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ABSTRACT

Adaptive gradient algorithms combine the moving average idea with heavy ball
acceleration to estimate accurate first- and second-order moments of the gradient
for accelerating convergence. However, Nesterov acceleration which converges
faster than heavy ball acceleration in theory and also in many empirical cases,
is much less investigated under the adaptive gradient setting. In this work, we
propose the ADAptive Nesterov momentum algorithm, Adan for short, to speed
up the training of deep neural networks effectively. Adan first reformulates the
vanilla Nesterov acceleration to develop a new Nesterov momentum estimation
(NME) method, which avoids the extra computation and memory overhead of
computing gradient at the extrapolation point. Then Adan adopts NME to estimate
the first- and second-order moments of the gradient in adaptive gradient algorithms
for convergence acceleration. Besides, we prove that Adan finds an ϵ-approximate
first-order stationary point within O

(
ϵ−3.5

)
stochastic gradient complexity on the

non-convex stochastic problems (e.g. deep learning problems), matching the best-
known lower bound. Extensive experimental results show that Adan surpasses
the corresponding SoTA optimizers on vision, language, and RL tasks and sets
new SoTAs for many popular networks and frameworks, e.g. ResNet, ConvNext,
ViT, Swin, MAE, LSTM, Transformer-XL, and BERT. More surprisingly, Adan
can use half of the training cost (epochs) of SoTA optimizers to achieve higher
or comparable performance on ViT, ResNet, MAE, etc, and also shows great
tolerance to a large range of minibatch size, e.g. from 1k to 32k. We hope Adan
can contribute to developing deep learning by reducing training costs and relieving
the engineering burden of trying different optimizers on various architectures.

1 INTRODUCTION

Deep neural networks (DNNs) have made remarkable success in many fields, e.g. computer vi-
sion (Szegedy et al., 2015; He et al., 2016) and natural language processing (Sainath et al., 2013;
Abdel-Hamid et al., 2014). A noticeable part of such success is contributed by the stochastic
gradient-based optimizers, which find satisfactory solutions with high efficiency. Among current deep
optimizers, SGD (Robbins & Monro, 1951) is the earliest and also the most representative stochastic
optimizer, with dominant popularity for its simplicity and effectiveness. It adopts a single common
learning rate for all gradient coordinates but often suffers unsatisfactory convergence speed on sparse
data or ill-conditioned problems. In recent years, adaptive gradient algorithms, e.g. Adam (Kingma &
Ba, 2014) and AdamW (Loshchilov & Hutter, 2018), have been proposed, which adjust the learning
rate for each gradient coordinate according to the current geometry curvature of the loss objective.
These adaptive algorithms, e.g. Adam, often offer a faster convergence speed than SGD in practice.

However, none of the above optimizers can always stay undefeated among all its competitors across
different network architectures and application settings. For instance, for vanilla ResNet (He et al.,
2016), SGD often achieves better generalization performance than adaptive gradient algorithms such
as Adam, whereas on vision transformers (ViTs) (Touvron et al., 2021), SGD often fails, and AdamW
is the dominant optimizer with higher and more stable performance. Moreover, these commonly used
optimizers usually fail for large-batch training, which is a default setting of the prevalent distributed
training. Although there is some performance degradation, we still tend to choose the large-batch
setting for large-scale deep learning training tasks due to the unaffordable training time. For example,
training the ViT-B with the batch size of 512 usually takes several days, but when the batch size
comes to 32K, we may finish the training within three hours (Liu et al., 2022a). Although some
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Table 1: Comparison of different adaptive gradient algorithms on nonconvex stochastic problems.
“Separated Reg.” refers to whether the ℓ2 regularizer (weight decay) can be separated from the
loss objective like AdamW. “Complexity" denotes stochastic gradient complexity to find an ϵ-
approximate first-order stationary point. Adam-type methods (Guo et al., 2021) includes Adam, and
AdaGrad (Duchi et al., 2011), etc. AdamW has no available convergence result. For SAM (Foret
et al., 2020), A-NIGT (Cutkosky & Mehta, 2020) and Adam+ (Liu et al., 2020), we compare their
adaptive versions. d is the variable dimension. The lower bound is proven in (Arjevani et al., 2020).

Smooth
Condition Optimizer Separated

Reg.
Batch Size
Condition Grad Bound Complexity Lower

Bound

Adam-type % % ℓ∞ ≤ c∞ O
(
c2∞dϵ−4

)
Ω
(
ϵ−4

)
RMSProp % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
Lipschitz AdamW " — — — —

Adabelief % % ℓ2 ≤ c2 O
(
c62ϵ

−4
)

Ω
(
ϵ−4

)
Gradient Padam % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
LAMB % O

(
ϵ−4

)
ℓ2 ≤ c2 O

(
c22dϵ

−4
)

Ω
(
ϵ−4

)
Adan (ours) " % ℓ∞ ≤ c∞ O

(
c2.5∞ ϵ−4

)
Ω
(
ϵ−4

)
Lipschitz

Hessian

A-NIGT % % ℓ2 ≤ c2 O
(
ϵ−3.5 log c2

ϵ

)
Ω
(
ϵ−3.5

)
Adam+ % O

(
ϵ−1.625

)
ℓ2 ≤ c2 O

(
ϵ−3.625

)
Ω
(
ϵ−3.5

)
Adan (ours) " % ℓ∞ ≤ c∞ O

(
c1.25∞ ϵ−3.5

)
Ω
(
ϵ−3.5

)

methods, e.g. LARS (You et al., 2017) and LAMB (You et al., 2019), have been proposed to handle
large batch sizes, their performance often varies significantly across batch sizes. This performance
inconsistency increases the training cost and engineering burden, since one usually has to try various
optimizers for different architectures or training settings.

When we rethink the current adaptive gradient algorithms, we find that they mainly combine the
moving average idea with the heavy ball acceleration technique to estimate the first- and second-order
moments of the gradient, e.g. Adam, AdamW and LAMB. However, previous studies (Nesterov, 1983;
1988; 2003) have revealed that Nesterov acceleration can theoretically achieve a faster convergence
speed than heavy ball acceleration, as it uses gradient at an extrapolation point of the current solution
and sees a slight “future". Moreover, recent work (Nado et al., 2021; He et al., 2021) have shown
the potential of Nesterov acceleration for large-batch training. Thus we are inspired to consider
efficiently integrating Nesterov acceleration with adaptive algorithms.

Contributions: 1) We propose an efficient DNN optimizer, named Adan. Adan develops a Nesterov
momentum estimation method to estimate stable and accurate first- and second-order moments of
the gradient in adaptive gradient algorithms for acceleration. 2) Moreover, Adan enjoys a provably
faster convergence speed than previous adaptive gradient algorithms such as Adam. 3) Empirically,
Adan shows superior performance over the SoTA deep optimizers across vision, language, and
reinforcement learning (RL) tasks. Our detailed contributions are highlighted below.

Firstly, we propose an efficient Nesterov-acceleration-induced deep learning optimizer termed Adan.
Given a function f and the current solution θk, Nesterov acceleration (Nesterov, 1983; 1988;
2003) estimates the gradient gk = ∇f(θ′

k) at the extrapolation point θ′
k = θk − η(1− β1)mk−1

with the learning rate η and momentum coefficient β1 ∈ (0, 1), and updates the moving gradient
average as mk = (1− β1)mk−1 + gk. Then it runs a step by θk+1 = θk − ηmk. However, the
inconsistency of the positions for parameter updating at θk and gradient estimation at θ′

k leads to the
additional cost of model parameter reloading during back-propagation (BP), which is unaffordable
especially for large DNNs. To avoid the model reloading during BP, we propose an alternative
Nesterov momentum estimation (NME). We compute the gradient gk = ∇f(θk) at the current
solution θk, and estimate the moving gradient average as mk = (1− β1)mk−1 + g′

k, where
g′
k = gk + (1− β1)(gk − gk−1). Our NME is provably equivalent to the vanilla one yet can

avoid the extra model reloading. Then by regarding g′
k as the current stochastic gradient in

adaptive gradient algorithms, e.g. Adam, we accordingly estimate the first- and second-moments as
mk = (1− β1)mk−1 + β1g

′
k and nk = (1− β2)nk−1 + β2(g

′
k)

2 respectively. Finally, we update
θk+1 = θk − ηmk/

√
nk + ε. In this way, Adan enjoys the merit of Nesterov acceleration, namely

faster convergence speed and tolerance to large mini-batch size (Lin et al., 2020), which is verified in
our experiments in Sec. 5.
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Secondly, as shown in Table 1, we theoretically justify the advantages of Adan over previous SoTA
adaptive gradient algorithms on nonconvex stochastic problems, e.g. deep learning problems.

1) Given Lipschitz gradient condition, to find an ϵ-approximate first-order stationary point, Adan
has the stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which accords with the lower bound Ω(ϵ−4)

(up to a constant factor) (Arjevani et al., 2019). This complexity is lower than O
(
c62ϵ

−4
)

of
Adabelief (Zhuang et al., 2020) and O

(
c22dϵ

−4
)

of LAMB, especially on over-parameterized networks.
Specifically, for the d-dimensional gradient, compared with its ℓ2 norm c2, its ℓ∞ norm c∞ is usually
much smaller, and can be

√
d× smaller for the best case. Moreover, different from Adam-type

optimizers (e.g. Adam), Adan can separate the ℓ2 regularizer with the loss objective like AdamW
whose generalization benefits have been validated in many works (Touvron et al., 2021).

2) Given the Lipschitz Hessian condition, Adan has a complexity O
(
c1.25∞ ϵ−3.5

)
which also matches

the lower bound Ω(ϵ−3.5) in Arjevani et al. (2020). This complexity is superior to O
(
ϵ−3.5 log c2

ϵ

)
of A-NIGT (Cutkosky & Mehta, 2020) and also O

(
ϵ−3.625

)
of Adam+ (Liu et al., 2020). Indeed,

Adam+ needs the minibatch size of order O
(
ϵ−1.625

)
which is prohibitive in practice. For other

optimizers, e.g. Adam, their convergence has not been provided yet under Lipschitz Hessian condition.

Finally, Adan simultaneously surpasses the corresponding SoTA optimizers across vision, lan-
guage, and RL tasks, and establishes new SoTAs for many networks and settings, e.g. ResNet,
ConvNext (Liu et al., 2022b), ViT (Touvron et al., 2021), Swin (Liu et al., 2021), MAE (He et al.,
2022), LSTM (Schmidhuber et al., 1997), Transformer-XL (Dai et al., 2019) and BERT (Devlin
et al., 2018). More importantly, with half of the training cost (epochs) of SoTA optimizers, Adan can
achieve higher or comparable performance. Besides, Adan works well in a large range of minibatch
size, e.g. from 1k to 32k on ViTs. The improvement of Adan for various architectures and settings
can greatly relieve the engineering burden by avoiding trying different optimizers.

2 RELATED WORK

Current DNN optimizers can be grouped into two families: SGD and its accelerated variants, and
adaptive gradient algorithms. SGD computes stochastic gradient and updates the variable along
the gradient direction. Later, heavy-ball acceleration (Polyak, 1964) movingly averages stochastic
gradient in SGD for faster convergence. Nesterov acceleration runs a step along the moving gradient
average and then computes gradient at the new point to look ahead for correction. Typically, Nesterov
acceleration converges faster both empirically and theoretically at least on convex problems, and also
has superior generalization resutls on DNNs (Foret et al., 2020; Kwon et al., 2021).

Unlike SGD, adaptive gradient algorithms, e.g. AdaGrad, RMSProp and Adam, view the second
moment of gradient as a preconditioner and also use moving gradient average to update the variable.
Later, many variants have been proposed to estimate a more accurate and stable first moment of
gradient or its second moment, e.g. AMSGrad, Adabound, and Adabelief. To improve generalization,
AdamW splits the objective and trivial regularization, and its effectiveness is validated across
many applications; SAM and its variants (Kwon et al., 2021) aim to find flat minima but need
forward and backward twice per iteration. LARS and LAMB train DNNs with a large batch but
suffer unsatisfactory performance on small batch. Xie et al. (2022) reveal the generalization and
convergence gap between Adam and SGD from the perspective of diffusion theory and propose the
optimizers, Adai, which accelerates the training and provably favors flat minima. Padam (Chen et al.,
2021a) provides a simple but effective way to improve the generalization performance of Adam by
adjusting the second-order moment in Adam. The most related work to ours is NAdam. It simplifies
Nesterov acceleration to estimate the first moment of gradient in Adam. But its acceleration does not
use any gradient from the extrapolation points and thus does not look ahead for correction. Moreover,
there is no theoretical result to ensure its convergence. See more difference discussion in Sec. 3.2.

3 METHODOLOGY

In this work, we study the following regularized nonconvex optimization problem:

minθ F (θ) := Eζ∼D [f(θ, ζ)] +
λ

2
∥θ∥22, (1)

where loss f(·, ·) is differentiable and possibly nonconvex, data ζ is drawn from an unknown
distribution D, θ is learnable parameters, and ∥·∥ is the classical ℓ2 norm. At below, we first introduce
the key motivation of Adan in Sec. 3.1, and then give detailed algorithmic steps in Sec. 3.2.
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3.1 PRELIMINARIES

Adaptive gradient algorithms, Adam and AdamW, have become the default choice to train CNNs
and ViTs. Unlike SGD which uses one learning rate for all gradient coordinates, adaptive algorithms
adjust the learning rate for each gradient coordinate according to the current geometry curvature
of the objective function, and thus converge faster. Take RMSProp and Adam as examples. Given
stochastic gradient estimator gk := Eζ∼D[∇f(θk, ζ)] + ξk, e.g. minibatch gradient, where ξk is the
gradient noise, RMSProp updates the variable θ as follows:

RMSProp:

{
nk = (1− β)nk−1 + βg2

k

θk+1 = θk − η/(
√
nk + ε) ◦ gk,

⇒ Adam:


mk = (1− β1)mk−1 + β1gk

nk = (1− β2)nk−1 + β2g
2
k

θk+1 = θk − η/(
√
nk + ε) ◦mk,

where m0 = g0, n0 = g2
0, the scalar η is the base learning rate, and ◦ denotes the element-wise

product. Based on RMSProp, Adam1 replaces the estimated gradient gk with a moving average mk

of all previous gradient gk. By inspection, one can easily observe that the moving average idea in
Adam is similar to the classical (stochastic) heavy-ball acceleration (HBA) technique (Polyak, 1964):

HBA: gk = ∇f(θk) + ξk, mk = (1− β1)mk−1 + gk, θk+1 = θk − ηmk.

Both Adam and HBA share the spirit of moving gradient average, though HBA does not have the
factor β1 on the gradient gk. That is, given one gradient coordinate, if its gradient directions are more
consistent along the optimization trajectory, Adam/HBA accumulates a larger gradient value in this
direction and thus goes ahead for a bigger gradient step, which accelerates convergence.

In addition to HBA, Nesterov’s accelerated (stochastic) gradient descent (AGD) (Nesterov, 1983;
1988; 2003) is another popular acceleration technique in the optimization community:

AGD: gk = ∇f(θk−η(1− β1)mk−1)+ξk, mk = (1− β1)mk−1+gk, θk+1 = θk−ηmk. (2)

Unlike HBA, AGD uses the gradient at the extrapolation point θ′
k = θk − η(1− β1)mk−1. Hence

when the adjacent iterates share consistent gradient directions, AGD sees a slight future to converge
faster. Indeed, AGD theoretically converges faster than HBA and achieves optimal convergence rate
on the general smooth convex problems (Nesterov, 2003). Meanwhile, since the over-parameterized
DNNs have been observed/proved to have many convex-alike local basins (Hardt & Ma, 2016; Xie
et al., 2017; Li & Yuan, 2017), AGD seems more suitable than HBA for DNNs. For large-batch
training, Nado et al. (2021) showed that AGD has the potential to achieve comparable performance to
some specifically designed optimizers, e.g. LARS and LAMB. With its advantage in convergence
and large-batch training, we consider applying AGD to improve adaptive algorithms.

3.2 ADAPTIVE NESTEROV MOMENTUM ALGORITHM

Main Iteration. We temporarily set λ = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point θ′

k instead of the current iterate θk, which however brings extra computation
and memory overhead for computing θ′

k and preserving both θk and θ′
k. To solve the issue, Lemma 1

with proof in Appendix D reformulates AGD (2) into its equivalent but more DNN-efficient version.
Lemma 1. Assume E(ξk) = 0, Cov(ξi, ξj) = 0 for any k, i, j > 0, θ̄k and m̄k be the iterate and
momentum of the vanilla AGD in Eqn. (2), respectively. Let θk+1 := θ̄k+1 − η(1− β1)m̄k and
mk := (1− β1)

2
m̄k−1 + (2− β1)(∇f(θk) + ξk). The vanilla AGD in Eqn. (2) becomes AGD-II:

gk=Eζ∼D[∇f(θk, ζ)]+ξk, mk=(1−β1)mk−1+[gk + (1−β1)(gk − gk−1)], θk+1=θk−ηmk.

Moreover, if vanilla AGD in Eqn. (2) converges, so does AGD-II, and E(θ∞) = E(θ̄∞).

The main idea in Lemma 1 is that we maintain (θk − η(1− β1)mk−1) rather than θk in vanilla AGD
at each iteration, since there is no difference between them when the algorithm converges. Like other
adaptive optimizers, by regarding g′

k = gk + (1− β1)(gk − gk−1) as the current stochastic gradient
and movingly averaging g′

k to estimate the first- and second-moments of gradient, we obtain

Vanilla Adan:


mk = (1− β1)mk−1 + β1[gk + (1− β1)(gk − gk−1)]

nk = (1− β3)nk−1 + β3[gk + (1− β1)(gk − gk−1)
2]

θk+1 = θk − ηk ◦mk with ηk = η/(
√
nk + ε).

1For presentation convenience, we omit the de-bias term in adaptive gradient methods.
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The main difference of Adan with Adam-type methods and Nadam (Dozat, 2016) is that as compared
in Eqn. (3), the momentum mk of Adan is the average of {gt + (1− β1)(gt − gt−1)}kt=1 while
those of Adam-type and Nadam are the average of {gt}kt=1. So is their second-order term nk.

mk=


∑k

t=0 ck,t[gt + (1− β1)(gt − gt−1)], Adan,∑k
t=0 ck,tgt, Adam,

µk+1

µ′
k+1

(∑k
t=0 ck,tgt

)
+ 1−µk

µ′
k

gk, Nadam,

ck,t=


β1(1− β1)

(k−t)
t > 0,

(1− β1)
k

t = 0,

(3)

where {µt}∞t=1 is a predefined exponentially decaying sequence, µ′
k = 1−

∏k
t=1 µt. So Nadam is

more like Adam than Adan, as their mk movingly averages the historical gradients instead of gradient
differences in Adan. For a large k (i.e. small µk), mk in Nadam and Adam are almost the same.

As shown in Eqn. (3), the moment mk in Adan consists of two terms, i.e. gradient term gt and
gradient difference term (gt − gt−1), which actually have different physic meanings. So here we
decouple them for greater flexibility and also better trade-off between them. Specifically, we estimate

(θk+1 − θk)/ηk=
∑k

t=0

[
ck,tgt + (1− β2)c

′
k,t(gt − gt−1)

]
= mk + (1− β2)vk, (4)

where c′k,t = β2(1− β2)
(k−t) for t > 0, c′k,t = (1− β2)

k for t = 0, and mk and vk are defined as

mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2(gk − gk−1).

This change for a flexible estimation does not impair convergence speed. As we show in Theorem 1,
the complexity of Adan under this change matches the lower complexity bound. We do not separate
the gradients and their difference in the second-order moment nk, since E(nk) contains the correlation
term Cov(gk,gk−1) ̸= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. ℓ2 regularizer) can largely improve the generalization performance.
Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration,
we minimize the first-order approximation of F (·) at the point θk:

θk+1 = θk − ηk ◦ m̄k = argminθ F (θk) + ⟨m̄k,θ − θk⟩+
1

2η
∥θ − θk∥2√nk

,

where ∥x∥2√nk
:=
〈
x,
(√

nk + ε
)
◦ x
〉

and m̄k := mk + (1− β2)vk is the first-order derivative of
F (·) in some sense. Follow the idea of proximal gradient descent (Parikh & Boyd, 2014; Zhuang
et al., 2022), we decouple the ℓ2 regularizer from F (·) and only linearize the loss function f(·):

θk+1 = argmin
θ

(λk

2
∥θ∥2√nk

+ ⟨m̄k,θ − θk⟩+
1

2η
∥θ − θk∥2√nk

)
=

θk − ηk ◦ m̄k

1 + λkη
, (5)

where λk > 0 is the weight decay at the k-th iteration. One can find that the optimization objective
of at the k-th iteration is changed from the vanilla “static" function F (·) in Eqn. (1) to a “dynamic"
function Fk(·) in Eqn. (6), which adaptively regularizes the coordinates with larger gradient more:

Fk(θ) := Eζ∼D [f(θ, ζ)] +
λk

2
∥θ∥2√nk

. (6)

We summarize our Adan in Algorithm 1. We reset the momentum term properly by the restart
condition, a common trick to stabilize optimization and benefit convergence (Li & Lin, 2022; Jin
et al., 2018). But to make Adan simple, in all experiments except Table 8, we do not use this restart
strategy although it can improve performance as shown in Table 8.

4 CONVERGENCE ANALYSIS

For analysis, we make several mild assumptions used in many works, e.g. (Guo et al., 2021).
Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth w.r.t. the parameter, if ∃L > 0,

∥∇Eζ [f(x, ζ)]−∇Eζ [f(y, ζ)]∥ ≤ L∥x− y∥, ∀x, y.
Assumption 2 (Unbiased and bounded gradient oracle). The stochastic gradient oracle gk =
Eζ [∇f(θk, ζ)] + ξk is unbiased, and its magnitude and variance are bounded with probability 1:

E (ξk) = 0, ∥gk∥∞ ≤ c∞/3, E
(
∥ξk∥2

)
= E

(
∥∇Eζ [f(θk, ζ)]− gk∥2

)
≤ σ2, ∀k ∈ [T ].
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Algorithm 1: Adan (Adaptive Nesterov Momentum Algorithm)
Input: initialization θ0, step size η, weight decay λk > 0, restart condition.
Output: some average of {θk}Kk=1.

1 while k < K do
2 compute the stochastic gradient estimator gk at θk;
3 mk = (1− β1)mk−1 + β1gk /* set m0 = g0 */;
4 vk = (1− β2)vk−1 + β2(gk − gk−1) /* set v1 = g1 − g0 */;
5 nk = (1− β3)nk−1 + β3[gk + (1− β2)(gk − gk−1)]

2;
6 θk+1 = (1 + λkη)

−1
[θk − ηk ◦ (mk + (1− β2)vk)] with ηk = η/

(√
nk + ε

)
;

7 if restart condition holds then
8 get stochastic gradient estimator g0 at θk+1;
9 m0 = g0, v0 = 0, n0 = g2

0, update θ1 by Line 6, k = 1;
10 end if
11 end while

Assumption 3 (ρ-Lipschitz continuous Hessian). The function f(·, ·) has ρ-continuous Hessian:∥∥∇2 Eζ [f(x, ζ)]−∇2 Eζ [f(x, ζ)]
∥∥ ≤ ρ∥x− y∥, ∀x, y,

where ∥·∥ is the spectral norm for matrix and the ℓ2 norm for vector.

For a general nonconvex problem, if Assumptions 1 and 2 hold, the lower bound of the stochastic
gradient complexity to find an ϵ-approximate first-order stationary point (ϵ-ASP) is Ω(ϵ−4) (Arjevani
et al., 2019; 2020). Moreover, if Assumption 3 further holds, the lower complexity bound becomes
Ω(ϵ−3.5) for a non-variance-reduction algorithm (Arjevani et al., 2019; 2020).

Lipschitz Gradient. Theorem 1 with proof in Appendix E proves the convergence of Adan on
problem (6) with lipschitz gradient condition.
Theorem 1. Suppose Assumptions 1 and 2 hold. Let max {β1, β2} = O

(
ϵ2
)
, µ :=

√
2β3c∞/ε ≪ 1,

η = O
(
ϵ2
)
, and λk = λ(1− µ)

k. Algorithm 1 runs at most K = Ω
(
c2.5∞ ϵ−4

)
iterations to achieve

1

K + 1

∑K

k=0
E
(
∥∇Fk(θk)∥2

)
≤ 4ϵ2.

That is, to find an ϵ-ASP, the stochastic gradient complexity of Adan on problem (6) is O
(
c2.5∞ ϵ−4

)
.

Theorem 1 shows that under Assumptions 1 and 2, Adan can converge to an ϵ-ASP of a nonconvex
stochastic problem with stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which accords with the lower

bound Ω(ϵ−4) in Arjevani et al. (2019). For this convergence, Adan has no requirement on minibatch
size and only assumes gradient estimation to be unbiased and bounded. Moreover, as shown in
Table 1 in Sec. 1, the complexity of Adan is superior to those of previous adaptive gradient algorithms.
For Adabelief and LAMB, Adan always has lower complexity and respectively enjoys d3× and d2×
lower complexity for the worst case. Adam-type optimizers (e.g. Adam and AMSGrad) enjoy the
same complexity as Adan. But they cannot separate the ℓ2 regularizer with the objective like AdamW
and our Adan. The regularizer separation can boost generalization performance (Touvron et al., 2021;
Liu et al., 2021) and already helps AdamW dominate training of ViT-alike architectures. Besides,
some previous analyses (Luo et al., 2018; Zaheer et al., 2018; Liu et al., 2019a; Shi et al., 2020) need
the momentum coefficient (i.e. βs) to be close or increased to one, which contradicts with the practice
that βs are close to zero. In contrast, Theorem 1 assumes that all βs are very small, which is more
consistent with the practice. Note that when µ = c/T , we have λk/λ ∈ [(1− c), 1] during training.
Hence we could choose the λk as a fixed constant in the experiment for convenience.

Lipschitz Hessian. With Assumption 3, we further need a restart condition. Consider an extension
point yk+1 := θk+1 + ηk ◦ [mk + (1− β2)vk − βgk], and a restart condition:

(k + 1)
∑k

t=0
∥yt+1 − yt∥2√nt

> R2, (7)

where the constant R controls the restart frequency. Intuitively, when the parameters have accumulated
enough updates, the iterate may reach a new local basin. Resetting the momentum at this moment
helps Adan to better use the local geometric information. Besides, we change ηk from η/

(√
nk + ε

)
to η/

(√
nk−1 + ε

)
to ensure ηk to be independent of noise ζk. See its proof in Appendix F.
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Table 2: Top-1 accuracy (%) of ResNet and ConvNext on ImageNet under their official settings. ∗
and ⋄ are respectively reported in (Wightman et al., 2021; Liu et al., 2022b).

ResNet-50 ResNet-101
Epoch 100 200 300 100 200 300

SAM 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M 77.0 78.6 79.3 79.3 81.0 81.4
Adam 76.9 78.4 78.8 78.4 80.2 80.6
AdamW 77.0 78.9 79.3 78.9 79.9 80.4
LAMB 77.0 79.2 79.8∗ 79.4 81.1 81.3∗

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300

AdamW 81.2 82.1⋄
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300

AdamW 82.2 83.1⋄
Adan (ours) 82.5 83.3

Theorem 2. Suppose Assumptions 1-3 hold. Let R = O
(
ϵ0.5
)
, max {β1, β2} = O

(
ϵ2
)
, β3 = O

(
ϵ4
)
,

η = O
(
ϵ1.5
)
, K = O

(
ϵ−2
)
, λ = 0. Then Algorithm 1 with restart condition Eqn.(7) satisfies:

E
(∥∥∇Fk(θ̄)

∥∥) = O
(
c0.5∞ ϵ

)
,

where θ̄ := 1
K0

∑K0

k=1 θk, K0 = argmin⌊K
2 ⌋≤k≤K−1 ∥yt+1 − yt∥2√nt

. Moreover, to find an ϵ-
ASP, Algorithm 1 restarts at most O

(
c0.5∞ ϵ−1.5

)
times in which each restarting cycle has at most

K = O
(
ϵ−2
)

iterations, and hence needs at most O
(
c1.25∞ ϵ−3.5

)
stochastic gradient complexity.

From Theorem 2, one can observe that with an extra smooth Hessian condition in Assumption 3 and
a restart condition (7), Adan improves its vanilla stochastic gradient complexity from O

(
c2.5∞ ϵ−4

)
to O

(
c1.25∞ ϵ−3.5

)
, which also matches the corresponding lower bound Ω(ϵ−3.5). This complexity

is lower than O
(
ϵ−3.5 log c2

ϵ

)
of A-NIGT and O

(
ϵ−3.625

)
of Adam+. For other DNN optimizers,

e.g. Adam, their convergence under Lipschitz Hessian condition has not been proved yet.

Moreover, Theorem 2 still holds for the large batch size. For example, by using minibatch size
b = O

(
ϵ−1.5

)
, our results still hold when R = O

(
ϵ0.5
)
, max {β1, β2} = O

(
ϵ0.5
)
, β3 = O(ϵ),

η = O(1), K = O
(
ϵ−0.5

)
and λ = 0. In this case, our η is of the order O(1), and is much larger

than O(ploy(ϵ)) of other optimizers (e.g., LAMB and Adam+) for handling large minibatch. This
large step size often boosts convergence speed in practice, which is actually desired.

5 EXPERIMENTAL RESULTS

We evaluate Adan on vision, NLP and RL tasks. For vision tasks, we test Adan on several representa-
tive SoTA backbones under the supervised settings, including 1) CNN-type architectures (ResNets
and ConvNexts (Liu et al., 2022b)) and 2) ViTs vanilla ViTs and Swins (Liu et al., 2021)). Moreover,
we also investigate Adan via the self-supervised pretraining by using it to train MAE ViT (He et al.,
2022). For NLP tasks, we train LSTM, Transformer-XL (Dai et al., 2019), and BERT (Devlin et al.,
2018) for sequence modeling. On RL tasks, we evaluate Adan on four games in MuJoCo (Todorov
et al., 2012). In all experiments, we only replace the optimizer with Adan and tune the step size,
warmup epochs, and weight decay, etc, while fixing the optimizer-independent hyper-parameters,
e.g. data augmentation and model architectures. Moreover, to make Adan simple, in all experiments
except Table 8, we do not use the restart strategy in Algorithm 1. Due to space limitation, we defer
the RL results and the ablation study into Appendix B.3 and B.5, respectively.

5.1 EXPERIMENTS FOR VISION TASKS

Besides the vanilla supervised training setting used in ResNets (He et al., 2016), we further consider
two prevalent training settings on ImageNet, namely the following Training Setting I and II.

Training Setting I. The recently proposed “A2 training recipe” in (Wightman et al., 2021) has
lifted the performance limits of many SoTA CNN-type architectures by stronger data augmenta-
tion. Specifically, for data augmentation, this setting uses random crop, horizontal flipping, Mixup
(0.1)/CutMix (1.0) with probability 0.5, and RandAugment with M = 7, N = 2 and MSTD = 0.5.
It sets stochastic depth (0.05), and adopts cosine learning rate decay and binary cross-entropy loss.

Training Setting II. For this setting, data augmentation includes random crop, horizontal flipping,
Mixup (0.8), CutMix (1.0), RandAugment (M = 9, MSTD = 0.5) and Random Erasing (p = 0.25).
It uses cross-entropy loss, cosine decay, and stochastic depth. For both settings, please refer to their
details, e.g. data augmentation, in Appendix Sec. A.1.
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Table 3: Top-1 accuracy (%) of ViT and Swin on ImageNet. We use their official Training Setting II
to train them. ∗ and ⋄ are respectively reported in (Touvron et al., 2021; Liu et al., 2021).

ViT Small ViT Base Swin Tiny Swin small Swin Base
Epoch 150 300 150 300 150 300 150 300 150 300

AdamW 78.3 79.9∗ 79.5 81.8∗ 79.9 81.2⋄ 82.1 83.2⋄ 82.6 83.5⋄
Adan (ours) 79.6 80.9 81.7 82.3 81.3 81.6 82.9 83.7 83.3 83.8
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Figure 1: Training curves of
various optimizers.

Results on CNN-type Architectures. To train ResNet and Con-
vNext, we respectively use their official Training Setting I and
II. For SoTA ResNet/ConvNext, its default official optimizer is
LAMB/AdamW. From Table 2, one can observe that on ResNet,
1) in most cases, Adan only running 200 epochs can achieve higher
or comparable top-1 accuracy on ImageNet compared with the of-
ficial SoTA result trained by LAMB with 300 epochs; 2) Adan gets
more improvements over other optimizers, when training is insuf-
ficient, e.g. 100 epochs. The possible reason for observation 1) is
the regularizer separation, which can dynamically adjust the weight
decay for each coordinate instead of sharing a common one. For
observation 2), this can be explained by the faster convergence speed
of Adan than other optimizers. As shown in Figure 1, Adan con-
verges faster than many adaptive gradient optimizers. This faster
speed partially comes from its large learning rate guaranteed by The-
orem 2, almost 3× larger than that of LAMB. The same as Nesterov
acceleration, Adan could look ahead for possible corrections. More
comparison on convergence speed and loss curve is in Appendix
B.2. On ConvNext, one can observe similar comparison results on
ResNets. Additional results in Appendix Sec. B.1 provide more
comparison on ResNet-18 under the vanilla setting in (He et al., 2016).

Results on ViTs. 1) Supervised Training. We train ViT and Swin under their official training
setting, i.e. Training Setting II. Table 3 shows that across different model sizes of ViT and Swin, Adan
outperforms the official AdamW optimizer by a large margin. For ViTs, their gradient per iteration
differs much from the previous one due to the much sharper loss landscape than CNNs (Chen et al.,
2021b) and the strong random augmentations for training. So it is hard to train ViTs to converge
within a few epochs. Thanks to its faster convergence, as shown in Figure 1, Adan is very suitable for
this situation. Moreover, the direction correction term from the gradient difference vk of Adan can
also better correct the first- and second-order moments. One piece of evidence is that the first-order
moment decay coefficient β1 = 0.02 of Adan is much smaller than 0.1 used in other deep optimizers.

Table 4: Top-1 Acc. (%) of ViT-B and ViT-L
trained by MAE under the official Training
Setting II. ∗ and ⋄ are respectively reported
in (Chen et al., 2022; He et al., 2022).

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW 82.9∗ — 83.6⋄ 85.4⋄ 85.9⋄
Adan 83.4 83.8 — 85.9 —

2) Self-supervised MAE Training (pretraining +
finetuning). We follow the MAE training framework
to pretrain and fine-tune ViT-B for 300/800 pretraining
epochs and 100 fine-tuning epochs, and ViT-L for 800
pretraining epochs and 50 fine-tuning epochs, on Im-
ageNet. Table 4 shows that 1) on ViT-B, Adan makes
0.5% improvement over AdamW under 300 pretrain-
ing epochs, and Adan pretrained 800 epochs surpasses
AdamW pretrained 1,600 epochs by nontrivial 0.2%;
2) on ViT-L, Adan only uses 800 pretraining epochs to achieve the same performance of AdamW
with 1,600 pretraining epochs. All these results show a superior performance of Adan.

Table 5: Top-1 Acc. (%) of ViT-S on Ima-
geNet under Training Setting I.

Batch Size 1k 2k 4k 8k 16k 32k

LAMB 78.9 79.2 79.8 79.7 79.5 78.4
Adan 80.9 81.1 81.1 80.8 80.5 80.2

3) Large-Batch Training. Though large batch size
can increase parallelism to reduce training time and is
heavily desired, optimizers often suffer performance
degradation, or even fail. For instance, AdamW fails
to train ViTs when batch size is beyond 4,096. How
to solve the problem remains open (He et al., 2021).
At present, LAMB is the most effective optimizer for large batch size. Table 5 reveals that Adan is
robust to batch sizes from 2k to 32k, and shows higher performance and robustness than LAMB.
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Table 6: Results (the higher, the better) of BERT-base model on the development set of GLUE. The
first line is from (Wolf et al., 2020) while the second line is reproduced by us.

BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average

Adam (official) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)

5.2 EXPERIMENTS FOR NATURAL LANGUAGE PROCESSING TASKS

Results on BERT. Similar to the pretraining experiments of MAE which is also a self-supervised
learning framework on vision tasks, we utilize Adan to train BERT (Devlin et al., 2018) from scratch,
which is one of the most widely used pretraining models/frameworks for NLP tasks. We employ
the exact BERT training setting in the widely used codebase—Fairseq (Ott et al., 2019). See more
training details in Appendix A.3.

From Table 6, one can see that in the most commonly used BERT training experiment, Adan reveals
much better advantage over Adam. Specifically, in all GLUE tasks, on BERT-base model, Adan
achieves higher performance than Adam, and makes 1.8 average improvements on all tasks. In
addition, on some tasks of Adan, BERT-base trained by Adan can outperform some large models.
e.g., BERT-large which achieves 70.4% on RTE, 93.2% on SST-2 and 60.6 correlation on CoLA, and
XLNet-large which has 63.6 correlation on CoLA. See (Liu et al., 2019b) for more results.

Table 7: Test PPL (the lower, the better)
for Transformer-XL-base model on the
WikiText-103 dataset.

Transformer-XL
Training Steps

50k 100k 200k
Adam 28.5 25.5 24.2
Adan (ours) 26.2 24.2 23.5

Results on Transformer-XL. We evaluate Adan on
Transformer-XL (Dai et al., 2019) which is often used
to model long sequences. We follow the exact official set-
ting 2 to train Transformer-XL-base on the WikiText-103
dataset that is the largest available word-level language
modeling benchmark with long-term dependency. We only
replace the default Adam optimizer of Transformer-XL-
base by our Adan, and do not make other changes for the hyper-parameter. For Adan, we set
β1 = 0.1, β2 = 0.1, and β3 = 0.001, and choose learning rate as 0.001. We test Adan and Adam
with several training steps, including 50k, 100k, and 200k (official).

Table 7 shows that on Transformer-XL-base, Adan surpasses its default Adam optimizer in terms of
test PPL (the lower, the better) under all training steps. Surprisingly, Adan using 100k training steps
can even achieve comparable results to Adam with 200k training steps. All these results demonstrate
the superiority of Adan over the default SoTA Adam optimizer in Transformer-XL.

Results on LSTM. In Appendix B.4, the results on LSTM shows the superiority of our Adan over
several representative optimizers, e.g. SGD, Adam and AdamW, on the Penn TreeBank dataset.

5.3 DISCUSSION ON RESTART STRATEGY

Table 8: Top-1 Acc. (%) of ViT-S and
ConvNext-T on ImageNet under Train-
ing Setting II trained with 300 epochs.

ViT Small ConvNext Tiny

Adan w/o restart 80.71 81.38
Adan w/ restart 80.87 81.62

Here we investigate the performance Adan with and with-
out restart strategy on ViT and ConvNext under 300 train-
ing epochs. From the results in Table 8, one can observe
that the restart strategy slightly improves test performance
of Adan on both ViT and ConvNext. However, to make
our Adan simple and avoid hyper-parameter tuning of the
restart strategy (e.g., restart frequency), in all experiments
except Table 8, we do not use this restart strategy.

6 CONCLUSION

In this paper, we propose a new deep optimizer, Adan. We reformulate the vanilla AGD to a more
efficient version and use it to estimate the first- and second-order moments in adaptive optimization
algorithms. We prove that the complexity of Adan matches the lower bounds and is superior to
those of other adaptive optimizers. Finally, extensive experimental results demonstrate that Adan
consistently surpasses other optimizers on many popular backbones and frameworks, including
ResNet, ConvNext, ViT, Swin, MAE-ViT, LSTM, Transformer-XL and BERT.

2https://github.com/kimiyoung/transformer-xl
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APPENDIX

The appendix contains some additional experimental results and the technical proofs of convergence
results of the paper entitled “Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing
Deep Models”. It is structured as follows. Sec. A provides details of the training setting and Adan’s
implementation. It also gives detailed steps to perform the experiment on BERT. Sec. B include the
additional experimental results, which contains the results on ResNet-18 in Sec. B.1, convergence
curve in Sec. B.2, experiments on RL tasks in Sec. B.3, results on LSTM in Sec. B.4, and the ablation
study in Sec. B.5.

After Sec. C, which summarizes the notations throughout this document, we provide the technical
proofs of convergence results. Then Sec. D provides the proof of the equivalence between AGD and
reformulated AGD, i.e., the proof of Lemma 1. And then, given Lipschitz gradient condition, Sec. E
provides the convergence analysis in Theorem 1. Next, we show Adan’s faster convergence speed
with Lipschitz Hessian condition in Sec. F, by first reformulating our Algorithm 1 and introducing
some auxiliary bounds. Finally, we present some auxiliary lemmas in Sec. G.

A TRAINING SETTING AND IMPLEMENTATION DETAILS

A.1 TRAINING SETTING

Training Setting I. The recently proposed “A2 training recipe” in (Wightman et al., 2021) has pushed
the performance limits of many SoTA CNN-type architectures by using stronger data augmentation
and more training iterations. For example, on ResNet50, it sets new SoTA 80.4%, and improves the
accuracy 76.1% under vanilla setting in (He et al., 2016). Specifically, for data augmentation, this
setting uses random crop, horizontal flipping, Mixup (0.1) (Zhang et al., 2018)/CutMix (1.0) (Yun
et al., 2019) with probability 0.5, and RandAugment (Cubuk et al., 2020) with M = 7, N = 2 and
MSTD = 0.5. It sets stochastic depth (0.05) (Huang et al., 2016), and adopts cosine learning rate
decay and binary cross-entropy (BCE) loss. For Adan, we use batch size 2048 for ResNet and ViT.

Training Setting II. We follow the same official training procedure of ViT/Swin/ConvNext. For this
setting, data augmentation includes random crop, horizontal flipping, Mixup (0.8), CutMix (1.0),
RandAugment (M = 9, MSTD = 0.5) and Random Erasing (p = 0.25). We use CE loss, the cosine
decay for base learning rate, the stochastic depth (with official parameters), and weight decay. For
Adan, we set batch size 2048 for Swin/ViT/ConvNext and 4096 for MAE. We follow MAE and tune
β3 as 0.1.

A.2 IMPLEMENTATION DETAILS OF ADAN

For the large-batch training experiment, we use the sqrt rule to scale the learning rate: lr =√
batch size

256 × 6.25e-3, and respectively set warmup epochs {20, 40, 60, 100, 160, 200} for batch
size bs = {1k, 2k, 4k, 8k, 16k, 32k}. For other remaining experiments, we use the hyper-parameters:
learning rate 1.5e-2 for ViT/Swin/ResNet/ConvNext and MAE fine-tuning, and 2.0e-3 for MAE
pre-training according to the official settings. We set β1 = 0.02, β2 = 0.08 and β3 = 0.01, and
let weight decay be 0.02 unless noted otherwise. We clip the global gradient norm to 5 for ResNet
training and do not clip the gradient for ViT, Swin, ConvNext, and MAE. In the implementation, to
keep consistent with Adam-type optimizers, we utilize the de-bias strategy for Adan.

A.3 DETAILED STEPS FOR BERT

We replace the default Adam optimizer in BERT with our Adan for both pretraining and fune-tuning.
Specifically, we first pretrain BERT-base on the Bookcorpus and Wikipedia datasets, and then finetune
BERT-base separately for each GLUE task on the corresponding training data. Note, GLUE is a
collection of 9 tasks/datasets to evaluate natural language understanding systems, in which the tasks
are organized as either single-sentence classification or sentence-pair classification.

Here we simply replace the Adam optimizer in BERT with our Adan and do not make other changes,
e.g. random seed, warmup steps and learning rate decay strategy, dropout probability, etc. For
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Table 9: Top-1 accuracy (%) of ResNet18 under the official setting in (He et al., 2016). ∗ are reported
in (Zhuang et al., 2020).

Adan SGD Nadam AdaBound Adam Radam Padam LAMB AdamW AdaBlief Adai

70.60 70.23∗ 68.82 68.13∗ 63.79∗ 67.62∗ 70.07 68.46 67.93∗ 70.08∗ 69.68

Table 10: Top-1 accuracy (%) of different optimizers when training ViT-S on ImageNet trained under
training setting II. * is reported in (Touvron et al., 2021).

Epoch 100 150 200 300

AdamW (default) 76.1 78.9 79.2 79.9∗

Adam 62.0 64.0 64.5 66.7
Adai 66.4 72.6 75.3 77.4
SGD-M (AGD) 64.3 68.7 71.4 73.9
LAMB 69.4 73.8 75.9 77.7
Adan (ours) 77.5 79.6 80.0 80.9

pretraining, we use Adan with its default weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08, and
β3 = 0.01), and choose learning rate as 0.001. For fine-tuning, we consider a limited hyper-parameter
sweep for each task, with a batch size of 16, and learning rates ∈ {2e− 5, 4e− 5} and use Adan with
β1 = 0.02, β2 = 0.01, and β3 = 0.01 and weight decay 0.01. Following the conventional setting,
we run each fine-tuning experiment three times and report the median performance in Table 6.

Same as the official setting, on MNLI, we report the mismatched and matched accuracy. And we
report Matthew’s Correlation and Person Correlation on the task of CoLA and STS-B, respectively.
The performance on the other tasks is measured by classification accuracy.

The performance of our reproduced one (second row) is slightly better than the vanilla results of BERT
reported in Huggingface-transformer (Wolf et al., 2020) (widely used codebase for transformers in
NLP), since the vanilla Bookcorpus data in (Wolf et al., 2020) is not available and thus we train on
the latest Bookcorpus data version.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESUTLS ON RESNET-18

Since some well-known deep optimizers also test ResNet-18 for 90 epochs under the official vanilla
training setting in (He et al., 2016), we also run Adan 90 epochs under this setting for more comparison.
Table 9 shows that Adan consistently outperforms SGD and all compared adaptive optimizers. Note
for this setting, it is not easy for adaptive optimizers to surpass SGD due to the absence of heavy-tailed
noise, which is the crucial factor helping adaptive optimizers beat AGD (Zhang et al., 2020).

B.2 DETAILED COMPARISON AND CONVERGENCE CURVE

Besides AdamW, we also compare Adan with several other popular optimizers, including Adam,
SGD-M, and LAMB, on ViT-S. Table 10 shows that SGD, Adam, and LAMB perform poorly on
ViT-S, which is also observed in the works (Xiao et al., 2021; Nado et al., 2021). These results
demonstrate that the decoupled weight decay in Adan and AdamW is much more effective than
1) the vanilla weight decay, namely the commonly used ℓ2 regularization in SGD, and 2) the one
without any weight decay, since as shown in Eqn. (6), the decoupled weight decay is a dynamic
regularization along the training trajectory and could better regularize the loss. Compared with
AdamW, the advantages of Adan mainly come from its faster convergence shown in Figure 2 (b). We
will discuss this below.

In Figure 2 (a), we plot the curve of training and test loss along with the training epochs on ResNet50.
One can observe that Adan converges faster than the compared baselines and enjoys the smallest
training and test losses. This demonstrates its fast convergence property and good generalization
ability. To sufficiently investigate the fast convergence of Adan, we further plot the curve of training
and test loss on the ViT-Small in Figure 2 (b). From the results, we can see that Adan consistently
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(a) Training and test curves on ResNet-50 under Training Setting I.
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(b) Training and test curves on ViT-S under Training Setting II.

Figure 2: Training and test curves of various optimizers on ImageNet dataset. Training loss is larger
due to its stronger data argumentation.

shows faster convergence behaviors than other baselines in terms of both training loss and test loss.
This also partly explains the good performance of Adan over other optimizers.

Discussion about convergence complexity Under the corresponding assumptions, most compared
optimizers already achieve the optimal complexity in terms of the dependence on optimization ϵ,
and their complexities only differ from their constant factors, e.g. c2, c∞ and d. For instance, with
Lipschitz gradient but without Lipschitz Hessian, most optimizers have complexity O

(
x
ϵ4

)
which

matches the lower bound O
(

1
ϵ4

)
in Arjevani et al. (2019), where the constant factor x varies from

different optimizers, e.g.x = c2∞d in Adam-type optimizer, x = c62 in Adabelief, x = c22d in LAMB,
and x = c2.5∞ in Adan. So under the same conditions, one cannot improve the complexity dependence
on ϵ but can improve the constant factors, which are significant, especially for the network.

Actually, we empirically find c∞ = O(8.2), c2 = O(430), d = 2.2 × 107 in the ViT-small across
different optimizers, e.g., AdamW, Adam, Adan, LAMB. In the extreme case, under the widely used
Lipschitz gradient assumption, the complexity bound of Adan is 7.6× 106 smaller than the one of
Adam, 3.3× 1013 smaller than the one of AdaBlief, 2.1× 1010 smaller than the one of LAMB, etc.
For ResNet50, we also observe c∞ = O(78), c2 = O(970), d = 2.5× 107 which also means a large
big improvement of Adan over other optimizers.

B.3 RESULTS ON REINFORCEMENT LEARNING TASKS

Here we evaluate Adan on reinforcement learning tasks. Specifically, we replace the default Adam
optimizer in PPO (Duan et al., 2016) which is one of the most popular policy gradient method, and
do not many any other change in PPO. For brevity, we call this new PPO version “PPO-Adan". Then
we test PPO and PPO-Adan on several games which are actually continuous control environments
simulated by the standard and widely-used engine, MuJoCo (Todorov et al., 2012). For these test
games, their agents receive a reward at each step. Following standard evaluation, we run each
game under 10 different and independent random seeds (i.e. 1 ∼ 10), and test the performance
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Figure 3: Comparison of PPO and our PPO-Adan on several RL games simulated by MuJoCo. Here
PPO-Adan simply replaces the Adam optimizer in PPO with our Adan and does not change others.
Table 11: Test perplexity (the lower, the better) on Penn Treebank for one-, two- and three-layered
LSTMs. All results except Adan and Padam in the table are reported by AdaBelief.

LSTM Adan AdaBelief SGD AdaBound Adam AdamW Padam RAdam Yogi

1 layer 83.6 84.2 85.0 84.3 85.9 84.7 84.2 86.5 86.5
2 layers 65.2 66.3 67.4 67.5 67.3 72.8 67.2 72.3 71.3
3 layers 59.8 61.2 63.7 63.6 64.3 69.9 63.2 70.0 67.5

for 10 episodes every 30,000 steps. All these experiments are based on the widely used codebase
Tianshou3 (Weng et al., 2021). For fairness, we use the default hyper-parameters in Tianshou,
e.g. batch size, discount, and GAE parameter. We use Adan with its default βs (β1 = 0.02, β2 = 0.08,
and β3 = 0.01). Following the default setting, we do not adopt the weight decay and choose the
learning rate as 3e-4.

We report the results on four test games in Figure 3, in which the solid line denotes the averaged
episodes rewards in the evaluation and the shaded region is its 75% confidence intervals. From
Figure 3, one can observe that on the four test games, PPO-Adan achieves much higher rewards than
vanilla PPO which uses Adam as its optimizer. These results demonstrate the advantages of Adan
over Adam, since PPO-Adan simply replaces the Adam optimizer in PPO with our Adan and does
not make other changes.

B.4 RESULTS ON LSTM

To begin with, we test our Adan on LSTM (Schmidhuber et al., 1997) by using the Penn TreeBank
dataset (Marcinkiewicz, 1994), and report the perplexity (the lower, the better) on the test set in

3https://github.com/thu-ml/tianshou
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Figure 4: Effects of momentum coefficients (β1, β2, β3) to top-1 accuracy (%) of Adan on ViT-B
under MAE training framework (800 pretraining and 100 fine-tuning epochs on ImageNet).
Table 12: Top-1 accuracy (%) of ViT-S on ImageNet trained under Training Setting I and II. ∗ is
reported in (Touvron et al., 2021).

Training Training Setting I Training Setting II
epochs AdamW Adan AdamW Adan

150 76.4 80.2 78.3 79.6
300 77.9 81.1 79.9∗ 80.7

Table 11. We follow the exact experimental setting in Adablief (Zhuang et al., 2020). Indeed, all our
implementations are also based on the code provided by Adablief (Zhuang et al., 2020)4. We use the
default setting for all the hyper-parameters provided by Adablief, since it provides more baselines for
a fair comparison. For Adan, we utilize its default weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08,
and β3 = 0.01). We choose the learning rate as 0.01 for Adan.

Table 11 shows that on the three LSTM models, Adan always achieves the lowest perplexity, making
about 1.0 overall average perplexity improvement over the runner-up. Moreover, when the LSTM
depth increases, the advantage of Adan becomes more remarkable.

B.5 ABLATION STUDY

B.5.1 ROBUSTNESS TO IN MOMENTUM COEFFICIENTS

Here we choose MAE to investigate the effects of the momentum coefficients (βs) to Adan, since as
shown in MAE, its pre-training is actually sensitive to momentum coefficients of AdamW. To this end,
following MAE, we pretrain and fine tune ViT-B on ImageNet for 800 pretraining and 100 fine-tuning
epochs. We also fix one of (β1, β2, β3) and tune others. Figure 4 shows that by only pretraining 800
epochs, Adan achieves 83.7%+ in most cases and outperforms the official accuracy 83.6% obtained
by AdamW with 1600 pretraining epochs, indicating the robustness of Adan to βs. We also observe
1) Adan is not sensitive to β2; 2) β1 has a certain impact on Adan, namely the smaller the (1.0− β1),
the worse the accuracy; 3) similar to findings of MAE, a small second-order coefficient (1.0− β3)
can improve the accuracy. The smaller the (1.0− β3), the more current landscape information the
optimizer would utilize to adjust the coordinate-wise learning rate. Maybe the complex pre-training
task of MAE is more preferred to the local geometric information.

B.5.2 ROBUSTNESS TO TRAINING SETTINGS

In convention, many works (Liu et al., 2021; 2022b; Touvron et al., 2022; Wightman et al., 2021;
Touvron et al., 2021) often preferably chose LAMB/Adam/SGD for Training Setting I and AdamW for
Training Setting II. Table 12 investigates Adan under both settings and shows consistent improvement
of Adan. Moreover, one can also observe that Adan under Setting I largely improves the accuracy of
Adan under Setting II. It actually surpasses the best-known accuracy 80.4% on ViT-small in (Touvron
et al., 2022) trained by advanced layer scale strategy and stronger data augmentation.

4https://github.com/juntang-zhuang/Adabelief-Optimizer. The reported results
in (Zhuang et al., 2020) slightly differ from the those in (Chen et al., 2021a) because of their different settings
for LSTM and training hyper-parameters.
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C NOTATION

We provide some notation that are frequently used throughout the paper. The scale c is in normal
font. And the vector is in bold lowercase. Give two vectors x and y, x ≥ y means that (x− y)
is a non-negative vector. x/y or x

y represents the element-wise vector division. x ◦ y means the

element-wise multiplication, and (x)
2
= x ◦ x. ⟨·, ·⟩ is the inner product. Given a non-negative

vector n ≥ 0, we let ∥x∥2√n :=
〈
x,

√
n+ ε ◦ x

〉
. Unless otherwise specified, ∥x∥ is the vector ℓ2

norm. Note that E(x) is the expectation of random random vector x.

D PROOF OF LEMMA 1: EQUIVALENCE BETWEEN THE AGD AND AGD II

In this section, we show how to get AGD II from AGD. For convenience, we omit the noise term ζk.
Note that, let α := 1− β1:

AGD:


gk = ∇f(θk − ηαmk−1)

mk = αmk−1 + gk

θk+1 = θk − ηmk

.

We can get:
θk+1 − ηαmk = θk − ηmk − ηαmk

=θk − η(1 + α)(αmk−1 +∇f(θk − ηαmk−1))

=θk − ηαmk−1 − ηα2mk−1 − η(1 + α)(∇f(θk − ηαmk−1)).

(8)

Let {
θ̄k+1 := θk+1 − ηαmk,

m̄k := α2mk−1 + (1 + α)∇f(θk − ηαmk−1) = α2mk−1 + (1 + α)∇f(θ̄k)

Then, by Eq.(8), we have:
θ̄k+1 = θ̄k − ηm̄k. (9)

On the other hand, we have m̄k−1 = α2mk−2 + (1 + α)∇f(θ̄k−1) and :

m̄k − αm̄k−1 = α2mk−1 + (1 + α)∇f(θ̄k)− αm̄k−1

= (1 + α)∇f(θ̄k) + α2
(
αmk−2 +∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k) + α
(
α2mk−2 + α∇f(θ̄k−1)− m̄k−1

)
= (1 + α)∇f(θ̄k) + α

(
α2mk−2 + α∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k)− α∇f(θ̄k−1)

= ∇f(θ̄k) + α
(
∇f(θ̄k)−∇f(θ̄k−1)

)
.

(10)

Finally, due to Eq.(9) and Eq.10, we have:m̄k = αm̄k−1 +
(
∇f(θ̄k) + α

(
∇f(θ̄k)−∇f(θ̄k−1)

))
θ̄k+1 = θ̄k − ηm̄k

E CONVERGENCE ANALYSIS WITH LIPSCHITZ GRADIENT

Before starting the proof, we first provide several notations. Let Fk(θ) := Eζ [f(θ, ζ)] +
λk

2 ∥θ∥2√nk

and µ :=
√
2β3c∞/ε,

∥x∥2√nk
:= ⟨x, (

√
nk + ε) ◦ x⟩ , λk = λ(1− µ)

k
.

Moreover, we let
θ̃k := (

√
nk + ε) ◦ θk.
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Lemma 2. Assume f(·) is L-smooth. For

θk+1 = argmin
θ

(
λk

2
∥θ∥2√nk

+ f(θk) + ⟨uk,θ − θk⟩+
1

2η
∥(θ − θk)∥2√nk

)
.

With η ≤ min{ ε
3L ,

1
10λ}, then we have:

Fk+1(θk+1) ≤ Fk(θk)−
η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2ε
∥gk − uk∥2,

where gk := ∇f(θk).

Proof. We denote pk := uk/
(√

nk + ε
)
. By the optimality condition of θk+1, we have

λkθk + pk =
λkθ̃k + uk√

nk + ε
=

1 + ηλk

η
(θk − θk+1). (11)

Then for η ≤ ε
3L , we have:

Fk+1(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk+1

2
∥θk+1∥2√nk+1

(a)

≤f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk

2
∥θk+1∥2√nk

(b)

≤Fk(θk) +

〈
θk+1 − θk, λkθk +

gk√
nk + ε

〉
√
nk

+
L/ε+ λk

2
∥θk+1 − θk∥2√nk

=Fk(θk) +
L/ε+ λk

2
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk, λkθk + pk +

gk − uk√
nk + ε

〉
√
nk

(c)
=Fk(θk) +

(
L/ε+ λk

2
− 1 + ηλk

η

)
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

(d)

≤Fk(θk) +

(
L/ε

2
− 1

η

)
∥θk+1 − θk∥2√nk

+
1

2η
∥θk+1 − θk∥2√nk

+
η

2ε
∥gk − uk∥2

≤Fk(θk)−
1

3η
∥θk+1 − θk∥2√nk

+
η

2ε
∥gk − uk∥2

≤Fk(θk)−
η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2ε
∥gk − uk∥2,

where (a) comes from the fact λk+1(1− µ)−1 = λk and Proposition 3:( √
nk + ε

√
nk+1 + ε

)
i

≥ 1− µ,

which implies:

λk+1∥θk+1∥2√nk+1
≤ λk+1

1− µ
∥θk+1∥2√nk

= λk∥θk+1∥2√nk
,

and (b) is from:

∥θk+1∥2√nk
=
(
∥θk∥2√nk

+ 2 ⟨θk+1 − θk,θk⟩√nk
+ ∥θk+1 − θk∥2√nk

)
,

(c) is due to Eqn. (11), and for (d), we utilize:〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

≤ 1

2η
∥θk+1 − θk∥2√nk

+
η

2ε
∥gk − uk∥2,

the last inequality comes from the fact in Eqn. (11) and η ≤ 1
10λ , such that:

1

3η
∥(θk+1 − θk)∥2√nk

=
η

3
(√

nk + ε
)
(1 + ηλk)

∥∥∥uk + λkθ̃k

∥∥∥2 ≥ η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2.
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Theorem 1. Suppose Assumptions 1 and 2 hold. Let cl := 1
c∞

and cu := 1
ε . With β3c∞/ε ≪ 1,

η2 ≤ clβ
2
1

8c3uL
2
, max {β1, β2} ≤ clϵ

2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
,

where ∆0 := F (θ0)− f∗ and f∗ := minθ Eζ [∇f(θk, ζ)], then we let uk := mk + (1− β1)vk and
have:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ ϵ2,

and
1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ ϵ2

4
,

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ ϵ2

4
.

Hence, we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [∇f(θk, ζ)]

)∥∥∥∥2
)

≤ 4ϵ2.

Proof. For convince, we let uk := mk + (1− β1)vk and gfull
k := Eζ [∇f(θk, ζ)]. We have:∥∥∥uk − gfull

k

∥∥∥2 ≤ 2
∥∥∥mk − gfull

k

∥∥∥2 + 2(1− β1)
2∥vk∥2.

By Lemma 2, Lemma 5, and Lemma 6, we already have:

Fk+1(θk+1) ≤ Fk(θk)−
ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu

∥∥∥gfull
k −mk

∥∥∥2 + ηcu(1− β1)
2∥vk∥2, (12)

E
(∥∥∥mk+1 − gfull

k+1

∥∥∥2) ≤ (1− β1)E
(∥∥∥mk − gfull

k

∥∥∥2)+
(1− β1)

2
L2

β1
E
(
∥θk+1 − θk∥2

)
+ β2

1σ
2

(13)

E
(
∥vk+1∥2

)
≤ (1− β2)E

(
∥vk∥2

)
+ 2β2E

(∥∥∥gfull
k+1 − gfull

k

∥∥∥2)+ 3β2
2σ

2 (14)

Then by adding Eq.(12) with ηcu
β1

× Eq.(13) and ηcu(1−β1)
2

β2
× Eq.(14), we can get:

E(Φk+1) ≤ E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu
β1

(
(1− β1)

2
L2

β1
∥θk+1 − θk∥2 + β2

1σ
2

))

+
ηcu(1− β1)

2

β2
E
(
2β2L

2∥θk+1 − θk∥2 + 3β2
2σ

2
)

≤E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

(
(1− β1)

2

β2
1

+ 2(1− β1)
2

)
∥θk+1 − θk∥2

)
+ (β1 + 3β2)ηcuσ

2

(a)

≤E
(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

β2
1

∥θk+1 − θk∥2
)
+ 4βmηcuσ

2

(b)

≤E
(
Φk +

(
(ηcu)

3L2

β2
1

− ηcl
4

)∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2

≤E
(
Φk − ηcl

8

∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2,

where we let:

Φk := Fk(θk)− f∗ +
ηcu
β1

∥∥∥mk − gfull
k

∥∥∥2 + ηcu(1− β1)
2

β2
∥vk∥2,

βm = max {β1, β2} ≤ 2

3
, η ≤ clβ

2
1

8c3uL
2
,
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and for (a), when β1 ≤ 2
3 , we have:

(1− β1)
2

β2
1

+ 2(1− β1)
2
<

1

β2
1

,

and (b) is due to Eq.(11) from Lemma 2. And hence, we have:

T∑
k=0

E(Φk+1) ≤
T∑

k=0

E(Φk)−
ηcl
8

T∑
k=0

∥∥∥uk + λkθ̃k

∥∥∥2 + (T + 1)4ηcuβmσ2.

Hence, we can get:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ 8Φ0

ηclT
+

32cuβσ
2

cl
=

8∆0

ηclT
+

8cuσ
2

β1clT
+

32cuβmσ2

cl
≤ ϵ2,

where

∆0 := F (θ0)− f∗, βm ≤ clϵ
2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
.

We finish the first part of the theorem. From Eq.(13), we can conclude that:

1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ σ2

βT
+

L2η2c2uϵ
2

β2
1

+ β1σ
2 <

ϵ2

4
.

From Eq.(14), we can conclude that:

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ 2L2η2c2uϵ

2 + 3β2σ
2 <

ϵ2

4
.

Finally we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [f(θk, ζ)]

)∥∥∥∥2
)

≤ 1

T + 1

(
T∑

k=0

E
(
2
∥∥∥uk + λkθ̃k

∥∥∥2 + 4
∥∥∥mk − gfull

k

∥∥∥2 + 4∥vk∥2
))

≤ 4ϵ2.

Now, we have finished the proof.
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F FASTER CONVERGENCE WITH LIPSCHITZ HESSIAN

For convince, we let λ = 0, β1 = β2 = β and β3 = β2 in the following proof. To consider the
weight decay term in the proof, we refer to the previous section for more details. For the ease of
notation, we denote x instead of θ the variable needed to be optimized in the proof, and abbreviate
Eζ [f(θk, ζ)] as f(θk).

F.1 REFORMULATION

Algorithm 2: Nesterov Adaptive Momentum Estimation Reformulation
Input: initial point θ0, stepsize η, average coefficients β, and ε.

1 begin
2 while k < K do
3 get stochastic gradient estimator gk at xk;
4 m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1));
5 nk =

(
1− β2

)
nk−1 + β2(gk−1 + (1− β)(gk−1 − gk−2))

2;
6 ηk = η/

(√
nk + ε

)
;

7 yk+1 = xk − ηkβgk;
8 xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)];

9 if (k + 1)
∑k

t=0

∥∥∥(√nt + ε
)1/2 ◦ (yt+1 − yt)

∥∥∥2 ≥ R2 then
10 get stochastic gradient estimator g0 at xk+1;
11 m̂0 = g0, n0 = g2

0, x0 = y0 = xk+1, x1 = y1 = x0 − η m̂0√
n0+ε , k = 1;

12 end if
13 end while
14 K0 = argmin⌊K

2 ⌋≤k≤K−1

∥∥∥(√nk + ε
)1/2 ◦ (yk+1 − yk)

∥∥∥;

15 end
Output: x̄ := 1

K0

∑K0

k=1 xk

We first prove the equivalent form between Algorithm 1 and Algorithm 2. The main iteration in
Algorithm 1 is:


mk = (1− β)mk−1 + βgk,

vk = (1− β)vk−1 + β((gk − gk−1)),

xk+1 = xk − ηk ◦ (mk + (1− β)vk).

Let m̂k := (mk + (1− β)vk), we can simplify the variable:

{
m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1)),

xk+1 = xk − ηk ◦ m̂k.

We let yk+1 := xk+1 + ηk(m̂k − βgk), then we can get:

yk+1 = xk+1 + ηkm̂k − βηkgk = xk+1 + xk − xk+1 − βηkgk = xk − βηkgk.

On one hand, we have:

xk+1 = xk − ηkm̂k = yk+1 − ηk(m̂k − βgk).
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On the other hand:

ηk(m̂k − βgk) = (1− β)ηk(m̂k−1 + β(gk − gk−1))

=(1− β)ηk(m̂k−1 + β(gk − gk−1))

=(1− β)ηk

(
xk−1 − xk

ηk−1
+ β(gk − gk−1)

)
=(1− β)

ηk

ηk−1
(xk−1 − xk + βηk−1(gk − gk−1))

=(1− β)
ηk

ηk−1
(yk − xk + βηk−1gk)

=(1− β)

[
ηk

ηk−1
(yk − yk+1 − β(ηk − ηk−1)gk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1

ηk−1
(yk − yk+1 − βηkgk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1

ηk−1
(yk − xk)

]
=(1− β)[(yk − yk+1) + (ηk − ηk−1)(mk−1 − βgk−1)].

Hence, we can conclude that:

xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)].

The main iteration in Algorithm 1 becomes:
yk+1 = xk − βηkgk,

xk+1 = yk+1 + (1− β)

[
(yk+1 − yk) +

ηk−1 − ηk

ηk−1
(yk − xk)

]
.

(15)

F.2 AUXILIARY BOUNDS

We first show some interesting property. Define K to be the iteration number when the ’if condition’
triggers, that is,

K := min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥∥∥(√nt + ε)1/2 ◦ (yt+1 − yt)
∥∥∥2 > R2

}
.

Proposition 1. Given k ≤ K and β ≤ ε/
(√

2c∞ + ε
)
, we have:∥∥∥(√nk + ε)

1/2 ◦ (xk − yk)
∥∥∥ ≤ R.

Proof. First of all, we let n̂k :=
(√

nk + ε
)1/2

. Due to Proposition 3, we have:(√
nk−1 + ε
√
nk + ε

)
i

∈

[
1−

√
2β2c∞
ε

, 1 +

√
2β2c∞
ε

]
,

then, we get:

n̂k ≤

(
1−

√
2β2c∞
ε

)−1/2

n̂k−1 ≤ (1− β)
−1/4

n̂k−1,

where we use the fact β ≤ ε/
(
2
√
2c∞ + ε

)
.For any 1 ≤ k ≤ K, we have:

∥n̂k ◦ (yk − yk−1)∥2 ≤ (1− β)
−1/2∥n̂k−1 ◦ (yk − yk−1)∥2

≤(1− β)
−1

k−1∑
t=1

∥n̂t ◦ (yt+1 − yt)∥2 ≤ R2

k(1− β)
,
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hence, we can conclude that:

∥n̂k ◦ (yk − yk−1)∥2 ≤ R2

k(1− β)
. (16)

On the other hand, by Eq.(15), we have:

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

ηk − ηk−1

ηk−1
(xk − yk)

]
,

and hence,

∥n̂k ◦ (xk − yk)∥ ≤ (1− β)

[
∥n̂k ◦ (yk − yk−1)∥+

∥∥∥∥ηk−1 − ηk−2

ηk−2

∥∥∥∥
∞
∥n̂k ◦ (xk−1 − yk−1)∥

]
(a)

≤
√

1− β
R√
k
+ (1− β)

√
2β2c∞
ε

(
1−

√
2β2c∞
ε

)−1/2

∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
√

1− β
R√
k
+ β(1− β)

3/4∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
√
1− βR

(
1√
k
+

β(1− β)
3/4

√
k − 1

+ · · ·+
(
β(1− β)

3/4
)k−1

)
(b)

≤
√
1− βR

(
k−1∑
t=1

1

t2

)1/4( k∑
t=0

(
β(1− β)

3/4
)4t/3)3/4

(c)
< R,

where (a) comes from Eq.(16) and the proposition 3, (b) is the application of Hölder’s inequality and
(c) comes from the facts when β ≤ 1/2:

∞∑
t=1

1

t2
=

π2

6
,
√
1− β

(
k∑

t=0

(
β(1− β)

3/4
)4t/3)3/4

≤
(

(1− β)2/3

1− β4/3(1− β)

)3/4

.

F.3 DECREASE OF ONE RESTART CYCLE

Lemma 3. Suppose that Assumptions 1-2 hold. Let R = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
,

K ≤ K = O
(
ϵ−2
)
. Then we have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
. (17)

Proof. Recall Eq.(15) and denote gfull
k := ∇f(θk) for convenience:

yk+1 = xk − βηk ◦
(
gfull
k + ξk

)
xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(18)

In this proof, we let n̂k :=
(√

nk + ε
)1/2

, and hence ηk = η/n̂2
k. By the L-smoothness condition,

for 1 ≤ k ≤ K, we have:

E (f(yk+1)− f(xk)) ≤ E
(
⟨gk,yk+1 − xk⟩+

L

2
∥yk+1 − xk∥2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,yk+1 − xk

〉
+

L

2
∥yk+1 − xk∥2

)
(a)

≤ E
(
− 1

ηβ
∥n̂k ◦ (yk+1 − xk)∥2 +

L

2
∥yk+1 − xk∥2

)
+

ηβσ2

ε

≤E
(
− 1

ηβ
∥n̂k ◦ (yk+1 − xk)∥2 +

L

2ε
∥n̂k ◦ (yk+1 − xk)∥2

)
+

ηβσ2

ε

≤E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − xk)∥2

)
+

ηβσ2

ε
,

(19)
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where (a) comes from the facts:

E (⟨ξk,yk+1 − xk⟩) = E (⟨ξk,xk − βηk ◦ (gk + ξk)⟩) = E (⟨ξk, βηk ◦ ξk⟩) ≤
ηβσ2

ε
.

and the last inequality is due to Lη ≤ ε. On the other hand, we have:

E(f(xk)− f(yk)) ≤ E
(
⟨∇f(yk),xk − yk⟩+

L

2
∥xk − yk∥2

)
=E

(
⟨gk,xk − yk⟩+ ⟨∇f(yk)−∇f(xk),xk − yk⟩+

L

2
∥xk − yk∥2

)
≤E

(
⟨gk,xk − yk⟩+

1

2L
∥∇f(yk)−∇f(xk)∥2 +

L

2
∥xk − yk∥2 +

L

2
∥xk − yk∥2

)
≤E

(
⟨gk,xk − yk⟩+

3L

2
∥xk − yk∥2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,xk − yk

〉
+

3L

2
∥xk − yk∥2

)
=E

(
1

ηβ

〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
+

3L

2
∥xk − yk∥2

)
(a)

≤ E
(

1

2ηβ

(
∥n̂k ◦ (yk+1 − xk)∥2 + ∥n̂k ◦ (yk − xk)∥2 − ∥n̂k ◦ (yk+1 − yk)∥2

)
+

3L

2
∥xk − yk∥2

)
(b)

≤ E
(

1

2ηβ

(
∥n̂k ◦ (yk+1 − xk)∥2 − ∥n̂k ◦ (yk+1 − yk)∥2

)
+

1 + β/2

2ηβ
∥n̂k ◦ (yk − xk)∥2

)
(20)

where (a) comes from the following facts, and in (b), we use 3Lη ≤ ε
2 :

2
〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
= ∥n̂k ◦ (yk+1 − xk)∥2+∥n̂k ◦ (yk − xk)∥2−∥n̂k ◦ (yk+1 − yk)∥2.

By combing Eq.(19) and Eq.(20), we have:

E (f(yk+1)− f(yk)) ≤ E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − yk)∥2 +

1 + β/2

2ηβ
∥n̂k ◦ (yk − xk)∥2

)
+

ηβσ2

ε

(a)

≤ E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − yk)∥2 +

1− β/2− β2/2

2ηβ
∥n̂k−1 ◦ (yk − yk−1)∥2

)
+

4β2R2c2∞
ηε2

+
ηβσ2

ε
,

where (a) comes from the following fact, and note that by Proposition 1 we already have n̂k ≤
(1− β)

−1/4
n̂k−1:

∥n̂k ◦ (xk − yk)∥2

≤(1− β)
2

[
(1 + α)∥n̂k ◦ (yk − yk−1)∥2 + (1 +

1

α
)β̂2∥n̂k ◦ (xk−1 − yk−1)∥2

]
≤(1− β)

3/2

[
(1 + α)∥n̂k−1 ◦ (yk − yk−1)∥2 + (1 +

1

α
)β̂2∥n̂k−1 ◦ (xk−1 − yk−1)∥2

]
≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 +

β̂2(1− β)3/2

1− (1− β)1/2
∥n̂k−1 ◦ (xk−1 − yk−1)∥2

≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 +
2β̂2

β
∥n̂k−1 ◦ (xk−1 − yk−1)∥2

≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 + 4β3R2c2∞/ε2,

(21)

where we let β̂ :=
√
2β2c∞/ε, α = (1 − β)−1/2 − 1, and the last inequality we use the results

in Proposition 1. Summing over k = 2, · · · ,K − 1, and note that y1 = x1, and hence we have
E (f(y2)− f(x1)) = E (f(y2)− f(y1)) ≤ ηβσc∞/

√
ε due to Eq. (19), then we get:

E (f(yK)− f(y1)) ≤ E

(
− 1

4η

K−1∑
t=1

∥n̂k ◦ (yt+1 − yt)∥2
)

+
4Kβ2R2c2∞

ηε2
+

Kηβσ2

ε
.
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On the other hand, similar to the results given in Eq.(19), we have:

E (f(y1)− f(y0)) = E (f(x1)− f(x0)) ≤ E
(
− 1

2η
∥n̂k ◦ (y1 − y0)∥2

)
+

ησ2

ε
.

Therefore, using βK = O(1) and the restart condition

K
K−1∑
t=0

∥∥∥(√nt + ε)1/2 ◦ (yt+1 − yt)
∥∥∥2 ≥ R2,

we can get:

E (f(yK)− f(y0)) ≤ E

(
− 1

4η

K−1∑
t=0

∥n̂k ◦ (yk+1 − yk)∥2
)

+
4Kβ2R2c2∞

ηε2
+

(Kβ + 1)ησ2

ε

≤− R2

4Kη
+

4Kβ2R2c2∞
ηε2

+
(Kβ + 1)ησ2

ε
= −O

(
R2

Kη
− βR2

η
− η

)
= −O

(
ϵ1.5
)
.

Now, we finish the proof of this claim.

F.4 GRADIENT IN THE LAST RESTART CYCLE

Before showing the main results, we first provide several definitions for the convenience of proof.
Note that, for any k < K we already have:

(ε)1/2∥yk − y0∥ ≤ (ε)1/2

√√√√k

k−1∑
t=0

∥yt+1 − yt∥2 ≤ R.

and we have:

E (∥xk − x0∥) ≤ E (∥yk − xk∥+ ∥yk − x0∥) ≤
2R

ε1/2
, (22)

where we utilize the results from Proposition 1. For each epoch, denote H := ∇2f(x0). We then
define:

h(y) :=
〈
gfull
0 ,y − x0

〉
+

1

2
(y − x0)

⊤
H(y − x0).

Recall the Eq. (15):
yk+1 = xk − βηk ◦

(
gfull
k + ξk

)
= xk − βηk ◦ (∇h(xk) + δk + ξk)

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(23)

where we let δk := gfull
k −∇h(xk), and we can get that:

E (∥δk∥) = E
(∥∥∥gfull

k − gfull
0 −H(xk − x0)

∥∥∥)
=E

(∥∥∥∥(∫ 1

0

∇2h(x0 + t(xk − x0))−H

)
(xk − x0)dt

∥∥∥∥)
≤ρ

2
E
(
∥xk − x0∥2

)
≤ 2ρR2

ε
.

(24)

Iterations in Eq.(23) can be viewed as applying the proposed optimizer to the quadratic approximation
h(x) with the gradient error δk, which is in the order of O

(
ρR2/ε

)
.

Lemma 4. Suppose that Assumptions 1-3 hold. Let B = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
,

K ≤ K = O
(
ϵ−2
)
. Then we have:

E (∥∇f(x̄)∥) = O(ϵ),

where x̄ := 1
K0−1

∑K0

k=1 xk.
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Proof. Since h(·) is quadratic, then we have:

E (∥∇h(x̄)∥) = E

(∥∥∥∥∥ 1

K0 − 1

K0∑
k=1

∇h(xk)

∥∥∥∥∥
)

=
1

K0 − 1
E

∥∥∥∥∥
K0∑
k=1

(βηk)
−1 ◦ (yk+1 − xk) + ξk + δk

∥∥∥∥∥
≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(βηk)
−1 ◦ (yk+1 − xk)

∥∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

δk

∥∥∥∥∥
(a)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(ηk)
−1 ◦ (yk+1 − xk)

∥∥∥∥∥+ σ√
K0 − 1

+
2ρR2

ε

=
1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk
− (1− β)

ηk−1 − ηk−2

ηk−2ηk
(xk−1 − yk−1)

∥∥∥∥∥
+

σ√
K0 − 1

+
2ρR2

ε

(b)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk

∥∥∥∥∥+ 2βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

(c)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(
yk+1 − yk

ηk
− (1− β)(yk − yk−1)

ηk−1

)∥∥∥∥∥+ 4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤ 1

(K0 − 1)β
E
∥∥∥∥yK0 − yK0−1

ηK0

∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0−1∑
k=1

yk+1 − yk

ηk

∥∥∥∥∥+ 4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

(d)

≤ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk

ηk

∥∥∥∥∥+ 4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√
2c∞
ηK

E

∥∥∥∥∥
K0∑
k=1

(
√
nk + ε)

1/2 ◦ (yk+1 − yk)

∥∥∥∥∥+ 4R
√
c∞

βηK2
+

4βc1.5∞ B

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√
2c∞R

ηK
+

4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

=O
(

R

ηK
+

βR

η
+

1√
K

+R2

)
= O(ϵ),

where (a) is due to the independence of ξk’s and Eq.(24), (b) comes from Propositions 1 and 2:

∥∥∥∥ηk−1 − ηk−2

ηk−2ηk
(xk−1 − yk−1)

∥∥∥∥ ≤
√
nk + ε

η
(√

nk−1 + ε
)1/2 ∥∥∥∥ηk−1 − ηk−2

ηk−2

∥∥∥∥
∞
∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
(√

nk + ε
)1/2

η

√
2β2c∞
ε

(
1−

√
2β2c∞
ε

)−1/2

R

≤ (c∞ + ε)
1/2

η

√
2β2c∞
ε

R

(1− β)1/4
≤
(

1

1− β

)1/4
2β2c1.5∞ R

ηε
,
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we use the following bounds in (c):∥∥∥∥ (yk − yk−1)

ηk−1
− (yk − yk−1)

ηk

∥∥∥∥ =

∥∥∥∥ηk − ηk−1

ηk−1ηk
(yk − yk−1)

∥∥∥∥
≤
(√

nk−1 + ε
)1/2

η

∥∥∥∥ηk − ηk−1

ηk

∥∥∥∥
∞

∥∥∥(√nk−1 + ε)
1/2 ◦ (yk − yk−1)

∥∥∥
≤
(√

nk−1 + ε
)1/2

η

√
2β2c∞
ε

R

k
≤ (c∞ + ε)

1/2

η

√
2β2c∞
ε

R

k
≤ 2β2c1.5∞ R

ηεk
,

(d) is implied by K0 = argmin⌊K
2 ⌋≤k≤K−1

∥∥∥(√nk + ε
)1/2 ◦ (yk+1 − yk)

∥∥∥ and restart condition:∥∥∥∥yK0 − yK0−1

ηK0

∥∥∥∥2 ≤
√
nK0 + ε

η2

∥∥∥(√nK0
+ ε
)1/2 ◦ (yK0

− yK0−1)
∥∥∥2

∥∥∥(√nK0
+ ε
)1/2 ◦ (yK0

− yK0−1)
∥∥∥2 ≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥∥∥(√nk + ε)
1/2 ◦ (yk+1 − yk)

∥∥∥2
≤ 1

K − ⌊K/2⌋

K∑
k=1

∥∥∥(√nk + ε)
1/2 ◦ (yk+1 − yk)

∥∥∥2 ≤ 1

K − ⌊K/2⌋
R2

K
≤ 2R2

K2
.

Finally, we have:

E (∥∇f(x̄)∥) = E (∥∇h(x̄)∥) + E (∥∇f(x̄)−∇h(x̄)∥) = O(ϵ) +
2ρR2

ε
= O(ϵ),

where we use the results from Eq.(24), namely:

E (∥∇f(x̄)−∇h(x̄)∥) = E
(∥∥∥∇f(x̄)− gfull

0 −H(x̄− x0)
∥∥∥) ≤ ρ

2
E
(
∥x̄− x0∥2

)
,

and we also note that, by Eq.(22):

E ∥x̄− x0∥ ≤ 1

K0 − 1

K0∑
k=1

E ∥xk − x0∥ ≤ 2R

ε1/2
.

F.5 PROOF FOR MAIN THEOREM

Theorem 2. Suppose that Assumptions 1-3 hold. Let B = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
,

K ≤ K = O
(
ϵ−2
)
. Then Algorithm 1 find an ϵ-approximate first-order stationary point within at

most O
(
ϵ−3.5

)
iterations. Namely, we have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
, E (∥∇f(x̄)∥) = O(ϵ).

Proof. Note that at the beginning of each restart cycle in Algorithm 2, we set x0 to be the last iterate
xK in the previous restart cycle. Due to Lemma 3, we already have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
.

Summing this inequality over all cycles, say N total restart cycles, we have:

min
x

f(x)− f(xinit) = −O
(
Nϵ1.5

)
,

Hence, the Algorithm 2 terminates within at most O
(
ϵ−1.5∆f

)
restart cycles, where ∆f := f(xinit)−

minx f(x). Note that each cycle contain at most K = O
(
ϵ−2
)

iteration step, therefore, the total
iteration number must be less than O

(
ϵ−3.5∆f

)
.

On the other hand, by Lemma 4, in the last restart cycle, we have:

E (∥∇f(x̄)∥) = O(ϵ).

Now, we obtain the final conclusion for the theorem.
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G AUXILIARY LEMMAS

Proposition 2. If Assumption 2 holds. We have:
∥mk∥∞ ≤ c∞, ∥nk∥∞ ≤ c2∞.

Proof. By the definition of mk, we can have that:

mk =

k∑
t=0

ck,tgt,

where

ck,t =


β1(1− β1)

(k−t) when t > 0,

(1− β1)
k when t = 0.

Similar, we also have:

nk =

k∑
t=0

c′k,t(gt + (1− β2)(gt − gt−1))
2
,

where

c′k,t =


β3(1− β3)

(k−t) when t > 0,

(1− β3)
k when t = 0.

If is obvious that:
k∑

t=0

ck,t = 1,

k∑
t=0

c′k,t = 1,

hence, we get:

∥mk∥∞ ≤
k∑

t=0

ck,t∥gt∥∞,

∥nk∥∞ ≤
k∑

t=0

c′k,t∥gt + (1− β2)(gt − gt−1)∥2∞ ≤ c2∞.

Proposition 3. If Assumption 2 holds, we have:∥∥∥∥ηk − ηk−1

ηk−1

∥∥∥∥
∞

≤
√
2β3c∞
ε

.

Proof. Give any index i ∈ [d] and the definitions of ηk, we have:∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ = ∣∣∣∣(√
nk−1 + ε
√
nk + ε

)
i

− 1

∣∣∣∣ = ∣∣∣∣(√
nk−1 −

√
nk√

nk + ε

)
i

∣∣∣∣.
Note that, by the definition of nk, we have:∣∣∣∣(√

nk−1 −
√
nk√

nk + ε

)
i

∣∣∣∣ ≤
∣∣∣∣∣
(√

|nk−1 − nk|√
nk + ε

)
i

∣∣∣∣∣
=β3


√∣∣∣nk−1 − (gk + (1− β2)(gk − gk−1))

2
∣∣∣

√
nk + ε


i

≤
√
2β3c∞
ε

,

hence, we have: ∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ ∈
[
0,

√
2β3c∞
ε

]
.

We finish the proof.
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Lemma 5. Consider a moving average sequence:

mk = (1− β)mk−1 + βgk,

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [∇f(θk, ζ)] for convenience. Then we have:

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2.

Proof. Note that, we have:

mk − gfull
k =(1− β)

(
mk−1 − gfull

k−1

)
+ (1− β)gfull

k−1 − gfull
k + βgk

=(1− β)
(
mk−1 − gfull

k−1

)
+ (1− β)

(
gfull
k−1 − gfull

k

)
+ β

(
gk − gfull

k

)
.

Then, take expectation on both sides:

E
(∥∥∥mk − gfull

k

∥∥∥2)
=(1− β)

2E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+ (1− β)
2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2+

2(1− β)
2E
(〈

mk−1 − gfull
k−1,g

full
k−1 − gfull

k

〉)
≤
(
(1− β)

2
+ (1− β)

2
a
)
E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+(
1 +

1

a

)
(1− β)

2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

(a)

≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2

β
E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

≤(1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2,

where for (a), we set a = β
1−β .

Lemma 6. Consider a moving average sequence:

vk = (1− β)vk−1 + β(gk − gk−1),

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [f(θk, ζ)] for convenience. Then we have:

E
(
∥vk∥2

)
≤ (1− β)E

(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2.

Proof. Take expectation on both sides:

E
(
∥vk∥2

)
= (1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E(⟨vk−1,gk − gk−1⟩)

(a)
=(1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E

(〈
vk−1,g

full
k − gk−1

〉)
(b)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gk−1

〉)
+ 3β2σ2

(c)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gfull

k−1

〉)
+ 3β2σ2

(d)

≤ (1− β)E
(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2,
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where for (a), we utilize the independence between gk and vk−1, while for (b):

E
(
∥gk − gk−1∥2

)
≤ E

(∥∥∥gk − gfull
k

∥∥∥2)+ 2E
(∥∥∥gfull

k−1 − gk−1

∥∥∥2)+ 2E
(∥∥∥gfull

k − gfull
k−1

∥∥∥2),
for (c), we know:

E
(〈

vk−1,g
full
k−1 − gk−1

〉)
= E

(〈
(1− β)vk−2 + β(gk−1 − gk−2),g

full
k−1 − gk−1

〉)
=E
(〈

(1− β)vk−2 − βgk−2,g
full
k−1 − gk−1

〉)
+ βE

(〈
gk−1 − gfull

k−1 + gfull
k−1,g

full
k−1 − gk−1

〉)
=− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2),
and thus E

(〈
vk−1,g

full
k − gk−1

〉)
= E

(〈
vk−1,g

full
k − gfull

k−1

〉)
− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2). Fi-
nally, for (d), we use:

2E
(〈

vk−1,g
full
k − gfull

k−1

〉)
≤ E

(
∥vk−1∥2

)
+ E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2).
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