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ABSTRACT

We propose novel model parametrisation and inference algorithm in a hierarchical
Bayesian model for the few-shot meta learning problem. We consider episode-wise
random variables to model episode-specific generative processes, where these local
random variables are governed by a higher-level global random variable. The
global variable captures information shared across episodes, while controlling how
much the model needs to be adapted to new episodes in a principled Bayesian
manner. Within our framework, prediction on a novel episode/task can be seen
as a Bayesian inference problem. For tractable training, we need to be able to
relate each local episode-specific solution to the global higher-level parameters.
We propose a Normal-Inverse-Wishart model, for which establishing this local-
global relationship becomes feasible due to the approximate closed-form solutions
for the local posterior distributions. The resulting algorithm is more attractive
than the MAML in that it does not maintain a costly computational graph for the
sequence of gradient descent steps in an episode. Our approach is also different
from existing Bayesian meta learning methods in that rather than modeling a single
random variable for all episodes, it leverages a hierarchical structure that exploits
the local-global relationships desirable for principled Bayesian learning with many
related tasks.

1 INTRODUCTION

Few-shot learning (FSL) aims to emulate the human ability to learn from few examples (Lake et al.,
2015). It has received substantial and growing interest (Wang et al., 2020b) due to the need to alleviate
the notoriously data intensive nature of mainstream supervised deep learning. Approaches to FSL are
all based on some kind of knowledge transfer from a set of plentiful source recognition problems
to the sparse data target problem of interest. Existing approaches are differentiated in terms of the
assumptions they make about what is task agnostic knowledge that can be transferred from the source
tasks, and what is task-specific knowledge that should be learned from the sparse target examples.
For example, the seminal MAML (Finn et al., 2017) and ProtoNets (Snell et al., 2017) respectively
assume that the initialisation for fine-tuning, or the feature extractor for metric-based recognition
should be transferred from source categories.

One of the most principled and systematic ways to model such sets of related problems are hierarchical
Bayesian models (HBMs) (Gelman et al., 2003). The HBM paradigm is widely used in statistics, but
has seen relatively less use in deep learning, due to the technical difficulty of bringing hierarchical
Bayesian modelling to bear on deep learning. HBMs provide a powerful way to model a set of
related problems, by assuming that each problem has its own parameters (e.g, the neural networks
that recognise cat vs dog, or car vs bike), but that those problems share a common prior (the prior
over such neural networks). Data-efficient learning of the target tasks is then achieved by inferring the
prior based on source tasks, and using it to enhance posterior learning over the target task parameters.

A Bayesian learning treatment of FSL would be appealing due to the overfitting resistance provided
by Bayesian Occam’s razor (MacKay, 2003), as well as the ability to improve calibration of inference
so that the model’s confidence is reflective of its probability of correctness — a crucial property in
mission critical applications (Guo et al., 2017). However the limited attempts that have been made to
exploit these tools in deep learning have either been incomplete treatments that only model a single
Bayesian layer within the neural network (Zhang et al., 2021; Gordon et al., 2019), or else fail to
scale up to modern neural architectures (Finn et al., 2018; Yoon et al., 2018).
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In this paper we present the first complete hierarchical Bayesian learning algorithm for few-shot
deep learning. Our algorithm efficiently learns a prior over neural networks during the meta-train
phase, and efficiently learns a posterior neural network during each meta-test episode. Importantly,
our learning is architecture independent. It can scale up to the state-of-the-art backbones including
ViTs (Dosovitskiy et al., 2021), and works smoothly with any few-shot learning architecture –
spanning simple linear decoders (Finn et al., 2017; Snell et al., 2017), to those based on sophisticated
set-based decoders such as FEAT (Ye et al., 2020) and CNP(Garnelo et al., 2018)/ANP(Kim et al.,
2019). We show empirically that our HBM provides improved performance and calibration in all of
these cases, as well as providing clear theoretical justification.

Our analysis also reveals novel links between seminal FSL methods such as ProtoNet (Snell et al.,
2017), MAML (Finn et al., 2017), and Reptile (Nichol et al., 2018), all of which are different
special cases of our framework despite their very different appearance. Interestingly, despite its
close relatedness to MAML-family algorithms, our Bayesian learner admits an efficient closed-
form solution to the task-specific and task-agnostic updates that does not require maintaining the
computational graph for reverse-mode backpropagation. This provides a novel solution to a famous
meta-learning scalability bottleneck. In summary, our contributions include: (i) The first complete
hierarchical Bayesian treatment of the few-shot deep learning problem, and associated theoretical
justification. (ii) An efficient algorithmic learning solution that can scale up to modern architectures,
and plug into most existing neural FSL meta-learners. (iii) Empirical results demonstrating improved
accuracy and calibration performance on both classification and regression benchmarks.

2 PROBLEM SETUP

Let p(T ) be the (unknown) task/episode distribution, where each task T ∼ p(T ) is defined as a
distribution pT (x, y) for data (x, y) where x is input and y is target. For training, we have a large
number of episodes, T1, T2, . . . , TN ∼P (T ) sampled i.i.d., but we only observe a small number of
labeled samples from each episode, denoted byDi={(xij , yij)}

ni
j=1∼pTi(x, y), where ni= |Di| is the

number of samples in Di. The goal of the learner, after observing the training data D1, . . . , DN from
a large number of different tasks, is to build a predictor p∗(y|x) for novel unseen tasks T ∗ ∼ p(T ).
We will often abuse the notation, e.g., i ∼ T refers to the episode i sampled, i.e., Di ∼ pTi

(x, y)
where Ti ∼ p(T ). At the test time we are allowed to have some hints about the new test task T ∗, in the
form of a few labeled examples from T ∗, also known as the support set denoted by D∗∼PT ∗(x, y).

Figure 1: (a) IID episodes. (b) Individual
episode. (c): FSL as Bayesian inference
(grey nodes = evidences, red = target to
infer). D∗ = support set for test episode.

In Bayesian perspective, the goal is to infer the pos-
terior distribution with all training episodes and a test
support set as evidence, i.e., p(y|x,D∗, D1:N ). A ma-
jor computational challenge, compared to conventional
Bayesian learning, is that the training episodes (evi-
dence) may not be stored/replayed/revisited.

3 MAIN APPROACH

We introduce two types of latent random variables, ϕ
and {θi}Ni=1. Each episode i uses neural network weights θi for modeling the data Di (i = 1, . . . , N ).
Specifically, Di is generated (input x given and only p(y|x) modeled) by θi as in the likelihood
model in (1). The variable ϕ can be viewed as a globally shared variable that is responsible for
linking the individual episode-wise parameters θi. We assume conditionally independent and identical
priors, p({θi}i|ϕ) =

∏
i p(θi|ϕ). Thus the prior for the latent variables (ϕ, {θi}Ni=1) is formed in a

hierarchical manner as follows. (For background on Bayesian modeling, refer to (Murphy, 2022).)

(Prior) p(ϕ, θ1:N ) = p(ϕ)
∏N

i=1p(θi|ϕ), (Likelihood) p(Di|θi) =
∏

(x,y)∈Di
p(y|x, θi) (1)

where p(y|x, θi) is a conventional neural network model. See the graphical model in Fig. 1(a).

Given the training data {Di}Ni=1, the posterior is p(ϕ, θ1:N |D1:N ) ∝ p(ϕ)
∏N

i=1 p(θi|ϕ)p(Di|θi),
and we approximate it with variational inference. That is, q(ϕ, θ1:N ;L) ≈ p(ϕ, θ1:N |D1:N ) where

q(ϕ, θ1:N ;L) := q(ϕ;L0) ·
∏N

i=1qi(θi;Li), (2)

where the variational parameters L consists of L0 (parameters for q(ϕ)) and {Li}Ni=1’s (parameters
of qi(θi)’s for episode i). Note that although θi’s are independent across episodes under (2), they
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are differently modeled (note the subscript i in notation qi), reflecting different posterior beliefs
originating from heterogeneity of episodic datasets Di.

Normal-Inverse-Wishart (NIW) model. We consider NIW distributions for the prior and varia-
tional posterior. First, the prior is modeled as a conjugate form of Gaussian–NIW. With ϕ = (µ,Σ),

p(ϕ) = N (µ;µ0, λ
−1
0 Σ) · IW(Σ;Σ0, ν0), p(θi|ϕ) = N (θi;µ,Σ), i = 1, . . . , N, (3)

where Λ = {µ0,Σ0, λ0, ν0} is the parameters of the NIW. We do not need to pay attention to the
choice of values for Λ since p(ϕ) has vanishing effect on posterior for a large amount of evidence as
we will see shortly. Next, our choice of the variational density family for q(ϕ) is the NIW, mainly
because it admits closed-form expressions in the ELBO function due to the conjugacy, allowing
efficient local episodic optimisation, as will be shown. For qi(θi)’s we adopt Gaussians. That is,

q(ϕ;L0) := N (µ;m0, l
−1
0 Σ) · IW(Σ;V0, n0), qi(θi;Li) = N (θi;mi, Vi). (4)

So, L0 = {m0, V0, l0, n0} with V0 restricted to be diagonal, and Li = {mi, Vi}. Learn-
ing (variational inference) amounts to finding L0 and {Li}Ni=1 that makes the approximation
q(ϕ, θ1:N ;L) ≈ p(ϕ, θ1:N |D1:N ), as tight as possible.

Variational inference. The negative marginal log-likelihood (NMLL) has the following upper
bound (Appendix B.1 for derivations):

− log p(D1:N ) ≤ KL(q(ϕ)||p(ϕ)) +
∑N

i=1

(
Eqi(θi)[li(θi)] + Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

])
(5)

where li(θi)=− log p(Di|θi) is the negative training log-likelihood of θi in episode i. By dividing
both sides by N , the LHS naturally becomes the effective episode-averaged NMLL − 1

N log p(D1:N ).
The first KL term in the RHS, 1

N KL(q(ϕ)||p(ϕ)) diminishes for large N . Using 1
N

∑N
i=1 fi ≈

Ei∼T [fi] for any expression fi, the ELBO learning (approximately) reduces to the following:

min
L0,{Li}N

i=1

Ei∼T

[
Eqi(θi;Li)[li(θi)] + Eq(ϕ;L0)

[
KL(qi(θi;Li)||p(θi|ϕ))

] ]
. (6)

Local episodic optimisation (whose solution as a function of global parameters L0). Note that
(6) is challenging due to a large number of optimisation variables {Li}Ni=1 and the nature of episode
sampling i∼T . Applying conventional SGD would simply fail since each Li will never be updated
more than once. Instead, we tackle it by finding the optimal solutions for Li’s for fixed L0, thus
effectively representing the optimal solutions as functions of L0, namely {L∗

i (L0)}Ni=1. Plugging the
optimal L∗

i (L0)’s back to (6) leads to the optimisation problem over L0 alone. The idea is just like
solving: minx,y f(x, y) = minx f(x, y

∗(x)) where y∗(x) = argminy f(x, y) with x fixed.

Note that when we fix L0 (i.e., fix q(ϕ)), the objective (6) is completely separable over i, and we can
optimise individual i independently. More specifically, for each i ≥ 1,

min
Li

Eqi(θi;Li)[li(θi)] + Eϕ

[
KL(qi(θi;Li)||p(θi|ϕ))

]
(7)

As the expected KL term in (7) admits a closed form due to NIW-Gaussian conjugacy (Appendix B.2
for derivations), we can reduce (7) to the following optimisation for Li = (mi, Vi):

L∗
i (L0) := arg min

mi,Vi

(
EN (θi;mi,Vi)[li(θi)]−

log |Vi|
2

+
n0
2

(
(mi−m0)

2/V0+Tr
(
Vi/V0

)))
(8)

with L0 = {m0, V0, l0, n0} fixed. Here (mi−m0)
2 and ·/V0 are all elementwise operations.

Quadratic approximation of episodic loss via SGLD. To find the closed-form solution L∗
i (L0)

in (8), we make quadratic approximation of li(θi)=−log p(Di|θi). In general, −log p(Di|θ), as a
function of θ, can be written as:

−log p(Di|θ) ≈
1

2
(θ−mi)

⊤Ai(θ−mi) + const., (9)

for some (mi, Ai) that are constant with respect to θ. One may attempt to obtain (mi, Ai) via Laplace
approximation (e.g., the minimiser of −log p(Di|θ) for mi and the Hessian at the minimiser for
Ai). However, this involves computationally intensive Hessian computation. Instead, using the fact
that the log-posterior log p(θ|Di) equals (up to constant) log p(Di|θ) when we use uninformative
prior p(θ)∝1, we can obtain samples from the posterior p(θ|Di) using MCMC sampling, especially
the stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011), and estimate sample
mean and precision, which become mi and Ai, respectively1. Note that this amounts to performing

1Similar approaches include the stochastic weight averaging (Izmailov et al., 2018; Maddox et al., 2019).
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several SGD iterations (skipping a few initial for burn-in), and unlike MAML (Finn et al., 2017) no
computation graph needs to be maintained since (mi, Ai) are constant. Once we have (mi, Ai), the
optimisation (8) admits the closed-form solution (Appendix B.4 for derivations),

m∗
i (L0) = (Ai + n0/V0)

−1(Aimi + n0m0/V0), V ∗
i (L0) = (Ai + n0/V0)

−1. (10)
Computation in (10) is cheap since all matrices are diagonal.

Final optimisation. Plugging (10) back to (6), the final optimisation is (Appendix B.5 for details):

min
L0

Ei∼T

[
fi(L0) +

1

2
gi(L0) +

d

2l0

]
s.t. fi(L0) = Eϵ∼N (0,I)

[
li

(
m∗

i (L0) + V ∗
i (L0)

1/2ϵ
)]
,

gi(L0) = log
|V0|

|V ∗
i (L0)|

+ n0Tr
(
V ∗
i (L0)/V0

)
+ n0

(
m∗

i (L0)−m0

)2
/V0 − ψd

(n0
2

)
, (11)

Algorithm 1 Our few-shot meta learning algorithm.
Initialise: L0 = {m0, V0, n0} of q(ϕ;L0) randomly.
for episode i = 1, 2, . . . do

Perform SGLD iterations on Di to estimate (mi, Ai).
Compute the episodic minimiser L∗

i (L0) from (10).
Update L0 by the gradient of fi(L0)+

1
2
gi(L0) as in (11).

end for
Output: Learned L0.

where ψd(·) is the multivariate digamma
function and d=dim(θ). As l0 only ap-
pears in the term d

2l0
, the optimal value

is l∗0 =∞. We use SGD to solve (11),
repeating the two steps: i) Sample i∼T ;
ii) L0 ← L0−η∇L0

(
fi(L0)+

1
2gi(L0)

)
.

Note that ∇L0

(
fi(L0) +

1
2gi(L0)

)
is an

unbiased stochastic estimate for the gra-
dient of the objective Ei∼T [· · · ] in (11). Furthermore, our learning algorithm above (pseudocode
in Alg. 1) is fully compatible with the online/batch episode sampling nature of typical FSL. After
training, we obtain the learned L0, and the posterior q(ϕ;L0) will be used at the meta test time, where
we show in Sec. 3.2 that this can be seen as Bayesian inference as well.

We emphasise that our framework is completely flexible in the choice of the backbone p(y|x, θ). It
could be the popular instance-based network comprised of a feature extractor and a prediction head
where the latter can be either a conventional learnable readout head or the parameter-free one like
the nearest centroid classifier (NCC) in ProtoNet (Snell et al., 2017), i.e., p(D|θ)=p(Q|S, θ) where
D=S ∪Q and p(y|x, S, θ) is the NCC prediction with support S. We can also adopt the set-based
networks (Ye et al., 2020; Garnelo et al., 2018; Kim et al., 2019) where p(y|x, S, θ) itself is modeled
by a neural net y = G(x, S; θ) with input (x, S).

3.1 INTERPRETATION

We show that our framework unifies seemingly unrelated seminal FSL algorithms into one perspective.

MAML (Finn et al., 2017) as a special case. Suppose we have spiky variational densities, Vi→0
(constant). The local episodic optimisation (8) reduces to: argminmi

li(θi)+R(mi) where R(mi) is
the quadratic penalty of mi deviating from m0. One reasonable solution is to perform a few gradient
steps with loss li, starting from m0 to have small penalty (R=0 initially). That is, mi←m0 and a
few steps of mi ← mi − α∇li(mi) to return m∗

i (L0). Plugging this into (11) and disregarding the
gi term, leads to the MAML algorithm. Obviously, the main drawback is m∗

i (L0) is a function of
m0∈L0 via a full computation graph of SGD steps, compared to our lightweight closed forms (10).

ProtoNet (Snell et al., 2017) as a special case. With Vi → 0, if we ignore the negative log-
likelihood term in (8), then the optimal solution becomes m∗

i (L0) = m0. If we remove the gi term,
we can solve (11) by simple gradient descent with ∇m0(− log p(Di|m0)). We then adopt the NCC
head and regard m0 as sole feature extractor parameters, which becomes exactly the ProtoNet update.

Reptile (Nichol et al., 2018) as a special case. Instead, if we ignore all penalty terms in (8) and
follow our quadratic approximation (9) with Vi→0, then m∗

i (L0) = mi. It is constant with respect
to L0 = (m0, V0, n0), and makes the optimisation (11) very simple: the optimal m0 is the average
of mi for all tasks i, i.e., m∗

0 = Ei∼T [mi] (we ignore V0 here). Note that Reptile ultimately finds
the exponential smoothing of m(k)

i over i ∼ T where m(k)
i is the iterate after k SGD steps for task i.

This can be seen as an online/running estimate of Ei∼T [mi].

3.2 META TEST PREDICTION AS BAYESIAN INFERENCE

At meta test time, we need to be able to predict the target y∗ of a novel test input x∗∼T ∗ sampled from
the unknown distribution T ∗∼p(T ). In FSL, we have the test support dataD∗ = {(x, y)}∼T ∗. The
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Table 1: Three competing Bayesian models for the toy experiment. (Fig. 3 for graphical models)
Model I Model II Model III (Ours)

y = θ⊤i x+ βi + ϵy , y = θ⊤x+ β + ϵy , y = θ⊤i x+ βi + ϵy ,
p(θi, βi) = N (µ, σ2) ∀i p(θ, β) = N (µ, σ2) p(ϕ) = N (m,V ), p(θi, βi|ϕ) = N (ϕ, σ2) ∀i

test-time prediction can be seen as a posterior inference problem with additional evidence of the sup-
port data D∗ (Fig. 1(c)). More specifically, p(y∗|x∗, D∗, D1:N ) =

∫
p(y∗|x∗, θ) p(θ|D∗, D1:N ) dθ.

So, it boils down to p(θ|D∗, D1:N ), the posterior given both the test support data D∗ and the entire
training data D1:N . Under our hierarchical model, exploiting conditional independence (Fig. 1(c)),
we can link it to our trained q(ϕ) as:

p(θ|D∗, D1:N ) ≈
∫
p(θ|D∗, ϕ) p(ϕ|D1:N ) dϕ ≈

∫
p(θ|D∗, ϕ) q(ϕ) dϕ ≈ p(θ|D∗, ϕ∗), (12)

where in the first approximation in (12) we disregard the impact of D∗ on the higher-level ϕ given the
joint evidence, i.e., p(ϕ|D∗, D1:N ) ≈ p(ϕ|D1:N ), due to dominance of D1:N compared to smaller
D∗. We use the delta function approximation in the last part of (12) with the mode ϕ∗ of q(ϕ), where
ϕ∗ = (µ∗,Σ∗) has a closed form µ∗ = m0,Σ

∗ = V0/(n0+d+2).

Next, since p(θ|D∗, ϕ∗) involves difficult marginalisation p(D∗|ϕ∗) =
∫
p(D∗|θ)p(θ|ϕ∗)dθ, we

adopt variational inference, introducing a tractable variational distribution v(θ) ≈ p(θ|D∗, ϕ∗). With
the Gaussian family as in the training time (4), i.e., v(θ) = N (θ;m,V ) where (m,V ) are the
variational parameters optimised by ELBO optimisation,

min
m,V

Ev(θ)[− log p(D∗|θ)] + KL(v(θ)||p(θ|ϕ∗)) where ϕ∗ = (m0, V0/(n0+d+2)). (13)

The detailed derivations for (13) can be found in Appendix B.6. Once we have the optimised model v,
our predictive distribution can be approximated by the Monte-Carlo average. p(y∗|x∗, D∗, D1:N ) ≈
(1/MS)

∑MS

s=1 p(y
∗|x∗, θ(s)), where θ(s)∼v(θ) for s = 1, . . . ,MS samples. which simply requires

feed-forwarding x∗ through the sampled networks θ(s) and averaging. Our meta-test algorithm is
also summarised in Alg. 2 (Appendix). Note that we have test-time backbone update as per (13),
which can make the final m deviate from the learned mean m0. Alternatively, if we drop the first term
in (13), the optimal v(θ) equals p(θ|ϕ∗) = N (θ;m0, V0/(n0+d+2)). This can be seen as using the
learned model m0 with some small random perturbation as a test-time backbone θ.

4 TOY EXPERIMENT: WHY HIERARCHICAL BAYESIAN MODEL?

To demonstrate why our hierarchical Bayesian modelling is effective for few-shot meta learning
problems, we devise a simple toy synthetic experiment as a proof of concept. We consider a multi-task
(Bayesian) linear regression problem. The data pairs (x∈R2, y∈R) for each episode i are generated
by the following process: y = (wshared + ϵw)

⊤x+ bj(i) + ϵy where wshared is the episode-agnostic
shared weight vector ∀i, and we have episode-dependent intercept bj(i) – among the three candidates
{b1, b2, b3}, we select j(i) ∼ {1, 2, 3} uniformly at random for each episode i. Please refer to
Appendix. C for full details and derivations. In this way we ensure that the resulting episodes are not
only related to one another through the shared weight vector, but they are differentiated by potentially
different intercepts. We sample N=40 episodes for training and 10 episodes for test. Each training
episode has |Di| = 3 samples, and the support set at test time also has |D∗| = 3 labeled samples.

Three competing models. We consider three Bayesian models with different levels/degrees of
flexibility and regularisation as outlined in Table 1. Model I has episode-wise parameters (θi, βi),
thus highly flexible. However, these parameters are all independent across episodes, hence lacking
regularisation. Model II is a conventional (non-hierarchical) Bayesian model where a single parameter
set (θ, β) is shared across episodes, thus too much regularisation with lack of flexibility. Model III is
our hierarchical Bayesian model which imposes balanced flexibility and regularisation – episode-
wise (θi, βi)’s allows high flexibility, but unlike Model I, the higher-level variable ϕ regularises the
episode-specific parameters, and captures the inter-episodic shared information.

Results. After training (learning µ for Model I and II; learning (m,V ) for our Model III), at
test time, for each of 10 test episodes, we obtain the posterior means of the weights and intercept
parameters E[θ, β|D∗, D1:N ] for the three models. They all admit closed-form solutions as detailed
in Appendix C, and we predict the outputs of ∼ 50 unseen test inputs. The mean absolute errors
(MAE) averaged over 10 test episodes are: Model I = 2.87, Model II = 3.13, and Model III (ours)
= 1.28, clearly showing the superiority of our model to other competing methods. Fig. 2 visualises
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(a) Weight dim-1 (b) Weight dim-2 (c) Intercept
Figure 2: Toy experiments. Visualisation of the learned posterior means compared to the true values
(blue-circled). (a) weight dim-1 (θ[0] vs. wshared[0]), (b) weight dim-2 (θ[1] vs. wshared[1]) and (c)
intercept (β vs. bj(∗)). In each plot, the X-axis shows the indices of the true intercepts sampled, that
is, j(∗) ∈ {1, 2, 3}, for 10 test episodes. In the titles we also report the distances (errors) between the
true values and the posterior means for the three methods, averaged over 10 episodes.

the results. First, Model II’s posterior means rarely change over test episodes, meaning the impact
of test support data D∗ is limited. This behavior is expected since the model imposes too much
regularisation with little flexibility, and the test prediction is dominated by the mean model obtained
from training data D1:N . Model I exhibits highly sensitive predictions over test episodes, which
mainly originates from little regularisation – the posterior is too sensitive to the current episode’s
support data, thus being vulnerable to overfitting especially when the support data size is small, typical
in the few-shot learning. The model failed to capture useful shared information wshared. Our Model
III balances between these two extremes, imposing proper amount of regularisation and endowing
adequate flexibility. Our posterior estimation best extracts the shared episode-agnostic information
(the weight parameters fluctuate less over the test episodes), and captures the episode-specific features
the most accurately (the estimated intercepts are aligned the best with the true values).

5 THEORETICAL ANALYSIS: GENERALISATION ERROR BOUNDS

We offer two theorems for the generalisation error of the proposed model. The first theorem relates
the generalisation error to the ultimate ELBO loss (6) that we minimised in our algorithm, and we
utilise the recent PAC-Bayes-λ bound (Thiemann et al., 2017; Rivasplata et al., 2019). The second
theorem is based on the recent regression analysis technique (Pati et al., 2018; Bai et al., 2020).
Without loss of generality we assume |Di|=n for all episodes i. We let (q∗(ϕ), {q∗i (θi)}Ni=1) be the
optimal solution of (6). We leave technical details and the proofs for both theorems in Appendix A.
Theorem 5.1 (PAC-Bayes-λ bound). Let Ri(θ) be the generalisation error of model θ for the task i,
more specifically, Ri(θ) = E(x,y)∼Ti

[− log p(y|x, θ)]. As the number of training episodes N→∞,
the following holds with probability at least 1−δ for arbitrary small δ > 0:

Ei∼T Eq∗i (θi)
[Ri(θi)] ≤

2ϵ∗

n
where ϵ∗ = the optimal value of (6). (14)

Theorem 5.2 (Bound derived from regression analysis). Let d2H(Pθi , P
i) be the expected squared

Hellinger distance between the true distribution P i(y|x) and model’s Pθi(y|x) for task i. As the
number of training episodes N→∞, the following holds with high probability:

Ei∼T Eq∗i (θi)
[d2H(Pθi , P

i)] ≤ O
( 1

n
+ϵ2n+rn

)
+ λ∗, (15)

where λ∗ = Ei∼T [λ
∗
i ], λ

∗
i =minθ∈Θ ||Eθ[y|·] − Ei[y|·]||2∞ is the lowest possible regression error

within Θ, and rn, ϵn are decreasing sequences vanishing to 0 as n increases.

6 RELATED WORK

Due to limited space it is infeasible to review all general FSL and meta learning algorithms here.
We refer the readers to (Hospedales et al., 2022; Wang et al., 2020a), the excellent comprehensive
surveys on the latest techniques. We rather focus on discussing recent Bayesian approaches and
their relation to ours. Although several Bayesian FSL approaches have been proposed before, most
of them dealt with only a small fraction of the network weights (e.g., a readout head alone) as
random variables (Garnelo et al., 2018; Kim et al., 2019; Requeima et al., 2019; Gordon et al., 2019;
Patacchiola et al., 2020; Zhang et al., 2021). This considerably limits the benefits from uncertainty
modeling of full network parameters.
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Table 2: Classification accuracies with standard backbones on miniImageNet and tieredImageNet.
(a) miniImageNet (b) tieredImageNet

Model Backbone 1-Shot 5-Shot
AM3 (Xing et al., 2019) ResNet12 65.21±0.49 75.20±0.36

RelationNet2 (Zhang et al., 2020) ResNet12 63.92±0.98 77.15±0.59

MetaOpt (Lee et al., 2019) ResNet12 64.09±0.62 80.00±0.45

SimpleShot (Wang et al., 2019) ResNet18 62.85±0.20 80.02±0.14

S2M2 (Mangla et al., 2020) ResNet18 64.06±0.18 80.58±0.12

MetaQDA (Zhang et al., 2021) ResNet18 65.12±0.66 80.98±0.75

NIW-Meta (Ours) ResNet18 65.49±0.5665.49±0.5665.49±0.5681.71±0.1781.71±0.1781.71±0.17

SimpleShot WRN28-10 63.50±0.20 80.33±0.14

S2M2 WRN28-10 64.93±0.18 83.18±0.22

MetaQDA WRN28-10 67.83±0.64 84.28±0.69

NIW-Meta (Ours) WRN28-1068.54±0.2668.54±0.2668.54±0.2684.81±0.2884.81±0.2884.81±0.28

Model Backbone 1-Shot 5-Shot
TapNet (Yoon et al., 2019) ResNet12 63.08±0.15 80.26±0.12

RelationNet2 ResNet12 68.58±0.63 80.65±0.91

MetaOpt ResNet12 65.81±0.74 81.75±0.53

SimpleShot ResNet18 69.09±0.22 84.58±0.16

MetaQDA ResNet18 69.97±0.52 85.51±0.58

NIW-Meta (Ours) ResNet18 70.52±0.1970.52±0.1970.52±0.1985.83±0.1785.83±0.1785.83±0.17

LEO (Rusu et al., 2019) WRN28-10 66.33±0.05 81.44±0.09

SimpleShot WRN28-10 69.75±0.20 85.31±0.15

S2M2 WRN28-10 73.71±0.22 88.59±0.14

MetaQDA WRN28-10 74.33±0.65 89.56±0.79

NIW-Meta (Ours) WRN28-1074.59±0.3374.59±0.3374.59±0.3389.76±0.2389.76±0.2389.76±0.23

Bayesian approaches to MAML (Finn et al., 2018; Yoon et al., 2018; Ravi & Beatson, 2019; Nguyen
et al., 2020) are popular probabilistic extensions of the gradient-based adaptation in MAML (Finn
et al., 2017) with known theoretical support (Chen & Chen, 2022). However, they are weak in
several aspects to be considered as principled Bayesian methods. For instance, Probabilistic MAML
(PMAML) (Finn et al., 2018; Grant et al., 2018) has a similar hierarchical graphical model structure
as ours, but their learning algorithm considerably deviates from the original variational inference
objective. Unlike the original derivation of the KL term measuring the divergence between the
posterior and prior on the task-specific variable θi, namely Eq(ϕ)[KL(qi(θi|ϕ)||p(θi|ϕ))] as in (5),
in PMAML they measure the divergence on the global variable ϕ, aiming to align the two adapted
models, one from the support data only q(ϕ|Si) and the other from both support and query q(ϕ|Si, Qi).
VAMPIRE (Nguyen et al., 2020) incorporates uncertainty modeling to MAML by extending MAML’s
point estimate to a distributional one that is learned by variational inference. However, it inherits all
computational overheads from MAML, hindering scalability. The BMAML (Yoon et al., 2018) is not
a hierarchical Bayesian model, but aims to replace MAML’s gradient-based deterministic adaptation
steps by the stochastic counterpart using the samples (called particles) from p(θi|Si), thus adopting
stochastic ensemble-based adaptation steps. If a single particle is used, it reduces exactly to MAML.
Thus existing Bayesian approaches are not directly related to our hierarchical Bayesian perspective.
A related but different line of research studied Bayesian neural processes (Volpp et al., 2023; 2021;
Qi Wang, 2020; Garnelo et al., 2018) by treating the support set embedding as random variates.

7 EVALUATION

7.1 FEW-SHOT CLASSIFICATION

Standard benchmarks with ResNet backbones. For standard benchmark comparison using the
popular ResNet backbones, ResNet-18 (He et al., 2016) and WideResNet (Zagoruyko & Komodakis,
2016), we test our method on: miniImagenet and tieredImageNet (Table 2). We follow the standard
protocols (details of experimental settings in Appendix D). Our NIW-Meta exhibits consistent
improvement over the SOTAs for different settings in support set size and backbones.

Table 3: Classification accuracies with large-scale ViT backbones.

Model Backbone miniImageNet CIFAR-FS tieredImageNet
/ Pretrain 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet DINO/s 93.1±0.12 98.0±0.14 81.1±0.29 92.5±0.13 89.0±0.11 95.8±0.09

MetaOpt DINO/s 92.2±0.22 97.8±0.16 70.2±0.22 84.1±0.27 87.5±0.25 94.7±0.20

MetaQDA DINO/s 92.0±0.31 97.0±0.18 77.2±0.34 90.1±0.18 87.8±0.27 95.6±0.16

NIW-Meta DINO/s 93.4±0.1793.4±0.1793.4±0.17 98.2±0.1598.2±0.1598.2±0.15 82.8±0.2682.8±0.2682.8±0.26 92.9±0.1192.9±0.1192.9±0.11 89.3±0.1689.3±0.1689.3±0.16 96.0±0.1496.0±0.1496.0±0.14

ProtoNet DINO/b 95.3±0.13 98.4±0.12 84.3±0.19 92.2±0.13 91.2±0.15 96.5±0.10

MetaOpt DINO/b 94.4±0.19 98.4±0.16 72.0±0.29 86.2±0.18 89.5±0.27 95.7±0.15

MetaQDA DINO/b 94.7±0.21 98.7±0.1498.7±0.1498.7±0.14 80.9±0.31 93.8±0.1593.8±0.1593.8±0.15 89.7±0.21 96.5±0.07

NIW-Meta DINO/b 95.5±0.1595.5±0.1595.5±0.15 98.7±0.1298.7±0.1298.7±0.12 84.7±0.1384.7±0.1384.7±0.13 93.2±0.17 91.4±0.2191.4±0.2191.4±0.21 96.7±0.1196.7±0.1196.7±0.11

Large-scale ViT backbones.
We also test our method on
large-scale (pretrained) ViT
backbones DINO-small (Di-
no/s) and DINO-base (DI-
NO/b) (Caron et al., 2021),
similarly as the setup in (Hu
et al., 2022). In Table 3 we re-
port results on the three bench-
marks: miniImagenet, CIFAR-
FS, and tieredImageNet. Our NIW-Meta adopts the same NCC head as ProtoNet after the ViT feature
extractor. As claimed in (Hu et al., 2022), using the pretrained feature extractor and further finetuning
it significantly boost the performance of few-shot learning algorithms including ours. Among the
competing methods, our approach yields the best accuracy for most cases. In particular, compared to
the shallow Bayesian MetaQDA (Zhang et al., 2021), treating all network weights as random variates
in our model turns out to be more effective than the readout parameters alone.

Table 4: FEAT vs. our method. Classification accuracies.
Model miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot
FEAT 66.78 82.05 70.80±0.23 84.79±0.16

NIW-Meta (Ours) 66.91±0.1066.91±0.1066.91±0.10 82.28±0.1582.28±0.1582.28±0.15 70.93±0.2770.93±0.2770.93±0.27 85.20±0.1985.20±0.1985.20±0.19

Set-based adaptation backbones.
We also conduct experiments using
the set-based adaptation architecture
called FEAT introduced in (Ye et al.,
2020). The network is tailored for
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few-shot adaptation, namely yQ = G(xQ, S; θ) where the network G takes the entire support set S
and query image xQ as input. Note that our NIW-Meta can incorporate any network architecture,
even the set-based one like FEAT. As shown in Table 4, the Bayesian treatment leads to further
improvement over (Ye et al., 2020) with this set-based architecture.

Table 5: ECEs on miniImageNet. “ECE+TS” indicates
extra tuning of the temperature hyperparameter.

Model Backbone ECE ECE+TS
1-shot 5-shot 1-shot 5-shot

Linear classifier Conv-4 8.54 7.48 3.56 2.88

SimpleShot Conv-4 33.45 45.81 3.82 3.35

MetaQDA-MAP Conv-4 8.03 5.27 2.75 0.89

MetaQDA-FB Conv-4 4.32 2.92 2.33 0.45

NIW-Meta (Ours) Conv-4 2.682.682.68 1.881.881.88 1.471.471.47 0.320.320.32

SimpleShot WRN-28-10 39.56 55.68 4.05 1.80

S2M2+Linear WRN-28-10 33.23 36.84 4.93 2.31

MetaQDA-MAP WRN-28-10 31.17 17.37 3.94 0.94

MetaQDA-FB WRN-28-10 30.68 15.86 2.71 0.74

NIW-Meta (Ours) WRN-28-10 10.7910.7910.79 7.117.117.11 2.032.032.03 0.650.650.65

Error calibration. Bayesian models are
known to be better calibrated than determin-
istic counterparts. We measure the expected
calibration errors (ECE) (Guo et al., 2017)
to judge how well the prediction accuracy
and the prediction confidence are aligned –
ECE=

∑B
b=1

Nb

N |acc(b)−conf(b)| where
we partition test instances intoB bins along
the model’s prediction confidence scores,
and conf(b), acc(b) are the average con-
fidence and accuracy for the b-th bin, re-
spectively. The results on miniImageNet
are shown in Table 5. We used 20 bins and optionally performed the temperature search on validation
sets, similarly as (Zhang et al., 2021). Again, Bayesian inference of whole network weights in our
NIW-Meta leads to a far better calibrated model than the shallow Meta-QDA (Zhang et al., 2021).

7.2 FEW-SHOT REGRESSION

Sine-Line dataset (Finn et al., 2018). The 1D (x, y) data pairs are generated by ran-
domly selecting either linear or sine curves with different scales/slopes/frequencies/phases. For

Table 6: Sine-Line results. PMAML w/
5 inner steps incurred numerical errors.

Model Mean squared error R-ECE
RidgeNet 0.8210 N/A

MAML (1-step) 0.8206 N/A
MAML (5-step) 0.8309 N/A

PMAML (1-step) 0.9160 0.2666

NIW-Meta (Ours) 0.78220.78220.7822 0.17280.17280.1728

the episodic few-shot learning setup, we follow the standard
protocol: each episode is comprised of k = 5-shot support
and 45 query samples randomly drawn from a random curve
(regarded as a task). To deal with real-valued targets, we
adopt the so-called RidgeNet, which has a parameter-free
readout head derived from the support data via (closed-
form) estimation of the linear coefficient matrix using the
ridge regression (the L2 regularisation coefficient λ=0.1).
It is analogous to the ProtoNet (Snell et al., 2017) in classification which has a parameter-free head
derived from NCC on support data. A similar model was introduced in (Bertinetto et al., 2019) but
mainly repurposed for classification. We find that RidgeNet leads to much more accurate prediction
than the conventional trainable linear head. For instance, the test errors are: RidgeNet = 0.82
vs. MAML with linear head = 1.86. Furthermore, we adopt the ridge head in other models as well,
such as MAML, PMAML (Finn et al., 2018), and our NIW-Meta. See Table 6 for the mean squared
errors contrasting our NIW-Meta against competing meta learning methods. The table also contains
the regression-ECE (R-ECE) calibration errors2. Clearly our model is calibrated the best.

Object pose estimation on ShapeNet datasets. We consider the recent few-shot regression
benchmarks (Gao et al., 2022; Yin et al., 2020) which introduced four datasets for object pose
estimation: Pascal-1D, ShapeNet-1D, ShapeNet-2D and Distractor. In all datasets3, the main goal is
to estimate the pose (positions in pixel and/or rotation angles) of the target object in an image. Each
episode is specified by: i) selecting a target object randomly from a pool of objects with different
object categories, and ii) rendering the same object in an image with several different random poses
(position/rotation) to generate data instances. There are k support samples (input images and target
pose labels) and kq query samples for each episode. For ShapeNet-1D, for instance, k is randomly
chosen from 3 to 15 while kq=15. Except Pascal-1D, some object categories are dedicated solely for

2The definition of the R-ECE is quite different from that of the classification ECE in Sec. 7.1. We follow
the notion of goodness of cumulative distribution matching used in (Tran et al., 2020; Cui et al., 2020).
Specifically, denoting by Q̂p(x) the p-th quantile of the predicted distribution p̂(y|x), we measure the deviation
of ptrue(y ≤ Q̂p(x)|x) from p by absolute difference. So it is 0 for the ideal case p̂(y|x) = ptrue(y|x). Note
that by definition we can only measure R-ECE for models with probabilistic output p̂(y|x).

3Pascal-1D and ShapeNet-1D are relatively easier datasets than the rest two as we have uniform noise-free
backgrounds. To make the few-shot learning problem more challenging, ShapeNet-2D and Distractor datasets
further introduce random (real-world) background images and/or so called the distractors which are objects
randomly drawn and rendered that have nothing to do with the target pose to estimate.
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Table 7: Pose estimation results. Mean squared errors in rotation angle differences (Pascal-1D and
ShapeNet-1D), quaternion differences ×10−2 (ShapeNet-2D) and pixel errors (Distractor). The
dataset-wise different augmentation schemes are shown in the parentheses.

Model Pascal-1D ShapeNet-1D (TA+DA) ShapeNet-2D (TA+DA+DR) Distractor (DA)
(TA) Intra-category Cross-category Intra-category Cross-category Intra-category Cross-category

MAML 1.02 ± 0.06 17.96 18.79 − − − −
CNP (Garnelo et al., 2018) 1.98 ± 0.22 7.66 ± 0.18 8.66 ± 0.19 14.20±0.06 13.56±0.28 2.45 3.75

CNP+BA (Volpp et al., 2021) − − − 14.16±0.08 13.56±0.18 2.44 3.97

CNP+FCL (Gao et al., 2022) − − − − − 2.00 3.05

ANP (Kim et al., 2019) 1.36 ± 0.25 5.81 ± 0.23 6.23 ± 0.12 14.12±0.14 13.59±0.10 2.65 4.08

ANP+FCL (Gao et al., 2022) − − − 14.01±0.09 13.32±0.18 − −
NIW-Meta w/ C+R 0.89 ± 0.060.89 ± 0.060.89 ± 0.06 5.62 ± 0.38 6.57 ± 0.39 21.25±0.76 20.82±0.43 8.90±0.26 17.31±0.38

NIW-Meta w/ CNP 0.94 ± 0.15 5.74 ± 0.17 6.91 ± 0.18 13.86±0.20 13.04±0.13 1.80±0.011.80±0.011.80±0.01 2.94±0.142.94±0.142.94±0.14

NIW-Meta w/ ANP 0.95 ± 0.09 5.47 ± 0.125.47 ± 0.125.47 ± 0.12 6.06 ± 0.186.06 ± 0.186.06 ± 0.18 13.74±0.3013.74±0.3013.74±0.30 12.95±0.4812.95±0.4812.95±0.48 3.10±0.48 5.20±0.88

meta testing and not revealed during training, thus yielding two different test scenarios: intra-category
and cross-category, in which the test object categories are seen and unseen, respectively.

In (Gao et al., 2022), they test different augmentation strategies in their baselines: conventional data
augmentation on input images (denoted by DA), task augmentation (TA) (Rajendran et al., 2020)
which adds random noise to the target labels to help reducing the memorisation issue (Yin et al.,
2020), and domain randomisation (DR) (Tobin et al., 2017) which randomly generates background
images during training. Among several possible combinations reported in (Gao et al., 2022), we
follow the strategies that perform the best. For the target error metrics (e.g., position Euclidean
distances in pixels for Distractor, rotation angle differences for ShapeNet-1D), we follow the metrics
used in (Gao et al., 2022). For instance, the quaternion metric may sound reasonable in ShapeNet-2D
due to the non-uniform, non-symmetric structures that reside in the target space (3D rotation angles).

The results are summarised in Table 7. In (Gao et al., 2022), they have shown that the set-based
backbone networks, especially the Conditional Neural Process (CNP) (Garnelo et al., 2018) and
Attentive Neural Process (ANP) (Kim et al., 2019) outperform the conventional architectures of the
conv-net feature extractor with the linear head that are adapted by MAML (Finn et al., 2017) (except
for the Pascal-1D case). Motivated by this, we adopt the same set-based CNP/ANP architectures
within our NIW-Meta. In addition, we also test the ridge-head model with the conv-net feature
extractor (denoted by C+R). Two additional competing models contrasted here are: the Bayesian
context aggregation in CNP (CNP+BA) (Volpp et al., 2021) and the use of the functional contrastive
learning loss as extra regularisation (FCL) (Gao et al., 2022).

For Pascal-1D and ShapeNet-1D, there is a dataset regime where MAML clearly outperforms (Pascal-
1D) and underperforms (ShapeNet-1D) the CNP/ANP architectures. Very promisingly, our NIW-Meta
consistently performs the best for both datasets, regardless of the choice of the architectures: not just
CNP/ANP but also conv-net feature extractor + ridge head (C+R). For ShapeNet-2D and Distractor
where MAML is not reported due to the known computational issues and poor performance, our
NIW-Meta still exhibits the best test performance with CNP/ANP architectures. Unfortunately, the
conv-net + ridge head (C+R) did not work well, and our conjecture is that the presence of heavy
noise and distractors in the input data requires more sophisticated modeling of interaction/relation
among the input instances, as is mainly aimed (and successfully done) by CNP/ANP.

Computational complexity, running time and memory footprint. We have analysed the
computational complexity of our NIW-Meta compared to the simple feed-forward workflows (e.g.,
ProtoNet). Our method incurs only constant-factor overhead compared to the minimal-cost ProtoNet,
as summarised in Table 8 in Appendix E. Also in Fig. 5 therein, we also report the memory footprints
and running times of MAML and our NIW-Meta on real datasets, which show that NIW-Meta
has far lower memory requirement than MAML. MAML suffers from heavy use of memory and
thecomputational overhead of keeping track of a large computational graph for inner gradient descent
steps. Our NIW-Meta has a much more efficient strategy of local episodic optimisation that is linked
to global parameters, without storing the full optimisation trace. Please see all details in Appendix E.

8 CONCLUSION

We have proposed a new hierarchical Bayesian perspective to the episodic FSL problem. By having a
higher-level task-agnostic random variate and episode-wise task-specific variables, we formulate a
principled Bayesian inference view of the FSL problem with a large number of tasks (evidence). The
effectiveness of our approach has been verified empirically in terms of both prediction accuracy and
calibration, on a wide range of classification/regression tasks with complex backbones including ViT
and set-based adaptation networks.
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A PROOFS FOR GENERALISATION ERROR BOUNDS

We prove the two theorems Theorem 5.1 and Theorem 5.2 in the main paper that upper-bound the
generalisation error of the model that is averaged over the learned posterior q(ϕ, θ1:N ). Without
loss of generality we assume |Di|=n for all episodes i. We let (q∗(ϕ), {q∗i (θi)}Ni=1) be the optimal
solution of (6). In these theorems we often make the assumption of N →∞, that the number of
training episodes tends to infinity, mainly for mathematical convenience. This assumption may
not be true for practical situations, however, the theorems can still be applicable with approximate
guarantees where we provide several justifications for this in Sec. F.

A.1 PROOF FOR PAC-BAYES-λ BOUND

First, Theorem 5.1, reiterated below as Theorem A.1, relates the generalisation error to the ultimate
ELBO loss (6) that we minimised in our algorithm.
Theorem A.1 (PAC-Bayes-λ bound). Let Ri(θ) be the generalisation error of model θ for the task i,
more specifically, Ri(θ) = E(x,y)∼Ti

[− log p(y|x, θ)] with the assumption of [0, 1]-bounded errors.
As the number of training episodes N→∞, the following holds with probability at least 1−δ for
arbitrary small δ > 0:

Ei∼T Eq∗i (θi)
[Ri(θi)] ≤

2ϵ∗

n
, (16)

where ϵ∗ is the optimal value of (6).

Proof. We utilise the recent PAC-Bayes-λ bound (Thiemann et al., 2017; Rivasplata et al., 2019), a
variant of the traditional PAC-Bayes bounds (McAllester, 1999; Langford & Caruana, 2001; Seeger,
2002; Maurer, 2004). It states that for any λ ∈ (0, 2), the following holds with probability at least
1−δ:

Eq(β)[R(β)] ≤
1

1− λ/2
Eq(β)[R̂m(β)] +

1

λ(1−λ/2)
KL(q(β)||p(β)) + log(2

√
m/δ)

m
, (17)

where β represents all model parameters (random variables), R(β) is the generalisation error/loss for
a given model β, and R̂m(β) is the empirical error/loss on the training data of size m. It holds for
any data-independent (e.g., prior) distribution p(β) and any distribution (possibly data-dependent,
e.g., posterior) q(β).
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Now, with N→∞, we rewrite (6) in an equivalent form as follows:

min
L0,{Li}∞

i=1

Q(L0, {Li}∞i=1) :=
1

N

(
Eq(ϕ;L0)

∏
i qi(θi;Li)

[∑
ili(θi)

]
+ (18)

KL
(
q(ϕ;L0)

∏
iqi(θi;Li)

∣∣∣∣ p(ϕ)∏ip(θi|ϕ)
))∣∣∣∣∣

N→∞

Then we set β := {ϕ, θ1:N}, q(β) := q(ϕ)
∏

i qi(θi), and p(β) := p(ϕ)
∏

ip(θi|ϕ). We also define
the generalisation loss and the empirical loss as follows:

R(β) :=
1

N

N∑
i=1

E(x,y)∼Ti
[− log p(y|x, θ)] = 1

N

N∑
i=1

Ri(θ) (19)

R̂m(β) :=
1

N

N∑
i=1

E(x,y)∼Di
[− log p(y|x, θ)] = 1

n

1

N

N∑
i=1

− log p(Di|θi) =
1

n

1

N

N∑
i=1

li(θi) (20)

Note that the empirical data size m = nN in our case. Plugging these into (17) with λ=1 leads to:

1

N

N∑
i=1

Eqi(θi)[Ri(θi)] ≤

2

(
1

n

1

N

∑N
i=1Eqi(θi)[li(θi)] +

KL
(
q(ϕ)

∏
iqi(θi)

∣∣∣∣p(ϕ)∏ip(θi|ϕ)
)
+ log(2

√
nN/δ)

nN

)
(21)

Taking N →∞ in (21) makes i) the LHS become Ei∼T Eqi(θi)[Ri(θi)], ii) the complexity term
log(2

√
nN/δ)

nN in the RHS vanish, and iii) the RHS converge to 2
nQ(L0, {Li}∞i=1). That is,

Ei∼T Eqi(θi)[Ri(θi)] ≤
2

n
Q(L0, {Li}∞i=1). (22)

Since (22) holds for any q, we take the minimiser q∗ of (6), which completes the proof.

A.2 PROOF FOR REGRESSION ANALYSIS BOUND

Theorem 5.2, reiterated below as Theorem A.2 in a more detailed form, is based on the recent
regression analysis techniques (Pati et al., 2018; Bai et al., 2020). Before we prove the theorem,
we formally state some core assumptions and notations. Let P i(x, y) be the true data distribution
for episode/task i where i = 1, . . . , N and N →∞. We consider regression-based data modeling,
assuming that the target y is real vector-valued (y ∈ RSy ). Also it is assumed that there exists a true
regression function f i : RSx → RSy for each i, more formally P i(y|x) = N (y; f i(x), σ2

ϵ I), where
σ2
ϵ is constant Gaussian output noise variance.

For easier analysis we assume that the backbone network is an MLP with L width-M hidden
layers, and all activation functions σ(·) are Lipschitz continuous with 1. We consider the bounded
parameter space, θ ∈ Θ = {θ ∈ RG : ||θ||∞ ≤ B}, where G = dim(θ) and B is the maximal
norm bound. Then the prediction (regression) function fθ : RSx → RSy is induced from θ as:
Pθ(y|x) = N (y; fθ(x), σ

2
ϵ I), where the true noise variance is assumed to be known. The expressions

Eθ[·] and Ei[·] refer to the expectations with respect to model’s Pθ and the true P i, respectively. The
generalisation error measure that we consider is the expected squared Hellinger distance between the
true P i and the model Pθ, more specifically,

d2(Pθ, P
i) = Ex∼P i(x)

[
H2(Pθ(y|x), P i(y|x))

]
= Ex∼P i(x)

[
1−exp

(
− ||fθ(x)−f

i(x)||22
8σ2

ϵ

)]
.

(23)
Now we state our theorem.
Theorem A.2 (Bound derived from regression analysis). Let d2(Pθi , P

i) be the expected squared
Hellinger distance between the true distribution P i(y|x) and model’s Pθi(y|x) for task/episode i.
Then the following holds with high probability:

Ei∼T Eq∗i (θi)
[d2(Pθi , P

i)] ≤ C0

n
+ C1ϵ

2
n + C2(rn + λ∗), (24)
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where C•>0 are some constant, λ∗ = Ei∼T [λ
∗
i ] with λ∗i = minθ∈Θ maxx ||Eθ[y|x]− Ei[y|x]||2 is

the lowest possible regression error within the underlying network Θ, rn = G
n

(
(L + 1) logM +

log
(
Sx

√
n
G

))
, and ϵn =

√
rn log

δ(n) for δ > 1 constant.

Proof. We utilise the Donsker-Varadhan’s (DV) theorem (Boucheron et al., 2013) to relate the
variational ELBO objective function to the Hellinger distance. The DV theorem says that the
following inequality holds for any distributions p, q and any (bounded) function h(z):

logEp(z)[e
h(z)] = max

q

(
Eq(z)[h(z)]− KL(q||p)

)
. (25)

In our case, we define: p(z) := p(θi|ϕ), q(z) := qi(θi), h(z) := log ηi(θi) with

ηi(θi) := exp
(
ρ(Pθi(Di), P

i(Di)) + nd2(Pθi , P
i)
)

(26)

where ρ(Pθi(Di), P
i(Di)) := log

Pθi
(Di)

P i(Di)
is the log-ratio. Note that P (Di) = P (Yi|Xi). Plugging

these into (25) leads to the following inequality which holds for any ϕ:

n · Eqi(θi)[d
2(Pθi , P

i)] ≤ Eqi(θi)[−ρ(Pθi(Di), P
i(Di))] +

KL(qi(θi)||p(θi|ϕ)) + logEp(θi|ϕ)[ηi(θi)]. (27)

We take the expectation with respect to q(ϕ), which yields:

n · Eqi(θi)[d
2(Pθi , P

i)] ≤ Eqi(θi)[−ρ(Pθi(Di), P
i(Di))] +

Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))] + Eq(ϕ)

[
logEp(θi|ϕ)[ηi(θi)]

]
. (28)

From the regression theorem (Pati et al., 2018) (Theorem 3.1 therein), it is known that Es(θ)[η(θ)] ≤
eCnϵ2n for any distribution s(θ) with high probability. We apply this result to the last term of (28).
Summing it over i = 1, . . . , N leads to:

n ·
N∑
i=1

Eqi(θi)[d
2(Pθi , P

i)] ≤
N∑
i=1

Eqi(θi)[−ρ(Pθi(Di), P
i(Di))] +

N∑
i=1

Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))] +NCnϵ2n. (29)

By dividing both sides by N and sending N →∞, we have:

n · Ei∼T Eqi(θi)[d
2(Pθi , P

i)] ≤

Ei∼T

[
Eqi(θi)[−ρ(Pθi(Di), P

i(Di))] + Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))]
]

︸ ︷︷ ︸
= −ELBO(q) + logP i(Di)

+ Cnϵ2n. (30)

As indicated, the right hand side is composed of −ELBO(q) (the objective function of (6)), the
constant logP i(Di), and the complexity term Cnϵ2n.

The next step is to plug in the optimal q∗ to have a meaningful upper bound. To this end, we
introduce/define q̃i(θi) and q̃(ϕ) as follows:

q̃i(θi) = N (θi; θ
∗
i , σ

2
nI), q̃(ϕ) = argmin

q(ϕ)
Ei∼T Eq(ϕ)[KL(q̃i(θi)||p(θi|ϕ))], where (31)

θ∗i = argmin
θ∈Θ

max
x∈RSx

||fθ(x)− f i(x)||2, σ2
n =

G

8n
A, (32)

A−1 = log(3SxM) · (2BM)2(L+1) ·
((

Sx + 1 +
1

BM−1

)2

+
1

(2BM)2−1
+

2

(2BM−1)2

)
.

(33)
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Since ({q∗i (θi)}Ni=1, q
∗(ϕ)) is the minimiser of the negative ELBO (6), we clearly have

−ELBO(q∗) ≤ −ELBO(q̃). We plug q∗ into (30) and apply this ELBO inequality to have:

n · Ei∼T Eq∗i (θi)
[d2(Pθi , P

i)] ≤ Ei∼T Eq̃i(θi)[−ρ(Pθi(Di), P
i(Di))] +

Ei∼T Eq̃(ϕ)[KL(q̃i(θi)||p(θi|ϕ))] + Cnϵ2n. (34)

The second term of the right hand side of (34) is constant (independent of n) and denoted by C̃. For
the first term of the right hand side, we use the following fact from the proof of Lemma 4.1 in (Bai
et al., 2020), which says that with high probability,

Eq̃i(θi)[−ρ(Pθi(Di), P
i(Di))] ≤ C ′n(rn + λ∗i ), (35)

for some constant C ′ > 0. Using this bound, (34) can be written as follows:

n · Ei∼T Eq∗i (θi)
[d2(Pθi , P

i)] ≤ C̃ + C ′n
(
rn + Ei∼T [λ

∗
i ]
)

+ Cnϵ2n. (36)

The proof completes by dividing both sides by n.

B DETAILED DERIVATIONS

B.1 ELBO DERIVATION FOR (5)

We derive the upper bound of the negative marginal log-likelihood for our Bayesian FSL model, that
is, deriving (5) in the main paper.

KL
(
q(ϕ, θ1:N ) || p(ϕ, θ1:N |D1:N )

)
= Eq

[
log

q(ϕ) ·
∏

i qi(θi) · p(D1:N )

p(ϕ) ·
∏

i p(θi|ϕ) ·
∏

i p(Di|θi)

]
(37)

= log p(D1:N ) +

KL(q(ϕ)||p(ϕ)) +
N∑
i=1

(
Eqi(θi)[− log p(Di|θi)] + Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

])
︸ ︷︷ ︸

=:L(L)

. (38)

Since KL divergence is non-negative, −L(L) must be lower bound of the data log-likelihood
log p(D1:N ), rendering L(L) an upper bound of − log p(D1:N ).

B.2 DERIVATION FOR Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

]
IN (6–7)

We will derive the full closed-form formula for Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

]
, which not only leads to

equivalence between (7) and (8), but is also used in deriving (11). In a nutshell, the formula that we
will prove is as follows:

Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

]
= (39)

1

2

(
−d log(2e) + log

|V0|
|Vi|
− ψd

(n0
2

)
+
d

l0
+ n0

(
mi−m0

)⊤
V −1
0

(
mi−m0

)
+ n0Tr

(
ViV

−1
0

))
,

where ψd(a) =
∑d

j=1 ψ(a + (1 − j)/2) is the multivariate digamma function, and ψ(·) is the
digamma function.

We begin with the definition of the KL divergence,

Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

]
= −H(qi(θi)) + Eq(ϕ)qi(θi)[− log p(θi|ϕ)], (40)

where the first term is the negative entropy which admits a closed form due to Gaussian qi(θi) =
N (θi;mi, Vi),

−H(qi(θi)) = −
d

2
log(2πe)− 1

2
log |Vi|. (41)
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Next we expand the second term of (40) using p(θi|ϕ) = N (θi;µ,Σ) as follows:

Eq(ϕ)qi(θi)[− log p(θi|ϕ)] =
1

2
Eq(ϕ)

[
log |Σ|

]
︸ ︷︷ ︸

=:T1

+
1

2
Eq(ϕ)qi(θi)

[
(θi − µ)⊤Σ−1(θi − µ)

]
︸ ︷︷ ︸

=:T2

+
d

2
log(2π).

(42)

Using the following facts from (Bishop, 2006; Braun & McAuliffe, 2008):

EIW(Σ;Ψ,ν) log |Σ| = −d log 2 + log |Ψ| − ψd(ν/2) (43)

EIW(Σ;Ψ,ν)Σ
−1 = νΨ−1, (44)

we can derive the two terms T1 and T2 as follows (Recall: q(ϕ) = N (µ;m0, l
−1
0 Σ) ·IW(Σ;V0, n0)):

(T1 =)
1

2
Eq(ϕ)

[
log |Σ|

]
=

1

2

(
− d log 2 + log |V0| − ψd

(n0
2

))
(45)

(T2 =)
1

2
Eq(ϕ)qi(θi)

[
(θi − µ)⊤Σ−1(θi − µ)

]
=

1

2
Eq(ϕ)qi(θi)Tr

(
(θi − µ)(θi − µ)⊤Σ−1

)
(46)

=
1

2
Tr
(
Eq(ϕ)

[
Eqi(θi)

[
(θi − µ)(θi − µ)⊤

]
Σ−1

])
(47)

=
1

2
Tr
(
Eq(ϕ)

[(
mim

⊤
i − µm⊤

i −miµ
⊤ + µµ⊤ + Vi

)
Σ−1

])
(48)

=
1

2
Tr
(
EIW(Σ;V0,n0)

[
EN (µ;m0,l

−1
0 Σ)

[
mim

⊤
i − µm⊤

i −miµ
⊤ + µµ⊤ + Vi

]
Σ−1

])
(49)

=
1

2
Tr
(
EIW(Σ;V0,n0)

[(
mim

⊤
i −m0m

⊤
i −mim

⊤
0 +m0m

⊤
0 + l−1

0 Σ+ Vi
)
Σ−1

])
(50)

=
1

2
Tr
( 1

l0
I +

(
(mi −m0)(mi −m0)

⊤ + Vi
)
n0V

−1
0

)
(51)

=
1

2

(
d

l0
+ n0

(
mi −m0

)⊤
V −1
0

(
mi −m0

)
+ n0Tr

(
ViV

−1
0

))
(52)

Combining all the above results yields the formula (39).

B.3 DERIVATION FOR (8) FROM (7)

Using the result (39), we can easily show that the local episodic optimisation (7) in the main paper
((53) below) reduces to (8) ((54) below).

min
Li

Eqi(θi;Li)[li(θi)] + Eq(ϕ)

[
KL(qi(θi;Li)||p(θi|ϕ))

]
(53)

min
mi,Vi

EN (θi;mi,Vi)[li(θi)]−
1

2
log |Vi|+

n0
2
(mi −m0)

⊤V −1
0 (mi −m0) +

n0
2

Tr
(
ViV

−1
0

)
(54)

Recall that the optimisation is with respect to Li = (mi, Vi) with L0 = {m0, V0, l0, n0} fixed.
Plugging (39) into (53) and removing the terms other than (mi, Vi) leads to (54).

B.4 DERIVATION FOR (10)

For the quadratic approximation of li(θi) = − log p(Di|θi) ≈ 1
2 (θi−mi)

⊤Ai(θi−mi)+ const., here
we show that the minimiser of (8) ((54) above) can be obtained by the closed-form formula (10) ((55)
below).

m∗
i (L0) = (Ai + n0V

−1
0 )−1(Aimi + n0V

−1
0 m0), V ∗

i (L0) = (Ai + n0V
−1
0 )−1. (55)

By replacing li(θi) by the quadratic approximation, the expected loss term in (8) or (54) can be
written as follows:

EN (θi;mi,Vi)[li(θi)] ≈ EN (θi;mi,Vi)

[1
2
(θi −mi)

⊤Ai(θi −mi)
]
+ const. (56)

=
1

2

(
Tr
(
E[θθ⊤]Ai

)
−m⊤

i Aimi −m⊤
i Aimi +m⊤

i Aimi

)
+ const. (57)
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Algorithm 2 Meta-test prediction algorithm.
Input: Test support data D∗ and learned q(ϕ;L0) where L0 = {m0, V0, n0}.

MV = number of test-time variational inference steps.
MS = number of test-time model samples.

Compute the mode ϕ∗ = (µ∗=m0,Σ
∗=V0/(n0+d+2)).

Initialise (m,V ) with (µ∗,Σ∗).
for i = 1, . . . ,MV do

Take a gradient descent update for (m,V ) with the objective in (64).
end for
Sample θ(s) ∼ N (θ;m,V ) for s = 1, . . . ,MS .
Output: Sample-averaged predictive distribution, p(y∗|x∗, D∗, D1:∞) ≈ 1

S

∑MS
s=1 p(y

∗|x∗, θ(s)).

=
1

2

(
Tr
(
ViAi

)
+m⊤

i Aimi −m⊤
i Aimi −m⊤

i Aimi +m⊤
i Aimi

)
+ const. (58)

=
1

2

(
Tr
(
ViAi

)
+ (mi −mi)

⊤Ai(mi −mi)
)
+ const. (59)

After plugging this back to (54), we take the derivatives of the objective with respect to mi and Vi
and set them to 0:

∇mi
(·) = Ai(mi −mi) + n0V

−1
0 (mi −m0) = 0 (60)

∇Vi
(·) =

1

2

(
Ai − V −1

i + n0V
−1
0

)
= 0 (61)

The solution becomes (10) or (55).

B.5 DERIVATION FOR (11)

It is quite straightforward that by plugging (10) or (55) and also (39) in (6), we have our final
optimisation problem (11) in the main paper. It is reiterated below:

min
L0

Ei∼T

[
fi(L0) +

1

2
gi(L0) +

d

2l0

]
s.t. fi(L0) = Eϵ∼N (0,I)

[
li

(
m∗

i (L0) + V ∗
i (L0)

1/2ϵ
)]
,

gi(L0) = log
|V0|

|V ∗
i (L0)|

+ n0Tr
(
V ∗
i (L0)/V0

)
+ n0

(
m∗

i (L0)−m0

)2
/V0 − ψd

(n0
2

)
, (62)

B.6 FORMULAS FOR TEST-TIME ELBO OPTIMISATION (13)

We provide formulas for the test-time ELBO in (13) ((63) below). For the test-time variational
density v(θ) = N (θ;m,V ) to approximate p(θ|D∗, ϕ∗) for test support data D∗ and learned
ϕ∗ = (µ∗=m0,Σ

∗=V0/(n0+d+2)), we had

min
m,V

Ev(θ)[− log p(D∗|θ)] + KL(v(θ)||p(θ|ϕ∗)). (63)

Using the closed-form Gaussian KL divergence and the reparametrised sampling trick, we can express
(63) as:

min
m,V

{
Eϵ∼N (0,I)

[
− log p

(
D∗|m+ V 1/2ϵ

)]
− 1

2
log |V | +

n0+d+2

2

(
Tr
(
V −1
0 V

)
+ (m−m0)

⊤V −1
0 (m−m0)

)}
. (64)

Also, our meta-test prediction algorithm is summarised as a pseudo code in Alg. 2.

C TOY EXPERIMENT: WHY HIERARCHICAL BAYESIAN MODEL? (A
DETAILED VERSION)

To demonstrate why our hierarchical Bayesian modelling is effective for few-shot meta learning
problems, we devise a simple toy synthetic experiment as a proof of concept.

19



Published as a conference paper at ICLR 2024

(a) Model I (b) Model II (c) Model III (Ours)

Figure 3: (Toy experiment) Graphical models for the three competing Bayesian models. Here
Θ = [θ, β] is the the concatenation of the weight and intercept random variables.

The problem that we consider is basically a multi-task (Bayesian) linear regression problem. First,
we generate the multi-task/episodic data by the following process: The input-output data pairs
(x ∈ R2, y ∈ R) are generated from a linear model with a shared normal vector and episode-
specific intercepts. More specifically, let wshared ∈ R2 be the episode-agnostic shared weight vector,
and {b1, b2, b3} (bj ∈ R) be the three candidate intercepts among which each episode can take
one randomly. The actual values of the true parameters are: wshared = [−5.4282, 4.9867], b1 =
1.4149, b2=−7.5315, b3=−2.8930. The true data distribution Ti for the episode i (= 1, 2, . . . , N )
is defined by the following linear process:

1. Sample the intercept ID for this episode, j(i) ∼ {1, 2, 3} uniformly at random.
2. Repeat the following to collect (x, y) pairs (so that (x, y) ∼ Ti):

y = (wshared + ϵw)
⊤x+ bj(i) + ϵy, (65)

where x ∼ N (0, I), ϵw ∼ N (0, 10−4I), and ϵy ∼ N (0, 10−4).

In this way we ensure that the resulting episodes are not only related to one another through the shared
weight vector wshared, but they are differentiated by potentially different intercepts. We generate 50
episodes where N = 40 episodes are used for training and the rest 10 episodes serve as test data. For
each training episode i, we have three (x, y) samples as an episodic training set Di (all available to
a training algorithm, where we make no distinction between support and query sets). At test time,
we take three samples as a (labeled) support set D∗ (∗ denotes each of the 10 test episodes), and test
performance is measured on about 50 unseen samples from the same distribution T∗.

Three competing Bayesian methods. We consider three Bayesian models which exhibit different
levels/degrees of flexibility and regularisation. The first one is highly flexible by modeling each
individual episode independently with its own parameters, thus with lack of regularisation. The
second case is a conventional (non-hierarchical) Bayesian model where we consider a single parameter
set shared across episodes, thus too much regularised with lack of flexibility. At last, our hierarchical
Bayesian model imposes balanced flexibility and regularisation by introducing the higher-level
variable ϕ that captures the inter-episode shared information.

1. Model I: This model has episode-wise parameters while they are all independent with
minimal regularisation. More formally,

y = θ⊤i x+ βi + ϵy (66)

where (θi, βi) is the parameters for the episode i. We place the prior p(θi, βi) =
N (µ, 10−4I) with the model parameter µ shared over episodes. The training
amounts to learning the parameter µ ∈ R3 via marginal likelihood maximisation (i.e.,
maxµ log p(D1, . . . , DN |µ)). At test time we do inference p(θ∗, β∗|D∗, D1:N ) which boils
down to p(θ∗, β∗|D∗) due to the cross-episode independence assumption. The graphical
model diagram for the model is shown in Fig. 3(a).

2. Model II: Unlike introducing episode-specific variables, this model has a single set of
variables shared across all episodes. More specifically,

y = θ⊤x+ β + ϵy (67)

where (θ, β) is the episode-agnostic parameters, endowed with the prior p(θ, β) =
N (µ, 10−4I). Due to this parameter sharing, this model is highly regularised but at the
expense of significantly reduced flexibility. Once µ is trained, the inference at test time is
done by p(θ, β|D∗, D1:N ) which is not simplified further and has to take into account all
training and test data. The graphical model diagram in Fig. 3(b).
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(a) Weight dim-1 (b) Weight dim-2 (c) Intercept

Figure 4: Toy experiments. Visualisation of the learned posterior means compared to the true values
(blue-circled). (a) weight dim-1 (θ[0] vs. wshared[0]), (b) weight dim-2 (θ[1] vs. wshared[1]) and (c)
intercept (β vs. bj(∗)). In each plot, the X-axis shows the indices of the true intercepts sampled, that
is, j(∗) ∈ {1, 2, 3}, for 10 test episodes. In the titles we also report the distances (errors) between the
true values and the posterior means for the three methods, averaged over 10 episodes.

3. Model III (Ours): This is our hierarchical model where each episode has its own parameters
(like Model I) but there is a globally governing variable ϕ to regularise the episode-wise
parameters. That is, we have the same regression form as (66) with episode-wise (θi, βi)
parameters, but our prior distributions are defined hierarchically as:

p(ϕ) = N (m,V ), p(θi, βi|ϕ) = N (ϕ, 10−4I), (68)

where (m,V ) is the model parameters to be learned. At test time, we infer
p(θ∗, β∗|D∗, D1:N ), however, unlike the Model II case, each training data Di and the
test data D∗ do not have equal, symmetric contribution. Note that the training data affect
the posterior indirectly only through the higher-level variable ϕ as follows:

p(θ∗, β∗|D∗, D1:N ) =

∫
p(θ∗, β∗|ϕ,D∗) p(ϕ|D∗, D1:N ) dϕ. (69)

That is, while our model is as flexible as Model I due to the episode-wise parameters, their
impacts on the test prediction are controlled/regularised in a very sensible manner. The
graphical model diagram in Fig. 3(c).

Note that all the posterior inferences of the above three models can be done in closed forms due to
the linear-Gaussian properties. The details of the posterior distributions and derivations as well as the
model training can be found in Sec. C.1.

Results. For the 10 test episodes, we obtain the posterior means of the weights and intercept
parameters E[θ, β|D∗, D1:N ] for the three models via the closed-form solutions as detailed in Sec. C.1.
The test support set size |D∗| = 3. With these posterior means, we predict the outputs of about
50 unseen test inputs. The mean absolute errors (MAE) of the three models averaged over 10 test
episodes are: Model I = 2.87, Model II = 3.13, and Model III (ours) = 1.28, clearly showing the
superiority of our model to other competing methods. In Fig. 4 we also visualise the posterior means
to check how much they deviate from the true weights and intercept, namely the difference between
the posterior mean of (θ, β) and the true (wshared, bj(∗)). First, we see that Model II’s posterior means
rarely change over the test episodes, in other words, the impact of test support data D∗ is diminished.
This behavior is expected since the model imposes too much regularisation with little flexibility, and
the test prediction is dominated by the mean model obtained from training data D1:N . Secondly,
Model I exhibits highly sensitive predictions over the test episodes, which mainly originates from
little regularisation. In other words, the posterior is affected too sensitively by the current episode’s
support data, thus being vulnerable to overfitting especially when the support data size is small,
typical in the few-shot learning. The model failed to capture useful shared information, in this case
wshared, from diverse training episodes. On the other hand, our Model III takes the balance between
the above two extremes, imposing proper amount of regularisation and endowing adequate flexibility.
Our posterior estimation best extracts the shared episode-agnostic information (the weight parameters
fluctuate less over the test episodes), and at the same time, captures the episode-specific features the
most accurately (the estimated intercepts are aligned well with the true values).

C.1 DERIVATIONS FOR TRAINING AND POSTERIORS IN TOY EXPERIMENTS

For the convenience in notation, we let Θ = [θ, β] ∈ R3 be the concatenated random variables
(subscripts can be applied accordingly). The training data Di for each episode i consists of the inputs
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with the constant 1 appended, denoted as Xi ∈ Rn×3, and the outputs Yi ∈ Rn. With this notation,
the linear regression model can be succinctly written as Yi = ΘXi. Similarly, the test-time support
data D∗ is decomposed into (X∗, Y∗). The noise standard deviation is denoted by σ = 10−2.

C.1.1 MODEL I

Model I (the episode-wise independent model) can be formally written as:

p(Θi) = N (Θi;µ, σ
2I), p(Di|Θi) = N (Yi;XiΘi, σ

2I), ∀i. (70)

The posterior p(Θ1, . . . ,ΘN |D1, . . . , DN ) is fully factorised over i, and we can deal with individual
terms p(Θi|Di) where

p(Θi|Di) ∝ p(Θi) · p(Di|Θi) = N (Θi;µ, σ
2I) · N (Yi;XiΘi, σ

2I). (71)

Due to the product-of-Gaussians form, we have the closed-form posterior:

p(Θi|Di) = N (Θi;A
−1
i bi, A

−1
i ) where Ai =

1

σ2
(I +X⊤

i Xi), bi =
1

σ2
(µ+X⊤

i Yi). (72)

The training amounts to maximising the data (log-)likelihood, maxµ log p(D1, . . . , DN |µ) where the
objective is fully decomposed over i as follows:

log p(D1, . . . , DN |µ) =
N∑
i=1

log p(Di) where (73)

log p(Di) = log p(Θi, Di)− log p(Θi|Di) (for any Θi) (74)
= log p(Θi) + log p(Di|Θi)− log p(Θi|Di) (for any Θi). (75)

Using the Gaussian posterior form (72), we can easily evaluate log p(D1, . . . , DN |µ) and also
optimise it with respect to µ. At test time, the posterior of Θ∗ given all the training data and the test
support data, p(Θ∗|D∗, D1, . . . , DN ) equals p(Θ∗|D∗) due to the independence assumption, and
admits the same Gaussian form as (72) with the test support data (X∗, Y∗) in the place of (Xi, Yi).

C.1.2 MODEL II

Model II (the shared model across episodes) can be formally written as:

p(Θ) = N (Θ;µ, σ2I), p(Di|Θ) = N (Yi;XiΘ, σ
2I). (76)

The posterior p(Θ|D1, . . . , DN ) can be derived as follows:

p(Θ|D1, . . . , DN ) ∝ p(Θ) ·
N∏
i=1

p(Di|Θ) = N (Θ;µ, σ2I) ·
N∏
i=1

N (Yi;XiΘ, σ
2I). (77)

Again, due to the product-of-Gaussians form, we have the closed-form posterior:

p(Θ|D1, . . . , DN ) = N (Θ;A−1b, A−1) where

A =
1

σ2

(
I +

N∑
i=1

X⊤
i Xi

)
, bi =

1

σ2

(
µ+

N∑
i=1

X⊤
i Yi

)
. (78)

Likewise, the training amounts to maximising the data (log-)likelihood, maxµ log p(D1, . . . , DN |µ)
where the objective becomes:

log p(D1, . . . , DN |µ) = log p(Θ, D1, . . . , DN )− log p(Θ|D1, . . . , DN ) (for any Θ) (79)

= log p(Θ) +

N∑
i=1

log p(Di|Θ)− log p(Θ|D1, . . . , DN ) (for any Θ). (80)

Again, using the Gaussian posterior form (78), we can easily evaluate log p(D1, . . . , DN |µ) and also
optimise it with respect to µ. At test time, the posterior of Θ∗ given all the training data and the test
support data, p(Θ∗|D∗, D1, . . . , DN ) admits a Gaussian form, derived similarly as (78) with the test
support data statistics X⊤

∗ X∗ and X⊤
∗ Y∗ additionally added to the training statistics.
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C.1.3 MODEL III (OURS)

Our Model III (the hierarchical Bayesian model) can be formally written as:

p(ϕ) = N (ϕ;m,V ), (81)

p(Θi|ϕ) = N (Θi;ϕ, σ
2I), p(Di|Θi) = N (Yi;XiΘi, σ

2I), ∀i. (82)

The posterior p(ϕ|D1, . . . , DN ) can be derived as follows:

p(ϕ|D1, . . . , DN ) ∝ p(ϕ) ·
∫
p(Θ1, . . . ,ΘN |ϕ) · p(D1, . . . , DN |Θ1, . . . ,ΘN ) dΘ1:N (83)

= p(ϕ) ·
∫ N∏

i=1

(
p(Θi|ϕ) · p(Di|Θi)

)
dΘ1:N (84)

= p(ϕ) ·
N∏
i=1

∫
p(Θi|ϕ) · p(Di|Θi) dΘi (85)

= N (ϕ;m,V ) ·
N∏
i=1

∫
N (Θi;ϕ, σ

2I) · N (Yi;XiΘi, σ
2I) dΘi (86)

= N (ϕ;m,V ) ·
N∏
i=1

N (Yi;Xiϕ, σ
2(I +XiX

⊤
i )), (87)

where we use the property of the product of Gaussians for the derivation from (86) to (87). Now, in
(87), due to the product-of-Gaussians form, we have the closed-form posterior:

p(ϕ|D1, . . . , DN ) = N (ϕ;A−1b, A−1) where

A = V −1 +
1

σ2

N∑
i=1

X⊤
i (XiX

⊤
i +I)−1Xi, b = V −1m+

1

σ2

N∑
i=1

X⊤
i (XiX

⊤
i +I)−1Yi. (88)

The training amounts to maximising the data (log-)likelihood, maxm,V log p(D1, . . . , DN |m,V )
where the objective becomes:

log p(D1, . . . , DN |m,V ) = log p(ϕ,D1, . . . , DN )− log p(ϕ|D1, . . . , DN ) (for any ϕ) (89)
= log p(ϕ) + log p(D1, . . . , DN |ϕ)− log p(ϕ|D1, . . . , DN ) (for any ϕ), (90)

and the ϕ-conditioned data log-likelihood log p(D1, . . . , DN |ϕ) can be derived as follows:

log p(D1, . . . , DN |ϕ) = log

∫ N∏
i=1

(
p(Θi|ϕ) · p(Di|Θi)

)
dΘ1:N (91)

= log

N∏
i=1

∫
p(Θi|ϕ) · p(Di|Θi) dΘi (92)

=

N∑
i=1

log

∫
p(Θi|ϕ) · p(Di|Θi) dΘi (93)

=

N∑
i=1

logN (Yi;Xiϕ, σ
2(I +XiX

⊤
i )). (94)

So we can easily evaluate log p(D1, . . . , DN |m,V ) and also optimise it with respect to (m,V ).
At test time, the posterior of Θ∗ given all the training data and the test support data,
p(Θ∗|D∗, D1, . . . , DN ) can be derived as follows. We start with:

p(Θ∗|D∗, D1, . . . , DN ) =

∫
p(Θ∗|ϕ,D∗) · p(ϕ|D∗, D1, . . . , DN ) dϕ, (95)

and the first term in the integration, p(Θ∗|ϕ,D∗), since it is proportional to the product of two
Gaussians p(Θ∗|ϕ,D∗) ∝ p(D∗|Θ∗) · p(Θ∗|ϕ) = N (Y∗;X∗Θ∗, σ

2I) · N (Θ∗;ϕ, σ
2I), it admits

Gaussian (from the Gaussian properties),

p(Θ∗|ϕ,D∗) = N (Θ∗;Cϕ+ d,E), where (96)
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C = I −KX∗, d = KY∗, E = σ2C, K = X⊤
∗ (X∗X

⊤
∗ +I)−1. (97)

The second term of (95) becomes a Gaussian following the derivation similar to (88) with the test
support data X∗ and Y∗ included. Consequently we let p(ϕ|D∗, D1, . . . , DN ) = N (ϕ;A−1

∗ b∗, A
−1
∗ ).

At last, (95) is the marginalisation of the product of two Gaussians, which admits the following closed
form:

p(Θ∗|D∗, D1, . . . , DN ) = N (Θ∗;CA
−1
∗ b∗ + d,CA−1

∗ C⊤ + E). (98)

D IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

We implement our NIW-Meta using PyTorch (Paszke et al., 2017) and the Higher (Grefenstette et al.,
2019)4 library. The latter makes the implementation of the backpropagation through the functional
network weights in PyTorch modules very easy. Real codes for the synthetic SineLine regression
dataset and the large-scale ViT are also attached in the Supplement Material to help understanding of
our algorithm. For all few-shot classification experiments, we use the ProtoNet-like parameter-free
NCC head in our NIW-Meta. Some important implementation details on the SGLD iterations for
quadratic approximation of the local episodic optimisation include: we have either 3 steps without
burn-in (for large-scale backbones ViT) or 5 steps with 2 burn-in steps (for smaller backbones
ConvNet, ResNet-18, and CNP). Before starting SGLD iterations, the network is initialised with the
current model parameters m0. For reliable variance estimation of Ai, a small regulariser is added to
the diagonal entries of the variances.

For the standard benchmarks with ConvNet/ResNet backbones, we follow the standard protocols
of (Wang et al., 2019; Mangla et al., 2020; Zhang et al., 2021): With 64/16/20 and 391/97/160
train/validation/test class splits for miniImageNet and tieredImageNet datasets, respectively, the
images are resized to 84 pixels. We initialise the m0 parameters from the pretrained models:
checkpoints from (Wang et al., 2019) for Conv-4 and ResNet-18 and checkpoints from (Mangla et al.,
2020) for WRN-28-10. With the stochastic gradient descent (SGD) optimizer, we set momentum 0.9,
weight decay 0.0001, and initial learning rate 0.01 for miniImageNet and 0.001 for tieredImageNet.
We have learning rate schedule by reducing the learning rate by the factor of 0.1 at epoch 70.

For the large-scale ViT backbones, we utilise the code base from (Hu et al., 2022). We use the
self-supervised pretrained checkpoints from (Caron et al., 2021) to initialise the m0 parameters. The
CIFAR-FS dataset is formed by splitting the original CIFAR-100 into 64/16/20 train/validation/test
classes. For training, we run 100 epochs, each epoch comprised of 2000 episodes. We follow the
same warm-up plus cosine annealing learning rate scheduling as (Hu et al., 2022). For test evaluation,
we have 600 episodes from the test splits.

For the few-shot regression experiments with ShapeNet datasets, we basically follow all experimental
settings and CNP/ANP network architectures from (Gao et al., 2022). For instance, in the ShapeNet-
1D dataset, we run our algorithm for 500K iterations with learning rate 10−4 where each batch
iteration consists of 10 episodes. The CNP backbone, for instance, in the Distractor dataset case, has a
ResNet image encoder and a linear target encoder, where the concatenated instance-wise embeddings
then go through a three-layer fully connected network followed by max pooling. The decoder has a
similar architecture and converts the support set embedding and a query image into a target label. For
the conv-net plus ridge-regression head backbone (C+R) tested for our method, the conv-net feature
extractors are formed by taking the encoder parts of the CNP architectures in (Gao et al., 2022)
while discarding the pooling operations and decoders. Also the ridge-regression L2 regularisation
coefficient is set to λ = 1.0 for all datasets.

E COMPUTATIONAL COMPLEXITY, RUNNING TIME AND MEMORY FOOTPRINT

Although we have introduced a principled Bayesian model/framework for FSL with solid theoretical
support, the extra steps introduced in our training/test algorithms appear to be more complicated than
simple feed-forward workflows (e.g., ProtoNet (Snell et al., 2017)). To this end, we have analysed
the time complexity of the proposed algorithm contrasted with ProtoNet (Snell et al., 2017). For
fair comparison, our approach adopts the same NCC head on top of the feature space as ProtoNet.

4https://github.com/facebookresearch/higher
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Table 8: (Per-episode) Time complexity of our NIW-Meta vs. ProtoNet. We denote by FD and BD

the forward-pass and backpropagation times with data D = Support or Query. In our algorithm,
ML, MV , and MS indicate the numbers of SGLD iterations, test-time variational inference steps for
(13) or (63,64), and the number of test-time model samples θ(s), respectively. The costs required for
reparametrised sampling in model space and regulariser computation in (11) or (62) are denoted by
O(d) where d = number of backbone parameters.

Training time Test time

NIW-Meta (Ours) (FS+FQ+BQ) · (ML+1) (FS+BS) ·MV +
+ O(d) (FS+FQ) ·MS +O(d)

ProtoNet FS+FQ+BQ FS+FQ

Table 9: Effect of the finite number of episodes (N ) on the generalization error gap in terms of the
sample complexity gap log(2

√
nN/δ)/(nN) in (21). Here δ=0.001.

N (#episodes) n (#shots × #ways) Sample complexity error gap (↓)
103 1×5 / 5×5 2.4×10−3 / 5.0×10−4

104 1×5 / 5×5 3.0×10−4 / 5.5×10−5

105 1×5 / 5×5 2.8×10−5 / 6.0×10−6

The computational complexity is summarised in Table 8. Despite seemingly increased complexity
in the training/test algorithms, our method incurs only constant-factor overhead compared to the
minimal-cost ProtoNet.

As we claimed in the main paper, one of the main drawbacks of MAML (Finn et al., 2017) is the
computational overhead to keep track of a large computational graph for inner gradient descent steps.
Unlike MAML, our NIW-Meta has a much more efficient episodic optimisation strategy, i.e., our
local episodic optimisation only computes the (constant) first/second-order moment statistics of the
episodic loss function without storing the full optimisation trace.

To verify this, we measure and compare the memory footprints and running times of MAML and NIW-
Meta on two real-world classification/regression datasets: miniImageNet 1-shot with the ResNet-18
backbone and ShapeNet-1D with the ConvNet backbone. The results in Fig. 5 show that NIW-Meta
has far lower memory requirement than MAML (even smaller than 1-inner-step MAML) while
MAML suffers from heavy use of memory space, nearly linearly increasing as the number of inner
steps. The running times of our NIW-Meta are not prohibitively larger compared to MAML where
the main computational bottleneck is the SGLD iterations for quadratic approximation of the local
episodic optimisation. We tested two scenarios with the number of SGLD iterations 2 and 5, and we
have nearly the same (or even better) training speed as the 1-inner-step MAML.

F TRAINING STABILITY AND IMPACT OF NUMBER OF TRAINING EPISODES

In our theoretical analysis of the generalisation error (Sec. 5 in the main paper and our proofs in
Sec. A), we regard the number of training episodes N as infinity. In practice, N is finite, but large
enough (N∼100K in typical FSL), and we simply take it as infiniteN for mathematical convenience
(e.g., to have the first KL term in (5) vanish; reduction to the task population mean from (29) to
(30)). To see the effect of finite N on the generalization performance, we exemplify several typical
N values and corresponding generalization (sample complexity) error gaps (21) in Table 9. We see
that even for relatively small N , error gaps are small/negligible.

In addition, we investigate the impact of the number of training episodes N on training stability. We
illustrate it in Fig. 6, which shows that our method works stably well even for a small number of
initial episodes, convergence being as fast as ProtoNet with far better generalization performance.
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(b) Per-episode training times

Figure 5: Computational complexity of MAML (Finn et al., 2017) and our NIW-Meta. (a) GPU
memory footprints (in MB) for a single batch. (b) Per-episode training times (in milliseconds). For
our NIW-Meta models, the time for the number of burn-in steps (2 steps in this case) is also included.
That is, NIW-Meta(#SGLD=2) runs 2 + 2 SGLD iterations, and NIW-Meta(#SGLD=5) runs
5+2, respectively, compared to MAML with 1 ∼ 5 inner iterations. We use the ResNet-18 backbone
for miniImageNet in 1-shot classification and the ConvNet backbone for ShapeNet-1D regression (10
episodes per batch).

Figure 6: CIFAR 1-shot learning with ViT (DINO/s). (Left) Training losses vs. training episodes
(2000 episodes per epoch). We plot the training loss of our NIW-Meta (i.e., (11)) in blue, and super-
impose the training cross-entropy loss in red, where the latter is comparable to ProtoNet’s training
CE loss in magenta. We see that our NIW-Meta training is pretty stable, where the convergence
speed is as fast as ProtoNet. (Right) Performance on the validation set as training episodes increases.
The validation losses of our NIW-Meta (blue) and ProtoNet (cyan) are comparable, while we also
compare the validation accuracy of our NIW-Meta (red) against ProtoNet (magenta).
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Table 10: Predictive log-marginal-likelihood scores (LMLHD) on the Sine-Line dataset. The higher
the better uncertainty quantification and generalisation.

Context size 1 2 4 6 8 12 16
(Volpp et al., 2023) -18.38 -15.98 -13.69 -12.74 -11.75 -11.14 -10.23

NIW-Meta (Ours) -17.02 -14.74 -12.60 -8.14 -3.51 -1.55 -1.33

G ADDITIONAL DISCUSSIONS

G.1 COMPARISON TO BAYESIAN NEURAL PROCESSES

An interesting question is what are the relative merits of a complete Bayesian treatment but with
restricted Gaussian forms as in our model, versus a shallow Bayesian but GMM-like rich variational
forms such as (Volpp et al., 2023). We do not know which is absolutely better than the other. Further
theoretical and empirical study needs to be carried out in this regard. But we have some experimental
evidence as demonstrated in our paper, the comparison with MetaQDA (Zhang et al., 2021) shallow
Bayesian approach that only places prior distribution on the model head parts while freezing the
feature extractor (Table 2, 3, 5). As shown, our complete Bayesian treatment outperformed it, in both
test generalisation performance and uncertainty calibration. This is one supporting evidence of why a
complete Bayesian treatment could be more promising than a shallow Bayesian treatment.

For the experimental demonstration, we have done additional experiments on the Sine-Line dataset
to report the predictive marginal test likelihood score, which is directly comparable to the shallow
Bayesian embedding models, esp., the Bayesian Neural Process model of (Volpp et al., 2023). The
predictive log-marginal-likelihood scores (LMLHD) are shown in Table 10. We try to match the
experimental settings from (Volpp et al., 2023) so that the results are comparable. More specifically,
we test on 256 tasks, each of which consists of 64 samples with a varying number of context samples
(1, 2, 4, 6, 8, 12 and 16). The number of posterior samples used to compute/approximate the predictive
marginal likelihood is 1024. As shown, our NIW-Meta has higher scores, especially for larger context
size, implying that capturing uncertainty in full model parameters is important for generalisation
capability.

G.2 JUSTIFICATION OF MODEL AND ALGORITHM CHOICES

Motivation for distributional estimate q(ϕ). If ϕ were directly linked to the observed data Di’s
in our graphical model Fig. 1, then ϕ can tend to be determined deterministically, as the number of
data N becomes large. However, ϕ is linked to latent variables θi’s, so the belief on ϕ also needs to
capture and accumulate the uncertainty in θi’s, which amounts to marginalising out the θi variables.
So, it may not not be appropriate to treat the posterior for ϕ as a delta function (0 uncertainty), and
it is better to follow the Bayesian inference principle, i.e., let the posterior be computed from the
observed evidence.

Why distributional estimate q(ϕ) if we only use the mode of q(ϕ) at meta-test time. Using
the mode of q(ϕ) is only for practical convenience and simplicity. Although we used the mode, the
distributional form q(ϕ) would take into account uncertainty in its optimisation, and thus lead to a
different solution from the deterministic one.

Why not the same inference approach for meta testing as meta training. For meta testing,
we may attempt to solve the optimisation problem similar to (7) or (8) for meta training with L0

fixed, which also results in the same meta test solution as our derivation in Sec. 3.2. This can also be
verified by inspecting the similarity between (13) and (7) or (8). However, this approach requires that
L0 be fixed at the trained value, which we do not know for sure in the pure optimisation perspective.
In Sec. 3.2, we aimed to derive the meta-test optimisation problem from the Bayesian perspective
from the outset, which offers us a reasonable justification for why L0 can be fixed.

Quality of the quadratic approximation. In (9), we have made the quadratic approximation
for the negative likelihood, −log p(Di|θ) ≈ 1

2 (θ−mi)
⊤Ai(θ−mi) + const. To see the quality of

this approximation, we empirically evaluated the true value (the left hand side of the approximation)
and the quadratic approximation (the right hand side) on the miniImageNet 5-shot dataset with
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the ResNet-18 backbone. We take random 10 perturbations of θ around the mode/mean mi with
perturbation radius 0.1. The relative error of the quadratic approximation is 0.0050± 0.0004. This
shows that the negative log-likelihood is well approximated by our quadratic function in the vicinity
of the mode/mean.

G.3 LIMITATIONS AND FUTURE WORKS

Limitations. 1) Our NIW-Meta introduces some extra hyperparameters (e.g., the number of
SGLD iterations, the number of burn-in steps). These are currently estimated empirically, but a
more rigorous study on how to select them automatically needs to be addressed. 2) Although it
is empirically verified that our quadratic episodic loss optimisation is effective, more theoretical
analysis on the quality of this approximation as well as its impact on the final results, needs to be
done.

Future works. We have quite an extensive evaluation on popular few-shot classification and regres-
sion benchmarks. However, we would like to evaluate our approach on new emerging applications
of few-shot learning such as efficient learning of the implicit neural representations such as NeRF,
e.g., (Tancik et al., 2021).
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