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Abstract

In overparametrized models, different parameter values may result in the same loss. Pa-
rameter space symmetries are loss-invariant transformations that change the model pa-
rameters. Teleportation (Zhao et al., 2022) applies such transformations to accelerate
optimization. However, the exact mechanism behind this algorithm’s success is not well
understood. In this paper, we prove that teleportation is guaranteed to converge faster
for smooth non-convex loss functions. Additionally, teleporting to minima with different
curvatures improves generalization, which suggests a connection between the curvature
of the minima and generalization ability. Finally, we show that integrating teleportation
into optimization-based meta-learning improves convergence over traditional algorithms
that perform only local updates. Our results showcase the versatility of teleportation and
demonstrate the potential of incorporating symmetry in optimization.

1. Introduction

Given a deep neural network architecture and a batch of data, there may exist multiple
points in the parameter space that correspond to the same loss value. Despite having
the same loss, the gradients and learning dynamics starting at these points can be very
different (Kunin et al., 2021). Parameter space symmetries, which are transformations of
the parameters that leave the loss function invariant, allow us to teleport between points in
the parameter space on the same level set of the loss function (Armenta et al., 2023; Zhao
et al., 2022). In particular, teleporting to a steeper point in the loss landscape leads to
faster optimization.

Despite empirical evidence, the exact mechanism of how teleportation improves conver-
gence in optimizing non-convex objectives remains elusive. Previous work shows that the
gradient increases momentarily after a single teleportation step, but could not show that
this results in overall faster convergence (Zhao et al., 2022). In the first part of this paper,
we provide theoretical guarantees on the convergence rate of teleportation. In particular,
we show that SGD (stochastic gradient descent) with teleportation converges to a basin
of stationary points, where every parameter that can be reached by teleportation is also a
stationary point.
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Previous applications of teleportation are limited to accelerating optimization. The sec-
ond part of this paper explores a different objective – improving generalization. We relate
the properties of minima to their generalization ability and optimize them using teleporta-
tion. We empirically verify that certain sharpness metrics are correlated with generalization
(Keskar et al., 2017) and that teleporting towards flatter regions improves validation loss.
Additionally, we hypothesize that generalization also depends on the curvature of minima.
For fully connected networks, we derive an explicit expression for estimating curvatures and
show that teleporting towards larger curvatures improves the model’s generalizability.

In previous works, teleportation requires optimization on the group manifold which can
be computationally expensive. In the last part of this work, we explore the possibility of
teleporting without implementing this optimization. Inspired by optimization-based meta-
learning (Andrychowicz et al., 2016), we propose a meta-optimizer that learns the group
element used to teleport. Our result suggests that non-local updates via a learned telepor-
tation have the potential to outperform the current practice of updating parameters only
locally.

2. Theoretical Guarantees for Improving Optimization

In this section, we provide theoretical analysis of teleportation. We show that with telepor-
tation, SGD converges to a basin of stationary points. Moreover, in certain loss functions,
one teleportation guarantees optimality of the entire gradient flow trajectory.

Teleportation We briefly review the teleportation algorithm (Zhao et al., 2022) that
exploits parameter symmetry to accelerate optimization. Consider the optimization problem

w∗ = argmin
w∈Rd

L(w), L(w) def
= Eξ∼D [L(w, ξ)] (1)

where D is the data distribution, ξ is data sampled from D, L the loss, w the parameters of
the model, and Rd the parameter space. Let G be a group acting on the parameter space that
preserves the loss: L(w) = L(g ·w),∀g ∈ G, ∀w ∈ Rd. Symmetry teleportation transforms
the parameters by the group element g that maximizes the magnitude of gradients:

w′ =g · w, g = argmax
g∈G

∥∇L(g · w)∥2. (2)

This optimization is usually implemented using gradient ascent on g. One gradient ascent
step in a single teleportation has the same time complexity as one step of back-propagation
of L (Zhao et al., 2022).

2.1. Accelerating SGD on smooth nonconvex loss functions

At each iteration t ∈ N+ in SGD, we choose a group element gt ∈ G and use teleportation
before each gradient step as follows

wt+1 = gt · wt − η∇L(gt · wt, ξt). (3)

Here η is a learning rate, ∇L(wt, ξt) is a gradient of L(wt, ξt) with respect to the parameters
w, and ξt ∼ D is a mini-batch of data sampled i.i.d at each iteration. By choosing the group
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element that maximizes the gradient norm, the iterates (3) converge to a basin of stationary
points, where all points that can be reached via teleportation are also stationary points.

Theorem 1 Let L(w, ξ) be β–smooth and let σ2
def
= L(w∗)−E [infw L(w, ξ)] . Consider the

iterates wt given by equation 3 where gt ∈ argmaxg∈G∥∇L(g · wt)∥2. If η = 1
β
√
T−1

then

min
t=0,...,T−1

E
[
max
g∈G
∥∇L(g · wt)∥2

]
≤ 2β√

T − 1
E
[
L(w0)− L(w∗)

]
+

βσ2√
T − 1

(4)

where the expectation is the total expectation with respect to the data ξt for t = 0, . . . , T −1.

Theorem 1 is an improvement over vanilla SGD, for which we would have instead that

min
t=0,...,T−1

E
[
∥∇L(wt)∥2

]
≤ 2β√

T − 1
E
[
L(w0)− L(w∗)

]
+

βσ2√
T − 1

. (5)

Equation (5) only guarantees that there exists a single point wt for which the gradient norm
will eventually be small. In contrast, our result in equation 4 guarantees that for all points
over the orbit {g · θt : ∀g ∈ G}, the gradient norm will be small. For strictly convex
loss functions, maxg∈G∥∇L(g · w)∥2 is non-decreasing with L(w). In this case, the value of
L is smaller after T steps of SGD with teleportation than vanilla SGD (Proposition 6 in
Appendix B).

2.2. When is one teleportation enough

Despite the guaranteed improvement in convergence rate, teleporting at every step in gra-
dient descent is not computationally feasible. In this section, we give a sufficient condition
for when one teleportation results in an optimal trajectory for general loss functions.

Let V : M −→ TM be a vector field on the manifold M, where TM denotes the
associated tangent bundle. Here we consider the parameter spaceM = Rn, but results in
this section can be extended to optimization on other manifolds. In this case, we may write
V = vi ∂

∂wi using the component functions vi : Rn −→ R and coordinates wi.
Consider a smooth loss function L : Rn −→ R. Let X be the set of all vector fields on Rn.

Let R = ri ∂
∂wi , where r

i = − ∂L
∂wi

, be the reverse gradient vector field. A gradient flow is a
curve γ : R −→ Rn where the velocity is the value of R, i.e. γ′(t) = Rγ(t) for all t ∈ R.

Let G be a continuous symmetry group of L, i.e. L(g ·w) = L(w) for all w ∈ M and
g ∈ G. The infinitesimal action of its Lie algebra g defines a set of vector fields Xg. To
simplify notations, we write ([W,R]L)(w) = 0 for a set of vector fields W ⊆ X when the Lie
bracket ([A,R]L)(w) = 0 for all A ∈ W . We call a gradient flow optimal if every point on
the flow is a critical point of the function that maps a point in a level set to the magnitude
of gradient at that point.

Definition 2 Let f :M−→ R, f(w) 7→
∥∥ ∂L
∂w

∥∥2
2
. A point w ∈M is optimal with respect to

a set of vector fields W if Af(w) = 0 for all A ∈W . A gradient flow γ : R −→M is optimal
with respect to W if γ(t) is optimal with respect to W for all t ∈ R.

Theorem 3 A point w ∈M is optimal with respect to a set of vector fields W if and only
if ([W,R]L)(w) = 0.

3



Zhao Gower Walters Yu

The following proposition states that a sufficient condition for one teleportation to result
in an optimal trajectory is that whenever [W,R]L vanishes at w ∈M, it vanishes along the
entire gradient flow starting at w. Proofs and discussions can be found in Appendix C.

Proposition 4 Let W ⊆ X⊥ be a set of vector fields that are orthogonal to ∂L
∂w . Assume

that for all w ∈ M such that ([W,R]L)(w) = 0, we have (R[W,R]L)(w) = 0. Then the
gradient flow starting at any optimal point with respect to W is optimal with respect to W .

3. Teleportation for Improving Generalization

Teleportation was originally proposed to speed up optimization. In this section, we explore
the suitability of teleportation for improving generalization by teleporting parameters to
regions with different sharpness and curvature. We define sharpness as the change in the
loss value averaged over random directions as in Izmailov et al. (2018). We then provide
a novel method to estimate the curvature of the minima by averaging the curvature of the
curves on minima, whose velocities are defined by infinitesimal group actions (curve γ in
Figure 1 left). Details of these curves and experiment setups can be found in Appendix E.

Figure 1 shows the training curve of SGD on CIFAR-10, with one teleportation at epoch
20. Teleporting to flatter points slightly improves the validation loss, while teleporting to
a sharper point has no effect. Interestingly, teleportation that changes curvature is able to
affect generalization. Teleporting to points with larger curvatures helps find a minimum with
lower validation loss, while teleporting to points with smaller curvatures has the opposite
effect. This suggests that at least locally, curvature is correlated with generalization.
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Figure 1: Left: gradient flow (L) and a curve on the minimum (γ). Middle and right:
changing sharpness or curvature using teleportation and its effect on generalization on
CIFAR-10. Solid lines represent average test loss, and dashed lines represent training loss.

4. Learning to Teleport

In optimization-based meta-learning, the parameter update rule or hyperparameters are
learned with a meta-optimizer (Andrychowicz et al., 2016; Finn et al., 2017). Teleportation
introduces an additional degree of freedom in parameter updates. We augment existing
meta-learning algorithms by learning both the local update and teleportation. This allows
us to teleport without implementing the additional optimization step on groups, which
reduces computation time.
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Let wt ∈ Rd be the parameters at time t, and ∇t = ∂L
∂w

∣∣
wt

be the gradient of loss
L. Let G be a group whose action on the parameter space leaves L invariant. Extending
meta-learning beyond an additive update rule, we train two meta-optimizers m1,m2 with
hidden states h1, h2 to learn the update direction ft ∈ Rd and the group element gt ∈ G:

wt+1 = gt · (wt + ft)

[
ft

h1t+1

]
= m1(∇t, h1t),

[
gt

h2t+1

]
= m2(∇t, h2t). (6)

Figure 2: Performance of meta-
optimizers on test data. Learn-
ing both local and nonlocal
transformation results in better
convergence rate than learning
only local updates or only tele-
portation.

We train and test on small fully connected neural
networks, with details deferred to Appendix F. Com-
pared to vanilla gradient descent (“GD”), learning only
the local update ft (“LSTM(update)”), and learning
only the group element gt along with SGD learning rate
(“LSTM(lr,tele)”), learning the two types of updates
together (“LSTM(update,tele)”) achieves better conver-
gence rate (Figure 2). Our result suggests that augment-
ing existing optimization techniques with non-local up-
dates can be beneficial.

5. Conclusion & Discussion

Teleportation provides a powerful tool to search on the
loss level sets for parameters with desired properties. We
provide theoretical guarantees that teleportation accel-
erates the convergence rate of SGD. Using concepts in
symmetry, we propose a distinct notion of curvature and
show that incorporating additional teleportation objectives such as changing the curvatures
can be beneficial to generalization. The close relationship between symmetry and optimiza-
tion opens up a number of exciting opportunities. Exploring other objectives appears to
be an interesting future direction. Another potential application is to extend teleportation
to different architectures, such as convolutional or graph neural networks, and different
algorithms, such as sampling-based optimization.

The empirical results linking sharpness and curvatures to generalization are intriguing.
However, the theoretical origin of their relation remains unclear. In particular, a precise
description of how the loss landscape changes under distribution shifts is not known. More
investigation of the correlation between curvatures and generalization will help teleportation
further improve generalization and lead to a better understanding of the loss landscape.
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Appendix A. Related Work

Parameter space symmetry Various symmetries have been identified in neural net-
works. Permutation symmetry has been linked to the structure of minima (Şimşek et al.,
2021; Entezari et al., 2022). Continuous symmetries are identified in various architectures,
including homogeneous activations (Badrinarayanan et al., 2015; Du et al., 2018), radial
rescaling activations (Ganev et al., 2022), and softmax and batch norm functions (Kunin
et al., 2021). Quiver representation theory provides a more general framework for symme-
tries in neural networks with point-wise (Armenta and Jodoin, 2021) and rescaling activa-
tions (Ganev and Walters, 2022). A new class of nonlinear and data-dependent symmetries
is identified in (Zhao et al., 2023). Since symmetry defines transformations of parameters
within a level set of the loss function, these works are the basis of the teleportation method
used in our paper.

Knowledge of parameter space symmetry motivates new optimization methods. One line
of work seeks algorithms that are invariant to symmetry transformations (Neyshabur et al.,
2015; Meng et al., 2019). Others search in the orbit for parameters that can be optimized
faster (Armenta et al., 2023; Zhao et al., 2022). We build on the latter by providing
theoretical analysis on the improvement of the convergence rate and by augmenting the
teleportation objective to improve generalization.

Initializations and restarts Teleportation before training changes the initialization of
parameters. Initialization is known to affect both optimization and generalization. For
example, imbalance between layers at initialization affects the convergence of gradient flows
in two-layer models (Tarmoun et al., 2021). Different initializations, among other sources
of variance, lead to different model performances after convergence (Dodge et al., 2020;
Bouthillier et al., 2021). The Fourier spectrum at initialization is related to generalization
because different frequency functions are learned at different rates (Ramasinghe et al., 2022).
For shallow networks, certain initialization is required to learn symmetric functions with
generalization guarantees (Nachum and Yehudayoff, 2021). Teleportation during training
re-initializes the parameters to a point with the same loss. A similar effect is achieved by
warm restart, (Loshchilov and Hutter, 2017), which encourages the parameters to move to
more stable regions by periodically increasing the learning rate. Compared to initialization
methods, teleportation allows multiple changes in the landscape during the training. Com-
pared to restarts, teleportation leads to a smaller temporary increase in loss and provides
more control of where to move the parameters.
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Sharpness of minima and generalization The sharpness of minima has been linked
to the generalization ability of models both empirically and theoretically (Hochreiter and
Schmidhuber, 1997; Keskar et al., 2017; Petzka et al., 2021; Zhou et al., 2020), which
motivates optimization methods that find flatter minima (Chaudhari et al., 2017; Foret
et al., 2021; Kwon et al., 2021; Kim et al., 2022). We employ teleportation in service of this
goal by searching for flatter points along the loss level sets. The sharpness of a minimum is
often defined by properties of the Hessian of the loss function, such as the number of small
eigenvalues (Keskar et al., 2017; Chaudhari et al., 2017; Sagun et al., 2017) or the product of
the top k eigenvalues Wu et al. (2017). Alternatively, sharpness can be characterized by the
maximum loss within a neighborhood of a minimum (Keskar et al., 2017; Foret et al., 2021;
Kim et al., 2022) or approximated by the growth in the loss curve averaged over random
directions (Izmailov et al., 2018). The sharpness of the minima does not always explain
generalization (Dinh et al., 2017). Transformation of parameters that keep the function
unchanged does not affect generalization but can lead to minima with different sharpness.

Appendix B. Proof of Theorem 1 and Additional Discussion

Lemma 5 (Descent Lemma) Let L(w, ξ) be β–smooth function. It follows that

E
[
∥∇L(w, ξ)∥2

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
). (7)

Proof Since L(w, ξ) is smooth we have that

L(z, ξ)− L(w, ξ) ≤ ⟨∇L(w, ξ), z − w⟩+ β

2
∥z − w∥2, ∀z, w ∈ Rd. (8)

By inserting

z = w − 1

β
∇L(w, ξ)

into equation 8 we have that

L
(
w − (1/β)∇L(w, ξ)

)
≤ L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2. (9)

Re-arranging we have that

L(w∗, ξ)− L(w, ξ) = L(w∗, ξ)− inf
w
L(w, ξ) + inf

w
L(w, ξ)− L(w, ξ)

≤ L(w∗, ξ)− inf
w
L(w, ξ) + L

(
w − (1/β)∇L(w, ξ)

)
− L(w, ξ)

equation 9
≤ L(w∗, ξ)− inf

w
L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2,

where the first inequality follows because infw L(w, ξ) ≤ L(w, ξ),∀w. Re-arranging the above
and taking expectation gives

E
[
∥∇L(w, ξ)∥2

]
≤ 2E

[
β(L(w∗, ξ)− inf

w
L(w, ξ) + L(w, ξ)− L(w∗, ξ))

]
≤ 2βE

[
L(w∗, ξ)− inf

w
L(w, ξ) + L(w, ξ)− L(w∗, ξ)

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
).
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Proof of Theorem 1.

Proof First note that if L(w, ξ) is β–smooth, then L(w) is also a β–smooth function, that
is

L(z)− L(w)− ⟨∇L(w), z − w⟩ ≤ β

2
∥z − w∥2. (10)

Using equation 3 with z = wt+1 and w = gt ·wt, together with equation 10 and the definition
of symmetry, we have that

L(wt+1) ≤ L(gt · wt) +
〈
∇L(gt · wt), wt+1 − gt · wt

〉
+
β

2
∥wt+1 − gt · wt∥2 (11)

= L(wt)− ηt
〈
∇L(gt · wt),∇L(gt · wt, ξt)

〉
+
βη2t
2
∥∇L(gt · wt, ξt)∥2. (12)

Taking expectation conditioned on wt, we have that

Et

[
L(wt+1)

]
≤ L(wt)− ηt∥∇L(gt · wt)∥2 + βη2t

2
Et

[
∥∇L(gt · wt, ξt)∥2

]
. (13)

Now since L(w, ξ) is β–smooth, from Lemma 5 below we have that

E
[
∥∇L(w, ξ)∥2

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
) (14)

Using equation 14 with w = gt ◦ wt we have that

Et

[
L(wt+1)

]
≤ L(wt)− ηt∥∇L(gt · wt)∥2

+ β2η2t

(
L(gt · wt)− L(w∗) + L(w∗)− E

[
inf
w
L(w, ξ)

])
. (15)

Using that L(gt · wt) = L(wt), taking full expectation and re-arranging terms gives

ηtE
[
∥∇L(gt · wt)∥2

]
≤ (1 + β2η2t )E

[
L(wt)− L∗

]
− E

[
L(wt+1)− L∗

]
+ β2η2t σ

2. (16)

Now we use a re-weighting trick introduced in Stich (2019). Let αt > 0 be a sequence such
that αt(1+β

2η2t ) = αt−1. Consequently if α−1 = 1 then αt = (1+β2η2t )
−(t+1) . Multiplying

by both sides of equation 16 by αt thus gives

αtηtE
[
∥∇L(gt · wt)∥2

]
≤ αt−1E

[
L(wt)− L∗

]
− αtE

[
L(wt+1)− L∗

]
+ αtβ

2η2t σ
2. (17)

Summing up from t = 0, . . . , T − 1, and using telescopic cancellation, gives

T−1∑
t=0

αtηtE
[
∥∇L(gt · wt)∥2

]
≤ E

[
L(w0)− L∗

]
+ β2σ2

T−1∑
t=0

αtη
2
t (18)

11
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Let A =
∑T−1

t=0 αtηt. Dividing both sides by A gives

min
t=0,...,T−1

E
[
∥∇L(gt · wt)∥2

]
≤ 1∑T−1

t=0 αtηt

T−1∑
t=0

αtηt∥∇L(gt · wt)∥2

≤
E
[
L(w0)− L∗

]
+ β2σ2

∑T−1
t=0 αtη

2
t∑T−1

t=0 αtηt
. (19)

Finally, if ηt ≡ η then

T−1∑
t=0

αtηt = η

T−1∑
t=0

(1 + β2η2t )
−(t+1) =

η

1 + β2η2
1− (1 + β2η2)−T

1− (1 + β2η2)−1
(20)

=
1− (1 + β2η2)−T

β2η
(21)

To bound the term with the −T power, we use that

(1 + β2η2)−T ≤ 1

2
=⇒ log(2)

log(1 + β2η2)
≤ T.

To simplify the above expression we can use

x

1 + x
≤ log(1 + x) ≤ x, for x ≥ −1,

thus
log(2)

log(1 + β2η2)
≤ 1 + β2η2

β2η2
≤ T.

Using the above we have that

T−1∑
t=0

αtηt ≥
1

2β2η
, for T ≥ 1 + β2η2

β2η2

Using this lower bound in equation 19 gives

min
t=0,...,T−1

E
[
∥∇L(gt · wt)∥2

]
≤ 2β2ηE

[
L(w0)− L∗

]
+ ηβ2σ2, for T ≥ 1 + β2η2

β2η2
.

Now note that

T ≥ 1 + β2η2

β2η2
⇔ β2η2(T − 1) ≥ 1⇔ η ≥ 1

β
√
(T − 1)

.

Thus finally setting η = 1
β
√
T−1

gives the result equation 4.

Proposition 6 Assume that L : Rn −→ R is strictly convex and twice continuously differ-
entiable. Assume also that for any two points wa, wb ∈ Rn such that L(wa) = L(wb), there
exists a g ∈ G such that wa = g ·wb. At two points w1, w2 ∈ Rn, if maxg∈G∥∇L(g ·w1)∥2 =
∥∇L(w2)∥2, then L(w1) ≤ L(w2).

12



Improving Convergence and Generalization Using Parameter Symmetries

Proof Let S(x) = {w : L(w) = x} be the level sets of L, and X = {L(w) : w ∈ Rn} be
the image of L. Since G acts transitively on the level sets of L, maxg∈G∥∇L(g · w)∥2 =
maxw∈S(x)∥∇L(w)∥2. To simplify notation, we define a function F : X −→ R, F (x) =
maxw∈S(x)∥∇L(w)∥2. Since ∇L(w) is continuously differentiable, the directional derivative
of F is defined. Additionally, since L is continuous and its domain Rn is connected, its
image X is also connected. This means that for any w1, w2 ∈ Rn and min(L(w1),L(w2)) ≤
y ≤ max(L(w1),L(w2)), there exists a w3 ∈ Rn such that L(w3) = y.

Next, we show that F (·) is strictly increasing by contradiction.
Suppose that L(w1) < L(w2) and F (L(w1)) ≥ F (L(w2)). By the mean value theorem,

there exists a w3 such that L(w1) < L(w3) < L(w2) and the directional derivative of
F in the direction towards L(w2) is non-positive: ∂L(w2)−L(w3)F (L(w3)) ≤ 0. Let w∗

3 ∈
argmaxw∈S(L(w3))∥∇L(w)∥

2 be a point that has the largest gradient norm in S(L(w3)).

Then at w∗
3, ∥∇L∥2 cannot increase along the gradient direction. However, this means

∇L(w∗
3) ·

∂

∂w
∥∇L(w∗

3)∥2 = ∇L(w∗
3)

TH∇L(w∗
3) ≤ 0. (22)

Since we assumed that L is convex and L(w∗
3) is not a minimum (L(w∗

3) > L(w1)), we have
that ∇L(w∗

3) ̸= 0. Therefore, equation 22 contradicts with L being strictly convex, and we
have F (L(w1)) < F (L(w2)).

We have shown that L(w1) < L(w2) implies F (L(w1)) < F (L(w2)). Taking the contra-
positive and switching w1 and w2, F (L(w1)) ≤ F (L(w2)) implies L(w1) ≤ L(w2). Equiva-
lently, maxg∈G∥∇L(g · w1)∥2 ≤ maxg∈G∥∇L(g · w2)∥2 implies that L(w1) ≤ L(w2).

Finally, since

max
g∈G
∥∇L(g · w1)∥2 = ∥∇L(w2)∥2 ≤ max

g∈G
∥∇L(g · w2)∥2, (23)

we have L(w1) ≤ L(w2).

Appendix C. Is one teleportation enough to find the optimal trajectory?

This section provides additional mathematical background and proofs omitted in Section
2.2. We also discuss alternative methods to check whether one teleportation is sufficient
and when the conditions are satisfied in practice.

Consider a smooth loss function L : M −→ R. Let G be a symmetry group of L, i.e.
L(g ·w) = L(w) for all w ∈M and g ∈ G. Let X be the set of all vector fields onM. Let
R = ri ∂

∂wi , where r
i = − ∂L

∂wi
, be the reverse gradient vector field. Let X⊥ = {A = ai ∂

∂wi ∈
X| ai ∈ C∞(M) and

∑
i a

i(w)ri(w) = 0,∀w ∈ M} be the set of vector fields orthogonal
to R. If G is a Lie group, the infinitesimal action of its Lie algebra g defines a set of vector
fields Xg ⊆ X⊥.

A gradient flow is a curve γ : R −→ M where the velocity is the value of R at each
point, i.e. γ′(t) = Rγ(t) for all t ∈ R. The Lie bracket [A,R] defines the derivative of R
with respect to A. Flows of A and R commute if and only if [A,R] = 0 (Theorem 9.44,
Lee (2013)). That is, teleportation can affect the convergence rate only if [A,R]L ̸= 0 for
at least one A ∈ Xg. To simplify notations, we write ([W,R]L)(w) = 0 for a set of vector
fields W ⊆ X when ([A,R]L)(w) = 0 for all A ∈W .

13
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Theorem 7 (Theorem 3 in main text) A point w ∈ M is optimal in a set of vector fields
W if and only if [A,R]L(w) = 0 for all A ∈W .

Proof Note that AL = ai ∂L
∂wi = 0. We have

[A,R]L = ARL −RAL = A

(
ri
∂L
∂wi

)
− 0 = −A

∥∥∥∥ ∂L∂w
∥∥∥∥2
2

= −Af. (24)

The result then follows from Definition 2.

Proposition 8 (Proposition 4 in main text) Let W ⊆ X⊥ be a set of vector fields that
are orthogonal to the gradient of L. If [A,R]L(w) = 0 for all A ∈ W implies that
R([A,R]L)(w) = 0 for all A ∈ W , then the gradient flow starting at an optimal point
in W is optimal in W .

Proof Consider the gradient flow γ that starts at an optimal point in W . The derivative
of [A,R]L along γ is

d

dt
[A,R]L(γ(t)) = γ′(t)([A,R]L)(γ(t)) = −R[A,R]L(γ(t)). (25)

Since γ(0) is an optimal point, [A,R]L(γ(0)) = 0 for all A ∈ W by Proposition 3.
By assumption, if [A,R]L(γ(t)) = 0 for all A ∈ W , then R([A,R]L)(γ(t)) = 0 for all
A ∈ W . Therefore, both the value and the derivative of [A,R]L stay 0 along γ. Since
[A,R]L(γ(t)) = 0 for all t ∈ R, γ is optimal in W .

To help check when Proposition 4 is satisfied, we provide an alternative form ofR[A,R]L(w)
under the assumption that [A,R]L(w) = 0. We will use the following lemmas in the proof.

Lemma 9 For two vectors v,w ∈ Rn, if vTw = 0 and w ̸= 0, then there exists an
anti-symmetric matrix M ∈ Rn×n such that v =Mw.

Proof Let w0 = [1, 0, ..., 0]T ∈ Rn. Consider a list of n − 1 anti-symmetric matrices
Mi ∈ Rn×n, where

M k
ij =


−1, if j = 1 and k = i+ 1

1, if j = i+ 1 and k = 1

0, otherwise

(26)

In matrix form, the Mi’s are

M1 =


0 −1 0 ... 0
1 0 0 ... 0
0 0 0 ... 0

...
0 0 0 ... 0

 ,M2 =


0 0 −1 ... 0
0 0 0 ... 0
1 0 0 ... 0

...
0 0 0 ... 0

 , ...,Mn−1 =


0 0 0 ... −1
0 0 0 ... 0
0 0 0 ... 0

...
1 0 0 ... 0

 .
(27)

14
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Since Mi’s are anti-symmetric, Miw0 is orthogonal to w0. The norm of Miw0 = ei+1 is 1.
Additionally, Miw0 is orthogonal to Mjw0 for i ̸= j:

(Miw0)
T (Mjw0) = eTi+1ej+1 = δij . (28)

Denote w⊥
0 = {x ∈ Rn : xTw0 = 0} as the orthogonal complement of w0. Then Miw0

forms a basis of w⊥
0 . Next, we extend this to an arbitrary w ∈ Rn.

Let ŵ = w
∥w∥2 . Since ŵ has norm 1, there exists an orthogonal matrix R such that

ŵ = Rw0. Let M
′
i = RMiR

T . Then M ′
i is anti-symmetric:

(RMiR
T )T = RMT

i R
T = −RMiR

T . (29)

It follows that M ′
iŵ is orthogonal to ŵ. The norm of M ′

iŵ is ∥(RMiR
T )(Rw0)∥ =

∥RMiw0∥ = ∥Miw0∥ = 1. Additionally, M ′
iŵ is orthogonal to M ′

jŵ for i ̸= j:

(M ′
iŵ)T (M ′

jŵ) = (RMiR
TRw0)

T (RMjR
TRw0)

= wT
0 R

TRMT
i R

TRMjR
TRw0

= wT
0M

T
i Mjw0

= δij . (30)

Therefore, M ′
iŵ spans ŵ⊥ = w⊥. This means that any vector v ∈ w⊥ can be written as a

linear combination of M ′
iŵ. That is, there exists k1, ..., kn ∈ R, such that v =

∑
i ki(M

′
iŵ).

To find the anti-symmetric M that takes w to v, note that

v =

(∑
i

kiM
′
i

)
ŵ =

(
∥w∥−1

2

∑
i

kiM
′
i

)
w. (31)

Since the sum of anti-symmetric matrices is anti-symmetric, and the product of an anti-
symmetric matrix and a scalar is also anti-symmetric, ∥w∥−1

2

∑
i kiM

′
i is anti-symmetric.

Lemma 10 Let v ∈ Rn be a nonzero vector. Then the two sets {Mv : M ∈ Rn×n,MT =
−M} and {w ∈ Rn : wTv = 0} are equal.

Proof Let A = {Mv : M ∈ Rn×n,MT = M−1} and B = {w ∈ Rn : wTv = 0}. Since
(Mv)Tv = 0 for all anti-symmetric M , every element in A is in B. By Lemma 9, every
element in B is in A. Therefore A = B.

Let S = {(M ∂L
∂w )i ∂

∂wi ∈ X| M ∈ Rn×n,MT = −M} be the set of vector fields con-

structed by multiplying the gradient by an anti-symmetric matrix. Recall that R = − ∂L
∂wi

∂
∂wi

is the reverse gradient vector field, and X⊥ = {ai ∂
∂wi |

∑
i a

i(w)∂L(w)
∂wi = 0,∀w ∈M} is the

set of all vector fields orthogonal to R. From Lemma 10, we have S = X⊥. Therefore, a
point w is an optimal point in S if and only if w is an optimal point in X⊥.

We are now ready to prove the following proposition, which provides another way to
check the condition in Proposition 4.
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Proposition 11 If at all optimal points in S,

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

= 0 (32)

for all anti-symmetric matrix M ∈ Rn×n, then the gradient flow starting at an optimal point
in S is optimal in S.

Proof Expanding R[A,R]L, we have

R[A,R]L = R

(
A

(
ri
∂L
∂wi

)
− 0

)
= rk

∂

∂wk

(
aj

∂

∂wj

(
ri
∂L
∂wi

))
= rk

∂

∂wk

(
aj
(
∂ri

∂wj

∂L
∂wi

+ ri
∂

∂wj

∂L
∂wi

))
= −rk ∂

∂wk

(
aj
((

∂

∂wj

∂L
∂wi

)
∂L
∂wi

+
∂L
∂wi

∂

∂wj

∂L
∂wi

))
= −2rk ∂

∂wk

(
aj

∂2L
∂wi∂wj

∂L
∂wi

)
= −2rk

(
∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

+ aj
∂

∂wk

(
∂2L

∂wi∂wj

∂L
∂wi

))
= 2

∂L
∂wk

∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

+ 2
∂L
∂wk

aj
∂

∂wk

(
∂2L

∂wi∂wj

∂L
∂wi

)
(33)

Assume that w is an optimal point in S. By Lemma 10, w is also an optimal point in
X⊥. By Lemma C.4 in Zhao et al. (2022), ∂L

∂w is an eigenvector of ∂2L
∂wi∂wj . Therefore,

∂2L
∂wi∂wj

∂L
∂wi = λ ∂L

∂wj for some λ ∈ C. Additionally, aj = M j
α

∂L
∂wα

and ∂aj

∂wk = M j
α

∂2L
∂wα∂wk . We

are now ready to simplify both terms in equation 33.

For the first term in equation 33,

∂L
∂wk

∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

=
∂L
∂wk

M j
α

∂2L
∂wα∂wk

∂2L
∂wi∂wj

∂L
∂wi

=M j
α

(
∂2L

∂wα∂wk

∂L
∂wk

)(
∂2L

∂wi∂wj

∂L
∂wi

)
=M j

α

(
λ1

∂L
∂wα

)(
λ2

∂L
∂wj

)
= λ1λ2M

j
α

∂L
∂wα

∂L
∂wj

= 0 (34)

The last equality holds because M is anti-symmetric.
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For the second term in equation 33,

∂L
∂wk

aj
∂

∂wk

(
∂2L

∂wi∂wj

∂L
∂wi

)
=

∂L
∂wk

aj
(

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∂2L

∂wi∂wj

∂2L
∂wk∂wi

)
=

∂L
∂wk

M j
α

∂L
∂wα

(
∂3L

∂wk∂wi∂wj

∂L
∂wi

+
∂2L

∂wi∂wj

∂2L
∂wk∂wi

)
=M j

α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+ λ1λ2M
j
α

∂L
∂wα

∂L
∂wj

=M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

(35)

In summary,

R[A,R]L = 2M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

. (36)

Since we assumed that [A,R]L(w) = 0, when R[A,R]L(w) = 0 for all A ∈ S, the gradient
flow starting at an optimal point in S is optimal in S.

Proposition 12 Suppose that ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj holds for all i, k, j, α. Then

for all anti-symmetric matrices M ∈ Rn×n, M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi = 0.

Proof If ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all i, k, j, α, then

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,α>j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

Mα
j

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

−M j
α

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wi

(
∂L
∂wα

∂3L
∂wk∂wi∂wj

− ∂L
∂wj

∂3L
∂wk∂wi∂wα

)
= 0,

where the first equality uses that the diagonal of an anti-symmetric matrix is 0, the second
equality swaps α and j in the second term, the third equality uses thatM is anti-symmetric.

From Proposition 11, we see thatR[W,R]L(w) is not automatically 0 when [W,R]L(w) =
0. Therefore, even if the group is big enough, one teleportation does not guarantee that
the gradient flow intersects all future level sets at an optimal point. However, for loss func-
tions that satisfy R[W,R]L(w) = 0 when [W,R]L(w) = 0, teleporting once optimizes the

entire trajectory. This is the case, for example, when ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all

i, k, j, α (Proposition 12). In particular, all quadratic functions meet this condition.
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Example (Quadratic function) Consider the quadratic function L(w) = 1
2w

TAw +
bTw + c, where A ∈ Rn×n is symmetric, b, c ∈ Rn, and w ∈ Rn. Two examples of
quadratic functions are the ellipse Le(w1, w2) = 1

2(w
2
1 + λ2w2

2) and the Booth function
Lb(w1, w2) = (w1 + 2w2 − 7)2 + (2w1 + w2 − 5)2. Since the third derivative of L is 0, one
teleportation guarantees optimal trajectory.

Appendix D. Group Actions and Curves on Minima

D.1. Group actions for MLP

Consider a multi-layer neural network with elementwise activation function σ. The output of
the mth layer is hm = σ(Wmhm−1), where Wm ∈ Rdm×dm−1 is the weight, hm−1 ∈ Rdm−1×k

is the output of the m− 1th layer, and h0 ∈ Rd0×k is the data. There are at least two ways
to define a GLdm−1(R) symmetry acting onWm andWm−1. Unless stated otherwise, we use
the second group action since it does not require σ to be invertible. We use pseudoinverses
in experiments.

Group action 1 (Zhao et al., 2022). Assume that hm−2 is invertible and σ is bijective.
For gm ∈ GLdm−1(R),

gm ·Wk =


Wmg

−1
m k = m

σ−1 (gmσ (Wm−1hm−2))h
−1
m−2 k = m− 1

Wk k ̸∈ {m,m− 1}
(37)

Group action 2 Assume that gmσ (Wm−1hm−2) is invertible. For gm ∈ GLdm−1(R),

gm ·Wk =

 Wmσ (Wm−1hm−2)σ (gmWm−1hm−2)
−1 k = m

gmWm−1 k = m− 1
Wk k ̸∈ {m,m− 1}

(38)

D.2. Curvature

The curvature of a curve γ : R −→ Rn is κ(t) = ∥T ′(t)∥
∥γ′(t)∥ , where T (t) = γ′(t)

∥γ′(t)∥ is the unit

tangent vector. The curvature can be written as a function of γ′ and γ′′ (Aléssio, 2012;
Shelekhov, 2021):

κ(t) =

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2

∥γ′∥3
. (39)

D.3. The derivative of curvature

To compute the derivative of κ(t), we first list the derivatives of a few commonly used terms:

d

dt
∥γ′∥2 = d

dt
(γ′1

2
+ γ′2

2
+ γ′3

2
+ ...) = 2γ′1γ

′′
1 + 2γ′2γ

′′
2 + 2γ′3γ

′′
3 + ... = 2γ′ · γ′′

d

dt
∥γ′′∥2 = d

dt
(γ′′1

2
+ γ′′2

2
+ γ′′3

2
+ ...) = 2γ′′1γ

′′′
1 + 2γ′′2γ

′′′
2 + 2γ′′3γ

′′′
3 + ... = 2γ′′ · γ′′′

d

dt
(γ′ · γ′′) = d

dt
(γ′1γ

′′
1 + γ′2γ

′′
2 + γ′3γ

′′
3 ...) = γ′1γ

′′′
1 + γ′′1γ

′′
1 + ... = ∥γ′′∥2 + γ′ · γ′′′ (40)
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The derivatives of the numerator and denominator of κ are:

d

dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 =

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
d

dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]
=

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2[

∥γ′∥2 d
dt
∥γ′′∥2 + ∥γ′′∥2 d

dt
∥γ′∥2 − 2(γ′ · γ′′) d

dt
(γ′ · γ′′)

]
=

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2[

2∥γ′∥2(γ′′ · γ′′′) + 2∥γ′′∥2(γ′ · γ′′)− 2(γ′ · γ′′)(∥γ′′∥2 + γ′ · γ′′′)
]

=
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
,

(41)

and

d

dt
∥γ′∥3 = d

dt
(∥γ′∥2)

3
2 =

3

2
(∥γ′∥2)

1
2
d

dt
∥γ′∥2 = 3

2
(∥γ′∥2)

1
2 (2γ′ · γ′′) = 3∥γ′∥(γ′ · γ′′). (42)

Using the derivatives above, the derivative of κ is

κ′(t) =

[
d
dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2

]
∥γ′∥3 −

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2
[
d
dt∥γ

′∥3
]

∥γ′∥6

=

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
∥γ′∥3

−
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 3∥γ′∥(γ′ · γ′′)

∥γ′∥6

=

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
∥γ′∥2

−
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 3(γ′ · γ′′)

∥γ′∥5
.

(43)

D.4. The derivatives of curves on minima

Consider the curve γM : R× Rn −→ Rn where M ∈ Lie(G) and

γM (t,w) = exp (tM) ·w. (44)

In this section, we derive γ′, γ′′, and γ′′′, which are needed to compute the curvature κ(t)
and its derivative κ′(t). We are interested in κ and κ′ at w, or equivalently, at t = 0. To
find the derivatives of γ at t = 0, we write the group action in the following form:

γ(t) =

∞∑
n=0

f(n)

n!
tn. (45)

By the uniqueness of Taylor polynomial, the derivatives are γ(n)(0) = f(n).
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Consider two consecutive layers Uσ(V X) in a neural network, where U ∈ Rm×h, V ∈
Rh×n are weights, X ∈ Rh×k is the output from the previous layer, and σ is an elementwise
activation function. Choosing G = GLh(R), one group action that leaves the output of
these two layers unchanged is:

g · (U, V,X) = (g · U, g · V, g ·X) = (Ug−1, σ−1(gσ(V X))X−1, X). (46)

Let

g = exp(tM) =

∞∑
k=0

1

k!
(tM)k, (47)

where M ∈ Lie(G) is in the Lie algebra of G. The action of g yields

g · (U, V,X) = (U exp(−tM), σ−1(exp(tM)σ(V X))X−1, X). (48)

Next, we expand γ(t) = g · (U, V ). The Taylor expansion for g · U is

U exp(−tM) = U
∞∑
k=0

1

k!
(−tM)k

= U − tUM +
t2

2!
UM2 − t3

3!
UM3 +O(t4). (49)

The Taylor expansion for g · V is

σ−1(exp(tM)σ(V X))X−1

=σ−1

(( ∞∑
k=0

1

k!
(tM)k

)
σ(V X)

)
X−1

=σ−1

(
σ(V X) +

∞∑
k=1

1

k!
(tM)kσ(V X)

)
X−1

=

σ−1(σ(V X)) +
∞∑
j=1

( ∞∑
k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣∣∣∣
A=σ(V X)

X−1

=V +

 ∞∑
j=1

( ∞∑
k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣∣∣∣
A=σ(V X)

X−1, (50)

where ⊙ denotes element-wise product: (A ⊙ B)mn = AmnBmn, and the superscript ⊙

denotes elementwise power: (A⊙j)mn = (Amn)
j . The Taylor expansion is of each element

individually, because σ is element-wise.
Since our goal is to find the first 3 derivatives of γ, we are only interested in the terms

up to t3. Letting

∞∑
k=1

1

k!
(tM)k = tM + t2

M2

2
+ t3

M3

6
+O(t4) (51)
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and considering only the j = 1, 2, 3 terms, we have

σ−1(exp(tM)σ(V X))X−1

=V +

 ∞∑
j=1

(
(tM + t2

M2

2
+ t3

M3

6
)σ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣∣∣∣
A=σ(V X)

X−1 +O(t4)

=V +

[(
(tM + t2

M2

2
+ t3

M3

6
)σ(V X)

)
⊙ ∂σ−1(A)

∂A

∣∣∣∣
A=σ(V X)

+

(
(tM + t2

M2

2
+ t3

M3

6
)σ(V X)

)⊙2

⊙ ∂2σ−1(A)

∂A2

∣∣∣∣
A=σ(V X)

+

(
(tM + t2

M2

2
+ t3

M3

6
)σ(V X)

)⊙3

⊙ ∂3σ−1(A)

∂A3

∣∣∣∣
A=σ(V X)

]
X−1 +O(t4)

=V + t

(
(Mσ(V X))⊙ 1

σ′(V X)

)
X−1

+
t2

2

((
M2σ(V X)

)
⊙ 1

σ′(V X)
− 2(Mσ(V X))⊙2 ⊙ σ′′(V X)

σ′(V X)3

)
X−1

+
t3

6

((
M3σ(V X)

)
⊙ 1

σ′(V X)
− 6(Mσ(V X))⊙ (M2σ(V X))⊙ σ′′(V X)

σ′(V X)3

+6(Mσ(V X))⊙3 ⊙ ∂3σ−1(A)

∂A3

∣∣∣∣
A=σ(V X)

)
X−1

+O(t4). (52)

Matching terms in equation 49 and equation 52 with equation 45, we have the expressions for
γ′, γ′′, and γ′′′. This allows us to compute the curvature and its derivative using equation 39
and equation 43.

Appendix E. Sharpness, Curvature, and Their Relation to Generalization

E.1. Sharpness of minima

Flat minima tend to generalize well Hochreiter and Schmidhuber (1997). A common defini-
tion of flat minimum is based on the number of small eigenvalues of the Hessian. Although
Hessian-based sharpness metrics are known to correlate well to generalization, they are
expensive to compute and differentiate through. To use sharpness as an objective in tele-
portation, we consider the change in the loss value averaged over random directions. Let D
be a set of vectors drawn randomly from the unit sphere di ∼ {d ∈ Rn : ||d|| = 1}. Let T be
a list of displacements tj ∈ R. Then, we have the following metric Izmailov et al. (2018):

Sharpness: ϕ(w, T,D) =
1

|T ||D|
∑
t∈T

∑
d∈D
L(w + td). (53)
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E.2. Alternative definitions of sharpness

A common definition of flat minimum is based on the number of eigenvalues of the Hessian
which are small. Minimizers with a large number of large eigenvalues tend to have worse
generalization ability Keskar et al. (2017). Let λi(H)(w) be the ith largest eigenvalue of
the Hessian of the loss function evaluated at w. We can quantify the notion of sharpness
by the number of eigenvalues larger than a threshold ε ∈ R>0:

ϕ1(w, ε) = |{λi(H)(w) : λi > ε}| . (54)

A related sharpness metric uses the logarithm of the product of the k largest eigenvalues
Wu et al. (2017),

ϕ2(w, k) =
k∑

i=1

log λi(H)(w). (55)

Note that both metrics require computing the eigenvalues of the Hessian. Optimizing on
these metrics during teleportation is prohibitively expensive. Hence, in this paper we use
the average change in loss averaged over random directions (ϕ) as objective in generalization
experiments.

E.3. Curvature of minima

At a minimum, the loss-invariant or flat directions are zero eigenvectors of the Hessian. The
curvature along these directions does not directly affect Hessian-based sharpness metrics.
However, these curvatures may affect generalization, by themselves or by correlating to the
curvature along non-flat directions. Unlike the curvature of the loss (curve L(w) in Figure 1
left), the curvature of the minima (curve γ) is less well studied. We provide a novel method
to quantify the curvature of the minima below.

Assume that the loss function L has a G symmetry. Consider the curve γM : R×Rn −→
Rn where M ∈ Lie(G) and γM (t,w) = exp (tM) ·w. Then γ(0,w) = w, and every point
on γM is in the minimum if w is a minimum. Let γ′ = dγ

dt be the derivative of a curve

γ. The curvature of γ is κ(γ, t) = ∥T ′(t)∥
∥γ′(t)∥ , where T (t) =

γ′(t)
∥γ′(t)∥ is the unit tangent vector.

We assume that the action map is smooth, since calculating the curvature requires second
derivatives and optimizing the curvature via gradient descent requires third derivatives. For
multi-layer network with element-wise activations, we derive the group action, γ, and κ in
Appendix D.

Since the minimum can have more than one dimension, we measure the curvature of a
point w on the minimum by averaging the curvature of k curves with randomly selected
Mi ∈ Lie(G). The resulting new metric is

Curvature: ψ(w, k) =
1

k

k∑
i=1

κ(γMi(0,w), 0) . (56)

There are different ways to measure the curvature of a higher-dimensional minimum, such
as using the Gaussian curvature of 2D subspaces of the tangent space. However, our method
of approximating the mean curvature is easier to compute and suitable as a differentiable
objective.
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E.4. Intuition on curvatures and generalization

The sharpness of minima is well known to be correlated with generalization. Figure 3(a)(b)
visualizes an example of the shift in loss landscape (L(w)), and the change of loss ∆L at
a minimizer w∗ is large when the minimum is sharp. The relation between the curvature
of minimum and generalization is less well studied. Figure 3(c)(d) shows one possible shift
of the minimum (γ). Under this shifting, the minimizer with a larger curvature becomes
farther away from the shifted minimum.

(a) (b) (c) (d)
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Figure 3: Illustration of the effect of sharpness (a,b) and curvature (c,d) of minima on
generalization. See Figure 1(left) for a 3D visualization of the curves L(w) and γ. When
the loss landscape shifts due to a change in data distribution, sharper minima have larger
increase in loss. In the example shown, minima with larger curvature moves further away
from the shifted minima.

E.4.1. Example: curvature affects average displacement of minima

Consider an optimization problem with two variables w1, w2 ∈ R. Assume that the minimum
is a one-dimensional curve γ : R→ R2 in the two-dimensional parameter space. For a point
w0 on γ, we estimate its generalization ability by computing the expected distance between
w0 and the new minimum obtained by shifting γ.

We consider the following two curves:

γ1 :R→ R2, t 7→ (t, kt2) (57)

γ2 :[0, 2π]→ R2, θ 7→ (k cos(θ), k sin(θ). (58)

The curve γ1 is a parabola, and the curvature at w0 = (0, 0) is κ1 = 2k. The curve γ2 is
a circle, and the curvature at w0 = (0, 0) is κ2 = 1

k . Note that γ1 is the only polynomial
approximation with integer power (γ(t) = (t, k|t|n)) where the curvature at w0 depends on
k. When n < 1, the value of w0 is undefined. When n = 1, the first derivative at w0 is
undefined. When n > 2, κ(w0) = 0.

Assume that a distribution shift in data causes γ to shift by a distance r, and that the
direction of the shift is chosen uniformly at random over all possible directions. Viewing
from the perspective of the curve, this is equivalent to shifting w0 by distance r.

The distance between a point w and a curve γ is

dist(w, γ) = min
w′∈γ2

∥w′ −w∥2. (59)
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Let Sr be the circle centered at the origin with radius r. Figure 4(b)(c) shows that
the expected distance’s dependence on κ. Using both curves γ1 and γ2, the generalization
ability of w0 depends on the curvature at w0. However, the type of dependence is affected
by the type of curve used. In other words, the curvatures at points around w0 affect how
the curvature at w0 affects generalization. Therefore, from these results alone, one cannot
deduce whether minima with sharper curvatures generalize better or worse. To find a more
definitive relationship between curvature and generalization, further investigation on the
type of curves on the minimum is required.

We emphasize that this example only serves as an intuition for connecting curvature to
generalization. As a future direction, it would be interesting to consider different families
of parametric curves, higher dimensional parameter spaces, and deforming in addition to
shifting the minima.
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Figure 4: (a) Illustration of the parameter space, the minimum (γ), and all shifts with
distance r (Sr). (b) Expected distance between w0 and the new minimum as a function of
κ, for quadratic approximation γ1. (c) Expected distance betweenw0 and the new minimum
as a function of κ, for constant curvature approximation γ2. The expected distance is scaled
by r−2 because the arc length of Sr is proportional to r, and the average distance at each
point on Sr is also roughly proportional to r.
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Figure 5: Left: a 2D minima in a 3D parameter space. Right: a 2D subspace of the param-
eter space and a curve on the minima (the intersection of the minima and the subspace).
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E.4.2. Higher dimensions

Figure 5 visualizes a curve obtained from a 2D minima. However, it is not immediately
clear what curves look like on a higher-dimensional minimum. A possible way to extend
previous analysis is to consider sectional curvatures.

E.5. Computing correlation to generalization

We verify the correlation between sharpness, curvatures, and validation loss on MNIST
Deng (2012), Fashion-MNIST Xiao et al. (2017), and CIFAR-10 Krizhevsky et al. (2009).
On each dataset, we train 100 three-layer neural networks with LeakyReLU using different
initializations.

E.5.1. Setup

We generate the 100 different models used in Section 4.3 by training randomly initialized
models. For all three datasets (MNIST, FashionMNIST, and CIFAR-10), we train on 50,000
samples and test on a different set of 10,000 samples. The labels for classification tasks
belongs to 1 of 10 classes.

For a batch of flattened input data X ∈ Rd×20 and labels Y ∈ R20, the loss function
is L(W1,W2,W3, X, Y ) = CrossEntropy (W3σ(W2σ(W1X)), Y ), where W3 ∈ R10×h2 , W2 ∈
Rh2×h1 , W1 ∈ Rh1×d are the weight matrices, and σ is the LeakyReLU activation with slope
coefficient 0.1. For MNIST and Fashion-MNIST, d = 282, h1 = 16, and h2 = 10. For
CIFAR-10, d = 323 × 3, h1 = 128, and h2 = 32. The learning rate for stochastic gradient
descent is 0.01 for MNIST and Fashion-MNIST, and 0.02 for CIFAR-10. We train each
model using mini-batches of size 20 for 40 epochs.

When computing the sharpness ϕ, we choose the displacement list T that gives the high-
est correlation. The displacements used in this paper are T = 0.001, 0.011, 0.021, ..., 0.191
for MNIST, and T = 0.001, 0.011, 0.021, ..., 0.191 for Fashion-MNIST and CIFAR-10. We
evaluate the change in loss over |D| = 200 random directions. For curvature ψ, we average
over k = 1 curves generated by random Lie algebras (invertible matrices in this case).

E.5.2. Results

Table 1 shows the Pearson correlation between validation loss and sharpness or curvature. In
all three datasets, sharpness has a strong positive correlation with validation loss, meaning
that the average change in loss under perturbations is a good indicator of test performance.
This also confirms that wider minima are more generalizable. For the architecture we con-
sider, the curvatures of minima are negatively correlated with validation loss. We observe
that the magnitudes of the curvatures are small, which suggests that the minima are rela-
tively flat. Figure 6 and 7 visualizes the correlation result in Table 1. Each point represents
one model.

E.6. Additional details for generalization experiments

On CIFAR-10, we run SGD using the same three-layer architecture as in Section E.5, but
with a smaller hidden size h1 = 32 and h2 = 10. At epoch 20 which is close to convergence,
we teleport using 5 batches of data, each of size 2000. During each teleportation for ϕ, we
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Table 1: Correlation with validation loss

sharpness (ϕ) curvature (ψ)

MNIST Fashion-MNIST CIFAR-10 MNIST Fashion-MNIST CIFAR-10

0.704 0.790 0.899 -0.050 -0.232 -0.167
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Figure 6: Correlation between sharpness and validation loss on MNIST (left), Fashion-
MNIST (middle), and CIFAR-10 (right). Sharpness and generalization are strongly corre-
lated.
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Figure 7: Correlation between curvature and validation loss on MNIST (left), Fashion-
MNIST (middle), and CIFAR-10 (right). There is a weak negative correlation in all three
datasets.

perform 10 gradient ascent (or descent) steps on the group element. During each telepor-
tation for ψ, we perform 1 gradient ascent (or descent) step on the group element. The
learning rate for the optimization on group elements is 5× 10−2.

Appendix F. Additional Details for Meta-learning Experiments

In optimization-based meta-learning, the parameter update rule or hyperparameters are
learned with a meta-optimizer Andrychowicz et al. (2016); Ravi and Larochelle (2017);
Finn et al. (2017); Nichol et al. (2018); Chandra et al. (2022). Teleportation introduces an
additional degree of freedom in parameter updates. To exploit our ability to teleport without
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implementing optimization on groups, we augment existing meta-learning algorithms by
learning both the local update rule and teleportation.

Let wt ∈ Rd be the parameters at time t, and ∇t =
∂L
∂w

∣∣
wt

be the gradient of the loss
L. In gradient descent, the update rule with learning rate η is

wt+1 = wt − η∇t. (60)

In meta-learning (Andrychowicz et al., 2016), the update on wt is learned using a meta-
learning optimizer m, which takes ∇t as input. Here m is an LSTM model. Denote ht as
the hidden state in the LSTM and ϕ as the parameters in m. The update rule is

wt+1 = wt + ft (61)[
ft
ht+1

]
= m(∇t, ht, ϕ). (62)

Extending this approach beyond an additive update rule, we learn to teleport. Let G be
a group whose action on the parameter space leaves L invariant. We use two meta-learning
optimizers m1,m2 to learn the update direction ft ∈ Rd and the group element gt ∈ G:

wt+1 = gt · (wt + ft) (63)[
ft

h1t+1

]
= m1(∇t, h1t , ϕ1),

[
gt

h2t+1

]
= m2(∇t, h2t , ϕ2). (64)

Experiment setup. We train and test on two-layer neural networks L(W1,W2) = ∥Y −
W2σ(W1X)∥2, where W2,W1, X, Y ∈ R20×20, and σ is the LeakyReLU function with slope
coefficient 0.1. Both meta-optimizers are two-layer LSTMs with hidden dimension 300. We
train the meta-optimizers on multiple trajectories created with different initializations, each
consisting of 100 steps of gradient descent on L with random X,Y and randomly initialized
W ’s. We update the parameters in m1 and m2 by unrolling every 10 steps. The learning
rate for meta-optimizers are 10−4 for m1 and 10−3 for m2. We test the meta-optimizers
using 5 trajectories not seen in training.

Algorithm 1 summarizes the training procedure. The vanilla gradient descent baseline
(“GD”) uses the largest learning rate that does not lead to divergence (3×10−4). The second
baseline (“LSTM(update)”) learns the update ft only and does not perform teleportation
(gt = I, ∀t). The third baseline (“LSTM(lr,tele)”) learns the group element gt and the
learning rate used to perform gradient descent instead of the update ft. We keep training
until adding more training trajectories does not improve convergence rate. We use 700
training trajectories for our approach, 600 for the second baseline, and 30 for the third
baseline.
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Algorithm 1 Learning to teleport

Input: Loss function L, learning rate η, number of epochs T , LSTM models m1,m2 with
initial parameters ϕ1, ϕ2, unroll step tunroll.
Output: Trained parameters ϕ1 and ϕ2.
for each training initialization do
for t = 1 to T do
ft, h1t+1 = m1(∇t, h1t , ϕ1)
gt, h2t+1 = m2(∇t, h2t , ϕ2)
w ← gt · (w + ft)
if t mod tunroll = 0 then
update ϕ1, ϕ2 by back-propogation from the accumulated loss

∑t
i=t−tunroll

L(wi)
end if

end for
end for
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