle-7B 5.64% 61.42% 13.81% 11.09% 30.25%  38.25% 25.25%
MiniCPM-0-2.6-8B 12.65%  47.60% 7.20% 21.21% 40.50%  42.75% 50.50%
Qwen2.5-VL-3B 31.82% 39.35% 22.13% 13.24% 32.25% 31.50% 25.00%
Qwen2.5-VL-7B 6.13% 41.46% 9.49% 14.43% 49.25%  49.25% 55.50%
Qwen2.5-VL-72B Fail 67.37% 8.30% 21.15% 60.25% 59.25% 63.00%
Claude-3.7 3.84% 50.67% 7.49% 29.17% 58.50% 61.00% 66.00%
QVQ-72B 1.78% 59.12% 7.51% 20.55% 48.25% 41.75% 36.25%

Table 9: Overall performance of LMMs on Textual Analysis tasks. The best LMM of each set is
bold, the second-best is underlined.
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I Extended Writing Symbol Detection Discussion
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Figure 6: Statistics of LMM performance across different types of writing symbol and various
question formats. There exists easier symbols with high accuracy and harder symbols to recognize.
LMM also demonstrate their preferences on different symbol types.

I.1 LMM Performance

We conducted grouped sampling and statistical analysis based on symbol types within the dataset.
This task requires LMMs to visually locate symbols based on textual descriptions, making precise
text-visual alignment critical.

Our results confirm that CoT reasoning benefits this task which require fine-grained visual recognition.
With CoT, LMMs actively attempt to understand the meaning and shape of symbols, paying attention
to distinct textual markers rather than treating them as mere visual noise. This aligns with our original
motivation for incorporating CoT, as its structured reasoning process reinforces text-visual alignment
and slows down judgment making.

We also observed that certain symbols are inherently easier to recognize. For example, Pause Symbols
are more distinguishable due to their clear visual contrast against surrounding text. Similarly, symbols
with distinct colors (e.g., red annotations) are more visually salient among black characters.

Interestingly, under the same prompt and visual input conditions, different models exhibited symbol-
specific preferences and recognition biases. Gemini excelled in recognizing Deletion Symbol, while
Step-10-Vision-32k preferred Repetition Symbol (a symbol which other LMMs struggle with).

1.2 Future Direction

Given that manual completion of symbol detection is highly labor-intensive, multi-model collabora-
tion or enhancing prompts with additional prior knowledge (e.g., description of symbol position or
semantic meanings) may be necessary. At present, Visual Retrieval Augmentation remains the most
effective solution.
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Damage Assessment(Accuracy) Fragment Restoration (Accuracy)

Multiple Choice 1 Binary 1 Probabilistic T Orientation 1

Human (Untrained) 28% 66% 80% 75%
Human (Expert) T4% 76% 90% 92%
GPT-4V Fail 64.17% 55.54% 47.84%
GPT-40 11.82% 62.76% 62.01% 79.01%
Step-1o-vision-32k 19.31% 68.38% 64.80% Fail
SenseNova 20.81% 70.09 % 63.26% 7.19%
JT-VL-Chat 13.30% N/A N/A N/A
Gemini-2.0-Flash 43.35% 41.45% 45.03% 42.59%
Gemini-1.5-Pro 16.26% 47.66% 42.63% 47.84%
Claude-3.5-Sonnet 25.62% 56.79% 41.48% 35.49%
GLM-4V-Plus 23.65% 59.79% 56.45% 31.79%
Qwen-VL-Max Fail 61.48% 57.60% 55.56%
Hunyuan-Vision 31.03% 41.33% 40.69% 46.60%
Hunyuan-Turbo-Vision 37.93% 41.33% 42.74% 44.75%
Step-1V-32K 28.71% 59.13% 58.97% 49.07%
Gemini-2.0-Pro-Exp 40.89% Fail 43.20% 45.37%
Qwen2-VL-2B 13.30% 44.85% 42.63% Fail
Qwen2-VL-7B 26.11% 51.87% 52.80% 32.10%
Qwen2-VL-72B 33.50% 47.42% 51.54% 31.17%
Deepseek-VL2 30.54% 49.30% 48.80% 20.99%
Deepseek-VL 18.23% 47.10% 42.86% Fail
InternVL2.5-2B 21.18% 58.78 % 36.91% 17.59%
InternVL2.5-8B 15.27% 40.63% 43.66% 30.86%
InternVL2.5-78B 15.76% 58.55% 50.17% 38.27%
GLM-4V-9B 43.35% N/A N/A N/A
LLaVA-OneVision-7B 16.75% 41.69% 44.34% Fail
MiniCPM-V-2.6-8B 27.09% 40.40% 43.66% 39.51%
Phi-3.5-vision 10.84% 46.49% 53.37% Fail
Ovisl.6-Gemma2-9B 11.33% 44.50% 52.91% 40.74%
Valley-Eagle-7B 18.23% Fail 44.34% 48.46%
MiniCPM-o0-2.6-8B 19.31% 41.45% 37.94% 32.41%
Qwen2.5-VL-3B 15.76% 51.17% 42.97% Fail
Qwen2.5-VL-7B 43.84% Fail 45.14% 50.62%
Qwen2.5-VL-72B 12.81% 58.78 % 42.86% 44.44%
Claude-3.7 22.66% 60.54% 42.40% 41.05%
QVQ-72B 37.44% 42.62% 40.46% 50.00%

Table 10: Overall performance of LMMs on Materiality Study tasks. The best LMM of each set is
bold, the second-best is underlined.
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Icon Recognition Chronological Attribution (Accuracy) Artwork Caption (Score)

Classification T Classification T Binary? CoT T  Retrieval T BERTScore 1

Human (Untrained) 96% 12% 46% N/A N/A N/A

Human (Expert) 100% 48% 54% N/A N/A N/A

GPT-4V 90.67% Fail Fail Fail 42.03% 61.05%
GPT-40 92.78% 26.45% 38.80%  35.14% 63.77% 62.16%
Step-1o-vision-32k 23.33% 61.23% 68.58% 54.35% 69.57 % 62.01%
SenseNova 96.86 % Fail 56.99% Fail 51.27% 61.65%
JT-VL-Chat N/A 31.88% N/A 31.88% N/A 63.69 %
Gemini-2.0-Flash 95.78% 36.23% 52.46%  38.41% 52.54% 61.95%
Gemini-1.5-Pro 94.56% 23.19% 50.00%  19.20% 48.19% 62.04%
Claude-3.5-Sonnet 94.11% 35.87% 51.09%  39.49% 46.38% 61.48%
GLM-4V-Plus 92.56% 33.70% 48.63%  34.78% 44.20% 61.91%
Qwen-VL-Max 92.33% 32.97% 51.80%  37.09% 35.14% 61.48%
Hunyuan-Vision 53.78% 33.33% 49.73%  33.33% 35.51% 58.45%
Hunyuan-Turbo-Vision 84.56% 37.32% 50.00%  33.33% 41.67% 59.51%
Step-1V-32K 11.22% 38.04% 55.74%  39.86% 48.91% 61.80%
Gemini-2.0-Pro-Exp 96.00% 40.58% Fail 38.04% 56.88% 60.63%
Qwen2-VL-2B 4.11% Fail 46.72% Fail 18.84% 62.00%
Qwen2-VL-7B 22.56% 31.16% 52.46%  31.88% 26.45% 61.54%
Qwen2-VL-72B 67.11% 24.64% 50.55%  28.62% 36.59% 61.84%
Deepseek-VL2 23.56% 33.33% 46.17%  31.88% N/A 55.96%
Deepseek-VL Fail Fail Fail Fail 28.99% 58.99%
InternVL2.5-2B 3.22% 33.70% Fail 44.20% 19.93% 63.02%
InternVL2.5-8B 40.78% 42.39% 48.63%  44.57% 28.99% 62.31%
InternVL2.5-78B 94.78% 33.70% 50.00%  33.70% 47.10% 62.01%
GLM-4V-9B N/A 35.51% N/A Fail N/A 63.53%
LLaVA-OneVision-7B 15.33% Fail Fail Fail 23.55% 61.20%
MiniCPM-V-2.6-8B 57.67% Fail Fail 34.42% 35.14% 60.91%
Phi-3.5-vision 48.11% 31.52% Fail Fail 23.91% 57.00%
Ovis1.6-Gemma2-9B 22.56% 45.29% Fail 52.90% Fail 61.32%
Valley-Eagle-7B 42.89% 33.70% Fail 33.33% 33.70% 62.66%
MiniCPM-0-2.6-8B 49.78% 35.14% 50.27%  36.23% 34.42% 61.27%
Qwen2.5-VL-3B 31.67% 32.97% Fail Fail 40.22% 63.40%
Qwen2.5-VL-7B 79.78% Fail Fail Fail 33.33% 62.41%
Qwen2.5-VL-72B 95.33% 32.97% 55.19%  32.25% 43.12% 61.54%
Claude-3.7 95.56 % 31.88% 51.37%  42.03% 49.28% Fail

QVQ-72B 38.67% 33.70% 40.71%  23.19% 33.33% 57.83%

Table 11: Overall performance of LMMs on Cultural Study tasks. The best LMM of each set is bold,
the second-best is underlined.
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J Extended Icon Recognition Discussion

Figure 7: Illustration of image quality degradation.

Model Original Brightness Gaussian Blur JPEG Compression
SenseNova 93.88% 93.00% 84.54% 92.93%
Gemini-2.0-Pro-exp  97.00% 95.00% 93.00% 98.00%
Qwen2.5-VL-72B 93.00% 27.00% 31.00% 28.00%
Qwen2.5-VL-7B 76.00% 25.00% 24.00% 25.00%
InternVL2.5-8B 49.00% 47.00% 37.00% 45.00%

Table 12: Performance comparison under different conditions.

Due to variations in museum preservation status, digitization methods, and the historical aging
of manuscripts, image quality variation are inevitable in real-world scenarios. To systematically
assess how LMMs handle degraded visual inputs, we use Iconographic task as testbed for image
quality degradation analysis. As shown in Figure[7] we introduce three conditional degradation types:
Brightness Variation, Gaussian Blur, Image Compression Artifacts. We evaluate two closed-source
LMMs (SenseNova and Gemini-2.0-Pro-Exp) and two open-source LMMs (Qwen2.5-VL-72B
and InternVL-8B) with best performances on this task.

Results in Table [T2]reveal that mainstream closed-source models exhibit more acceptable robustness
than open-source LMMs. However, Qwen2.5-VL-72B shows a severe performance drop across
all three degradation types. To further investigate, we tested Qwen2.5-VL-7B, which shares the
same visual encoder but a different LLM backbone. The similar performance decline across noise
conditions suggests that the performance drop likely originate from intrinsic limitations in the LMM’s
visual module during training, rather than from differences in language model backbone.

K Extended Chronological Attribution Discussion

Chronological Attribution is a specialized and complex task, even for human experts, often requiring
extensive multi-expert verification and cross-referencing to determine the correct time period. Such
cross-domain multimodal inference tasks are well-suited for LMMs to generate explanations or serve
as reference tools. This task’s inherent complexity motivate our multiple question formats design.

Experiments show that most current LMMs struggle with this task, with common failure cases
including: predicting the same era for all images (typically defaulting to Tang Dynasty), irrelevant
responses (particularly caused by CoT-based questions), incorrect reasoning paths or produce vague,
uninformative justifications.

We observed notable failure patterns when switching from free-form Q&A to Binary comparison
(determining whether one artifact predates another). Five small LMMs defaulted to predict a single era
for all visual inputs. Theoretically, binary questions should be easier than direct period classification.
As a result, these LMMSs were proven engaging in random guessing.

To mitigate this, we incorporated explicit textual descriptions of stylistic features associated with
different historical periods within CoT reasoning prompts, expecting LMMs to derive the correct
answers through stepwise inference. However, for this holistic style perception task, CoT proved
counterproductive. LMMs lacking pre-trained historical knowledge even generated identical CoT rea-
soning sequences for all images (e.g., InternVL2. 5). Identical phenomenon observed in Calligraphy
Style Classification validated our third key insights suggested in Section [T}
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Our findings confirm that directly providing few-shot exemplars through visual retrieval augmentation
yield the most significant and cost-efficient performance gains, making it the preferred approach
for extrapolate LMMs’ knowledge through analogy. This question format also allows us to identify
substantial differences in models’ cross-image perception abilities: LMMs that exhibit performance
drops typically have weaker visual processing, modality bias or unsatisfactory cross-modal alignment.

L. Extended Artwork Caption Discussion

We initially adopted BERTScore to remain consistent with prior LLM-for-culture studies [[15} 20].
We also considered standard metrics for semantic similarity, including METEOR and ROUGE-L.

Our ground truth annotation process was specifically designed to capture historical and cultural
nuance. Beyond common captioning elements (e.g., objects, scenes, and actions), our captions
deliberately incorporate culture-specific features. To address the limitations of generic semantic
similarity metrics in evaluating culturally grounded tasks, we incorporated four domain-informed
evaluation dimensions in Table Religious Symbolism: identifying and describing symbolic
entities (e.g., Buddhas, Guardians, Apsaras). Facial Expression: distinguishing emotional or
spiritual expression aligned with iconographic conventions (e.g., Buddhas are often compassionate,
Guardians are more solemn, Flying Apsaras are relatively joyful). Historical Period: referencing
the appropriate historical timeframe. Event Specificity: capturing culture-related events. These
results reflect substantial variation in models’ abilities to capture symbolic aspects of manuscript
images. We hope these dimensions can serve as a starting point toward developing more structured
and culture-aware evaluation metrics tailored for cultural related tasks.

Model METEOR ROUGE-L Symbol Facial Period Event
GPT-40 0.1285 0.1391 0.6818  0.8696 Fail Fail
Step-1o-vision-32k 0.1287 0.1109 0.9091  0.9565 0.4737 0.3333
Gemini-2.0-Pro-Exp 0.1110 0.0702 1.0000  0.9130 0.2105 0.5000
JT-VL-Chat 0.1282 0.1699 0.8182  0.8696 Fail Fail
Qwen2.5-VL-72B 0.1303 0.1146 0.8636  0.9565 Fail 0.1667
InternVL2.5-78B 0.1302 0.1222 0.8636  0.9565 0.1053 Fail
MiniCPM-0-2.6-8B 0.1273 0.1304 0.8182  0.7391  0.0526 Fail

Table 13: Culture-aware evaluation results for Artwork Caption task. “Fail”’indicates missing or
incorrect information.

M Limitations

Due to the inherent scarcity of annotated data in manuscript research, we inevitably face challenges
in dataset diversity, despite leveraging the most extensive and well-documented Dunhuang corpus.
The primary limitations include:

1) Limited cultural scope: our current benchmark focuses on the Dunhuang corpus, our most
accessible and well-curated source, supported by longstanding collaborations with domain experts.
This focus allows us to construct high-quality tasks grounded in archaeological workflows and enable
rigorous evaluation. We regard this as a first concrete step toward the broader goal of advancing
Ancient Manuscript Study as a systematic and scalable research direction. While this single-source
scope limits immediate cross-cultural generalization, many tasks in MS-Bench (e.g., Fragment
Restoration, Textual Recognition, and Cultural Study) reflect shared challenges across manuscript
traditions such as papyri, Dead Sea Scrolls, and medieval Bible copies. We thus position MS-Bench
as a reusable and extensible framework, offering transferable task structures, prompting strategies,
and evaluation protocols applicable to other cultural heritages in future extensions.

2) Inherent data imbalance: we acknowledge the existence of data imbalance among tasks and the
long-tail phenomenon in specific sub-tasks (e.g., allograph normalization). This distribution reflects
the real-world characteristics of manuscript collections rather than an artificial bias introduced during
benchmark curation. Future iterations may explore balancing strategies while preserving authenticity
and historical fidelity.
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3) Challenges in evaluating cultural understanding: assessing LMMs’ cultural reasoning ability
remains challenging. Simply averaging scores across Cultural Study tasks fails to capture cultural
biases in model predictions. We introduced expert evaluation for the Artwork Caption task and further
expanded culture-aware evaluation metrics and structured criteria. Nonetheless, developing scalable
and more systematic evaluation frameworks for cultural reasoning requires further exploration.

N Future Work

Due to data limitations, the current benchmark dataset is insufficient to directly fine-tune LMMs for
historical manuscript study. In future work, 1) we aim to curate larger, expert-annotated corpora in
collaboration with archaeologists and historians to enable the development of domain-specialized
LMMs and tailored applications. 2) We may explore extending the current MS-Bench framework
beyond the Dunhuang corpus. Many of our task designs reflect common challenges across manuscript
traditions. Building on the modular structure and prompting strategies of MS-Bench, we hope to
adapt and validate the benchmark in diverse cultural contexts under expert supervision. We aim to
broaden MS-Bench to those underexplored sources (e.g., recently unearthed Xinjiang manuscripts,
similar to Dunhuang, could directly benefit from the shared tasks defined in our benchmark). 3)
Real-world user studies with archaeologists and manuscript scholars may help to assess the practical
utility, usability, and interpretability of LMMs in field-specific workflows. We understanding this
will bridge Al research with the human-in-the-loop needs of historical disciplines. Currently, we
provide “model recommendations” and “recommended prompts” for archaeologists in our project
page: https://github.com/ianeong/MS-Bench,

O Social Impact

Applying Al models in archaeology has gained increasing attention in recent years, with a growing
number of interdisciplinary publications. Our collaboration with philologists revealed that while some
archaeologists are highly interested in applying advanced Al techniques like LMMs, they often lack
clear guidance for practical implementation (e.g., which model to use, how to write effective prompts).
Our work aims to bridge this gap, providing a benchmark that highlights effective LMMs tailored
for specific manuscript analysis tasks. We also hope to encourage Al researchers to explore more
impactful and diverse applications of LMMs in archaeology and beyond. For example, incorporating
richer cultural diversity and historical significative data into LMM pre-training and evaluation to
facilitate new archaeological findings. Moving forward, we seek to further investigate human-Al
collaboration frameworks that can effectively integrate domain expertise with Al capabilities in
manuscript research.

On the negative side, we recognize that the fundamental hallucination issues inherent in current
LMMs, which could prevent philologists from trusting model outputs. Furthermore, enhancing
model output interpretability remains a crucial challenge, as some scholars may be reluctant to adopt
Al-generated or Al-assisted findings without clear and comprehensive historical evidence. Thus,
LMMs should serve as assistive tools requiring expert oversight and domain-specific knowledge to
ensure reliable collaborative outcomes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are clearly stated in the Abstract and Introduction [T|sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix [M|Limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theory assumptions and proofs included.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section 3] Appendix [C]and

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: According to NeurIPS 2025 Datasets & Benchmarks Track Guidelines, we
include data and code with available dataset link and code link https://github.com/
ianeong/MS-Bench|

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section [3] Appendix [C]and D]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the similar evaluation protocols as in prior work [15] and we do not
report any error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 3} Appendix [C|and D]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully read the ethics review guidelines and ensured that our paper
conforms to them.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section[d] Appendix [A]and[O]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

34


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the works related to existing assets that we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: According to NeurIPS 2025 Datasets & Benchmarks Track Guidelines, new
assets are documented and provided in https://github.com/ianeong/MS-Bench.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: See Section 3} Appendix [C|and D]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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