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ABSTRACT

Metric graphs are structures obtained by associating edges in a standard graph with seg-
ments of the real line and gluing these segments at the vertices of the graph. The re-
sulting structure has a natural metric that allows for the study of differential operators
and stochastic processes on the graph. Brownian motions in these domains have been
extensively studied theoretically using their generators. However, less work has been
done on practical algorithms for simulating these processes. We introduce the first al-
gorithm for simulating Brownian motions on metric graphs through a timestep splitting
Euler-Maruyama-based discretization of their corresponding stochastic differential equa-
tion. By applying this scheme to Langevin diffusions on metric graphs, we also obtain
the first algorithm for sampling on metric graphs. We provide theoretical guarantees on
the number of timestep splittings required for the algorithm to converge to the underly-
ing stochastic process. We also show that the exit probabilities of the simulated particle
converge to the vertex-edge jump probabilities of the underlying stochastic differential
equation as the timestep goes to zero. Finally, since this method is highly paralleliz-
able, we provide fast, memory-aware implementations of our algorithm in the form of a
custom CUDA kernel that is up to ∼8000x faster than a GPU implementation using Py-
Torch. We corroborate our theoretical results with numerical experiments applying our
implementation to star metric graphs. In terms of accuracy and efficiency, our scheme
significantly outperforms a baseline finite volume scheme.

1 INTRODUCTION

Metric graphs, also known as quantum graphs (Kuchment, 2004), are geometric structures formed by gluing
together one-dimensional segments of the real line at the vertices of an underlying graph, inheriting both
the combinatorial topology of a graph and the smooth geometry of a real line. These objects have emerged
as powerful tools for modeling complex systems in diverse fields, including physics, biology, and network
theory. For instance, they are used to model nanoscale materials like carbon nanostructures (Amovilli
et al., 2004), vascular networks (Carlson, 2006), nerve impulse transmission (Nicaise, 1985), acoustics
(Cacciapuoti et al., 2006), and traffic flow on road networks (Garavello & Piccoli, 2006). We refer the
reader to (Kuchment, 2002) for a comprehensive survey of the applications of quantum graphs. From
a theoretical standpoint, their metric structure allows for the analysis of differential operators (Mugnolo,
2014; Erbar et al., 2022) and stochastic processes (Freidlin & Sheu, 2000), enabling the study of phenomena
such as diffusion, wave propagation, and random motion on networked domains.

Brownian motions on metric graphs, a canonical example of such stochastic processes, have been exten-
sively studied theoretically through their infinitesimal generators (Kostrykin et al., 2007; 2010; Kostrykin
& Schrader, 2006; Aleandri et al., 2020). However, practical algorithms for simulating these processes – es-
sential for numerical studies and real-world applications – have remained underdeveloped. This gap is par-
ticularly consequential in modern computational statistics and machine learning, where efficient sampling
methods on complex geometries are indispensable (Byrne & Girolami, 2013; Betancourt, 2017). For ex-
ample, Langevin diffusions (Roberts & Tweedie, 1996), a class of stochastic differential equations (SDEs)
central to sampling from high-dimensional distributions, have seen widespread adoption in Bayesian infer-
ence (Girolami & Calderhead, 2011) and molecular dynamics (Leimkuhler & Matthews, 2015). Extending
these methods to metric graphs could unlock new applications in networked systems, such as diffusive
transport in dendritic networks in neuroscience (Bressloff, 2014).
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Despite progress in understanding the theory of SDEs on metric graphs (Freidlin & Sheu, 2000) – includ-
ing vertex transition rules, Feller properties, and large deviation asymptotics – the numerical simulation
of these processes has been largely unexplored. Existing numerical work on metric graphs has focused
primarily on solving partial differential equations using finite element methods (Kravitz, 2022). Some of
these methods, such as finite volume schemes, struggle to stably scale to finer meshes without requiring
prohibitively smaller timesteps (LeVeque, 2002) and are also less amenable to parallelization on modern
hardware (GPUs) compared to Monte Carlo methods.

In this work, we bridge this gap by introducing the first algorithm (Algorithm 1) for simulating Brownian
motions and Langevin diffusions on metric graphs. Our approach leverages a timestep splitting Euler-
Maruyama discretization of the underlying SDE, which simultaneously resolves evolution along edges and
transitions at vertices. We provide theoretical guarantees on this scheme’s runtimes and consistency with
the underlying SDE as the timestep approaches zero.

An important computational insight is the algorithm’s parallelizability and well-suitedness to current mod-
ern GPU architectures. We implement it as a custom memory-aware CUDA kernel with Python bindings,
enabling fast GPU-accelerated simulations that scale to large particle counts while effectively utilizing
hardware capabilities. This implementation advances the practical utility of metric graph analyses and
provides a first step toward computationally efficient stochastic simulations of these domains in high-
performance computing environments. Furthermore, we demonstrate that our method significantly out-
performs a baseline finite volume scheme in both accuracy and computational efficiency.

1.1 OUTLINE

In Section 1.2, we summarize our contributions. In Section 2, we provide the necessary background on
metric graphs and Brownian motions on metric graphs. In Section 3, we present our main algorithm for
simulating a Brownian motion on a metric graph with implementation details in Section 3.1. In Section 4,
we present numerical results on star metric graphs with drifts driven by linear and quadratic potentials.

1.2 CONTRIBUTIONS

• We propose Algorithm 1, a timestep splitting Euler-Maruyama based discretization of the SDE
of the Brownian motion, which is the first algorithm that we know of for simulating a Brownian
motion and sampling on a metric graph.

• We show in Theorem 2 that the number of time-step splittings in Algorithm 1 is finite with high
probability. Additionally, we show in Corollary 1 that the exit probabilities of the simulated
particle using this algorithm converge to the vertex-edge jump probabilities of the underlying
SDE as the timestep goes to zero.

• We provide a fast, memory-aware implementation of Algorithm 1 for GPUs in the form of a
custom CUDA kernel with Python bindings and show significant speedups (up to ∼8000x faster)
over a GPU implementation using PyTorch (Paszke et al., 2019).

• We corroborate our theoretical results with numerical experiments using our implementation on
star metric graphs and significantly outperform a baseline finite volume scheme both in terms of
accuracy (Figure 2) and speed (Figure 3).

Code for our implementation is available at https://github.com/rajatvd/
metric-graphs-FPI-ICLR2025.

2 BACKGROUND

2.1 METRIC GRAPHS

In this section, we provide some formal background on metric graphs.
Definition 1 (Metric Graph). Let G = (V,E, l) be an n-node, m-edge, connected, oriented graph. We
associate the line segment (0, le) with each edge e ∈ E. We identify the endpoints of the interval 0 and le
with the corresponding vertices of the edge, which we denote einit and eterm. The union of open metric edges
associated with G is defined as Γo := {(e, x) | e ∈ E, x ∈ (0, le)}, and the union of closed metric edges
as Γc := {(e, x) | e ∈ E, x ∈ [0, le]}. The metric graph associated with G is defined as Γ := V ∪ Γo.
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Additionally, we allow edges to be semi-infinite, i.e., le = ∞. In this case, the terminal vertex of these
edges is a vertex at infinity, and the closed intervals corresponding to these edges are [0,∞).

Figure 1: An example metric graph Γ and its associated spaces.

We also define a special case of metric graphs called star metric graphs where the graph has a single vertex
and all edges are semi-infinite. The remainder of this paper will focus on star metric graphs, though all
results extend to general metric graphs.
Definition 2 (Star Metric Graph). A star metric graph is a metric graph with a single vertex v, and all
edges in E are semi-infinite and have length le =∞.

We define the set of edges incident to a vertex v ∈ V as
E (v) := {e ∈ E | einit = v or eterm = v} .

2.1.1 FUNCTION SPACES ON METRIC GRAPHS

The metric structure of each edge combined with the discrete graph metric on G leads to a natural definition
of the distance d : Γ×Γ→ R+ between two points on the metric graph. For x, y ∈ Γ, let G̃ =

(
Ṽ , Ẽ, l̃

)
be the discrete graph obtained by adding two new vertices x and y to G and splitting the edges on which
they lie appropriately. Then we define the distance d (x, y) as the length of the shortest path between x and
y in G̃. This metric allows us to define the space Ck (Γ) as the space of functions on Γ that are k times
continuously differentiable.

In addition to the global metric structure of Γ, the metric structure on each edge allows us to define a
broader class of continuous functions by considering continuity restricted to the edges. For a function
f : Γ→ R (and also for functions f : Γc → R), we define fe : [0, le]→ R to be the restriction of f to the
closed edge e. We similarly define the restriction to open edges for functions f : Γo → R.

We define the function space Ck (Γo) as the space of functions on Γ whose restriction to each open edge
(0, le) is k times continuously differentiable. Note that this can be naturally extended to functions on Γc

by extending the restrictions to have values at the endpoints of the edges as: fe (0) := limx→0+ fe (x) and
fe (le) := limx→l−e

fe (x). By a slight abuse of notation, we will also allow the use of fe (einit) = fe (0)

and fe (eterm) = fe (le) to denote these endpoint values.

A useful observation is to note that by identification of the vertices, for two edges e, e′ ∈ E that share a
vertex v ∈ V such that einit = e′init = v, we have for f ∈ C (Γ) that

fe (0) = fe′ (0) .

Similar results hold for different combinations of initial and terminal vertices of the edges. However, this
is not the case for functions in Ck (Γc) or Ck (Γo). Specifically, for f ∈ Ck (Γc), it need not be the case
that f (j)

e (0) = f
(j)
e′ (0) for edges e, e′ ∈ E that share an initial vertex v ∈ V , where f

(j)
e denotes the j-th

derivative of fe.

Finally, for notational convenience, we define the notion of an inward derivative along an edge at a vertex
that is independent of the orientation of the edge.
Definition 3. Let f ∈ C1 (Γ). We define the inward derivative of f at a vertex v ∈ V along an edge e ∈ E
incident to v as

∂ef (v) :=

{
−∂fe

∂x (0) if einit = v,
∂fe
∂x (le) if eterm = v.

Note that flipping the orientation of edge e does not change the sign of the inward derivative.
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2.2 BROWNIAN MOTIONS ON METRIC GRAPHS

Brownian motions on metric graphs are extensively studied in (Kostrykin et al., 2012). A Brownian motion
on a metric graph is generated by the standard second-order generator of the Brownian motion restricted to
each open edge, along with specific boundary conditions at the vertices known as gluing conditions.

Let µ ∈ C1 (Γc) and σ ∈ C1 (Γ) be functions that denote drift and diffusion coefficients respectively. The
generator L of a Brownian motion on the metric graph applied to a function f ∈ C2 (Γ) is given by

(Lf)e = Lefe for all e ∈ E (1)
where Le is the generator of a Brownian motion on the open edge e:

Lefe(x) :=
∂fe(x)

∂x
µe(x) +

1

2
σ2
e(x)

∂2fe(x)

∂x2
. (2)

The domain of L is restricted to functions f ∈ C2 (Γ) that satisfy a set of gluing boundary conditions
at each vertex v ∈ V . (Kostrykin et al., 2012) show that a class of gluing conditions called the Wentzell
boundary conditions characterize all possible Brownian motions. The Wentzell boundary conditions for
f ∈ C2 (Γ) are given by

avf(v) +
∑

e∈E(v)

bve∂ef (v) +
1

2
cvf

′′(v) = 0 for all v ∈ V (3)

where av ∈ [0, 1), bve ∈ [0, 1] , cv ∈ [0, 1] are constants that satisfy

av −
∑

e∈E(v)

bve + cv = 1 for all v ∈ V. (4)

In this paper, we will consider the case where av = 0, cv = 0, which are often referred to as the standard
boundary conditions.
Definition 4 (Standard Boundary Conditions). f ∈ C2 (Γ) satisfies the standard boundary conditions if∑

e∈E(v)

bve∂ef (v) = 0 for all v ∈ V. (5)

where bve ∈ [0, 1] are constants that satisfy∑
e∈E(v)

bve = 1 for all v ∈ V. (6)

For convenience, we define the simplex

∆v :=
{
x ∈ RE(v) | xe ∈ [0, 1] and 1Tx = 1

}
and note that bv ∈ ∆v defines a vertex-edge jump probability distribution at each vertex v ∈ V .

The Brownian motion generated by the generator with standard boundary conditions is conservative, and
an extensive analysis of the stochastic properties is provided in (Freidlin & Sheu, 2000). In particular,
(Freidlin & Sheu, 2000) derive an SDE for this Brownian motion and characterize the behavior of the
process at vertices of the metric graph. As a first simplification, we only need to characterize the stochastic
process’s behavior at a single vertex since this is a local property that can be extended to other vertices.
Effectively, we only need to consider the behavior of the process on star metric graphs. We restate the main
results of (Freidlin & Sheu, 2000) in the following theorem.
Theorem 1 (Lemma 2.2 and Corollary 2.4 in (Freidlin & Sheu, 2000)). Let Xt = (et, xt) be a Brow-
nian motion on a star metric graph Γ with standard boundary conditions. There exists a 1-dimensional
Brownian motion Wt and a local time process lt adapted to the filtration generated by Xt such that

dxt = µet (xt) dt+ σet (xt) dWt + dlt. (7)
Moreover, the local time process lt is a continuous, non-decreasing process that only increases when the
particle is at the vertex, i.e., xt = 0.

Let τδ := inf {t ≥ 0 : xt = δ} be the first time the process exits a ball of radius δ centered at the vertex
(assume X0 = v). The discrete edge process et is characterized by the following transition probabilities,

lim
δ→0

P [eτδ = i] = bvi for all i ∈ E (v) . (8)
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3 TIMESTEP SPLITTING EULER-MARUYAMA SCHEME FOR METRIC GRAPHS

In this section, we present our main algorithm, an Euler-Maruyama-based method for simulating Brownian
motion on a metric graph via timestep splitting. First, we recall the standard Euler-Maruyama discretization
for a particle on the real line R with the update rule

Xk+1 = Xk + µ (Xk)∆t+ σ (Xk)Wk+1

√
∆t, (9)

where Wk are i.i.d. standard normal random variables. Note that (9) is a first-order finite difference
approximation with timestep ∆t of the SDE

dXt = µ (Xt) dt+ σ (Xt) dWt, (10)

where Wt is a standard Brownian motion.

We extend the Euler-Maruyama method to simulate Brownian motions on a metric graph Γ. The main
challenge in implementing a discretization scheme for the SDE (7) is to handle the case when the particle
crosses a vertex in one Euler-Maruyama step in a way that is consistent with the underlying Brownian
motion. To tackle this scenario, we propose a timestep splitting approach that first performs a partial
Euler-Maruyama step so that the particle is exactly at the vertex and then chooses a new edge based on the
vertex-edge jump probabilities bv . Following this, we complete the remaining Euler-Maruyama step using
the drift and diffusion coefficients of the new edge.

A complication that arises is that the remaining step could also result in a vertex crossing. A recursive
application of the timestep splitting approach allows us to handle multiple vertex crossings in a single time
step. The detailed algorithm in the case of a single vertex is described in Algorithm 1.

Algorithm 1 Timestep Splitting Euler-Maruyama Algorithm for Metric Graphs

Require: Star metric graph Γ = (V,E, l) (star graph so V = {v} is a singleton and all edges are semi-
infinite, with einit = v ∀e ∈ E), drift function µ : Γo → R, diffusion function σ : Γo → R+,
edge-vertex jump probabilities bv ∈ ∆E .

1: procedure EM-STEP(e,X,∆t) ▷ (e,X) ∈ Γ, ∆t is the time to simulate
2: M ← 0. ▷ Number of vertex crossings
3: if X ̸= 0 then ▷ Particle is not at the vertex
4: Sample W ∼ N (0, 1).
5: X̃ ← X + µe (X)∆t+ σe (X)

√
∆tW .

6: if X̃ < 0 then ▷ Particle hits vertex
7: Solve X + αµe (X)∆t+ σe (X)

√
α∆tW = 0 for α.

8: Sample ẽ from E (v) according to bv .
9: e← ẽ.

10: X ← 0.
11: ∆t← (1− α)∆t.
12: else
13: return

(
e, X̃

)
.

14: while ∆t > 0 do ▷ Particle is at vertex
15: M ←M + 1.
16: Sample W ∼ N (0, 1).
17: X̃ ← X̃1 + µe (0)∆t+ σe (0)

√
∆t |W |.

18: if X̃ < 0 then ▷ Particle hits vertex again
19: Sample ẽ from E (v) according to bv .
20: e← ẽ.
21: α← W 2σ2

e(0)
µ2
e(0)∆t .

22: ∆t← (1− α)∆t.
23: else
24: return

(
e, X̃

)
.

A possible issue with the algorithm is that the number of timestep splittings required to simulate a single
step of the Brownian motion is not guaranteed to be finite. This could lead to an infinite runtime for
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simulating a finite timestep. However, we rigorously establish in Theorem 2 that this scenario does not
arise, ensuring that the algorithm terminates in a finite number of steps with high probability.
Theorem 2 (Finite vertex crossings with high probability). Let M be the number of vertex crossings the
particle makes in a single Euler-Maruyama step starting from the vertex, as computed in Algorithm 1 with
input (e, 0). Then for all k > 0, we have

P [M ≤ k] ≥ 1− e−
(k−γ)2

4k

where γ is defined as the following dimensionless quantity:

γ := ∆t · max
e∈E(v)

µ2
e(v)

σ2
e(v)

.

In addition to the above, we also show that the exit probabilities of the simulated particle using this partial
stepping algorithm converge to the vertex-edge jump probabilities of the SDE as the timestep goes to zero.
Intuitively, this is because the number of vertex crossings approaches 1 as the timestep goes to zero. We
formalize this in Theorem 3 and Corollary 1.
Theorem 3 (Number of crossings is 1 with high probability). Let M be the number of vertex crossings the
particle makes in a single Euler-Maruyama step starting from the vertex, as computed in Algorithm 1 with
input (e, 0). Let γ be defined as in Theorem 2. Then,

P [M = 1] ≥ Ω
(
e−γ

)
.

As a consequence, we can choose

∆t ≤ O

 1

maxe∈E(v)
µ2
e(v)

σ2
e(v)

log

(
1

1− δ

)
to ensure that P [M = 1] ≥ 1− δ.
Corollary 1 (Jump probabilities converge to bv). Let (ẽ, X) be the output of the procedure in Algorithm 1
with timestep ∆t and input (e, 0). Then,

lim
∆t→0

P [ẽ = i] = bvi for all i ∈ E (v) .

Proofs of Theorem 2, Theorem 3, and Corollary 1 can be found in Appendix A.1.

3.1 FAST, PARALLELIZED, MEMORY-AWARE IMPLEMENTATION IN CUDA

The standard Euler-Maruyama discretization lends itself to a fast, parallelized implementation on GPUs
because each particle can be simulated independently. Previous works have explored the use of GPUs for
algorithms like Markov Chain Monte Carlo and Gibbs sampling in Euclidean spaces (Sountsov et al., 2024;
Quiroz et al., 2015; Terenin et al., 2019). Our Algorithm 1 enjoys similar computational benefits, and we
can leverage the parallelism of GPUs to simulate a large number of particles in parallel on metric graphs.
Further, this algorithm works particularly well with GPUs’ exact architecture, where the balance between
memory transfers and compute operations significantly impacts practical performance.

We provide a brief overview of the architectural details of GPUs that are relevant to our implementation;
further details can be found in the CUDA programming guide (Nvidia, 2011). A GPU consists of thousands
of CUDA cores that can independently execute threads of computation in parallel. Along with a large
number of compute units, the GPU also has a hierarchy of memory that the cores can access. The hierarchy
stems from a fundamental trade-off between memory size, latency, and bandwidth. The fastest memory is
the register memory, which is local to each thread and is used to store intermediate results. The next level
of memory is the shared memory, which is shared between a local group of threads. The global memory is
the largest and slowest memory, but it is accessible by all threads.

Achieving high performance on GPUs requires optimizing memory accesses so that the threads can maxi-
mize the utilization of the compute units. A significant advantage of Monte Carlo methods, like the standard
Unadjusted Langevin Algorithm (ULA) as well as our Algorithm 1, is that they lend themselves to highly
optimized memory access patterns. Specifically, since each particle simulation is completely independent,
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we can assign each thread to simulate a single particle. This allows the particle’s state to remain in register
memory over multiple timesteps, which is the fastest memory available. Consequently, the compute units
can operate at peak utilization without being bottlenecked by memory accesses. Slower transfers to and
from global memory are only required when evaluating ensemble statistics, such as histogram averages.
We implement our algorithm in CUDA to take advantage of these architectural features. Specifically, we
provide CUDA kernels for running multiple timesteps of Algorithm 1 for multiple particles in parallel. We
also provide a CUDA kernel for computing empirical histograms of these particles, which allows us to
measure the error of their density with respect to the steady-state density. We present detailed numerical
experiments in Section 4. CUDA kernel source code can be found in Appendix A.3.

4 NUMERICAL EXPERIMENTS

We consider a simple star metric graph with 5 edges and 1 vertex. For simplicity, we choose constant
diffusion σe(x) = σ for all edges e ∈ E. We choose the vertex-edge jump probabilities to be uniform, i.e.,
bvi =

1
5 . We consider two cases of drift, driven by a linear potential and by a quadratic potential.

Linear Potential In the case of linear potentials, each edge has constant drift towards the vertex with
varying magnitudes given by µei(x) = −10 · i for i ∈ {1, 2, 3, 4, 5}. This drift corresponds to a linear
potential with constant diffusion along each edge, which is equivalent to the Ornstein-Uhlenbeck (Ornstein,
1930) process on each edge, but edges interact through the gluing boundary conditions. The steady-state
distributions ρi on each edge are exponential with means inversely proportional to µi

D .

ρi(x) = B exp
(
−µi

D
x
)

for x ∈ [0,∞] , (11)

where B is a normalization constant. Note that all edges have the same normalizing constant due to the
continuity of the density at the vertex. Since the drift on each edge is constant and inward, it is not
continuous at the vertex. Therefore, the gluing boundary condition (which is effectively a flux balance
condition) also has a term involving the densities at the vertex. Specifically, the flux balance condition at
the vertex is given by ∑

e∈E

µiρi(0) = D
∑
e∈E

∂iρi (0) .

This condition is satisfied by the densities defined in (11) for all choices of B. Finally, the normalizing
constant can be computed by setting the total mass to 1. We obtain B = D∑

i
1
µi

.

Quadratic Potential In the case of quadratic potentials, the drift is given by µei(x) = −10 · i · x for
i ∈ {1, 2, 3, 4, 5}. The steady-state densities in this case are Gaussians centered at the vertex with variance
inversely proportional to µi

D . We can use a similar argument as above to compute the normalizing constant,
and we obtain the following expression for the steady state density on each edge

ρi(x) = B exp
(
− µi

2D
x2
)

for x ∈ [0,∞] , (12)

where the normalizing constant B if given by

B =

√
2

Dπ∑
i

1√
µi

.

We parallelly run Algorithm 1 for multiple particles over multiple timesteps. We measure the error in the
particles’ density (after sufficient simulation time) with respect to the analytical steady-state density. As a
baseline, we compare this with the density obtained by solving the Fokker-Planck equation using a Finite
Volume Method (FVM) scheme. Numerical results are presented in Figure 2, and runtime comparisons
between different implementations are in Figure 3. Further details are provided in the appendix.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Euler-Maruyama based algorithm for simulating Brownian motions on
metric graphs. Our algorithm uses a timestep splitting approach that allows us to handle vertex crossings in
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Figure 2: Error in density estimation for linear and quadratic potentials. The FVM scheme directly solves
the Fokker-Planck equation to obtain the steady-state density. We compare the best case error (over dis-
cretization parameters) of this scheme with the error obtained by running Algorithm 1 for multiple particle
counts and values of the timestep. We estimate the density using a simple histogram with a bin size equal
to the discretization of the FVM scheme. The error is computed as the empirical L2 distance between the
estimated density and the analytical steady-state density. We observe that Algorithm 1 results in signifi-
cantly lower error compared to the FVM scheme for the same level of spatial and time discretizations.
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Figure 3: Normalized runtimes per step, aggregated over different discretization parameters for Algo-
rithm 1 for linear and quadratic potentials compared with the best runtime for the FVM scheme. We
observe that the FVM scheme has a significantly higher runtime compared to Algorithm 1 for the same
level of spatial and time discretizations. Additionally, our custom CUDA kernel for Algorithm 1 is signif-
icantly faster (up to ∼8000x speedup) than the PyTorch implementation (speedups indicated on the bars).
We observe slightly higher runtimes for the linear potential, which is expected due to the increased likeli-
hood of vertex crossings per timestep. All experiments were run on an NVIDIA RTX A6000 GPU.

a way that is consistent with the underlying Brownian motion. We rigorously established that the number
of vertex crossings is finite with high probability and that the exit probabilities of the simulated particle
converge to the vertex-edge jump probabilities of the SDE as the timestep goes to zero. We also provided
a fast, parallelized, memory-aware implementation in CUDA that takes advantage of the architecture of
modern GPUs. We demonstrated the effectiveness of our algorithm through numerical experiments on a
simple star metric graph with linear and quadratic potentials.

Promising future directions include developing higher order variants of timestep splitting algorithms like
Algorithm 1 for simulating Brownian motions on metric graphs. Further, bringing existing sampling algo-
rithms inspired by optimization perspectives (Chewi, 2023) like proximal sampling (Liang & Chen, 2022),
mirror Langevin (Hsieh et al., 2018), and the Metropolis-adjusted Langevin algorithm (Xifara et al., 2014)
to the domain of metric graphs would serve as an interesting research direction. On the theoretical side,
developing non-asymptotic convergence rates for these algorithms is a potential avenue for future work.
Finally, extending the optimized CUDA implementation to accommodate interacting systems by exploiting
shared memory and other architectural features of GPUs is another promising direction.
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A APPENDIX

A.1 PROOFS OF THEOREMS

A.1.1 FINITE VERTEX CROSSINGS WITH HIGH PROBABILITY

Proof of Theorem 2. Let Ik for k > 0 be iid variables that take values in E (v) according to the distribution
bv . Let Wk ∼ N (0, 1) for k > 0. We define the following sequence of random variables:

hk := hk−1 −
σ2
Ik

(v)

µ2
Ik

(v)
W 2

k ,
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where h0 := ∆t.

Define the stopping time τ := inf {k > 0 : hk ≤ 0}. First, observe that M = τ . To see this, note that after

one iteration of the loop in Algorithm 1, we have ∆t′ = ∆t− σ2
I1

(v)

µ2
I1

(v)
W 2

1 . If ∆t′ ≤ 0, then M = 1, and if

∆t′ > 0, then we continue the loop with ∆t′ in place of ∆t. By induction, we see that M = τ . We can
define the following upper bounding sequence by considering the worst case over all possible choices of
Ik,

h̃k := h̃k−1 −
h0

γ
W 2

k , where h̃0 = h0 = ∆t.

We can solve the recursion for h̃k to get

h̃k = h0

(
1− 1

γ

k∑
i=1

W 2
i

)
.

By construction, h̃k ≥ hk for all k ≥ 0. We define a similar stopping time for h̃, as τ̃ :=

inf
{
k > 0 : h̃k ≤ 0

}
. Clearly, hk ≤ h̃k =⇒ τ̃ ≥ τ . Now, observe that

∑k
i=1 W

2
i = χ2

k is a chi-
squared random variable with k degrees of freedom. We have,

h0

(
1− 1

γ
χ2
k

)
≤ 0 ⇐⇒ χ2

k ≥ γ =⇒ τ̃ ≤ k =⇒ τ ≤ k.

Therefore,
P [M ≤ k] = P [τ ≤ k] ≥ P [τ̃ ≤ k] ≥ P

[
χ2
k ≥ γ

]
.

To control the tail of χ2
k, we use the following bound from Lemma 1 in Section 4.1 of (Laurent & Massart,

2000),

P
[
k − χ2

k ≥ 2
√
kx
]
≤ e−x.

We have,

P
[
χ2
k ≤ k − 2

√
kx
]
≤ e−x

=⇒ 1− P
[
χ2
k ≥ k − 2

√
kx
]
≤ e−x.

By setting x = (k−γ)2

4k , we get

P
[
χ2
k ≥ γ

]
≥ 1− e−

(k−γ)2

4k .

This completes the proof.

A.1.2 NUMBER OF CROSSINGS IS 1 WITH HIGH PROBABILITY

Proof of Theorem 3. We use the same notation defined in the proof of Theorem 2.

First, observe that M = 1 =⇒ W 2
1 ≥ γ.

So, we have P [M = 1] ≤ P
[
W 2

1 ≥ γ
]
.

Since W1 is a standard normal random variable, we have
P
[
W 2

1 ≥ γ
]
= P [|W1| ≥

√
γ] = 2 (1− Φ (

√
γ)) ,

where Φ is the CDF of the standard normal distribution.

We use a standard lower bound on the CDF (Casella, 2001) of the normal distribution to get

1− Φ (
√
γ) ≥ C exp

(
−γ

2

)
=⇒ P [M = 1] ≥ C exp

(
−γ

2

)
≥ Ω

(
e−γ

)
.

This completes the proof.
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A.1.3 JUMP PROBABILITIES CONVERGE TO bv

Proof of Corollary 1. Clearly, if M = 1, then ẽ = i with probability bvi, since ẽ is sampled from the
distribution bv once. By noting that γ → 0 as ∆t → 0, we can apply Theorem 3 to conclude that
P [M = 1]→ 1 as ∆t→ 0. This completes the proof.

A.2 BASELINE FINITE VOLUME SCHEME

We provide a brief overview of the Finite Volume Method (FVM) scheme for solving the Fokker-Planck
equation on metric graphs. On each edge e ∈ E, we discretize the Fokker-Planck equation using a standard
FVM scheme; see (LeVeque, 2002) for details. We use an upwinding scheme to discretize the drift term
and a central difference scheme to discretize the diffusion term. We use a first-order explicit Euler scheme
to discretize the time derivative.

We now provide details of the flux balance condition at the vertex. Denote the density of the cell adjacent
to the vertex on edge i by ρi. To mimic the gluing boundary conditions, we use a flux distribution at the
vertex that is proportional to the jump probabilities bv . Specifically, let Fij be the flux from edge i to edge
j at the vertex. We decompose the flux into a drift and diffusion component.

Drift Component Since we use an upwinding scheme to discretize the drift term, the drift component
of the flux from edge i to edge j is zero if the drift µi(v) is away from the vertex on edge i. If the drift is
towards the vertex, then the drift component of the flux is given by

F drift
ij = µi(v)ρi/bvi

bvj∑
k ̸=i bvk

.

Note that the drift flux is distributed to all target edges, proportional to the jump probabilities. The density
from the source is normalized by the jump probability to account for the fact that the density is distributed
to all target edges.

Intuitively, the jump probability can be interpreted as the relative “cross-sectional areas” of the edges at
the vertex. The density is the linear density of the particles on the edge. When computing fluxes across
different edges, we need to account for the relative “cross-sectional areas” of the edges at the vertex. Hence,
we normalize by the appropriate jump probabilities.

Diffusion Component The diffusion component of the flux is given by

F diffusion
ij =

σ(v)

2

(
ρi/bvi − ρj/bvj

∆x

)
bvj

A similar normalization is applied to the density terms to account for the relative “cross-sectional areas” of
the edges at the vertex.

The total flux into the cells at the vertex on each edge is the sum of all the incoming drift and diffusion
components from every other edge.

A.3 CUDA KERNELS

We present source code for our CUDA kernels for running Algorithm 1 for multiple particles over multiple
timesteps. Python bindings and other code can be found in the repository at https://github.com/
rajatvd/metric-graphs-FPI-ICLR2025.

# i n c l u d e <c u r a n d k e r n e l . h>

# d e f i n e TOL 1e −10 f
# d e f i n e MAX ITERATIONS PER STEP 100
# d e f i n e STEPS PER KERNEL 1000

e x t er n ”C” {
d e v i c e f l o a t dev ice dV ( i n t e d g e i n d e x , f l o a t x ) {
/ / g r a d i e n t o f q u a d r a t i c p o t e n t i a l
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re turn 1 0 . 0 f * ( e d g e i n d e x + 1 . 0 f ) * x ;
}

d e v i c e f l o a t s o l v e q u a d r a t i c ( f l o a t A, f l o a t B , f l o a t C) {
/ / N u m e r i c a l l y s t a b l e s o l u t i o n t o q u a d r a t i c e q u a t i o n
i f (A == 0 . 0 f ) {

re turn −C / B ;
}
f l o a t d i s c r i m i n a n t = s q r t f ( fmaxf (B * B − 4 . 0 f * A * C , 0 . 0 f ) ) ;
i f (B > 0 . 0 f ) {

re turn ( −B − d i s c r i m i n a n t ) / ( 2 . 0 f * A ) ;
} e l s e {

re turn ( 2 . 0 f * C) / ( −B + d i s c r i m i n a n t ) ;
}

}

g l o b a l void
l a n g e v i n m u l t i s t e p k e r n e l ( i n t * edges , f l o a t * p o s i t i o n s , i n t * bounces ,

i n t * b o u n c e i n s t a n c e s , c o n s t f l o a t * e d g e l e n g t h s ,
c o n s t f l o a t * jump weigh t s , c o n s t f l o a t b a s e d t ,
c o n s t f l o a t sigma , c o n s t i n t num edges ,
c o n s t i n t n u m p a r t i c l e s , c u r a n d S t a t e * s t a t e s ) {

c o n s t i n t t i d = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
i f ( t i d >= n u m p a r t i c l e s )

re turn ;

i n t edge = edges [ t i d ] ;
f l o a t x = p o s i t i o n s [ t i d ] ;
i n t b o u n c e c o u n t = bounces [ t i d ] ;
i n t b o u n c e i n s t a n c e = b o u n c e i n s t a n c e s [ t i d ] ;
c u r a n d S t a t e l o c a l s t a t e = s t a t e s [ t i d ] ;

i f ( edge < 0 | | edge >= num edges ) {
p r i n t f ( ” I n v a l i d i n i t i a l edge %d f o r p a r t i c l e %d\n ” , edge , t i d ) ;
edge = 0 ;

}

f o r ( i n t s t e p = 0 ; s t e p < STEPS PER KERNEL ; ++ s t e p ) {
f l o a t d t = b a s e d t ;
i n t i t e r a t i o n s = 0 ;

whi le ( d t > 0 . 0 f && i t e r a t i o n s ++ < MAX ITERATIONS PER STEP ) {
f l o a t w = c u r a n d n o r m a l (& l o c a l s t a t e ) ;
i f ( x == 0 . 0 f )

w = f a b s f (w ) ;

f l o a t d r i f t = − dev ice dV ( edge , x ) ;
f l o a t s q r t d t = s q r t f ( d t ) ;
f l o a t x n e x t = x + d t * d r i f t + sigma * s q r t d t * w;
f l o a t c u r r e n t l e n g t h = e d g e l e n g t h s [ edge ] ;

i f ( c u r r e n t l e n g t h <= 0 . 0 f ) {
p r i n t f ( ” I n v a l i d edge l e n g t h %f f o r edge %d\n ” , c u r r e n t l e n g t h , edge ) ;
c u r r e n t l e n g t h = 1 . 0 f ;

}

i f ( x n e x t > 0 . 0 f && x n e x t <= c u r r e n t l e n g t h ) {
/ / no bounce
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x = x n e x t ;
d t = 0 . 0 f ;

} e l s e i f ( x n e x t > c u r r e n t l e n g t h ) {
/ / a l s o no bounce
x = 2 . 0 f * c u r r e n t l e n g t h − x n e x t ;
d t = 0 . 0 f ;

} e l s e {
/ / x n e x t < 0 . 0 f −− bounce
i f ( x != 0 . 0 f ) {

/ / f i r s t bounce
b o u n c e i n s t a n c e ++;

}
b o u n c e c o u n t ++;

f l o a t a = d r i f t * d t ;
f l o a t b = sigma * s q r t d t * w;
f l o a t s q r t a l p h a = s o l v e q u a d r a t i c ( a , b , x ) ;
f l o a t a l p h a = s q r t a l p h a * s q r t a l p h a ;

d t *= ( 1 . 0 f − a l p h a ) ;
f l o a t r a n d v a l = c u r a n d u n i f o r m (& l o c a l s t a t e ) ;
i n t new edge = 0 ;
whi le ( new edge < num edges − 1 && r a n d v a l > j u m p w e i g h t s [ new edge ] ) {

new edge ++;
}

i f ( new edge < 0 | | new edge >= num edges ) {
p r i n t f ( ” I n v a l i d new edge %d , c l amping t o 0\n ” , new edge ) ;
new edge = 0 ;

}

edge = new edge ;
x = 0 . 0 f ;

}
}

}

edges [ t i d ] = edge ;
p o s i t i o n s [ t i d ] = x ;
bounces [ t i d ] = b o u n c e c o u n t ;
b o u n c e i n s t a n c e s [ t i d ] = b o u n c e i n s t a n c e ;
s t a t e s [ t i d ] = l o c a l s t a t e ;

}

g l o b a l void s e t u p k e r n e l ( c u r a n d S t a t e * s t a t e s , unsigned long long seed ,
i n t n u m p a r t i c l e s ) {

i n t t i d = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
i f ( t i d >= n u m p a r t i c l e s )

re turn ;
c u r a n d i n i t ( s eed + t i d , 0 , 0 , &s t a t e s [ t i d ] ) ;

}

/ / h i s t o g r a m k e r n e l
g l o b a l void c o m p u t e h i s t o g r a m k e r n e l ( c o n s t i n t * edges ,

c o n s t f l o a t * p o s i t i o n s ,
c o n s t f l o a t * e d g e l e n g t h s ,
i n t * h i s t o g r a m s , i n t num bins ,
i n t num edges , i n t n u m p a r t i c l e s ) {
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c o n s t i n t t i d = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
i f ( t i d >= n u m p a r t i c l e s )

re turn ;

c o n s t i n t edge = edges [ t i d ] ;
c o n s t f l o a t pos = p o s i t i o n s [ t i d ] ;

/ / V a l i d a t e i n p u t
i f ( edge < 0 | | edge >= num edges )

re turn ;
c o n s t f l o a t l e n g t h = e d g e l e n g t h s [ edge ] ;
i f ( pos < 0 . 0 f | | pos > l e n g t h )

re turn ;

/ / C a l c u l a t e n o r m a l i z e d p o s i t i o n [ 0 , 1 ]
c o n s t f l o a t n o r m a l i z e d p o s = pos / l e n g t h ;

/ / De termine b i n i n d e x
i n t b i n = ( i n t ) ( n o r m a l i z e d p o s * num bins ) ;
b i n = max ( 0 , min ( bin , num bins − 1 ) ) ; / / Clamp t o v a l i d range

/ / Atomic i n c r e m e n t u s i n g 2D i n d e x i n g : [ edge ] [ b i n ]
atomicAdd(& h i s t o g r a m s [ edge * num bins + b i n ] , 1 ) ;

}
}
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