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ABSTRACT

This paper presents a novel data generation method for large scale agents’ decision
preference alignment. Despite the recent increasing attention to AI alignment, ma-
chine learning approaches for AI alignment are still challenging due to the lack
of data. Trajectory data representing agent behavior is essential in various align-
ment methods such as Reinforcement Learning from Human Feedback(RLHF) or
Inverse Reinforcement Learning(IRL). In this paper, we significantly reduces the
dependence on trajectory data. Our method uses a generative method to shift the
focus from learning about the reward model for alignment to learning how to gen-
erate sample data for alignment. Therefore, our method broadens the scope of
data needed for alignment to include both microscopic and macroscopic informa-
tion that can be obtained. By designing detailed macro and micro metrics, it is
verified that the simulation results of passenger boarding process based on gener-
ated decision preferences match well with those guided by ground truth decision
preferences.

1 INTRODUCTION

One obstacle to applying reinforcement learning algorithms to real-world problems is the lack of
suitable reward functions. Designing such reward functions is difficult in part because the user only
has an implicit understanding of the task objective Ji et al. (2023) Leike et al. (2018). This gives rise
to the agent alignment problem: how do we create agents that behave in accordance with the real
world agents’ intentions?

Consider the following two scenarios:

Scenario 1: the airport is in a normal situation, the check-in area and the security check area are
relatively smooth.

Scenario 2: Due to equipment failure, the airport temporarily closes half of the check-in counters
and half of the security channels.

The problem is can we predict the flow density of each area in the terminal building in the case of
scenario 2?

Passenger flow prediction methods are not suitable for this problem since the scenario has changed
and historical data cannot be applied to the new scenario. If using multi-agent reinforcement learning
to solve this problem, the most critical issue is to know each passenger’s reward function or decision
making preferences. For example, passenger A’s boarding preference is to avoid waiting in line.
Passenger B’s boarding preference is to reach the boarding gate as soon as possible. If the decision
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making preference of each passenger’s boarding process can be inferred, the passenger’s optimal
boarding route can be calculated. Although the passenger’s optimal boarding route may be different
in various scenarios, his/her decision preference remains the same. After obtaining The passengers’
boarding routes, the flow density in each area of the terminal building can be predicted through
simulation.

Figure 1: Framework of Decision Preference Alignment Based on Reward Model Generation

How can we obtain each passenger’s decision preference?

The DeepMind team in the literature Leike et al. (2018) indicated a research direction for solving
the problem of aligning decision preferences of agents by implementing reward modeling. We can
use the reward model to represent passenger’s decision preference.

So, in this paper, we will construct a reward model that can reflect the passenger’s real decision mak-
ing preference. Assume there are two reward models R∗ and R. R∗ = {r∗1 , r∗2 , . . . , r∗n}, where r∗i
is the reward model that can represent the true preference of each passenger. R = {r1, r2, . . . , rn},
where ri is the inferred reward model of each passenger. ”n” is the number of passengers.

The goal of this paper is to obtain R that aligning with R∗ under the conditions that R∗ is unknown
and no passenger trajectory data is available.

Figure 1 illustrates the framework for solving the problem. In scenario 1, the data we can obtain is
the flow density Q∗ of each area in the terminal building through cameras. We initialize R. Then
we use multi-agent reinforcement learning to find the optimal trajectory for passenger i based on ri.
The flow density Q in each area of the terminal building in the case of scenario 1 can be predicted
through simulation. We optimize R by minimizing the difference between Q and Q∗. From a
statistical perspective, if Q can approximate Q∗, we believe that R aligns with R∗.

2 RELATED WORK

Three machine learning methods for performing reward function construction are described below.

Behavioral Cloning (BC). This method learns agent actions directly Hussein et al. (2017) Zare et al.
(2024), without learning reward functions, but requires a large amount of expert trajectory data.
Behavioral cloning directly splits the expert trajectory data into state-policy pairs to express the cor-
responding expert action under the current state. A supervised learning method is used to train the
model by taking states as the input and actions as the output. Behavioral cloning has played a role
in many practical applications. Yildirim et al. (2024) demonstrated the low error rates and applica-
tion potential of behavior cloning-based perception systems for autonomous driving in real-world
scenarios. Mani et al. (2024) developed the DiffClone algorithm, which enhances behavior cloning
through diffusion policy learning. Scaramuzza & Kaufmann (2023) utilized deep sensor policies
to achieve agile simulation-to-reality flight for drones and explored open challenges in improving
agility and robustness.

2



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Behavioral cloning simply mimics the expert’s behavioral strategy. When the scenario changes,
a more effective approach is to learn the reward function in the decision-making process. There
are two methods to obtain the reward model, namely Inverse Reinforcement Learning (IRL) and
Reinforcement Learning Based on User Feedback (RLHF).

Inverse Reinforcement Learning investigates the problem of learning an agent’s preferences from
observed behaviors, which are usually represented as reward functions. Unlike just mimicking ob-
served behaviors, learning the reward functions behind them can lead to better robustness, better
generalization to different environments, and the ability to combine rewards extracted from multiple
behaviors. However, inverse reinforcement learning also requires expert trajectory data to infer the
reward function, Wu et al. (2023) proposed an inverse reinforcement learning-based human-like ob-
stacle avoidance trajectory planning strategy, enhancing the adaptability and realism of autonomous
driving trajectories. Ye et al. (2023) developed InitLight, an adversarial inverse reinforcement learn-
ing method, which improves multi-intersection traffic signal control by pre-trained models with
expert trajectories. Qiao et al. (2023) introduced a multimodal inverse-constrained reinforcemen-
t learning algorithm, utilizing traffic density estimators to simultaneously identify multiple expert
constraints and optimize policy imitation.

RLHF based reward learning. In order to make the output of the model more consistent with human
values or expectations, the RLHF method is often used to introduce human feedback to optimize the
reward function. First, the method also requires trajectory data, but this trajectory data is generated
by the user. Secondly, the loss function is constructed from the labeled preference trajectory data,
and the supervised learning method is used to optimize the reward model and finally achieve goal
alignment. Casper et al. (2023) explores open challenges and limitations of reinforcement learning
from human feedback (RLHF) and recommends strengthening social oversight through auditing
and disclosure standards. Wang et al. (2024) leverage RLHF to enhance lane-changing behavior of
autonomous vehicles in mixed traffic, making it more human-like. Wang et al. (2023) proposes a
hierarchical reinforcement learning framework to identify root causes of anomalies in microservice
systems, improving analysis efficiency. Hwang et al. (2023) introduces the SeqRank framework,
boosting feedback efficiency through sequence preference ranking.

The three methods need trajectory data. Since it’s hard to obtain, this paper focuses on solving the
reward function without such data.

3 PROBLEM DEFINITION

The problem of obtaining R that aligning with R∗ consists of three subproblems. Firstly, how to
accurately define R. Due to the large number of passengers in the terminal, it is impossible to
obtain each traveler’s reward model. Secondly, how to quantify the degree of R’s alignment to R∗.
Since it is not possible to obtain the true R∗, we can not directly compare R∗ and R. Finally, how
to formalize the alignment of R to R∗ into an optimization problem. 3.1∼3.3 described the three
subproblems.

3.1 REWARD MODEL FOR LARGE-SCALE PASSENGERS

How to accurately define R? The terminal has a large number of passengers, and it is not possible
to measure whether each r∗i approximates each ri. This paper transfers the reward model of all
passengers into one reward model. The decision preferences of different passengers is represented
by the probability distributions.

Definition 1: The reward model R for all passengers. R(s, a)∼N(µ(s, a), σ2(s, a)), is represented
by a Gaussian distribution, where µ(s, a) is the expected reward under the state action pair and
σ2(s, a) is the variance of the reward.

3.2 MACRO LEVEL METRIC TO MEASURE THE ALIGNMENT OF R WITH R∗

How to quantify the degree of R’s alignment with R∗? Due to the significant difficulty of quanti-
tatively verifying alignment at the micro level, this paper will verify them at the macro level. This
section defines the macro level metric for measuring the alignment of R with R∗. From a statistical
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perspective, if Q can approximate Q∗, we believe that R aligns with R∗. Furthermore, Q and Q∗
can be other easily obtained macro level metrics.

Definition 2: The actual passenger flow Q∗ in different areas of the terminal. Q∗ =(
Q∗1,1 ... Q∗1,T
... ... ...

Q∗n,1 ... Q∗n,T

)
, Q∗i,t represents the actual passenger flow in area i of the terminal at time t.

T is the total time steps, i is the area i of the terminal, and n is the total number of areas.

Definition 3: The simulated passenger flow Q in different areas of the terminal. Q =(
Q1,1 ... Q1,T

... ... ...
Qn,1 ... Qn,T

)
, Qi,t represents the simulated passenger flow in the ith area of the terminal

at time t, T is the total time step, i is the ith area of the terminal, and n is the total number of areas.

This paper uses ∆Q = ||Q − Q∗||F =

√
1≤i≤n,1≤j≤T∑

i,j

(Qi,j −Q∗i,j)2 to measure the degree to

which R approaches R∗, with smaller ∆Q indicating that R is closer to R∗.

3.3 TRANSFER THE ALIGNMENT PROBLEM INTO DATA GENERATION PROBLEM

How to formalize the alignment of R with R∗ into an optimization problem?

Definition 4. Sample data for training the reward function. Data is a set of decision-making data
during the boarding process of passengers, including states, actions, and the rewards obtained after
taking actions. Data = {(s1, a1, r1), (s2, a2, r2), . . . , (sm, am, rm)}. Among them, si and ai are a
set of pre-sampled states and actions during the boarding process of passengers.

If the passenger boarding simulation process f is considered a black box process, then the reward
model R defined in Definition 1 can be seen as the input to f , and the macro metric ∆Q obtained
from the simulation process can be seen as the output of f , ∆Q = f(R). Under different reward
functions R, different ∆Q can be obtained. But black-box optimization can only optimize data, not
functions. Since R can be obtained by conducting supervised learning on Data. We can use Data
as the training data to learn the reward model R. The ultimate goal of this paper shifts from learning
the reward model to learning the parameterized model θ that can generate sample data for reward
model training, as shown in Equation (1).

θ = Argmin
θ

(∆Q),∆Q = f(Data), (1)

4 CONTRIBUTIONS OF THIS PAPER

The DPARMG framework has the following advantages:

First, our method significantly reduces the dependence on trajectory data which is necessary within
the IRL and the RLHF framework. Trajectory data is not necessary any more in our framework.

Secondly, the framework uses a generative method to shift the focus from learning about the reward
model for alignment to learning how to generate sample data for alignment. Our method broadens
the scope of data needed for alignment to include both macro-level and micro-level information that
can be obtained.

Finally, the framework extends the use of reinforcement learning by creating a connection between
micro-level decision preferences and macro-level phenomena. This framework allows reinforcement
learning to be applied not only for reward maximization but also to guide and control agent behavior
based on macro-level observations.
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5 TRAINING THE PASSENGER BOARDING PROCESS DECISION MODEL

This paper adopts distributed training and distributed execution multi-agent reinforcement learn-
ing to model the boarding process of a large number of passengers. Each passenger learns his/her
decision model independently. For each passenger, we use MAXQ hierarchical reinforcement Diet-
terich (2000) learning to simplify the learning process. The boarding process is divided into three
sub-tasks. Figure 2 shows the MAXQ graph of the passenger’s boarding process.

Figure 2: MAXQ diagram of passenger boarding MDP process

Equation (2) is the Bellman equation corresponding to the MAXQ graph. Each basic action and
each sub-task (including the root task) has a Max node to store the value function associated with
that node. The Q node corresponds to the actions that can be executed for each sub-task. The Q
node stores the expected reward after executing the action in a specific state. C(i, s, a) represents
the expected discounted cumulative reward of completing sub-task i after performing sub-task a in
state s. The greedy action a∗ refers to the optimal action chosen in state s

′
. C(i, s, a) is updated

using the value of the greedy action a∗ in the resulting state s
′
. V (i, s) represents the expected

reward of completing sub-task i in state s.

V (i, s) =

{
Q(i, s, a) if i is composite,
α · r + (1− α) · V (i, s) if i is primitive.

Q(i, s, a) = V (a, s) + C(i, s, a) (2)

C(i, s, a) = α · γN [C(i, s′, a∗) + V (a∗, s′)] + (1− α) · C(i, s, a)

Assume that the passenger has just entered the terminal. Let s1 represent his/her current state.
According to Figure 2, the passenger is in the QCheck-in sub-task. Equation (3) shows how to
calculate the value of V (MaxCheck-in, s1)

V (MAXCheck-in, s1) = Q(MAXCheck-in, s1,MAXService)

= V (QService, s1) + C(MaxService,s1, QService)
= Q(MAXService, s1, s2, Qfood) + C(MaxService, s1, QService)

= V (Qfood, s1, s2) + C(MAXService, s1, s2, Qfood)+

C(MAXService, s1, QService)

= α · r + (1− α) · V (Qfood, s1, s2) + C(MAXService,

s1, s2, Qfood) + C(MAXService, s1, QService)
(3)

According to Figure 2, the passenger boarding task contains three sub-tasks, i.e., check-in, security
check, and boarding. Each sub-task contains primitive and composite states. A detailed description
of the state is given in the appendix Table 3.

Each triangle in Figure 2 represents the action taken by the passenger under the current sub-task.
The actions for composite tasks is an abstract expression of actions. Those actions can be seen as
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the necessary procedural facilities that the passengers can choose to go to under a certain sub-task.
The actions for primitive tasks include atomic actions such as check-in, dining, shopping, restroom,
security check, and waiting for boarding.

The reward of action for primitive task is calculated according to the reward function, reward =
R(s, a), given in definition 1. The reward of action for composite task is recursively calculated
based on Equation (2). Chapter 6 describes how to calculate R(s, a).

6 GENERATING SAMPLE DATA FOR FITTING REWARD MODEL BASED ON
CONDITIONAL DIFFUSION MODEL

Since we can use Data as the training data to learn the reward model R(s, a), the ultimate goal
of this section is to shifting from learning to learning the parameterized model θ that can generate
Data, as shown in Equation (1). To minimize ∆Q in equation (1), we adopt the conditional diffusion
model pθ to generate Data, defined in Definition 4, for fitting the reward model R(s, a). pθ :
<d∆Q×<dData → <dData represents the conditional diffusion model which learns how to transform
a vector of white noise ε ∈ <dData into Data. The conditional diffusion model is parameterized by
trainable parameters θ.

Data = pθ(ε,∆Q) (4)

Figure 3 illustrates the format of Data. If the states take numerical values, the data volume can be
quite large. To reduce the amount of data in Data, this paper discretizes the states. freetime is
discretized into three types, sufficient, moderate and limited. Queue length is discretized into three
types, long, medium, and short. After discretization, the table length in Figure 3 is the Cartesian
products cardinality of states and actions. The last two columns in the table are the mean µ and
variance σ2 of the reward model defined in Definition 1. Since the Cartesian product of state and
action data is fixed, the diffusion model only needs to generate µ and σ2. However, the dimension-
ality of the data containing only µ and σ2 is still very high. So, this paper adopt the Latent Diffusion
Model(LDM) framework.

The core idea behind LDM is to first map the high-dimensional data into a lower-dimensional latent
space using an encoder. Once in the latent space, a diffusion process is applied, and a generative
model learns to reverse the diffusion to generate data samples. This approach significantly reduces
the computational burden because the diffusion process is performed in the smaller latent space
rather than the original high-dimensional pixel space. Figure 3 illustrates the denoising framework
of the latent diffusion model.

The encoder maps Data to a latent space representation z:z = Encoder(Data)

The forward diffusion process adds noise to the latent representation z over T time steps. At each
time step t, the latent representation zt is computed as: zt =

√
αtz0 +

√
(1− αt)ε. αt is a schedule

of diffusion coefficients. ε is noise sampled from a standard normal distribution.

The reverse diffusion process aims to denoise the latent representations. Given a noisy latent sample
zt, the denoising model D predicts the noise ε:

∧
ε = D(zt, t).The predicted noise is then used to

update the latent representation to progressively denoise it.

Once the latent representation has been denoised, the decoder maps it back to the original data space:
Data = Decoder(z).

The denoising process involves minimizing the loss function that measures the difference between
the predicted noise and the actual noise added during the diffusion process:Loss = EData,ε,t[||ε −
D(zt, t)||2].

The above describes the unconditional diffusion process. We modify the reverse denoising process
by incorporating the ∆Q as embedded conditions. The final loss function of denoising process is as
follows:Loss = EData,ε,t[||ε−D(concat(zt, t,∆Q))||2].

The overall framework of ”Decision Preference Alignment Based on Reward Model Genera-
tion(DPARMG)” is illustrated by algorithm 1. Datak in the initial dataset is a set of random
values for µ and σ2 in Figure 3. ∆Qk = |Q∗k − Qk| in the initial dataset is obtained by con-
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Figure 3: Generating Sample Data for Fitting Reward Model Based on Conditional Diffusion Model

ducting MAXQ with reward model according to Datak. Conditioning on {∆Q′

j}Nj=1, we gener-
ate N samples {Dataj}Nj=1, Dataj ∼ pθ(Dataj |∆Q

′
, D). By conducting MAXQ with reward

model according to {Dataj}Nj=1, we obtain the {∆Qj}Nj=1. The we append all queried data pairs
{Dataj ,∆Qj}Nj=1 to the training dataset D. To minimize ∆Q in equation (1), algorithm 1 outputs
Datak that has the minimum ∆Qk value in the {Dataj ,∆Qj}Nj=1 pairs.

Algorithm 1 Framework of Decision Preference Alignment based on Reward Model Genera-
tion(DPARMG)

1: Input: Initial dataset D = {Datak,∆Qk}Mk=1
2: Initialization: Conditional latent diffusion model pθ(Data|∆Q)
3: for k = 1, 2, . . . ,K do
4: Train the conditional diffusion model with D
5: Randomly sample {∆Q′

j}Nj=1, 0 < ∆Q′j ≤ α, α is a small positive number
6: Generate {Dataj}Nj=1 where Dataj ∼ pθ(Dataj |∆Q′j , D)

7: Obtain {Rj}Nj=1 based on {Dataj}Nj=1

8: Obtain {∆Qj}Nj=1 based on conducting MAXQ with reward model {Rj}Nj=1

9: D ← D ∪ {Dataj ,∆Qj}Nj=1
10: end for
11: Output: Datak, s.t. ∆Qk is the minimal value in D

7 EXPERIMENTS

7.1 EXPERIMENTAL DESIGN

This paper is based on Chengdu Shuangliu airport terminal. The entire terminal is divided into six
major areas (Q1 to Q6), and each major area is further subdivided into several smaller areas (Q7

to Q21), totaling 21 areas. The simulation process will obtain the passenger flow density for each
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area, i.e., Q = {Q1, Q2, . . . , Q21}. The map of the airport terminal and the corresponding areas are
provided in appendix Figure 5.

We design three different scenarios. Scenario 1 is the baseline scenario. In this scenario, the flow
density data Q∗ is obtained. In scenario 2, the check-in counter Q11 is closed. Passengers who
originally checked in at the Q11 area will proceed to the Q12 area check-in. In scenario 3, security
check channels Q15 and Q16 are closed.

We design the passengers’ real decision-making preference by reward model R∗ according to Jiang
et al. (2023). R∗(s, a) = w1 ∗ freetime + w2 ∗ queuelength + w3 ∗ action, where freetime,
queuelength and action denote the value of the specific state and action. w1 ∼ N(0.4, 0.1),
w2 ∼ N(0.3, 0.1),w3 ∼ N(0.7, 0.1). freetime and queuelength are consistent with the definition
in section 5.

We designed one baseline algorithm, M , and four comparative algorithms, M1 ∼ M4, as shown
in Table 1. Since there is currently no algorithms for learning micro-level reward models based on
macro-level metrics, all comparative algorithms are designed based on the DPARMG framework.
Each algorithm includes a reward model learning module and a multi-agent reinforcement learning
module. Among them, algorithm M is used to generate the benchmark data Q∗, which can be
regarded as representing the decision-making process reflecting the true preferences of passengers
during boarding. So M is not included in the comparison. M1 uses maximum entropy inverse
reinforcement learning the obtain the reward model. The trajectory data is obtained by conducting
M in the simulation environment. M2 changes the MAXQ method in the DPARMG framework to
a tabular Q-learning algorithm, maintaining a Q-table for each passenger. M3 removes the encoder
from the diffusion model. M4 is the complete DPARMG framework.

Table 1: Comparative methods

Reward model
generation method

Reinforcement
learning algorithm

M R∗ MAXQ
M1 IRL MAXQ
M2 LDM Tabular Q-learning
M3 LDM without encoder MAXQ
M4 LDM MAXQ

7.2 PURPOSE OF THE EXPERIMENT

This section illustrates the purpose of the experiment:

RQ1: Can the DPARMG framework achieve preference alignment of the passengers’ boarding pro-
cess in scenario 1. The purpose of this experiment is to verify the alignment of R with R∗. We
conduct both the reward model learning and multi-agent reinforcement learning according to the D-
PARMG framework in scenario 1 to obtain the reward model R. We use ∆Q=|Q−Q∗| to measure
the alignment of R with R∗. Q∗ is obtained according to M . Q is obtained according to M1∼M4.

RQ2: Based on the reward model obtained in scenario 1, can the DPARMG framework be capable
of predicting flow density in scenario 2 and 3. The purpose of this experiment is also to verify
the alignment of R with R∗. But in this experiment, we only conduct multi-agent reinforcement
learning in scenario 2 and 3 with the reward model R obtained in scenario 1.

RQ3: Can the micro level trajectory data obtained through R be consistent with the ground truth
trajectory data obtained through R∗, even though we are aligning them based on the macro level
metric of flow density ∆Q? The purpose of this experiment is also to verify the alignment of R
with R∗. But in this experiment, we use the trajectory data to measure the degree of alignment. The
metric is explained in detail in section 7.4.
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Table 2: Performance of M1∼M4 for minimizing ∆Q

Scenario1 Scenario2 Scenario3

M1 14.39 3.79 32.38
M2 15.16 5.07 36.49
M3 25.74 5.89 60.26
M4 5.29 2.3 32.2

7.3 THE THE ALIGNMENT DEGREE R AND R∗ BASED ON THE MACRO LEVEL METRIC
∆Q(RQ1, RQ2)

This subsection evaluates whether the reward function R obtained by the algorithms can minimize
∆Q. ∆Q obtained by the four algorithms for the three scenarios is given in Table 2. M4 has the best
performance. M3 has the worst performance indicating that the encoder is important for diffusion
model when dealing with high dimensional data. Details are provided in Appendix Figure 6∼8.

7.4 THE THE ALIGNMENT DEGREE R AND R∗ BASED ON THE MICRO LEVEL METRIC
AccuracyTraj (RQ3)

We divide the entire simulation process into 10 equal-width time intervals. For any passenger A, in
the ith(1 ≤ i ≤ k) time interval, we useQ∗Ai,j to denote that A is in the areaQj under the guidance of
R∗. we useQAi,j to denote that A is in the areaQj under the guidance ofR. We design metric Ti and
Fi, Ti = number of passengers, if j = k for Q∗Ai,j and QAi,j of all passengers in the ith(1 ≤ i ≤ k)
time interval ; Fi = number of passengers, otherwise. The variable i in equation (5) is set to the
values of 1, 2, 5, and 10.

AccuracyTraj =
Ti

Ti + Fi
(5)

Figure 4: Accuracy of different algorithms in three scenarios

As we observed in Figure 4, M4 performed the best. M3 performed the worst in all scenarios,
indicating again that diffusion model without encoder has low effectiveness. The performance of
M1 was closest to M4, but M4’s advantage was still very obvious.

8 CONCLUSION

This paper proposes a framework for aligning decision process preferences based on a reward model
generation algorithm. The framework firstly designs macro level quantitative metrics for reward
alignment. Secondly, the framework uses a generative method to shift the focus from learning about
the reward model to learning from sample reward data, thereby making the learning process easier.
Finally, the framework extends the use of reinforcement learning by creating a connection between
micro-level decision preferences and macro-level phenomena. This framework allows reinforcement
learning to be applied not only for reward maximization but also to guide and control agent behavior
based on macro-level observations.
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APPENDIX

A A DETAILED DESCRIPTION OF THE STATE

According to Fig.2, the passengers’ boarding task contains three subtasks, i.e., check-in, security
check, and boarding. The content of each state is shown in Table 3. Freetime means when the
passenger just enters the primitive/composite state, the difference between the current time and the
passenger’s flight departure time. Queuelength means when the passenger just enters the primi-
tive/composite state, the length of the queue in the check-in/security check/boarding area.

B THE MAP OF THE AIRPORT TERMINAL AND THE CORRESPONDING AREAS

Figure 5: The map of the airport terminal and the corresponding areas

C THE THE ALIGNMENT DEGREE R AND R∗ BASED ON THE MACRO LEVEL
METRIC ∆Q
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Table 3: Content of each state

State Meaning State property
QCheck−in (freetimeQCheck−in, queue lengthQCheck−in) composite

QCheck−inCounter
(freetimeQCheck−in, queue lengthQCheck−in,

freetimeQCheck−inCounter,
queue lengthQCheck−inCounter)

primitive

QService1 (freetimeQService1, queue lengthQService1) composite

Qfood

(freetimeQCheck−in, queue lengthQCheck−in,
freetimeQCheck−inCounter,

queue lengthQCheck−inCounter ,
freetimeQfood, queue lengthQfood)

primitive

QSecurity (freetimeQSercurity, queue lengthQSercurity) composite

QSercurityChannel
(freetimeQSercurity, queue lengthQSercurity ,

freetimeQSercurityChannel,
queue lengthQSercurityChannel)

primitive

QService2 (freetimeQService2, queue lengthQService2) composite

Qfood

(freetimeQSercurity, queue lengthQSercurity ,
freetimeQSercurityChannel,

queue lengthQSercurityChannel ,
freetimeQfood, queue lengthQfood)

primitive

QBoarding (freetimeQBoarding, queue lengthQBoarding) composite

QSercurityChannel
(freetimeQBoarding, queue lengthQBoarding ,

freetimeQBoardingGate,
queue lengthQBoardingGate)

primitive

QService3 (freetimeQService3, queue lengthQService3) composite

Qfood

(freetimeQBoarding, queue lengthQBoarding ,
freetimeQBoardingGate,

queue lengthQBoardingGate ,
freetimeQfood, queue lengthQfood)

primitive
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Figure 6: The flow density in original scenario with vertical coordinates for each area (Q1-Q21) and
horizontal coordinates for the simulation time (6000s-9000s)

Figure 7: The flow density in scenario 1 (The Q11 area is closed so there is no traffic.) with vertical
coordinates for each area (Q1-Q21) and horizontal coordinates for the simulation time (6000s-9000s)

Figure 8: The flow density in scenario 2 (Areas Q15 and Q16 are closed so there are no traffic.)
with vertical coordinates for each area (Q1-Q21) and horizontal coordinates for the simulation time
(6000s-9000s)
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