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Abstract

In recent years, video generation has seen significant advancements. However, challenges
still persist in generating complex motions and interactions. To address these challenges,
we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized
3D model knowledge into a pretrained conditional video generation model, significantly en-
hancing its ability to generate high-quality videos with complex motion and interactions.
Specifically, ReVision consists of three stages. First, a video diffusion model is used to gen-
erate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video
to construct a 3D object-centric representation, which is then refined by our proposed pa-
rameterized motion prior model to produce an accurate 3D motion sequence. Finally, this
refined motion sequence is fed back into the same video diffusion model as additional con-
ditioning, enabling the generation of motion-consistent videos, even in scenarios involving
complex actions and interactions. We validate the effectiveness of our approach on Sta-
ble Video Diffusion, where ReVision significantly improves motion fidelity and coherence.
Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video genera-
tion model with over 13B parameters on complex video generation by a substantial margin.
Our results suggest that, by incorporating 3D motion knowledge, even a relatively small
video diffusion model can generate complex motions and interactions with greater realism
and controllability, offering a promising solution for physically plausible video generation.
Project page: https://revision-video.github.io/

1 Introduction

Video diffusion models have achieved remarkable success in producing high-quality, temporally coherent
videos (Blattmann et al.| [2023; Brooks et al., |2024; |Polyak et al.l|2024; |Kong et al., 2024]). It has been driven
by advances in model architectures (Peebles & Xiel 2023), increases in model complexity, reaching tens
of billion parameters (Polyak et al., [2024), and the availability of large-scale high-quality datasets (Chen
et all 2024). However, current models still struggle to generate videos that adhere to realistic physical
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Figure 1: By explicitly leveraging a parameterized 3D motion model, ReVision enhances pre-trained video
generation models (e.g., Stable Video Diffusion) to produce high-quality videos with complex motion (row
1), enabling precise motion control (rows 2, 3) and accurate interactions (rows 4, 5). During inference, an
optional target pose can be specified via a rough sketch (rows 1, 3, 4, colored circles for different parts,
dashed lines for the original pose, solid lines for the target pose) or a simple drag operation (blue arrows in
row 2) indicating the final position.

principles, making it difficult to consistently achieve fine-grained motion control, complex movements, and
coherent object interactions. Despite extensive efforts to improve performance through larger models and
higher-quality datasets, a recent study (Kang et al. 2024) indicates that scaling model size and data alone
is insufficient to fully capture the complexities of the real world.

On the other hand, human image animation models 12024; |Tan et al., 2024; Xu et al., 2024) offer valuable
insights for addressing persistent challenges in video generation. Despite using smaller models and less data,
these methods achieve consistent and precise video outputs with complex motions by following predefined 2D
keypoint trajectories. This success suggests that incorporating a well-defined motion prior can substantially
reduce the learning complexity of video generative models, enabling them to generate coherent and lifelike
motion. However, in general video generation tasks, such strong guiding signals are typically unavailable,
limiting the direct applicability of these animation techniques to broader video generation scenarios. This
raises a critical question: Can we develop a video generation framework that leverages the implicit motion
information embedded in the generated videos as guidance to further enhance video quality?

In this paper, we propose a simple, general, and plug-and-play video generation framework that incorpo-
rates motion knowledge into a conditional video generation model via a parameterized 3D representation,
allowing the generation of videos with complex motions and interactions involving humans, animals, and
general objects. The core of ReVision is to Regenerate Videos with explicit 3D motion representations,
following an Fxtract-Optimize—Reinforce pipeline. Specifically, to effectively leverage 3D knowledge without
heavy retraining of the diffusion model while preserving its original ability to generate high-quality visual
appearance, we design the pipeline in three stages.

In the first stage, we employ a video diffusion model, e.g., SVD (Blattmann et all 2023), to generate a
coarse video conditioned on the given input. In the second stage, we utilize parametric 3D models (i.e.,
SMPL-X (Pavlakos et al.,2019) for humans, SMAL (Rueegg et al., 2023; Zuffi et al.,2024)) for animals, and
2D binary mask with estimated depth (Yang et al.;2024b) for general objects) to extract 3D
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shape and motion features from the coarse video. These 3D object-centric representations are subsequently
optimized by the proposed Parameterized Motion Prior model (PMP), producing a more accurate and
natural 3D motion sequence. In the third stage, the refined 3D motion sequences are incorporated as
additional conditioning inputs to reinforce the diffusion model, enabling it to regenerate the video with
improved coherence and realism.

Extensive qualitative results and human preference studies confirm that our model excels at generating
complex motions and interactions. We first apply ReVision on Stable Video Diffusion (SVD) (Blattmann
, substantially improving its ability to generate realistic and intricate motions. We further com-
pare ReVision-SVD with HunyuanVideo (Kong et al., [2024)), a state-of-the-art open-source video generation
model with 13B parameters, and demonstrate superior motion quality. Finally, on the particularly challeng-
ing dance generation task, our model outperforms state-of-the-art human image animation methods that
rely on ground-truth pose sequences, surpassing them across all evaluation metrics.

In summary, we make the following contributions:

e We show that optimizing object-centric knowledge of generative models enhances their ability to generate
complex motions and interactions, suggesting a promising direction for improving video generation.

e We introduce ReVision, a three-stage pipeline that significantly improves the quality of pre-trained video
generation models by explicitly optimizing parameterized 3D object-centric motion knowledge extracted
from generated videos.

e We propose PMP, a lightweight and robust parameterized motion prior model that effectively refines
motion information in generated videos.

2 Related Work

Video Generation. With the success of diffusion models in image generation (Rombach et al. [2022} [Esser|
et all 2024; [Liu et al., |2024a; Betker et al., |2023)), driven by advancements in both generative modeling
strategies (Ho et al., [2020; Song et al., |2020; [Lipman et al., [2022; Liu et al., 2022; |2024b) and model ar-
chitectures (Bao et al., [2023; [Peebles & Xie| 2023} |Liu et al., [2024¢} Ma et all, [2024), video generation
et al.| [2022; [Singer et al, [2022; [Wang et al.l 2024d} [Yang et all [2023; [Zhang et al. 2024a} [Zhou et al.| [2022}
Bar-Tal et al., [2024; [Polyak et all, [2024; [Brooks et al. [2024) has recently attracted significant attention.
Parallel to text-to-video (T2V) generation, image-to-video (I2V) methods (Babaeizadeh et al., [2017} [Li et al.l
[2018; Xiong et al., 2018} [Pan et al., 2019; Zhang et al., 2020) generate videos from a single starting frame.
However, existing methods still struggle to handle complex motions and interactions, and often fail to main-
tain physical plausibility. To overcome these challenges, recent approaches incorporate additional conditions
to enhance motion control in video generation. Common conditional inputs include text descriptions (Hul
let all, 2022; |Girdhar et al. [2023} |Chen et al., 2023; Ren et al., |2024b} |Zeng et al.l [2024)), which can further
guide motion modeling. For example, MAGE (Hu et al., 2022) introduces a spatially aligned motion anchor
to blend motion cues from text, and SEINE (Chen et al., [2023)) uses a random-mask video diffusion model
to create transitions guided by textual descriptions. Another popular condition is optical flow, where mod-
els (Mahapatra & Kulkarni| 2022} [Ni et al 2023; [Shi et al., |2024)) estimate rough flow from user-provided
arrows or text to guide complex motion generation. In contrast, ReVision leverages implicit motion features
already embedded in the generated video through 3D parameterized object representations. This allows it
to directly extract, optimize, and reinforce accurate and reliable motion features from the generated video
itself, resulting in precise motion sequences that enhance coherence and fidelity.

Human Image Animation. Human image animation focuses on transferring motion from a source human
to a target human by using ground-truth posture sequences, which can be represented as flow
2004)), keypoints 2024; [Tan et all [2024), or human part masks (Xu et al) [2024). Extensive efforts have
gone into extracting improved motion features. For example, MagicAnimate (Xu et al., 2024)) leverages an
off-the-shelf ControlNet (Zhang et all [2023a)) to obtain motion conditions, Hu et al. introduce a
Pose Guider network to align pose images with noise latents, and Animate-X utilizes both
implicit and explicit pose indicators to generate motion and pose features. Such strong guidance enables
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high-quality video generation in human image animation, as each posture sequence directly dictates the
synthesis of corresponding frames. However, in general video generation, the ground-truth dense guidance is
typically unavailable, and there is usually no reference video for extracting a motion sequence. To overcome
this limitation, ReVision introduces a three-stage process: it first extracts an implicit, rough motion sequence
from the generated video, then refines it using the proposed PMP, and finally leverages the refined motion
to guide video regeneration. This approach provides effective guidance for video generation, significantly
improving video quality.

3 Preliminary

Latent Diffusion Model. Diffusion models (Ho et al. [2020) generate data through a denoising process
that learns a probabilistic transformation. Latent diffusion models (Rombach et al., 2022)) move this process
from pixel space to the latent space of a Variational Autoencoder (Kingma & Welling, 2014)). Specifically,
we consider the latent representation zy of the input data. In the forward diffusion process, Gaussian noise

is incrementally added to zq:
q(zt|2e-1) =N (Zt; V1- ’YtZt—l,%I) ) (1)

where z; represents the noisy latent representation at time step ¢, and ; is a predefined noise schedule with
t € (0,1). As t increases, the cumulative noise applied to zg intensifies, gradually transforming z; closer
to pure Gaussian noise. We express the transformation from zg to z; directly as: z; = \/@;2z0 + /1 — @z €,
where @; = [[i_,(1 — ) and € ~ N(0,I). The latent diffusion model, parameterized by ©, learns to
reverse this noising process by taking z; as input and reconstructing the clean data with the objective:
L=|e— e@(zt,t,c)H;, where ¢ is the condition to guide the denoising process. Once the latent space is
reconstructed, it is decoded via the VAE decoder.

Video Latent Diffusion Model. We use SVD (Blattmann et al.l [2023)) as our base video diffusion model,
which extends Stable Diffusion 2.1 (Rombach et al., |2022)) to video. The main architectural difference from
image diffusion models is that SVD incorporates a temporal UNet (Ronneberger et al., [2015) by adding
temporal convolution and (cross-) attention (Vaswani, [2017) layers after each corresponding spatial layer.

3D Human and Animal Mesh Recovery. We utilize the SMPL-X (Pavlakos et al., 2019) and
SMAL (Zuffi et al.,[2017)) parametric models to represent humans and animals, respectively. These models pa-
rameterize 3D meshes with pose parameters 6 and shape parameters 8. Additionally, SMPL-X model includes
expression parameters 1 to capture facial expressions through blend shapes. Given these parameters, SMPL-
X model is a differentiable function that outputs a posed 3D human mesh Msrpr,—x (0, Bn, n) € RI0475X3)
where pose 6;, € R shape fj, € R'°, and expression 1, € R0, Similarly, SMAL model represents a posed
3D animal mesh with Mgarar (0, Ba) € R3889%3 where pose 6, € R1% and shape 3, € R*. In our work,
we recover 3D human and animal meshes by fitting the SMPL-X and SMAL models to both our data and
the generated videos. This produces 3D mesh reconstructions for all humans and animals. Because these
meshes are computer-graphics models with predefined body-part annotations at every vertex, we can ob-
tain accurate part labels directly. The 3D meshes also allow us to compute motion strength by measuring
movement speed in 3D space, which is more reliable than relying on 2D pixel motion alone.

2.5D Parameterized Object Representation. Unlike humans and animals, there is no straightforward
way to parameterize general objects in 3D space. Here, we represent objects in 2.5D by combining 2D
bounding boxes (Varghese & Sambathl| [2024), segmentation masks (Peng et al., |2020; [Wu et al., 2024), and
estimated depth (Yang et al., [2024b)).

4 Method

ReVision requires extending a pre-trained video diffusion model to accept additional motion conditions as
input. In Sec. we describe how to adapt SVD into a motion-conditioned video generation model with
minimal modifications. In Sec. we introduce ReVision, a three-stage video generation pipeline built upon
the extended SVD, incorporating a Parameterized Motion Prior model (PMP) to provide accurate motion
sequences as conditioning inputs. An illustration is provided in Fig. 2]
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Figure 2: Method overview. Given the video generation model, ReVision operates in three stages. Stage
1: A coarse video is generated based on the provided conditions (e.g., target pose, marked in blue, indicating
the rough position of the part in the last frame). Stage 2: 3D features from the generated coarse
video are extracted and optimized using the proposed PMP. Stage 3: The optimized 3D sequences are used
to regenerate the video with enhanced motion consistency. Best viewed when zoomed in.

4.1 Motion-Conditioned Video Generation

Since SVD does not natively support motion-conditioned
video generation, we extend its design to enable this capa-

bility, with a focus on simplicity to preserve its original gen- e NetEe il N
eration quality and minimize deviations from user-provided - Ge;‘/\i'”;efl“’" - ;
(= =

inputs. Concretely, we begin with a pre-trained SVD and proe il

fine-tune it within a carefully structured strategy. We con- concatenare ¢

catenate two additional conditioning channels to the original

condition: one for a part-level segmentation mask derived Figure 3: Motion-conditioned video gen-
from the 3D motion sequence, and another for a confidence eration. We enable motion-conditioned gen-
map indicating the reliability of the part mask, as illustrated eration by introducing two extra conditioning
in Fig. We also design a fine-tuning pipeline that inte- channels: (1) part segmentation mask derived
grates three scenarios with varying levels of part mask guid- from the 3D motion sequence, and (2) its cor-
ance, allowing the model to flexibly handle diverse inputs. responding confidence map.

We detail those three scenarios below.

First, when the full motion sequence is provided (40% of training examples), the part-level mask is generated
by merging all 2D part segmentation masks projected from 3D parametric mesh models. Since the motion
sequence provides dense and precise control over video generation, we assign a confidence score of 1 to the
corresponding confidence map. Our experiments confirm that these 3D-projected masks are more robust
than existing part segmentation models.

Second, when only the target pose is provided (30% of training examples), we convert the projected part
segmentation masks into polygons. This aligns with users’ inference input, where they provide simple
sketches (e.g., circles or ovals) to indicate the final positions of specific targets or parts (e.g., a hand or arm).
These user-friendly sketches are then converted into polygonal masks, similar to the part segmentation
mask polygons used during training. Since polygon conversion introduces unavoidable errors, we assign a
confidence score of 0.5 in this case.

Last, to preserve SVD’s ability to generate videos without motion conditioning, the remaining 30% of training
examples provide an empty part mask, with a corresponding confidence score of 0.

Note that all three settings use the same model architecture, with minimal modifications limited to the first
convolutional block of SVD. This design enables fine-tuning only the initial convolutional block and the
temporal layers, avoiding the need to train SVD from scratch. As a result, the extended SVD can generate
videos conditioned on various types of motion inputs, while still retaining its ability to generate videos from
just text and the first frame.

4.2 Proposed Method: ReVision

Overview. As shown in Fig. [2| ReVision consists of three stages. In stage one (S1), we generate a coarse
video based on the provided conditions. In stage two (S2), we extract both 2D and 3D features from the
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coarse video and refine the 3D motion sequences through the proposed PMP. In stage three (S3), we use
the refined 3D motion sequences as strong conditioning, guiding the video generation model to regenerate
the video, resulting in significantly higher-quality output even for complex motions and interactions.

S1: Coarse Video Generation. Given the first frame and an optional user-specified target motion in the
final frame, we use the fine-tuned SVD model to generate the video. Since the generation relies only on the
target motion in the final frame or an empty motion, rather than a complete motion sequence, the resulting
video often exhibits poor motion quality, leaving room for refinement. Therefore, we refer to this stage as
coarse video generation.

Although we utilize only 2D and 3D motion features from the coarse video generated in Stage 1, this phase
remains foundational, as it is critical for capturing rich motion patterns, intricate object interactions, and
authentic camera movements in complex real-world settings. Video generation is inherently a multifaceted
task. Beyond producing realistic object appearances, it also requires an understanding of dynamic motion,
scene context, coherent camera trajectories, and the diverse interplay of these elements. While training
a motion generation model directly for this task is theoretically feasible, it proves challenging in practice.
Current state-of-the-art models (Guo et al., [2024}; [Zhang et al., 2024b; [2023b)) are constrained by the lack
of large datasets, limiting their capacity to model only simplistic motions, such as human-like activities
like running or dancing. Consequently, they struggle to generalize to more complex motions, diverse object
interactions, and fail to generate motions that align with realistic camera dynamics and scene context.

Stage 1 mitigates these limitations by directly generating videos and extracting detailed motion patterns,
camera trajectories, scene transitions, and meaningful interactions. By leveraging extensive motion priors
learned from billions of videos, it constructs a comprehensive sketch of motion and scene structure. This
sketch serves as a critical foundation, providing the diversity and realism necessary to produce lifelike,
engaging videos. The subsequent stages build on this: Stage 2 refines the motion further, while Stage 3
focuses on generating the video’s visual appearance based on the refined motion feature.

Notice that, because only rough motion features without detailed visual information are needed from the
coarse video, we can significantly reduce computational overhead. For instance, our experiments
show that the compute time for Stage 1 can be reduced from 36 seconds to 8 seconds by generating the
coarse video at a lower resolution (1/4 of the original), with fewer frames (1/2 of the original), and fewer
denoising steps (32 vs. 50), while still preserving comparable final video quality. This optimization makes
the overall generation process more efficient and cost-effective (See Tab. .

S2: Object-Centric 3D Optimization. After generating coarse videos, we parameterize the 3D infor-
mation in the scenes for further optimization. For humans and animals, we employ well-established 3D
parametric mesh models (Loper et al., |2015; Rueegg et al., [2023; [Zuffi et al., 2024). For general objects,
where no unified 3D representation or well-established modeling approach exists, we construct a parameter-
ized representation by combining 2D bounding boxes (Varghese & Sambath) 2024), segmentation masks (Yu
et al., 2023} [Peng et al.l |2020), and estimated depth (Yang et al., |2024b)). Specifically, given the detected
bounding box and segmentation mask, we extract a contour from the mask and approximate it with 16
vertices. We then combine these with 4 bounding box corners and the box center, yielding a total of 21
key 2D points. These points are lifted into 3D space using the estimated depth, resulting in a compact
point-based representation for each object, denoted as p, € R21*3.

However, due to the poor motion quality and inconsistencies in the coarse video generated in S1, the 3D
parameters extracted also suffer from instability and inconsistencies. To address this, we propose a Parame-
terized Motion Prior model (PMP) to optimize the 3D motion sequence, based on the text information and
the motion strength.

PMP first extracts text embeddings from the text description using a pre-trained CLIP encoder (Radford
et al.l 2021)). Motion strength is computed from the differences in parametric 3D model parameters be-
tween adjacent frames, providing a measure of motion speed. Since the 3D motion sequences are already
parameterized as 3D vectors, PMP employs a series of transformer blocks to iteratively refine the motion
sequence based on these conditioning inputs. Within each block, motion features undergo self-attention,
followed by cross-attention with the conditioning inputs (text embeddings and motion strength) and a feed-
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forward network to generate the final output. Finally, the optimized 3D parameterized motion sequences are
converted into 3D mesh sequences and projected into 2D as part segmentation masks and confidence maps,
providing more accurate motion guidance. Architectural details are provided in Sec [A] of the Appendix, and
the effectiveness of PMP is demonstrated in Sec.

To train PMP, we introduce small perturbations to the ground-truth motion sequences from the annotated
Panda-70M subset. Three types of perturbations are randomly applied: (1) adding small random noise to
the motion sequence, (2) shuffling the internal order of the sequence, and (3) dropping a small segment while
repeating the remaining segments to maintain the original length. Through this process, PMP learns to
denoise perturbations, improving its ability to recover smooth and robust motion sequences.

S3: Fine-grained Video Generation. In the final stage, we regenerate the video using the same SVD
model but with the improved motion sequence as additional conditioning. Unlike the coarse generation in
stage one, which uses only the target pose in the last frame or no motion information, we now utilize the
full motion sequence as part masks optimized in 3D space. With this stronger conditioning, the final output
exhibits significantly improved motion consistency compared to the coarse video, as illustrated in Fig. [8]

5 Experimental Results

We first compare our method with SVD (Blattmann et all [2023) and HunyuanVideo (Kong et al.l [2024)
in Sec. [5.1} highlighting how it enhances SVD to support more controllable and complex motion generation
while maintaining efficiency, effectively handling occlusions, and enabling long video generation. Next, in
Sec. we compare our model with Human Image Animation methods, demonstrating its ability to generate
complex motions. We then evaluate the effectiveness of the proposed Parameterized Motion Prior in Sec.
Due to space limitations, additional details and results, including ablations on parametric 3D mesh, text
prompt, and motion strength, are provided in Sec. [C] of the Appendix.

5.1 Image-to-Video Generation

Dataset. Both the motion-conditioned video generation model and the Parameterized Motion Prior model
(PMP) need to be fine-tuned (trained) on a small yet high-quality video dataset with object-centric anno-
tations. Existing large-scale video datasets (Bain et al., [2021; |Chen et al., 2024) mainly provide text-image
pairs without detailed object-centric annotations. To address this limitation, we use a suite of off-the-shelf
models across various tasks to generate 2D and 3D object-centric annotations. We annotate a total of 20K
videos from the Panda-70M (Chen et al., 2024]) dataset. For each video, we provide frame-wise 2D bound-
ing boxes, semantic masks, depth estimation maps, and 3D parametric mesh reconstructions for detected
humans and animals. The details are outlined in Sec. |B]in the Appendix.

Experimental Setup. For most experiments, we use SVD (Blattmann et al. 2023|) as the base video
generation model and modify it by introducing two additional channels for conditional generation. We fine-
tune SVD on our annotated dataset for 300K iterations with a batch size of 64 and a constant learning rate
of 2 x 1075, During training, we randomly sample 16-frame video clips with a stride of 4 at a resolution of
1024 x 576. To enable various control, we incorporate different conditioning strategies: 40% of video clips
contain accurate part masks for each frame, 30% contain a polygon mask for random parts in the final frame,
and the remaining clips have no additional conditioning.

Benchmark on General Video Generation. To better evaluate our model on general video generation,
we used VBench++ (Huang et al., 2024]), which provides a comprehensive, detailed, multi-dimensional
assessment of general video generation quality. As our model is designed for image-to-video generation
(I2V), we primarily compared it against SVD-XT-1.1 (Blattmann et al., 2023). Moreover, since our model
is backbone-agnostic, we integrate our method with a stronger and more recent video diffusion backbone,
Wan2.1-12V-14B-720P (Wan et al.l [2025)). We train ReVision-Wan2.1 on the same dataset as ReVision-SVD
using the same settings. Results are provided in Tab. Our models consistently outperforms the base
models on nearly all metrics, particularly in dynamic degree (83.15% vs. 43.17%, 73.67% vs. 51.38%) and
various consistency and smoothness measures.
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Figure 4: Qualitative comparisons. ReVision generates high-quality videos with complex motions and
interactions of humans, animals, and general objects. Zoom in for better details. Please find the side-by-side
video comparisons in the supplementary video. Reference frames are in the first column.

Table 1: Quantitative comparisons on VBench++. We achieve a significantly higher Dynamic Degree
while maintaining similar performance across all metrics of consistency, smoothness, and quality.

Model 12V 2V Subject Background Motion Dynamic Imaging

Type | Subject Background Consistency Consistency Smoothness Degree Quality
Step-Video-TI2V (Huang et al.||2025 T2V 98.63% 98.63% 96.02% 97.06% 99.24% 48.78% 70.44%
DynamiCrafter-1024 (Xing et al.||2024 TI2V 98.17% 98.60% 95.69% 97.38% 97.38% 47.40% 69.34%
Gen-4-12V (Runway| 2026 2v 97.84% 97.46% 93.23% 96.79% 98.99% 55.20% 70.41%
Magi-1 (Teng et al.[[2025 2V | 98.39% 99.00% 93.96% 96.74% 98.68% 68.21% 69.71%
HunyuanVideo-I12V (Kong et al.|[2024 12v 98.53% 97.37% 95.26% 96.70% 99.23% 22.20% 70.1%
Wan2.1-12V-14B-720P (Wan et al.| 2025 2v 96.95% 96.44% 94.86% 97.07% 97.90% 51.38% 70.44%
ReVision-Wan2.1 (Ours 2v 98.10% 97.10% 97.06% 97.89% 97.74% 73.67% 72.86%
SVD-XT-1.1 (Blattmann et al.|[2023 2V | 97.51% 97.62% 95.42% 96.77% 98.12% 43.17% 70.23%
ReVision-SVD (Ours 2v 97.94% 98.06% 96.13% 97.89% 98.88% 83.15% 71.48%

In addition, we compared our method with recent state-of-the-art models for text+image-to-video (TI2V)
generation in Tab.[I] We observe that, although these TI2V models use text descriptions to specify motion,
the intensity and quality of the resulting movements are not fully controllable. In contrast, our method
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Figure 5: User preference comparisons. Our model enhances the motion generation capability of the
pre-trained SVD. It even surpasses HunyuanVideo, a SOTA model with 13B parameters. These results
highlight the effectiveness of our model in generating complex motions and interactions.

Table 2: Comparisons with motion-conditioned video generation methods on DAVIS. ReVision
achieves more accurate motion transfer while preserving object appearance and scene details, resulting in
enhanced temporal coherence and reduced visual artifacts.

CoTracker Optical Flow Pixel Subject Background Motion
mloU 1 Error | MSE | Consistency T Consistency ¥ Smooth 1
0.72 0.42 0.068 0.75 0.85 0.92
0.66 0.64 0.072 0.77 0.88 0.93
0.74 0.36 0.053 0.88 0.92 0.98
ReVision-SVD (Ours) | 0.80 0.33 0.046 0.96 0.97 0.99

achieves substantially better performance in generating complex motions, while maintaining high consistency,
temporal smoothness, and overall visual quality.

Comparisons with Motion-conditioned Video Generation. Following Go-with-the-Flow (Burgert
2025)), we also consider the motion-transfer image-to-video task on DAVIS (Pont-Tuset et al., [2017)
and report the results in Tab. We observe that our model consistently outperforms all baselines across
all metrics, clearly demonstrating the effectiveness of the proposed method. In particular, our approach
yields more accurate motion transfer while better preserving object appearance and scene details, leading to
improved temporal coherence and fewer visual artifacts.

In addition, comparing text-conditioned and motion-conditioned video generation shows that explicit motion
conditioning plays a dominant role in controlling dynamics, while text conditioning provides only coarse
guidance. Although text descriptions effectively convey high-level semantic intent, they struggle to specify
fine-grained temporal details and precise motion patterns. As a result, motion conditioning enables more
direct and reliable control over dynamic behaviors that are difficult to express through natural language.

User Study. To better compare our model with the baseline SVD and HunyuanVideo, we conduct user
studies to assess user preferences. Specifically, we generate 500 text descriptions of humans and animals
engaged in daily activities using GPT-40 (Hurst et al.| 2024). For the comparison with SVD, we use GPT-40
to generate five 16 : 9 images for each prompt, which are resized to 1024 x 576 as input. For the comparison
with HunyuanVideo, we first use their released model to generate five videos at a resolution of 1280 x 720
for each prompt, then extract the first frame of each video as the input image for our model to generate
the corresponding video. No target pose is provided for any model. For each image, we generate one video
per model using the same random seed (42), resulting in a total of 5,000 video pairs. Each video pair is
evaluated by three randomly selected users on Amazon MTurk, leading to a total of 15,000 comparisons.
Users are shown two videos side by side, generated by different models, with the order randomized. They are
instructed to assess the videos based on Motion Consistency, Amount of Motion, and Motion Realism. The
results are reported in Fig. [p] Our model significantly enhances the motion generation capabilities of SVD,
producing videos with superior motion quantity, consistency, and realism. Furthermore, it even surpasses
HunyuanVideo, a state-of-the-art video generation model with 13B parameters, in terms of motion quality.
These results highlight the effectiveness of our model in generating complex motions and interactions.




Published in Transactions on Machine Learning Research (01/2026)

Figure 6: Handling occlusion. As illustrated by the two apples falling into the basket, ReVision handles
occlusions by lifting and optimizing motion in 3D space, which allows explicit reasoning about object spatial
relationships, effectively resolving occlusions that are ambiguous in 2D.

Qualitative Comparisons. We provide samples of generated videos in Fig. Our ReVision produces
realistic movements that closely follow user instructions. It also generates high-quality videos that involves
complex motions and interactions, such as running with dogs, picking up a ball, and hitting a tennis ball.
More visualizations are available in the supplementary videos.

Inference Speed. We compare the inference speed of our Table 3: Inference speed. Average time to
model against two baselines in Tab. Despite the three-step generate a 32-frame video. Our ReVision-SVD
pipeline, the coarse video generation (S1) takes only 8 seconds matches SVD in speed (8.4x faster than Hun-
after our optimization, and the additional 3D detection and yuanVideo) while surpassing HunyuanVideo in
refinement modules (S2) add 5 seconds to the inference time generating complex motions and interactions.
on a single A100. Together, these two stages are significantly

faster than the original SVD, which requires 36 seconds. More | SVD  ReVision-SVD HunyuanVideo
importantly, with just 1.5B parameters and a runtime of 49  Time(s) [ 36 49 (8 + 5+ 36) 411
seconds, our model generates high-quality videos with complex

motions — comparable to or even surpassing state-of-the-art models like HunyuanVideo (see Fig. |4l and [5)),
which uses over 13B parameters and requires an average of 411 seconds.

Handling Occlusion. Occlusion becomes a significant challenge when generating videos with multiple
objects and large motions. However, by lifting everything into 3D, occlusion is naturally resolved: Since we
estimate depth, all objects are fully represented with their spatial positions, allowing us to reason about their
relative locations in 3D. And after optimizing the motion in 3D, we project it back to 2D using the depth
information, which restores accurate occlusion relationships in the camera coordinate. An example is shown
in Fig. [6 where two apples are generated dropping into a basket. Our model effectively captures spatial
relationships, producing realistic videos in which the apples fall into the basket with appropriate occlusion.

To further evaluate our model’s ability to handle occlusion, Table 4: User preference comparisons for
we conducted an additional user study using the 5,000 video occlusion and interaction handling.
pairs generated for the main experiment. Users on Amazon

MTurk were asked to assess the quality of occlusion handling | ReVision-SVD (Ours) SvD
and object interactions for each video pair. If no object in-  Preference | 97.63% 2.37%
teraction was observed, users were instructed to select "no in- | ReVision-SVD (Ours) HunyuanVideo
teraction/occlusion." Similarly, each video pair was evaluated  Preference | 63.99% 36.01%

independently by three randomly selected users to ensure relia-

bility. The study yielded 15,000 evaluations, including 10,207 valid comparisons and 4,793 responses marked
as "no interaction/occlusion". The results of these 10,207 valid comparisons are summarized in Tab. [4] high-
lighting that our model consistently outperforms both SVD and HunyuanVideo across a diverse range of
occlusion scenarios.

Long Video Generation. Another advantage of our model is its ability to generate complex and large-
scale motions over long video sequences (Fig. E[) PMP optimizes motion in a 3D parameterized space,
enabling smooth and realistic interpolation and extrapolation to arbitrary lengths. The resulting long 3D
motion sequences are then used to generate multiple overlapping video clips, which are stitched together to
form extended videos with consistent motion. More specifically, we resample in motion-parameter space (not
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Figure 7: Long video generation. Our PMP extends a 32-frame 3D motion to 128 frames through
interpolation (32 — 64), extrapolation (64 — 128), and refinement, enabling complex, large-scale motion
generation over long video sequences. See supplementary videos for details.

N — — S \ y :
w/o PMP w/o PMP w/ PMP w/o PMP w/o PMP w/ PMP

Figure 8: PMP improves motion and visual quality, generating realistic videos with large motions.

pixel space) through interpolation and extrapolation. Then, for long-video synthesis we generate overlapping
32-frame clips with a sliding window (stride 24, overlap 8) and stitch overlaps with a ramped blend in
the overlapping frames. Motion conditions are aligned in the overlap and all windows share the same
appearance/identity conditioning. The 3D representation plays a key role in maintaining smooth temporal
continuity. While long video generation is not our main focus, using advanced techniques like temporal
compression (Bar-Tal et all [2024), beyond simple overlap, could further improve visual coherence. We leave
their integration with our 3D-aware framework as future work.

5.2 Complex Motion Generation

Experimental Setup. To demonstrate our model’s ability to generate videos with complex motion, we com-
pare our approach with state-of-the-art human image animation models on the TikTok Dancing dataset
ffarian & Park, 2021), using the Disco (Wang et al., [2024c) split. For compatibility with the SVD model
architecture, all videos are cropped to 576 x 1024. We fine-tune the original SVD only on the training split
for 30K iterations, with a batch size of 8 and a learning rate of 1 x 1075,

Evaluation Metrics. We follow baselines and report Peak Signal-to-Noise Ratio (PSNR) (Hore & Ziou
2010, Structural Similarity Index (SSIM) (Wang et al) 2004), and Learned Perceptual Image Patch Simi-
larity (LPIPS) (Zhang et all 2018) to measure the visual quality of the generated results. We also report
and Fréchet Video Distance (FVD) (Unterthiner et al., 2018) for video fidelity comparision.

Experimental Results. We compare ReVision with human image animation methods in Tab. [5] where
we achieve state-of-the-art performance across all metrics. Notably, we observe a significant improvement
in FVD, highlighting substantial gains in video generation quality. It is important to note that all baselines
in this task rely on ground-truth motion sequences, which are challenging to obtain in practical scenarios,
limiting their applicability. In contrast, our method can generate realistic and high-quality videos using only
the input inference image or inference image with a target pose.

5.3 Parameterized Motion Prior Model (PMP)

We demonstrate the effectiveness of the proposed Parameterized Motion Prior model in this section.
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Table 5: Quantitative comparisons for dance Tuple 6. PMP acts as a general motion denoiser, im-

generation. ‘ReVision (w/ full motion)’ follows proving performance on human motion generation. Fol-

baselines and takes full motion sequences as con- lowing MoMask, we report R-Precision at Top-1, Top-2, and

dition, while ‘ReVision (w/ target pose)’ uses the Top-3. Our PMP achieves state-of-the-art performance on two

target pose from the final frame. widely used benchmarks.

|SSIM t PSNR 1 LPIPS | FVD | |

HumanML3D KIT-ML

I\'IagicAnimatc (Xu et al.|[2024)| 0.714 29.16 0.239  179.07 ‘R—P@l R-P@2 R-P@3 R-P@1 R-P@2 R-P@3
Animate Anyone (Hu/[2024) 0.718 29.56 0.285  171.90
Champ (Zhu et al.][2024) 0.802 29.91 0.234  160.82 MotionDiffuse (Zhang et al.|[2024b)| 0.491  0.681  0.782 0417 0.621  0.739
VividPose (Wang et al.| ?024b| 0.758 29.83 0.261 152.97 ReMoDiffuse (Zhang et al.[|2023b) | 0.510  0.698 0.795 0.427  0.641 0.765

MoMask (Guo et al.|[2024) 0.521  0.713  0.807 0.433 0.656  0.781
ReVision (image only) - - - 136.43 -
ReVision (w/ target pose) : i 13014  MoMask + PMP | 0.544 0.735 0.810 0.471 0.673 0.785
ReVision (w/ full motion) 0.864  30.08 0.210 121.26

PMP Enables High-Quality Video Generation with Tyhle 7: User studies for PMP. PMP im-
Complex Motions and Interactions. To demonstrate the proves object and motion consistency, while re-
effectiveness of PMP, we select a complex dance scenario and  dycing morphological failure rates.

visualize outputs with and without the proposed PMP in

Fig. We also show quantitative improvements of the gen- ‘ COH‘;‘;{‘Z‘;‘WT le]\;[iztg:éyT ;/;’lr]fr};";ft‘zaj
erated videos with PMP in Tab. [7, where 500 video pairs were — Jo PAMP o1 m s
evaluated by random users on Amazon MTurk. Each pair was  w/PMP ‘ 87.6 96.0 ‘ 143
rated by three different users, resulting in a total of 1,500 eval-

uations. The results show that the video generation model alone still struggles to produce high-quality
videos with accurate motion. However, leveraging the object-level priors from our Parameterized Motion
Prior enables the generation of realistic videos with enhanced motion and visual quality.

PMP Prevents Error Accumulation in Multi-stage Video Generation. In addition, Fig. [§| shows
that even when the generated videos exhibit severely broken motion, our PMP can still recover (predict) a
smooth and coherent motion sequence using the ground-truth first frame and target pose, enabling successful
final video generation. This correction mitigates motion errors and prevents error accumulation, highlighting
the robustness of our pipeline.

PMP as a General Motion Denoiser. We focus on a more specific human motion generation task and
show that our model improves the performance of the state-of-the-art method, MoMask (Guo et al., [2024),
on standard benchmarks (see Tab. @ Specifically, we use PMP to refine the motion sequences generated by
MoMask and compare the results with MoMask and other methods on HumanML3D (Guo et al., 2022) and
KIT-ML (Plappert et al.l [2016) benchmarks. We adopt the same training dataset as MoMask and apply
the perturbations described in Sec. [£:2] to train PMP. Serving as a general motion denoiser, our model
consistently enhances motion generation quality of the current best models across multiple benchmarks.

6 Conclusion

We introduced ReVision, a three-stage framework for video generation that improves motion consistency by
integrating 3D motion cues. ReVision leverages a pretrained video diffusion model to generate coarse videos,
refines 3D motion sequences with PMP, and reconditions the generation process with enhanced motions
to improve fine-grained and complex motion generations. Evaluations show that ReVision significantly
outperforms existing methods in motion fidelity and coherence.
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Appendix

The supplementary material includes the following additional information.

o Sec. [A] provides the architectural details for PMP.

o Sec. [B] provides additional details for our annotated dataset.

o Sec. [C] provides additional ablation studies omitted from the main paper.
o Sec. Dl discusses the limitations of our method.

o Sec. [E] discusses the societal impacts of our method.

We also provide the generated videos used in all figures in the main paper, as well as additional videos
demonstrating accurate motion control, in the supplementary videos.

A Architectural details for PMP

To optimize the 3D motion sequence extracted from the I

coarse generated video, we propose the Parameterized " block N\
1
/ X
+

Motion Prior model (PMP). As shown in Fig.[9) PMP uti-
lizes a transformer architecture with self-attention, cross- E—

attention, and feedforward layers as its backbone. It takes
the parameterized motion sequence of the coarse video as
@
Multi-Head
Cross-Attention
®

input and optimizes it based on the input text prompt
and motion strength. More specifically, PMP is trained
Self-Attention

[m] motion strength

as a single shared model across all categories. It directly
predicts the corrected pose from the perturbed input, and
we supervise it with an MSE loss between the predicted
pose and the ground-truth pose.

Encoder

B Dataset

Both the motion-conditioned video generation model and
the Parameterized Motion Prior model (PMP) need to
be fine-tuned (trained) on a small yet high-quality video Motion Sequence

dataset with object-centric annotations. Existing large- .

scale video datasets (Bain et al.| 2021} |Chen et al. [2024) Flgure 9: .Arcthecture of the Parameter-
mainly provide text-image pairs without detailed object- ized Motion Prior model

centric annotations. To address this limitation, we use a suite of off-the-shelf models across various tasks
to generate detailed 2D and 3D object-centric annotations. We annotate a total of 20K videos from the
Panda-70M (Chen et all 2024]) dataset, with approximately 55% human videos, 15% animal videos, and
30% general-object videos. For each video, we provide frame-wise 2D bounding boxes, semantic masks,
depth estimation maps, and 3D parametric mesh reconstructions for detected humans and animals. The
details are outlined below.

"A man is dancing”

High-Quality Motion Videos Filtering. To start with, we use LLMs (Yang et al.,|2024al) and an open-
vocabulary segmentation model (Yu et al., 2023)) to curate high-quality motion videos. Specifically, LLM
filters videos with evident motion based on their captions. Then, for each selected video, we equally sample
10 frames and apply the segmentation model to identify humans and animals. We evaluate each frame based
on the predicted mask size and mask count. Then we retain videos where humans or animals occupy a
significant portion of the frame and where the count of humans does not exceed five in each frame.
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Table 8: Quantitative evaluation regarding inference efficiency. We reduce Stage 1 compute time from 36
seconds to 8 seconds, while maintaining comparable final video quality.

‘ Overall Preference Visual Quality Motion Consistency Amount of Motion

ReVision-SVD (full model) 52.60% 50.27% 51.87% 54.27%
ReVision-SVD (efficient model) 47.40% 49.73% 48.13% 45.73%

Object Detection and Depth Estimation. Based on the captions of videos, we identify the objects
mentioned and detect their bounding boxes (Varghese & Sambathl 2024) and instance masks (Yu et al.|
2023). We also apply Depth Anything V2 (Yang et al., [2024b) to generate the depth maps of each frame.

Human Videos Annotation. For videos containing humans, we focus on extracting 2D instance segmen-
tation masks, 2D part masks, 2D face keypoints, 3D body pose and shape, and 3D hand pose. We begin
by using YOLO-V8 (Varghese & Sambath) [2024)) to segment all humans in each frame, providing accurate
human masks. Next, we apply a state-of-the-art face keypoint detector, RTMPose (Jiang et al., |2023)), to
predict facial keypoints for each detected human. Simultaneously, we use 4D-Human (Goel et al.| [2023)
and HaMeR (Pavlakos et al.l |2024) to estimate the 3D body and hand meshes. The resulting SMPL (body
mesh) (Loper et al.| 2015) and MANO (hand mesh) (Romero et al. [2022]) parameters are then fit into a
unified SMPL-X (Pavlakos et al.| |2019)) representation, which contains both human body and hand meshes.
We then project the 3D SMPL-X human mesh onto 2D to obtain part masks, as each vertex in the SMPL-X
mesh is labeled by body part. Finally, we project the face keypoints and 3D human mesh onto the instance
mask, allowing us to compute the overlap between the projected keypoints, projected human mask, and de-
tected 2D human mask. This overlap is quantified using an IoU score, which is used to filter out annotations
with high errors. As a result, for each video, we obtain annotations including human instance masks, 2D
facial keypoints, 3D SMPL-X meshes for the body and hands, and 2D part-level segmentation masks.

Animal Videos Annotation. We start by using Grounded SAM 2 (Kirillov et al., 2023; Ravi et al., 2024
Ren et al., [2024a) to segment animal masks in each frame. Next, we apply a state-of-the-art camera estima-
tion algorithm, VGGSIM (Wang et al., |2024al), to optimize the camera’s intrinsic and extrinsic parameters
across the video. To ensure a reliable camera estimate, we set thresholds on mean projection errors and mean
track lengths, filtering out videos that do not meet these criteria. We then use AnimalAvatar (Sabathier,
et all) 2024) initialized with Animal3D (Xu et all [2023) to fit SMAL parameters. Each video is divided
into segments of 10 consecutive frames, and AnimalAvatar is applied to each segment independently. This
strategy helps mitigate the impact of outliers in camera predictions on the overall optimization quality. To
ensure the accuracy of SMAL fitting, we impose thresholds on IoU and PSNR (Hore & Ziou, |2010)), filtering
out video segments that do not meet our accuracy standards. Once accurate SMAL fittings are obtained,
we follow a similar pipeline to extract the desired annotations as used in human cases.

C Ablation Study

Herein, we conduct additional ablation studies to verify the effectiveness of the proposed designs.

Quantitative Evaluation Regarding Inference Efficiency. Stage 1 can be performed with reduced
computational overhead while maintaining similar results. To quantify this, we conducted experiments on
500 video pairs using the same input images but with varying settings: lower resolution (1:4), fewer frames
(8 vs. 16), and fewer denoising steps (32 vs. 50). The efficient model reduced Stage 1 compute time from 36
seconds to 8 seconds. We ran a human preference study on Amazon MTurk, comparing the full and efficient
versions for each video, with results provided in Tab.[8] The results demonstrate that the efficient model
achieves similar performance to the full model in visual quality and motion consistency, with only a slight
drop in the amount of motion, which is likely due to the reduced number of frames. This confirms that Stage
1 can be significantly accelerated with minimal impact on perceived quality.

Parameterized Motion Prior Model. We briefly discuss the quantitative improvements of the proposed
PMP in the main paper and provide additional experimental details and results here. To further demonstrate
the improvements of PMP, we conducted an additional user study on Amazon MTurk comparing videos
generated with and without PMP. Unlike our previous study, which compared our method with SVD,
this evaluation focuses on object consistency and motion consistency. We also report the percentage of
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Figure 10: The parametric 3D mesh serves as an effective object-level prior, ensuring complete
human body structures in the coarse video generated during the first stage. In the left two images, the human
keypoint model fails to detect the missing right hand, which is accurately “recovered" by the parametric
human mesh model. In the right two images, the human mesh model provides a more accurate prior for
both blurred hands.

Table 9: Ablation on confidence score. We evaluate three parameter configurations corresponding to
the {full motion sequence, polygon target pose, empty} conditions: (1, 0.5, 0), (0.8, 0.5, 0.2), and (3, 2, 1).
The results demonstrate that performance is highly robust to the specific choice of confidence values.

Model | Setting SSIM PSNR LPIPS
VividPose | - 0.758  29.83  0.261
Ours (1, 0.5, 0) 0.864  30.08 0.210
Ours (0.8,0.5,0.2) 0.851  30.10 0.214
Ours (3,2, 1) 0.873  30.07 0.217

videos containing incorrect human or animal structures (i.e., the morphological failure rate). We evaluate
500 video pairs, each rated by three different users, resulting in 1,500 total evaluations. The results are
presented in Tab. [7] of the main paper. By optimizing with a parametric 3D mesh, our approach significantly
reduces incorrect human and animal structures, leading to substantial improvements in object and motion
consistency.

Parametric 3D Mesh. Previous human image animation models mainly rely on 2D pose sequences for each
frame to provide motion information. However, this approach is not optimal for general video generation. As
shown in Fig. we compare the results of using a parametric human mesh model (Loper et al.,|2015) versus a
human keypoint model 2019). Our findings indicate that the human mesh model provides a robust
object-level prior, which significantly benefits general video generation. Specifically, current video generation
models often misinterpret the structure of humans and animals, occasionally producing unrealistic results,
such as a man with three arms, an example of morphological failure. This problem becomes more serious
in complex motion generation. However, incorporating human and animal priors from 3D mesh models
substantially mitigates these structural inaccuracies, enabling more accurate representations of targets.

Text Prompt and Motion Strength. Generating videos from a single image introduces significant
ambiguity. To reduce this, we incorporate additional conditioning using a text prompt and a motion strength
parameter. Specifically, the text prompt defines the intended motion type, while motion strength controls
the speed and complexity of motion within the video. In our experiments, we observe that varying motion
strength with the same target pose leads to different motion trajectories. For instance, when moving a hand
from point A to B, a video generated with low motion strength results in a direct, simple movement. In
contrast, higher motion strength produces a more dynamic and complex trajectory, though it still reaches
the same final pose at B. An illustrative example is provided in Fig. [[1}

Ablation on the Confidence Score for Conditioning. We use the confidence map as simple markers
to indicate whether a given spatial location contains motion supervision. This is consistent with common
practice in prior work (e.g., Emu Video (Girdhar et al[2023)), where a binary mask is used purely to denote
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'A man is
smiling’

Strength = 1

'A man is
dancing’

Strength = 0.3

‘A man is
dancing'

Strength = 0.7

Figure 11: Text prompt and motion strength. We show projected motion sequences generated using
different text prompts and motion strength parameters. The text prompt helps define the motion style,
while the motion strength controls the speed and complexity of the generated motion. For example, a
motion strength of 0.3 results in a simple, direct trajectory, whereas a strength of 0.7 produces a more
dynamic and complex motion path. The same target pose is used for the second and third rows to highlight
the effect of motion strength.

the presence or absence of conditioning signals. In our formulation, assigning different numeric values (e.g.,
1 for a full motion sequence, 0.5 for a target pose, and 0 for empty) does not introduce additional learnable
meaning. Rather, these values serve as soft indicators that allow us to unify different conditioning types
within a single representation, and the model does not depend on their exact magnitudes. We verify this with
an ablation in Tab. [9] where we evaluate three parameter sets, i.c., (1, 0.5, 0), (0.8, 0.5, 0.2), and (3, 2, 1), for
{full motion sequence, polygon target pose, empty}. The results show that performance is highly robust to
the specific choice of confidence values. Given this insensitivity, learning an additional confidence-prediction
head is unlikely to provide meaningful gains, while it would introduce extra complexity; therefore, we adopt
this simple, standard, and effective marking strategy.

D Limitations

The proposed method has several remaining limitations. First, it relies on parametric 3D mesh models,
requiring multiple off-the-shelf models for different object categories, though it adds only 5 seconds to the
total inference time. Recent advances in 3D modeling, such as encoding 3D priors of general objects within
a single diffusion model (Liu et al.,[2024d)), are paving the way for more general, efficient models that can be
seamlessly integrated into our pipeline for high-quality video generation. Second, the model still struggles
to generate high-quality details such as fingers and hands. Finally, while PMP can generate realistic motion
sequences beyond 32 frames, our current implementation, based on vanilla SVD, is limited by memory
constraints (80GB RAM). However, recent methods have demonstrated longer video generation ability using
pretrained diffusion models (Chen et al.,|2023)). Exploring long-video generation with 3D knowledge remains
future work.
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E Statement of Broader Impact

The proposed ReVision has the potential to facilitate numerous fields through its advanced video generation
capabilities. In the realm of creative industries, ReVision can enhance the efficiency and creativity of artists
and designers by generating high-fidelity videos. The high-quality generated videos can also contribute to
research on synthetic datasets by creating realistic videos, aiding in reducing the annotations required for
training vision models. However, with these advancements come ethical considerations, such as the risk
of generating deepfakes or other malicious content. It is thus crucial to implement safeguards to minimize
potential harms.
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