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Abstract Hyperparameter optimization (HPO), as part of automated machine learning, successfully

supports users in designing models well-suited for a given dataset. However, HPO still

sometimes lacks acceptance due to its black-box nature and a lack of options to intervene in

the process. Although first approaches have been proposed to initialize HPO methods with

expert knowledge, they do not allow for repeated expert intervention during the optimization

process. In this paper, we introduce a novel method that enables repeated online interaction

with an HPO approach via user input, specifying expert knowledge and user preferences in

the form of prior distributions at runtime of the HPO process. To this end, we generalize an

existing method, 𝜋BO, by stacking priors on top of each other whenever provided by the

user. Including these user priors in the acquisition function of Bayesian optimization (BO),

we are able to model dynamic user inputs into BO-based HPO and guide the optimization

accordingly. To avoid negative effects due to misleading priors, we additionally propose a

prior-disregarding mechanism based on the surrogate’s understanding of the optimization

problem. In our experimental evaluation, we demonstrate that our method can effectively

incorporate multiple priors. It leverages helpful priors, whereas misleading priors can be

rejected or overcome without significantly deteriorating anytime performance.

1 Introduction

Hyperparameter optimization (HPO) is concerned with automatically optimizing the hyperparam-

eters of machine learning (ML) algorithms tailored to a given task (Hutter et al., 2019). HPO is

effective on classical ML (Eggensperger et al., 2021; Bansal et al., 2022; Pfisterer et al., 2022) as

well as on deep neural networks and transformers for computer-vision and NLP (Müller et al.,

2023; Wang et al., 2024; Rakotoarison et al., 2024; Pineda Arango et al., 2024). Despite this success,

potential (expert) users often disregard HPO methods in favor of making manual decisions (Van der

Blom et al., 2021) since existing HPOmethods limit opportunities for monitoring and control. At the

same time, explainability methods (Wang et al., 2019; Sass et al., 2022; Zöller et al., 2023) empower

users to gain insights into the optimization process. Still, online steering of the optimization process

remains largely unexplored. Motivated by the need for a rapid prototyping workflow and the call

for user-centric AutoML (Lindauer et al., 2024), we propose enabling users to inject knowledge on

potentially well-suited hyperparameter configurations in the form of user priors at any point during

the process, thereby enabling users to steer the optimization process. Our proposed approach

adapts BO by incorporating optional user priors during the optimization process, see Fig. 1.

2 Related Work

Transfer learning from previous BO experiments leverages knowledge from previous optimization

tasks (Swersky et al., 2013; Wistuba et al., 2015; van Rijn and Hutter, 2018; Feurer et al., 2022), such

as hyperparameter optimization across different datasets or at various development stages (Stoll
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Figure 1: Overview of the proposed dynamic Bayesian optimizationmethod, DynaBO. Provided a dataset,
a performance measure, and an optional initial prior, the DynaBO loop iteratively selects new

hyperparameter configurations. At each step, a candidate configuration is evaluated, and its

performance is assessed until a budget is depleted. The framework allows users to steer the

optimization process by dynamically adding priors at runtime.

et al., 2020). Exemplary insights include previously high-performing candidates (Brochu et al., 2010;

Feurer et al., 2015), or search space constraints to promising regions (Perrone et al., 2019).

Similarly, BO methods can incorporate structural priors about the behavior of the objective

function, such as log-transformations (used in SMAC (Lindauer et al., 2022) and irace (López-Ibáñez

et al., 2016)), monotonicity constraints (Li et al., 2018), partially defined solutions (Baudart et al.,

2020), and non-stationary covariance modeling (Snoek et al., 2014).

Examples of user-priors on the optimum include fixed priors over the search space (Bergstra

et al., 2011), posterior-driven models (Bergstra et al., 2011; Souza et al., 2021a), and search space

warping (Ramachandran et al., 2020). More recently, Hvarfner et al. (2022) and Mallik et al. (2023)

introduced 𝜋BO and PriorBand, extending BO and Hyperband (Li et al., 2017) respectively, thereby

addressing limitations of preceding approaches, most importantly through robustness and flexibility.

Lastly, extending these approaches, the first methods in the direction of interactive BO integrate

the user dynamically into the optimization process as safeguards (Adachi et al., 2024; Xu et al.,

2024). However, these approaches do not allow users to steer the optimization process itself, but

only query the user for feedback on the configurations queried.

3 Prior-Weighted Acquisition Function

Following Hvarfner et al. (2022), we integrate user-provided prior information on the location

of the optimum by weighting the original acquisition function with a prior distribution. Given a

surrogate model
ˆ𝑓 , an acquisition function 𝛼 , and a user-specified prior 𝜋 : Λ → (0, 1], the next

point to be evaluated wrt. 𝑓 at time 𝑡 is selected by solving the following optimization problem:

argmax

𝜆∈Λ
𝛼 (𝜆) · 𝜋𝛽/𝑡 (𝜆) ,

where 𝛽 is a scaling hyperparameter. Since with 𝑡 → ∞, the weight induced by 𝜋 converges

to 1 independent of the input 𝜆, that is, the effect of the prior diminishes over time. Unlike

the work of Hvarfner et al. (2022), we assume user-specified priors 𝜋 (𝑚)
to arrive as a sequence

(𝑡 (1) , 𝜋 (1) ), (𝑡 (2) , 𝜋 (2) ), . . . , (𝑡 (𝑚) , 𝜋 (𝑚) ) at time points 𝑡 (𝑖 ) with 𝑡 (𝑖 ) ≤ 𝑡 . Provided priors are then
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stacked. This results in a dynamically-adapted acquisition function 𝛼dyna that blends the priors:

𝛼dyna(𝜆) = 𝛼 (𝜆) ·
𝑚∏
𝑖=1

(𝜋 (𝑖 ) )𝛽/(𝑡−𝑡 (𝑖 ) ) (𝜆) .
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Figure 2: Impact visualisation of priors on

the acquisition function for a total

budget of 50 trials. The priors are

provided at 𝑡 = 10, 20, and 30.

Stacking the priors as described, we can incorporate

the information given by the user at the different time

steps. The priors are then faded individually based on

their age, that is, older priors are considered less impor-

tant as shown in Fig. 2. This flexibility sets our proposed

method apart from 𝜋BO (Hvarfner et al., 2022) and Pri-

orband (Mallik et al., 2023), which consider only a prior

provided initially that decays in importance over time.

To handle spiky acquisition function distributions

caused by priors, our method also adjusts the sampling

density to capture these spikes. This ensures that promis-

ing configurations suggested by the prior are also found

during acquisition function optimization, while additionally sampling random configurations for

maintaining diversity.

4 Rejecting Priors

To safeguard against misleading priors, potentially slowing down DynaBO, we include a mechanism

to reject priors based on their feasibility. Specifically, we assess the promisingness of a prior 𝜋 (𝑚) (·)
by comparing the potential of the suggested region against the region around the best previously

found configuration, i.e., the current incumbent. We assess the potential of configurations 𝜆 ∈ Λ of

both regions in terms of the lower confidence bounds (LCB) acquisition function (Agrawal, 1995).

LCB(𝜆) = (−1) · (𝜇 (𝜆) − 𝜅𝜎 (𝜆)) ,

Here, 𝜇 (·) denotes the mean predicted with
ˆ𝑓 for 𝜆, and 𝜎 (·) the uncertainty in terms of standard

deviation. Intuitively, the LCB criterion allows us to quantify the explorative potential of the prior

region as opposed to the exploitative potential close to the current incumbent, since uncertainty

close to the incumbent is typically low. Sampling a sufficiently-sized set of candidate configurations

from normal distributions centered around the incumbent and the prior (denoted by 𝐶 ˆ𝜆
and 𝐶𝜋 (𝑚) ,

respectively), we compare the empirical expected values of both samples and accept the prior if it

exceeds a given threshold 𝜏 :

E𝜆∈𝐶
𝜋 (𝑚) [LCB(𝜆)] − E𝜆∈𝐶 ˆ𝜆

[LCB(𝜆)] ≥ 𝜏 . (1)

If 𝜏 is exceeded, the prior is accepted and vice versa. The higher 𝜏 is set, the fewer priors are

accepted by DynaBO, but also the more misleading priors can be dodged effectively. Setting 𝜏 to a

lower value lets DynaBO embrace priors more often, while making it more prone to be misled.

In summary, this approach ensures that optimization resources are not wasted on poor regions

that are already expected to perform inferior to the current incumbent region. In a practical

implementation, we envision that the user is warned against such a prior, but would have the

chance to overrule its rejection.

5 Experiment Setup

In our empirical evaluation, we compare DynaBO against the state-of-the-art 𝜋BO and vanilla

Bayesian optimization (Vanilla BO) using SMAC3 (Lindauer et al., 2022). 𝜋BO allows the user to

3



lc
be

nc
h

0 50 100 150 200
Number of Evaluations

0.05

0.10

Re
gr

et

Informative

0 50 100 150 200
Number of Evaluations

Semi-Informative

0 50 100 150 200
Number of Evaluations

Misleading
Average regret on lcbench

DynaBO, accept all priors DynaBO, accept helpful priors (  = -1) BO Vanilla BO

xg
bo

os
t

0 50 100 150 200
Number of Evaluations

0.05

0.10

Re
gr

et

Informative

0 50 100 150 200
Number of Evaluations

Semi-Informative

0 50 100 150 200
Number of Evaluations

Misleading
Average regret on rbv2_xgboost

DynaBO, accept all priors DynaBO, accept helpful priors (  = -1) BO Vanilla BO

Figure 3: Mean anytime regret for lcbench, rbv2_xgboost, rbv2_svm and rbv2_aknn. The standard
error is visualized as shaded areas.

provide prior information before the optimization process, whereas Vanilla BO is without any user

guidance. In our experiments, we evaluate various models contained in YAHPO Gym (Pfisterer

et al., 2022). A comprehensive overview of the experimental designs, along with the hardware

resources utilized, is available in Appendix B. All optimization approaches are allocated a budget of

200 trials. Approaches that utilize priors receive informative, misleading, and semi-informative

priors after 50 trials. In addition, DynaBO receives updated priors at 100 and 150 trials. Further

details about the experimental setup can be found in Appendix A.

6 Preliminary Results

In Fig. 3, we present anytime performance plots for the scenarios lcbench and xgboost. Additional
results can be found in Appendix C. The plots show the mean regret of the best incumbents found,

over the number of evaluations of the black-box function 𝑓 . We consider three different kinds of

priors, simulating an optimistic, more realistic, and pessimistic setting, respectively.

Informative Priors Overall, DynaBO variants perform superior to Vanilla BO, and equal or

superior to 𝜋BO. DynaBO outperforms its competitors both in terms of final and anytime performance.

However, false rejection of helpful priors results in decreased performance.

Semi-Informative Priors In this evaluation, both 𝜋BO and all DynaBO methods outperform

Vanilla BO on most scenarios. While DynaBO without rejection performs best, DynaBO with rejection

and 𝜋BO perform similarly. Possibly, too many informative priors are rejected.

Misleading Priors Here, Vanilla BO performs best, followed by DynaBOwith rejection, 𝜋BO, and
DynaBO without rejection, indicating that DynaBO is able to disregard misleading priors effectively.

As a general trend, DynaBOwith and without rejection perform equal to or superior to 𝜋BO. The

capability of rejecting priors, however, also comes at the risk of erroneously rejecting informative

priors. As a result, the performance of DynaBO with prior rejection falls behind that of the variant

without prior rejection, indicating that experienced users should be able to overrule the rejection.

7 Conclusion

In this work, we have presented DynaBO, a method that seamlessly incorporates user priors into

Bayesian optimization for hyperparameter optimization. To this end, it employs a generalized

acquisition function that accepts priors at any point during the optimization process. To ensure

robustness, DynaBO decays the influence of priors over time, as well as includes a prior disregarding

safeguard. Empirical results demonstrate that DynaBO outperforms both vanilla BO and BO with a

static prior, even without the safeguard; nonetheless, the further increases robustness.
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However, while our empirical evaluation considers different kinds of user priors, they are

generated synthetically and provided at prespecified time points. Additionally, our proposed prior-

rejection scheme sometimes falsely disregards helpful priors. Future work could focus on expanding

the types of supported priors and developing improved rejection mechanisms, e.g., by evaluating

prior-based configurations. Moreover, exploring the capacity of language models to encode user

preferences as priors, as well as to autonomously generate priors, similar to (Chang et al., 2025),

is a promising direction, particularly when informed by explainability methods (Sass et al., 2022;

Wever et al., 2025) or knowledge representations such as knowledge graphs (Kostovska et al., 2022).
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A Artificial Priors

To evaluate the concept of dynamic priors, we design a benchmark grounded in real hyperparameter

optimization (HPO) scenarios but with artificial, data-generated priors provided after 50, 100, and

150 priors. In our analysis, we consider three kinds of priors to design challenging experiments in

a controlled way.

Informative Priors facilitate sampling well-performing configurations. Their center is a pre-

evaluated configuration of superior performance compared to the current incumbent.

Misleading Priors are centered around configurations inferior to the current incumbent, steering

the optimization process into low-performance regions.

Semi-Informative Priors combine the idea of informative and misleading priors. They simulate

users generating both informative and misleading priors with probability 0.5. With this kind of

prior, we assume a user to provide randomly both helpful and unhelpful information.

To construct priors, we follow the idea of a preceding exploration of the search space as

proposed by Souza et al. (2021b) and Hvarfner et al. (2022). From the collected data, priors are then

constructed using a normal distribution centered around the pre-evaluated incumbents, with priors

becoming increasingly peaked as the optimization process progresses. During the optimization

process, priors are provided with respect to the current incumbent.

Detailed Prior Generation.

1. Generate prior data: For each learner 𝐴, dataset 𝐷 combination, execute explorative Bayesian

optimization runs with both the rather greedy Expected Improvement (EI) and explorative Lower

Confidence Bounds (LCB) (Papenmeier et al., 2025). For each acquisition function, run 10 seeds

for a budget of 5, 000 iterations. Then, for every algorithm, dataset combination, concatenate

the lists of incumbents and assemble a joint list sorted by ℓ .

𝐼𝐴,𝐷 = [( ˆ𝜆1, ℓ ˆ𝜆1), (
ˆ𝜆2, ℓ ˆ𝜆2

), . . . , ( ˆ𝜆𝑛, ℓ ˆ𝜆𝑛 )]

Note the abuse of notation: We denote with ℓ𝜆 the performance on the validation set

ℓ𝜆 =


1

|𝐷𝑉 |
∑︁

(𝑥,𝑦) ∈𝐷𝑉

ℓ
(
𝑦,ℎ𝜆,𝐷𝑇

(𝑥)
)

Here ℎ𝜆,𝐷𝑇
is a result of training Algorithm 𝐴 on 𝐷𝑇 using 𝜆.

2. Filter prior data: For each algorithm and dataset combination, initialize a list for the filtered

priors with the best and worst-performing incumbent. Then, greedily augment the filtered list

by adding incumbents that meet a pair-wise performance difference of at least 𝜖 = 0.05. This

results in a list of incumbents for each combination of dataset and algortihm of size𝑚 ≤ 𝑛.

𝐼
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝐴,𝐷
=

[
( ˆ𝜆 (1) , ℓ ˆ𝜆(1)

), ( ˆ𝜆 (2) , ℓ ˆ𝜆(2)
), . . . , ( ˆ𝜆 (𝑚−1) , ℓ ˆ𝜆(𝑚−1)

), ( ˆ𝜆 (𝑚) , ℓ ˆ𝜆(𝑚)
) :

( ˆ𝜆1, ℓ ˆ𝜆1) = ( ˆ𝜆 (1) , ℓ ˆ𝜆(1)
), ( ˆ𝜆 (𝑚) , ℓ ˆ𝜆(𝑚)

) = ( ˆ𝜆𝑛, ℓ ˆ𝜆𝑛 )

and |ℓ ˆ𝜆(𝑖 )
− ℓ ˆ𝜆(𝑖+1)

| ≥ 𝜖 ∀𝑖 ∈ 1, ...,𝑚 − 1

]
⊆ 𝐼𝐴,𝐷

Prior Injection. To then utilize a prior when search for hyperparameter configurations for learner

𝐴 on dataset 𝐷 , the priors are generated dynamically as follows:

1. Sample configuration to be used as a prior: Given a current optimization run, with current

incumbent configuration 𝜆+, ℓ𝜆+ select (𝜆𝑝 , ℓ𝜆𝑝 ) ∈ 𝐼
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝐴,𝐷
used as a prior.
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• For informative priors, the sampled config is better than the current incumbent, that means

ℓ
𝑝

𝜆
≥ ℓ𝜆+ .

• For misleading priors, the sampled config is worse than the current incumbent, that means

ℓ
𝑝

𝜆
≤ ℓ𝜆+ .

• For semi-informative priors, it is either informative or misleading with a chance of 0.5.

2. Build prior: We assume for each prior provided to DynaBO, the confidence of a user would grow.

In our synthetic prior generation, we therefore build the 𝑘-th prior 𝜋𝑘
as follows:

• For each hyperparameter in a search space of dimension 𝑑 , investigate the lower bounds

𝜆𝑙
1
, 𝜆𝑙

2
, ..., 𝜆𝑙

𝑑
and upper bounds 𝜆𝑢

1
, 𝜆𝑢

2
, ..., 𝜆𝑢

𝑑

• For each hyperparameter in a search space, set an independent normally distributed prior:

𝜋𝑘 = [𝜇 𝑗 , 𝜎 𝑗 ] 𝑗=𝑑𝑗=1
= [(𝜆𝑝

𝑗
,
|𝜆𝑢𝑗 − 𝜆𝑙𝑗 |
𝑘 · 5 )] 𝑗=𝑑

𝑗=1

As mentioned in Section 5, we provide three priors 𝜋1, 𝜋2, 𝜋3
in our experiments.
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B Further Experimental Design

For each model and dataset, we repeat each HPO run 30 times with different seeds. Given the

same seed DynaBO and 𝜋BO will sample identical (first) priors. We utilize 200 trials, a reasonable

amount of trials for affordable models, and three priors after 50, 100, and 150 trials. Following the

recommendations by Hvarfner et al. (2022), 𝛽 is initialized as 𝑁/10 with 𝑁 denoting the number of

overall trials. In our experimental results, we report the mean performance and standard error. All

experiments were run executed on HPC nodes equipped with Intel Xeon Skylake 6148 @2.4GHz

and 192GiB RAM, of which 2 CPU cores and 16GB RAM were allocated per run.

Our experiments are scheduled, and the results are logged in a MySQL database using the

PyExperimenter library (Tornede et al., 2023). For the YAHPO Gym data-generation runs, totalled

to 900 CPU days. For the YAHPO Gym experiment runs, we invested 760 CPU days. For the

PD1 experiments, data generation took approximately five CPU days, and the final experiments

approximately one CPU day.

B.1 Summary of the Benchmark

A learner, searchspace, and dataset overview is provided in Table 1. To focus on challenging

scenarios among YAHPO Gym datasets and reduce computational load, we preselect them by

conducting one exploration run for Expected Improvement and another for Confidence Bounds,

storing the optimal performance and the list of incumbents. To achieve this, we assess when the

performance of either run first reaches within 5fj of the final performance, and we retain only those

datasets that required more than 500 trials to reach this threshold for both runs.

Table 1: Table of scenarios with search space type and number of datasets

Scenario SearchSpace #Datasets

rbv2_super 38D: Mixed 68

rbv2_svm 6D: Mixed 14

rbv2_rpart 5D: Mixed 20

rbv2_aknn 6D: Mixed 25

rbv2_glmnet 3D: Mixed 12

rbv2_ranger 8D: Mixed 45

rbv2_xgboost 14D: Mixed 66

lcbench 7D: Numeric 14
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C Additional Empirical Results
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