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Abstract

When and why representations learned by different deep neural networks are
similar is an active research topic. We choose to address these questions from
the perspective of identifiability theory, which suggests that a measure of repre-
sentational similarity should be invariant to transformations that leave the model
distribution unchanged. Focusing on a model family which includes several popular
pre-training approaches, e.g., autoregressive language models, we explore when
models which generate distributions that are close have similar representations. We
prove that a small Kullback–Leibler divergence between the model distributions
does not guarantee that the corresponding representations are similar. This has
the important corollary that models with near-maximum data likelihood can still
learn dissimilar representations—a phenomenon mirrored in our experiments with
models trained on CIFAR-10. We then define a distributional distance for which
closeness implies representational similarity, and in synthetic experiments, we find
that wider networks learn distributions which are closer with respect to our distance
and have more similar representations. Our results thus clarify the link between
closeness in distribution and representational similarity.

1 Introduction

How to compare and relate the internal representations learned by different deep neural networks is a
long-standing and active research topic [3, 29, 32, 37, 44, 48, 64]. Understanding when and why var-
ious kinds of representational similarity emerge has implications for model stitching [11, 15, 35, 40,
45], knowledge-distillation [52, 57, 72, 73] and interpretability for concept-based and neuro-symbolic
models [5, 14, 41], see [60] for a review. A theory of when similarity occurs will chiefly depend on
how similarity is measured. As argued by Bansal et al. [3], a similarity measure “should be invariant
to operations that do not modify the ‘quality’ of the representation, but it is not always clear what
these operations are”. Indeed, this depends on how one defines the ‘quality’ of a representation, and
previous works have debated the pros and cons of different choices [3, 13, 29, 30, 44, 48, 64, 66].

We choose to address these questions from the perspective of identifiability theory. In identifiability
of probabilistic models, representations are called equivalent if they result in equal likelihoods, and
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Figure 1: When closeness in distribution does and does not imply representational similarity. On the left,
we show two distributions pf ,g, pf ′,g′ ∈ PΘ which are closer than ϵ w.r.t. the distance dλLLV (Definition 4.4),
as illustrated by the shaded blue ball. We use [(f ,g)] ∈ Θ/ ∼L to denote the identifiability class (Footnote 3)
of a ∼L-identifiable model with embedding f and unembedding g (Section 2). Theorem 4.7 implies that the
identifiability classes [(f ,g)] and [(f ′,g′)], within the shaded orange area, will have similar representations—i.e.,
their dissimilarity under df ,g (Definition 4.6) is bounded above by 2Mϵ. We also consider a third distribution
pf̃ ,g̃ ∈ PΘ which, while ϵ-close in dKL (in magenta), falls outside the blue region and has representations that
are very dissimilar from those of [(f ,g)] and [(f ′,g′)], as described by our Theorem 3.1. On the right, we plot
the three model embeddings: Taking f as reference, we find the best linear fit to f ′ and f̃ , and then color each of
the points according to the residual error (brighter colors denote larger errors). The embeddings f ′ are nearly a
linear transformation of f , while f̃ shows substantial deviation—visibly farther from being linearly related.

all models with equivalent representations together form an identifiability class [26].3 Therefore, to
preserve the ‘quality’ of representations, our notion of representational similarity needs to be invariant
to precisely those transformations which leave the model likelihood unchanged. We focus on a model
family including many popular pre-training approaches, e.g., autoregressive language models [7, 47],
contrastive predictive coding [46], as well as standard supervised classifiers. Identifiability results for
this model class show that, under a diversity condition, equal-likelihood models yield representations
which are equal up to certain invertible linear transformations [27, 33, 50, 51].

As a first step toward a theory of representational similarity, we ask: For what distributional and
representational distances is it true that models whose output distributions are close have simi-
lar internal representations? Addressing this requires going beyond classical identifiability, which
assumes exact likelihood equality. We do so by proving in Theorem 3.1 that a small Kullback–Leibler
(KL) divergence does not guarantee that the corresponding representations are similar—i.e., close
to the identifiability class of our model family. As an important corollary, two models which are
arbitrarily close to maximizing the data likelihood can still have dissimilar representations (Corol-
lary 3.2). We then introduce a new distributional distance (Definition 4.4) and prove (Theorem 4.7)
that closeness in this distance bounds representational dissimilarity (Definition 4.5).

We conduct classification experiments on CIFAR-10 and find substantial representational dissimilarity
between some trained models with similarly good performance (Section 5.1). This dissimilarity
appears to stem from a mechanism analogous to that identified in our KL divergence theory. We
also run synthetic experiments showing that wider neural networks tend to learn distributions
closer under our distance and have more similar representations (Section 5.2). This suggests that
the inductive biases of larger models may promote representational similarity, something already
observed in previous works.4 Altogether, our findings indicate that the robustness of identifiability
results [27, 50, 51] under the KL divergence may require additional assumptions, and that whether
distributional closeness implies representational similarity depends critically on the choice of
distributional and representational distance.

The structure and main contributions of our paper are as follows:

• We prove that small KL divergence between two models from our considered class (Equation (1))
does not guarantee similar representations (Section 3, Theorem 3.1); as a corollary, models with
near-maximum data likelihood can have entirely dissimilar representations (Corollary 3.2).

3 For a model family Θ and an equivalence relation ∼L, Θ/ ∼L denotes the quotient space whose elements
are the identifiability classes [(f ,g)] := {(f ′,g′) ∈ Θ : (f ,g) ∼L (f ′,g′)} [18, 26].

4E.g., Roeder et al. [51]: “as the representational capacity of the model and dataset size increases, learned
representations indeed tend towards solutions that are equal up to only a linear transformation.”
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• We define a distance between probability distributions (Section 4.1) and a dissimilarity measure
between representations (Section 4.2), and prove that small distributional distance implies represen-
tational similarity up to a specific class of invertible linear transformations (Section 4.3).

• We empirically show that: (1) models trained on CIFAR-10 can exhibit dissimilar representations
despite similarly good performance through a mechanism similar to that in the proof of Corol-
lary 3.2 (Section 5.1); (2) on synthetic data, wider networks yield lower mean and variance of our
distributional distance, and also have more similar representations (Section 5.2).

2 Model Class and Identifiability

We consider input variables x ∈ X , which can be real-valued (e.g., images) or discrete (e.g., text
strings). We assume that the input data is sampled i.i.d. from a distribution pD(x). Given an input x,
we consider the task of defining a conditional distribution over categorical outputs y ∈ Y , which can
be class labels in classification tasks or next-tokens following a context in language modeling.

Model class. Following Roeder et al. [51], we consider a model to be a pair of functions (f ,g) ∈ Θ,
where the codomain of both f and g is a vector space RM , which we will also refer to as the
representation space. Here, Θ entails the space of all such pairs that can be generated by arbitrarily
large neural networks.5 We will refer to f(x) as the model embedding and to g(y) as the unembedding.
The conditional distribution6 defined by the model is given by

pf ,g(y|x) =
exp(f(x)⊤g(y))∑

y′∈Y exp(f(x)⊤g(y′))
. (1)

We will also indicate the model distribution with pf ,g ∈ PΘ, where PΘ is the space of conditional
distributions that can be constructed as in Equation (1) using models in Θ. This model family captures
a variety of models for different learning contexts [51] among which: (i) auto-regressive language
models like GPT-2 [47] and GPT-3 [7]; (ii) supervised classifiers like energy-based models [27] and
models trained with DIET [25]; (iii) pretrained language models like BERT [12]; (iv) self-supervised
pretraining for image classification with Contrastive Predictive Coding (CPC) [46].

Identifiability. It is useful to fix a pivot input point x0 ∈ X and a pivot label y0 ∈ Y and consider
the displaced embeddings f0(x) := f(x)− f(x0) and unembeddings g0(y) := g(y)− g(y0). The
conditional probability distribution generated by the model can then be rewritten as

pf ,g(y|x) ∝ exp(f(x)⊤g(y)) exp(−f(x)⊤g(y0)) (2)

= exp(f(x)⊤g0(y)) . (3)

Next, we review identifiability of the model class in Equation (1). Identifiability theory characterizes
the set of transformations of representations that leave a model’s output distribution unchanged;
two models are therefore deemed equivalent when one can be obtained from the other by such a
transformation. To proceed, we introduce an assumption about our considered models. This condition,
also known as diversity [27, 33, 51], corresponds to only considering models that span the whole
representation space, in the sense that there is no proper linear subspace of RM containing the
embeddings or the unembeddings [42]. Formally, this can be written as:
Definition 2.1 (Diversity condition). A model (f ,g) ∈ Θ satisfies the diversity condition if there exists
x1, . . . ,xM ∈ X and y1, ..., yM ∈ Y such that both the displaced embedding vectors {f0(xi)}Mi=1

and the displaced unembedding vectors {g0(yi)}Mi=1 are linearly independent.

The diversity condition can hold when the total number of unembeddings in Y is strictly higher
than the representation dimension M [51]. For example, in GPT-2 [47], while the representation
dimensionality varies in the order of thousands (depending on the model size), the number of tokens
in Y is of the order of ten thousands (∼ 50k tokens), implying that diversity may be easily satisfied.
With this assumption, we can prove the identifiability of the model in Equation (1) up to invertible
linear transformations (a detailed proof can be found in Appendix B):

5Both f and g are therefore treated as nonparametric functions in the following, similar to [27, 33, 42, 51].
6We use the term “distribution” generically. In Equation (1), pf ,g(y|x) is a softmax over a finite label set,

i.e., a probability mass function.
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Figure 2: Two models with small KL divergence but highly dissimilar representations. We construct two
models (f ,g), (f ′,g′) ∈ Θ whose representations are related by a non-linear transformation: The embeddings
and unembeddings of the (f ′,g′) model are constructed by permuting the embedding clusters and the corre-
sponding unembedding vectors of the (f ,g) model. As a result, the nearest unembedding vectors in g(·) (dashed
lines) are mapped away from each other in g′(·). In Theorem 3.1, we show that as the norm of the unembedding
vectors ρ grows for both models, their distributions pf ,g and pf ′,g′ become closer in KL divergence, whereas
their representations remain dissimilar—i.e., far from being equal up to a linear transformation, see also Table 1.

Theorem 2.2 (Linear Identifiability [27, 33, 51]). Let (f ,g), (f ′,g′) ∈ Θ, and (f ,g) satisfy the
diversity condition (Definition 2.1). Let L (resp. L′) be the matrix with columns g0(y) (resp. g′

0(y)),
and let A := L−⊤L′⊤ ∈ RM×M . Then:

pf ,g(y | x) = pf ′,g′(y | x), ∀(x, y) ∈ X × Y =⇒ (f ,g) ∼L (f ′,g′) (4)

where the equivalence relation ∼L is defined by

(f ,g) ∼L (f ′,g′) ⇐⇒
{
f(x) = Af ′(x)

g0(y) = A−⊤g′
0(y)

. (5)

The result of Theorem 2.2 is central to the scope of our analysis because it shows that representa-
tions of two models generating the same conditional distribution are related by an invertible linear
transformation. This also means that, under the diversity condition, to each probability distribution
pf ,g ∈ PΘ corresponds a unique (up to equivalence) choice of embeddings and unembeddings. See
Fig. 1 for an illustration.

Representational similarity. Theorem 2.2 suggests that a natural notion of similarity between
representations for our model class should account for the linear equivalence relation in Equation (5).
Hereafter, we say two models (f ,g), (f ′,g′) ∈ Θ have equivalent representations if their embeddings
and unembeddings are related by an invertible linear transformation of the kind in Theorem 2.2,
i.e., (f ,g) ∼L (f ′,g′), and we call representations similar if they are ‘close’ to having such a
relation—which we will make precise in Section 4.2. We note that several measures of representa-
tional similarity [29, 44, 48] are based on Canonical Correlation Analysis (CCA) [21], and are thus
invariant to any invertible linear transformation. They thus attain their maximum when applied to rep-
resentations that are equivalent in the sense above, but also for other invertible linear transformations.
We discuss alternative choices of similarity measures in Section 6.

3 Models Close in KL Divergence Can Have Dissimilar Representations

Given Theorem 2.2, we next ask whether a similar conclusion holds approximately when the models
have nearly the same distributions. More precisely, we ask: For a given choice of divergence between
distributions, does a small difference in distributions imply representational similarity?

As a natural starting point, we consider the widely used Kullback–Leibler (KL) divergence. Specifi-
cally, we quantify the difference between two models by the KL divergence between their conditional
distributions, averaged over the data distribution pD(x). This is equivalent to the KL divergence
between the corresponding joint distributions, assuming both share the marginal pD(x). Formally:

dKL(p, p
′) := Ex∼pD [DKL (p(y|x) ∥ p′(y|x))] = DKL (p(x, y) ∥ p′(x, y)) . (6)

When DKL(p(y|x) ∥ p′(y|x)) = 0 for all x, we obtain models that are ∼L-equivalent, as specified in
Theorem 2.2. However, only making the KL divergence small is insufficient to conclude much about
the similarity of representations. The following result formalizes this claim (proof in Appendix C.1):
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Theorem 3.1 (Informal). Let k = |Y| and assume k ≥ M + 1. Then ∀ϵ > 0, there exist models
(f ,g), (f ′,g′) ∈ Θ for which dKL(pf ,g, pf ′,g′) ≤ ϵ, and whose embeddings are far from being
linearly equivalent.7 More precisely, one can construct a sequence of model pairs, depending
smoothly on a real-valued parameter ρ, such that, as ρ→∞, the KL divergence between the models
tends to zero while their embeddings remain fixed and not equal up to any linear transformation.

Proof sketch. We here sketch the construction used for k ≥ M + 2 (see Appendix C.1 for a
construction which holds with k = M + 1 ). Let (f ,g) ∈ Θ be a model which has unembeddings
with fixed norm, i.e., ∥g(y)∥ = ρ, for all y ∈ Y and ρ ∈ R+. Assume the unembeddings have
non-zero angles between them and let the unembeddings satisfy diversity (Definition 2.1). For
x ∈ X , let the embedding f(x) have strictly largest cosine similarity with one g(ŷ), for some
ŷ ∈ Y , and such that ŷ = argmaxy∈Y(pf ,g(y|x)). As a consequence, note that the model (f ,g)
also satisfies the diversity condition for the embeddings. Let (f ′,g′) ∈ Θ be another model which
is constructed starting from (f ,g) and considering a permutation, π, of the label indices such that
g′ (yi) = g

(
yπ(i)

)
for i = 1, . . . , k, with a corresponding shift of the embedding clusters.8 For

every x ∈ X , we let ∥f ′(x)∥ = ∥f(x)∥ and let the angle between f ′(x) and g′(ŷ) be equal to that
between f(x) and g(ŷ). We illustrate this construction in Fig. 2 for f(x),g(y) ∈ R2. One can then
find a permutation π for which f(x) is not a linear transformation9 of f ′(x) (thus the KL divergence
between pf ,g and pf ′,g′ is non-zero). However, as ρ → ∞, we have that dKL(pf ,g, pf ′,g′) → 0,
although the embeddings stay constant and not linearly equivalent.

Theorem 3.1 shows that, even when dKL(pf ,g, pf ′,g′) ≤ ϵ, there is no guarantee that the models
are close to being ∼L-equivalent. The proof constructs a ρ-parameterized sequence in which the
embeddings remain fixed and not equal up to a linear transformation; consequently, the error of the
best linear regression of one embedding set onto the other is strictly positive and stays constant as
ρ→∞, while dKL → 0.

In Theorem 3.1, we consider the KL divergence between two distributions from our model family.
However, when practitioners study representational similarity in trained models, they fit each model
to the data distribution—usually by maximum-likelihood estimation—and then compare their repre-
sentations. We therefore also formulate the following corollary which is closer to the usual setup:

Corollary 3.2 (Informal). Let k = |Y| and assume k ≥M + 1. Consider a dataset of (x, y) pairs,
where only one label is assigned to each unique input. Then, we can find two models that obtain
an arbitrarily small cross-entropy loss on the data while having representations which are far from
being linearly equivalent in the same sense as in Theorem 3.1.

The proof is in Appendix C.2, and an illustration through synthetic experiments can be found in
Appendix F.4. This corollary shows that two models having close to optimal classification loss on
training data, possibly also equal, may not possess similar representations at all. Importantly, we find
that this situation can arise in practice with discriminative models trained on CIFAR-10 (Section 5),
which can have dissimilar representations despite assigning high probability to the same labels.

4 When Closeness in Distribution Implies Representational Similarity

In this section, we introduce a distance between probability distributions (Section 4.1) and measure
of representational similarity (Section 4.2) and prove that, for our model family (Equation (1)), small
values of the former imply high similarity under the latter (Section 4.3).

7We show in Section 5.3 how the construction from our proof can lead to high dissimilarity both according to
mCCA [48, 51] and under the measure introduced in Definition 4.5.

8This is not a permutation of the representation dimensions—i.e., it is not f ′(x) = Pf(x) for some permuta-
tion matrix P. The permutation of label indices, and corresponding shift of embedding clusters, is in general not
a linear transformation of the representations (see Fig. 2); it also changes the model’s output distribution, since it
alters the rank—by predicted probability—of every label except the highest-probability one for each input x.

9In Table 1, we show that one can construct models this way and such that the mean canonical correlation is
close to zero, whereas it would be equal to one if their representations were linear transformations of each other.
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4.1 A Distance Between Probability Distributions

We start by studying what relation holds between models in Θ which need not have the same
probability distributions. Hereafter, we will also consider the variance over input samples and outputs
and denote it with Varx[·] := Varx∼pD [·] and Vary[·] := Vary∼Unif(Y)[·], respectively. With this in
mind, it is useful to introduce the following functions:

ψx(yi; p) :=
√
Varx[log p(yi|x)− log p(y0|x)] and ψy(xj ; p) :=

√
Vary[log p(y|xj)− log p(y|x0)] .

(7)
We also denote with S ∈ RM×M the diagonal matrix with entries Sii := ψx(yi; p)

−1. We now have
everything we need to state a Lemma relating any two model embeddings (the full statement and
proof, including the relation between the unembeddings can be found in Appendix E.1):
Lemma 4.1. Let (f ,g), (f ′,g′) ∈ Θ be models satisfying the diversity condition (Definition 2.1). Let
L,L′ be defined as in Theorem 2.2. Let Ã := L−⊤S−1S′L′⊤ and hf (x) := L−⊤S−1ϵy(x), where
the i-th entry of ϵy(x) is given by

ϵyi(x) =
log pf ,g(yi|x)− log pf ,g(y0|x)

ψx(yi; pf ,g)
− log pf ′,g′(yi|x)− log pf ′,g′(y0|x)

ψx(yi; pf ′,g′)
. (8)

Then, we have

f(x) = Ãf ′(x) + hf (x) . (9)

Remark 4.2. In the special case where the two models (f ,g), (f ′,g′) ∈ Θ have the same distribution,
the error term in Equation (8) vanishes and we recover (f ,g) ∼L (f ′,g′) (see Corollary E.1).

We note that the error term in Lemma 4.1 depends entirely on differences of log probabilities. We also
see that if ϵyi(x) is a constant (or equivalently, Var[ϵyi(x)] = 0), the embeddings will be invertible
linear transformations of each other. This suggests that if we want a distance between distributions
which is related to the similarity of the embeddings, we can measure how far this error is from being a
constant. We therefore define a distance which includes these weighted differences of log-likelihoods.

To proceed, we restrict our analysis to a subset of distributions that satisfy the following assumption:
Assumption 4.3. We consider probability distributions p such that for setsXLLV ⊂ X and YLLV ⊂ Y
containing all labels except one, the following conditions are satisfied: (1) For all x ∈ XLLV we have
that log p(y|x)− log p(y|x0) is not constant in y and pD(x) > 0; and (2) For all y ∈ YLLV we have
that log p(y|x)− log p(y0|x) is not constant in x.

Note that this assumption guarantees that, for any such p, the terms ψx(yi; p), and ψy(xj ; p) are
non-zero for xj ∈ XLLV and yi ∈ YLLV. Under Assumption 4.3, we exclude those probability
distributions that assign the same distributions over the labels for all inputs, that is, we need at least
one input to result in a different distribution. We also exclude those distributions which assign equal
probability to two or more labels for all inputs.
Definition 4.4 (Log-likelihood variance distance between distributions). For any two probability
distributions p, p′ for which there exists a common choice of XLLV ⊂ X and YLLV ⊂ Y such that
they both satisfy Assumption 4.3, for a fixed λ ∈ R+, and by considering the following terms:

t1 := max
y∈YLLV\{y0}

{√
Varx

[
log p(y|x)
ψx(y; p)

− log p′(y|x)
ψx(y; p′)

]
,

√
Varx

[
log p(y0|x)
ψx(y; p)

− log p′(y0|x)
ψx(y; p′)

]}

t2 := max
x∈XLLV\{x0}

{√
Vary

[
log p(y|x)
ψy(x; p)

− log p′(y|x)
ψy(x; p′)

]
,

√
Vary

[
log p(y|x0)

ψy(x; p)
− log p′(y|x0)

ψy(x; p′)

]}
t3 := max

y∈YLLV\{y0}
|ψx(y; p)− ψx(y; p

′)| , t4 := max
x∈XLLV\{x0}

|ψy(x; p)− ψy(x; p′)| ,

the log-likelihood variance (LLV) distance between p and p′ is given by

dλLLV(p, p
′) := max {t1, t2, λt3, λt4} . (10)

In Appendix E.2, we show that dλLLV is a distance metric between sets of conditional probability
distributions.10 The non-zero weighting constant λ is introduced because, as we will show in

10Specifically, dλLLV(p, p
′) is non-negative; zero iff p = p′, symmetric; and it satisfies the triangle inequality.
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Theorem 4.7, t1 and t2 can be used alone to bound the similarity between model representations, but
t3 and t4 need also to be considered to make dλLLV a distance metric. In our experiments, we set λ to
a small non-zero value, so that the t1 and t2 terms dominate (see Appendix E.3 for details).

Note that the log-likelihood variance distance, dλLLV, requires a choice of input, XLLV, and label,
YLLV, sets, and the exact value of the distance depends on this choice when the distributions are
not equal. However, dλLLV is a metric for any choice satisfying Assumption 4.3. Therefore in the
experiments, we draw a sample of possible sets and choose the ones which give the smallest value.

4.2 A Dissimilarity Measure Between Representations

Having defined a distance between distributions, we turn to a distance between representations which
is related to invertible linear transformations. We define a dissimilarity measure based on the partial
least squares (PLS) approach called PLS-SVD [53, 59]. For two random vectors z,w, let Σzw denote
the covariance matrix whose (i, j)-th entry is

(Σzw)ij = Covzw[zi, wj ] := E(z,w)∼pz,w [(zi − Ez∼pz [zi])(wj − Ew∼pw [wj ])] , (11)

where pz,w is the joint distribution of z,w, and pz, pw are the respective marginals. PLS-SVD
seeks pairs of unit-length vectors uℓ ∈ RdZ and vℓ ∈ RdW (ℓ = 1, . . . , r) that maximize the
covariance between the one-dimensional projections u⊤

ℓ z and v⊤
ℓ w, subject to mutual orthogonality

of successive directions. This is equivalent to finding the left and right singular vectors of Σzw (more
about PLS-SVD in Appendix D). Leveraging this procedure by PLS-SVD, we introduce a similarity
and a dissimilarity measure:
Definition 4.5 (PLS SVD distance between vectors). Let z,w be two M -dimensional random
vectors, and define z′,w′ by standardizing their components: z′i = (zi − E[zi])/ std(zi), w′

i =
(wi − E[wi])/ std(wi). Let {ui}Mi=1 and {vi}Mi=1 be the left and right singular vectors of the cross-
covariance matrix Σz′w′ . We define

mSVD(z,w) := 1
M

∑M
i=1 Covz′w′ [u⊤

i z
′,v⊤

i w
′], dSVD(z,w) := 1−mSVD(z,w) . (12)

Since mSVD(z,w) ≤ mSVD(z, z) = 1, it follows that dSVD(z,w) ≥ 0 for all random vectors z,w.
We also have that the dissimilarity measure is invariant to rotation followed by dimension-wise
scaling (see Appendix E.4): if mSVD(z,w) = 1 or, equivalently, dSVD(z,w) = 0, then there
exist an orthonormal matrix R and diagonal matrices S,S′ scaling z,w to unit variance such that
z = S−1RS′w.

With this distance between vectors, we can define a dissimilarity between representations for models
from our model family by seeing the embeddings and unembeddings as random vectors.
Definition 4.6 (Representational dissimilarity measure df ,g). Let (f ,g), (f ′,g′) ∈ Θ. Let L,L′ be
defined as in Theorem 2.2. Let N (resp. N′) be the matrix with columns f0(x) (resp. f ′0(x)). The
representational dissimilarity measure df ,g is defined as follows:

df ,g((f ,g), (f
′,g′)) := max

{
dSVD(L

⊤f(x),L
′⊤f ′(x)), dSVD(N

⊤g(y),N
′⊤g′(y))

}
. (13)

4.3 Bounding Representation Dissimilarity via Distributional Distance

We now prove that it is possible to relate a bound on the distance metric dλLLV between model
distributions (Definition 4.4) to a bound on the dissimilarity measure df ,g between model repre-
sentations (Definition 4.6). For the result below, We denote with z1 := L⊤f(x), z2 := L

′⊤f ′(x),
w1 := N⊤g(y) and w2 := N

′⊤g′(y) (proof in Appendix E.6).
Theorem 4.7. Let (f ,g), (f ′,g′) ∈ Θ be two models such that: (1) There exist XLLV ⊂ X and
YLLV ⊂ Y , consisting of a pivot point and all labels but one, such that all L,L′ and N,N′ matrices
constructed from these sets are invertible;11 (2) Both pf ,g and pf ′,g′ satisfy Assumption 4.3 for
XLLV and YLLV; (3) The covariance matrices Σz1z1 ,Σw1w1 and the cross-covariance matrices
Σz1z2 ,Σw1w2 are non-singular. Then, for any weighting constant λ ∈ R+, we have

dλLLV(pf ,g, pf ′,g′) ≤ ϵ =⇒ df ,g((f ,g), (f
′,g′)) ≤ 2Mϵ . (14)

11This is slightly stronger than the diversity condition (Definition 2.1) in the sense that we need diversity to
hold for all sets using labels from YLLV and the chosen pivot point.
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Figure 3: (Left) Embedding representations of two models trained on CIFAR-10. Representations for some
of the labels are permuted, and mCCA(f(x), f

′(x)) = 0.55. (Right) Mean dλLLV and df ,g vs network width.
Shaded area is standard deviation. Both mean and standard deviation decrease as the network width increases.

Remark 4.8. It can be shown (Lemma E.8) that dSVD(L
⊤f(x),L′⊤f ′(x)) remains constant for

models that are linearly equivalent to the members in the expression. That is, for any (f∗,g∗) ∈ Θ,
such that (f∗,g∗) ∼L (f ,g), we have that dSVD(L

⊤f(x),L
′⊤f ′(x)) = dSVD(L

∗⊤f∗(x),L
′⊤f ′(x)).

A similar argument also holds for dSVD(N
⊤g(y),N

′⊤g′(y)).

Theorem 4.7 shows that for the measures dλLLV and df ,g, closeness in distribution (i.e., small values
of dλLLV) bounds representational dissimilarity (as measured by df ,g).

Notice that in Theorem 4.7, we can freely choose any set of inputs XLLV ⊂ X as long as they satisfy
(1) and (2). Hence, if there is a choice making t2 in Definition 4.4 as small as possible, it will also
make dSVD(N

⊤g(y),N
′⊤g′(y)) small. There is also some flexibility for YLLV ⊂ Y , where a careful

choice of pivot point y0 and the left-out label can make the term t1 in Definition 4.4 small and, as a
consequence, dSVD(L

⊤f(x),L
′⊤f ′(x)) also small.

5 Experiments

In this section, we present our key experimental findings: (1) For models trained for classification
on CIFAR-10 [31], we observe cases of similarly well-performing models with highly dissimilar
representations, arising from a mechanism analogous to the constructive proof of Theorem 3.1
(Section 5.1); (2) On synthetic data, training wider neural networks results in a reduction of both
the mean and variance of dλLLV between models and leads to higher representational similarity
(Section 5.2). Additional experiments illustrating the phenomena in Theorem 3.1 and visualizing the
bound in Theorem 4.7 are summarized in Section 5.3. For all experiments we use λ = 10−5. See
Appendix F for implementation details. Code can be found on github12.

5.1 Dissimilar Representations in CIFAR-10 Models with Similar Performance

Experimental setup. We trained classification models on CIFAR-10 [31] with two-dimensional
embedding and unembedding representations. The embedding network is a ResNet18 [20], and the
unembedding network consists of three fully connected layers of width 128, followed by the final
representation layer.

Results. Embeddings of images with the same labels form clusters, and certain label pairs—such as
“truck” and “automobile”—consistently appear as neighbors across retrainings (See Appendix F.5).
However, some clusters are permuted: Fig. 3 (Left) shows two retrainings where, in the first model, the
“truck” cluster lies between “automobile” and “ship”, while in the second it lies between “automobile”
and “horse”. This mirrors the construction in Theorem 3.1, where models close in KL divergence
have dissimilar representations. The models in Fig. 3 (Left) have dKL of 1.13 (0→1) and 1.12 (1→0),
similar test losses (1.19 and 1.18), but a large dλLLV (∼ 1.55) and small mCCA (0.55).

12github.com/bemigini/close-dist-rep-sim, DOI: 10.5281/zenodo.17249361.
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5.2 Wider Networks Learn Closer Distributions and More Similar Representations

Experimental setup. We train models on a 2D classification task with 4, 6, 10 or 18 labels. Data
are samples from a 2D Gaussian (µ = 0, σ = 3), and labels are based on the angle to the first axis,
consisting of a slice of the circle and the opposite slice (see Appendix F.2). We train twenty random
seeds of models with two-dimensional representations. Each model consists of three fully connected
layers with widths 16, 32, 64, 128 or 256. We retain only models achieving over 90% accuracy. For 4
classes, this yields 19 models at width 16 and 20 models for all other widths. For 6 classes, we retain
16, 17, 19, 19, and 20 models across the five widths, respectively.

Results. We find that dλLLV and df ,g between the models trained with wider networks have smaller
both mean and standard deviation. In Fig. 3 (Right) we show the trend for models with 4 and 6 classes.
Similar plots for 10 and 18 classes can be seen in Appendix F.7. While the bound in Theorem 4.7
is only non-vacuous when df ,g((f ,g), (f ′,g′)) ≤ 2Mϵ < 1 (i.e., when ϵ < 1/2M) our plots suggest
that there is a broader relationship between df ,g and dλLLV, since the values of dλLLV and df ,g seem to
be related even before the bound becomes non-vacuous.

5.3 Visualizing Representation Dissimilarity and the Bound from Theorem 4.7

Table 1: Kullback–Leibler divergence
rapidly vanishes while other measures stay
constant. Cells in the dKL column are
shaded red in proportion to their magnitude
(darker ⇒ larger value). As the unembed-
ding norm ρ grows, dKL drops by almost
four orders of magnitude, whereas dλLLV and
the maximal dSVD between embeddings re-
main virtually unchanged.

ρ dKL dλLLV mCCA maxdSVD

3 0.8866 1.3176 0.0006 0.9996
6 0.2230 1.3169 0.0007 0.9998
9 0.0369 1.3171 0.0004 0.9995

12 0.0055 1.3178 0.0006 0.9998
15 0.0008 1.3175 0.0008 0.9999
18 0.0001 1.3172 0.0010 0.9998

Following the construction in Theorem 3.1, we simu-
late two models with fixed embeddings and unembed-
dings with increasing norm. We measure the KL diver-
gence and dλLLV between distributions; between repre-
sentations, we measure the mean canonical correlation
(mCCA) [44, 48, 51] and the maximum dSVD of the em-
beddings over the input and label sets for dλLLV (since this
is what Theorem 4.7 bounds). The results are in Table 1:
We find that as the unembeddings’ norm, ρ, increases, dKL

decreases, while dλLLV and dSVD remain high and mCCA

remains low and almost constant. This aligns with the
result in Theorem 3.1, while it displays that dλLLV is robust
to these model constructions.

Also, for these model pairs and models trained on synthetic
data, we find that the bound in Theorem 4.7 is always
satisfied (refer to Appendix F.6 for details and to Fig. 16
for a visualization). However, for models trained on CIFAR-10, the distributions are not close enough
for the bound to be non-vacuous.

6 Discussion

Limitations. To the best of our knowledge, this work provides the first theoretical result that upper-
bounds representational dissimilarity by a distributional distance (Theorem 4.7)—a relationship
that Theorem 3.1 shows is far from obvious. The bound is nonetheless not tight: it grows linearly
even though the empirical trend of max dSVD is clearly sub-linear (Fig. 16), and it presently requires
the label set to contain every class but one. We conjecture that a tighter, potentially non-linear
bound could be obtained and that dλLLV would remain a valid distance when computed on a suitably
diverse subset of labels. The distributional distance itself (Definition 4.4) inherits the same label-
diversity assumption (Definition 2.1), which prevents its applicability to the whole model family of
Equation (1): diversity is more likely to hold in language models, but may fail in standard image
classifiers—especially when the number of classes is smaller than the representation dimension [51].
It was recently proved by Marconato et al. [42] that, when relaxing the diversity assumption, the model
family in Equation (1) can be identified up to an extended-linear equivalence relation. Extending our
theory to that setting would enable comparing models with different representation dimension [42].

Alternative similarity measures. The invariances of our dissimilarity measure, df ,g, comprise
a subset of all invertible linear transforms and always consider embeddings and unembeddings in
combination with each other (see Appendix E.7). By contrast, much prior work employs CCA-based
measures that are invariant to any linear transformation [44, 48] and only measures (dis)similarity
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between embeddings. Kornblith et al. [30] argue that similarity measures should be invariant only
to orthogonal transformations, based on the task-relevance of relative activation scales and the
invariance of gradient-descent dynamics [34]. What measure best captures representational similarity
is still an open question [3], with different approaches reflecting distinct goals and trade-offs [29].
Our goal is not to claim our measure is the right one, but to present a pairing of dissimilarity
measure and distributional distance that enables theoretical analysis and captures key empirical
aspects of representational similarity. Extending such guarantees to other (dis)similarity measures
and distributional divergences is an important direction for future work.

Do similarly retrained models learn similar representations? This has been extensively explored
in empirical studies [30, 37, 45, 50, 51, 55, 64]. Retraining with a different seed can result in different
likelihoods, and we show that even models with near-zero KL divergence can have dissimilar internal
representations. While the existence of constructions such as the one in Theorem 3.1 does not imply
that a model will learn them during training, we find it interesting that a mechanism resembling our
construction actually emerged in our CIFAR-10 experiments (Section 5.1), where we observe large
representational dissimilarity despite close distributions in terms of KL divergence. Such dissimilarity
can arise when most output labels have negligible probability—for example, an image might be
confidently classified as a “cat” or “dog”, with all other classes (e.g., “spaceship”, “chair”) having
near-zero probabilities; and in language modeling, often only few next-tokens are plausible. Overall,
these observations suggest that similar performance alone is insufficient to ensure representational
similarity, though higher network capacity may help, see Section 5.2 and [51, 55].

Identifiability and robustness. In nonlinear ICA [9, 17, 19, 23, 27, 56, 71], disentangled and causal
representation learning [2, 6, 10, 36, 38, 39, 43, 62, 63, 68–70] models are typically constructed so
that their likelihood-maximising solutions are unique up to a fixed (and ‘small’) set of ambiguities,
as guaranteed by identifiability [23, 67]. Robustness when the likelihood is only approximately
maximized has been studied less, though Buchholz and Schölkopf [8] analyzed isometric-mixing
ICA; Sliwa et al. [54] empirically probed independent mechanism analysis [18]; and Träuble et al. [61]
showed that independence-based disentanglement lacks robustness when true factors are correlated.
Our results further highlight the importance of understanding robustness in nonlinear representation
learning.13 In particular, our Corollary 3.2 suggests that relying solely on identifiability results—such
as those by Reizinger et al. [50]—may be insufficient to guarantee that similar representations are
practically attainable when optimizing the cross-entropy loss: additional assumptions may be needed.

Conclusion and Outlook. We have studied the link between distributional closeness and repre-
sentational similarity for the embedding and unembedding layers of our model family, focusing on
different instances of the same model class. Extending our analysis to earlier layers would first require
identifiability results for intermediate network representations, which remains an open problem in
representation learning [24, 27]. In practice, learned representations often appear surprisingly robust
across datasets, architectures, and training objectives [3, 4, 16, 22, 30, 45], and explaining this broader
robustness is an exciting direction for future work. By clarifying when distributional closeness does—
and does not—imply representational similarity for embeddings and unembeddings within our model
family, we take an initial step toward a principled theory of representational similarity.
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Answer: [Yes]
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• The answer NA means that the paper does not release new assets.
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• The paper should discuss whether and how consent was obtained from people whose
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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16. Declaration of LLM usage
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scientific rigorousness, or originality of the research, declaration is not required.
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A Notation

We here present a table (Table 2) with the notation used in the paper.

Table 2: Notation. We use bold letters for vectors and non-bold letters for scalars.

Symbol Description Reference
x vector and vector-valued variables Section 2
y scalar-valued variable Section 2
(f ,g) a model with embedding and unembedding functions f and g, see Equation (1) Section 2
pf ,g distributions of a model (f ,g) Section 2
f0(x) the displaced embedding functions f(x)− f(x0) Section 2
g0(y) the displaced unembedding functions g(y)− g(y0) Section 2
L the matrix with columns g0(y), see Theorem 2.2 Section 2
dKL the distance between distributions arising from the KL divergence Section 3
Varx[·] the variance over the inputs from some input distribution, px Section 4
Unif(Y) the uniform distribution over the elements of Y Section 4
dλLLV the log-likelihood variance distance with weighting parameter λ Section 4
dSVD the mean PLS-SVD distance between random vectors Section 4
df ,g the distance between representations for our model class Section 4
Σzw the cross-covariance matrix of random vectors z,w Section 4
N the matrix with columns f0(x) Section 4
mCCA the mean canonical correlation coefficient Appendix D.2
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B Identifiability Result and Proof

We present a unified and slightly adapted version of the identifiability results from [27, 33, 51], see
also [42, Corollary 6].
Theorem 2.2 (Linear Identifiability [27, 33, 51]). Let (f ,g), (f ′,g′) ∈ Θ, and (f ,g) satisfy the
diversity condition (Definition 2.1). Let L (resp. L′) be the matrix with columns g0(y) (resp. g′

0(y)),
and let A := L−⊤L′⊤ ∈ RM×M . Then:

pf ,g(y | x) = pf ′,g′(y | x), ∀(x, y) ∈ X × Y =⇒ (f ,g) ∼L (f ′,g′) (4)

where the equivalence relation ∼L is defined by

(f ,g) ∼L (f ′,g′) ⇐⇒
{
f(x) = Af ′(x)

g0(y) = A−⊤g′
0(y)

. (5)

Proof. We first prove that pf ,g(y | x) = pf ′,g′(y | x), ∀(x, y) ∈ X × Y =⇒ f(x) = Af ′(x) for
A := L−⊤L

′⊤ invertible.

By assumption, the models (f ,g), (f ′,g′) have equal likelihoods. Moreover, by construction, the
two models have representations in RM . Let Z(x,Y) = ∑

yj∈Y exp(f(x)⊤g(yj)), and similarly for
Z ′(x,Y). Then

pf ,g(y | x) = pf ′,g′(y | x) (15)

f(x)⊤g(y)− log(Z(x,Y)) = f ′(x)⊤g′(y)− log(Z ′(x,Y)) (16)

for all x ∈ X and all y ∈ Y . In particular, this equation holds for any fixed y. From the diversity con-
dition (Definition 2.1), we can choose M + 1 y’s, y0, . . . , yM , such that the displaced unembeddings
{g0(yi)}Mi=1 are linearly independent. By subtracting the log-conditional distribution for the pivot
y0 ∈ Y , we obtain for each yi ∈ Y the following:

f(x)⊤g(yi)− f(x)⊤g(y0) + log(Z(x,Y))− log(Z(x,Y))
= f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) + log(Z ′(x,Y))− log(Z ′(x,Y)) (17)

f(x)⊤g(yi)− f(x)⊤g(y0) = f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) (18)

f(x)⊤g0(yi) = f ′(x)⊤g′
0(yi) , (19)

where the last passage holds by definition of g0(y),g
′
0(y), see Section 2. Let L be the matrix which

has g0(yi) as columns and L′ be the matrix which has g′
0(yi) as columns. Notice that the diversity

condition (Definition 2.1) implies that L is an invertible matrix. We can then stack the equations to
get

L⊤f(x) = L
′⊤f ′(x) (20)

and since L is invertible,

f(x) = L−⊤L
′⊤f ′(x) . (21)

If we set A := (L′L−1)⊤, we only need to show that A is invertible. Using the diversity condition,
we pick points x0, ..., xM ∈ X such that the displaced embedding vectors {f0(xi)}Mi=1 are linearly
independent. Let N be the matrix with f0(xi) as columns and N′ be the matrix with f ′0(xi) as
columns. Notice that, from the diversity condition N is an invertible matrix. Then

N = AN′ . (22)

Since any two matrices, B,C ∈ RM×M , have the property rank(BC) ≤ min(rank(B), rank(C)),
and N has rank equal to M , we have that necessarily also A and N′ have rank M . In particular, A is
an invertible matrix.

Next we prove that pf ,g(y | x) = pf ′,g′(y | x), ∀(x, y) ∈ X × Y =⇒ g0(y) = A−⊤g′
0(y) for

A := L−⊤L
′⊤ invertible.
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As before, we have that

f(x)⊤g(y)− log(Z(x,Y)) = f ′(x)⊤g′(y)− log(Z ′(x,Y)) (23)

holds for all x ∈ X and all y ∈ Y . In particular, this equation holds for any specific x. From the
diversity condition (Definition 2.1), we can choose M + 1 x’s, x0, . . . ,xM , such that the displaced
embeddings {f0(xi)}Mi=1 are linearly independent. By subtracting the log-conditional distribution for
the pivot x0 ∈ X , we obtain for each xi ∈ X the following:

f(xi)
⊤g(y)− f(x0)

⊤g(y) + log(Z(x0,Y))− log(Z(xi,Y))
= f ′(xi)

⊤g′(y)− f ′(x0)
⊤g′(y) + log(Z ′(x0,Y))− log(Z ′(xi,Y)) (24)

f(xi)
⊤g(y)− f(x0))

⊤g(y) = f ′(xi)
⊤g′(y)− f ′(x0)

⊤g′(y) + ci (25)

f0(xi)
⊤g(y) = f ′0(xi)

⊤g′(y) + ci , (26)

where

ci = log

(
Z ′(x0,Y)
Z(x0,Y)

)
+ log

(
Z(xi,Y)
Z ′(xi,Y)

)
. (27)

Let N be the matrix with f0(xi) as columns, let N′ be the matrix with f ′0(xi) as columns and let c be
the vector with ci as entries. Then, since N is invertible

N⊤g(y) = N′⊤g′(y) + c (28)

g(y) = N−⊤N′⊤g′(y) +N−⊤c . (29)

Since we found in Equation (22) that A is invertible, we have that

N′ = A−1N . (30)

Therefore, we get

g(y) = N−⊤N′⊤g′(y) +N−⊤c (31)

g(y) = N−⊤(A−1N)⊤g′(y) +N−⊤c (32)

g(y) = N−⊤N⊤A−⊤g′(y) +N−⊤c (33)

g(y) = A−⊤g′(y) + b , (34)

where b = N−⊤c. So, considering the displaced unembedding vectors, we get:

g0(y) = g(y)− g(y0) (35)

= A−⊤g′(y) + b−A−⊤g′(y0)− b (36)

= A−⊤g′
0(y) (37)

This proves the claim.

26



C Models close in KL divergence can have dissimilar representations - details

C.1 KL goes to Zero but Representations are Dissimilar

Here, we restate Theorem 3.1 in full detail:

Theorem (Formal statement of Theorem 3.1). Let (f ,gρ) ∈ Θ be a model with representations in
RM . Assume M ≥ 2. Let k := |Y| be the total number of unembeddings and assume k ≥ M + 1.
Assume the model satisfies the following requirements:

i) The unembeddings have fixed norm, that is ∥gρ(yi)∥ = ∥gρ(yj)∥ = ρ, for all yi, yj ∈ Y ,
where ρ ∈ R+.

ii) For every xi ∈ X , let there be one element yj ∈ Y for which the cosine similarity
cos(f(xi),gρ(yj)) > 0 and cos(f(xi),gρ(yj)) > cos(f(xi),g(yℓ)) for all yℓ ̸= yj .

Let (f ′,g′
ρ) be a model which also satisfies i) and ii) and which is related to (f ,gρ) in the following

way:

iii) For every xi ∈ X , ∥f ′(xi)∥ = ∥f(xi)∥ = c(xi).

iv) For yj = argmaxy∈Y(p(y|xi)) we have that the angle between f ′(xi) and g′
ρ(yj)

is equal to the angle between f(xi) and gρ(yj), in particular, cos(f(xi),gρ(yj)) =

cos(f ′(xi),g
′
ρ(yj)).

Then, making pairs of models satisfying assumptions i) to iv) and with increasing values of ρ gives us
a sequence of pairs of models for which we have:

dKL(pf ,gρ
, pf ′,g′

ρ
)→ 0 for ρ→∞ . (38)

Also, it is possible to construct a model (f ′,g′
ρ) ∈ Θ which satisfies the requirements above, but

where as ρ→∞, the embeddings stay fixed and f ′(x) is not an invertible linear transformation of
f(x).

Proof. Let the models (f ,gρ), (f
′,g′

ρ) ∈ Θ be as described above. Below, we use the shorthand
p := pf ,gρ and p′ := pf ′,g′

ρ
.

We prove the results in two parts. (1) We show that, for any two models satisfying the requirements i)
to iv) above, we get that dKL(p, p

′)→ 0 as ρ→∞. (2) We then specifically show how construct a
model (f ,gρ) and a model (f ′,g′

ρ), which satisfies the requirements i) to iv) but where as ρ→∞,
the embeddings stay fixed and f ′(x) is not an invertible linear transformation of f(x).

(1) Since DKL(p(y|xi)∥p′(y|xi)) → 0 for all xi ∈ X implies that dKL(p, p
′) → 0, we will show

that DKL(p(y|xi)∥p′(y|xi)) → 0 for all xi ∈ X . Fix xi ∈ X . For notational brevity, we denote
with ci ∈ R+ the value of the norm of the embeddings on xi, i.e., ∥f(xi)∥ = ∥f ′(xi)∥ = c(xi)
(assumption iii)). We then consider the KL divergence

DKL(p(y|xi)∥p′(y|xi)) =
k∑
j=1

p(yj |xi) log
p(yj |xi)
p′(yj |xi)

. (39)

Since DKL(p(y|xi)∥p′(y|xi)) involves a sum over j, DKL(p(y|xi)∥p′(y|xi)) will go to zero if each
term in the sum goes to zero. To show that each term of this sum goes to zero, we first consider the
term for yj = arg maxy∈Y(p(y|xi)). In this case, we have that

p(yj |xi) =
exp(f(xi)

⊤gρ(yj))∑k
ℓ=1 exp(f(xi)

⊤gρ(yℓ))
(40)

=

1 +

k∑
ℓ=1,ℓ̸=j

exp(f(xi)
⊤gρ(yℓ)− f(xi)

⊤gρ(yj))

−1

. (41)
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From iii) we have ∥f(xi)∥ = ci and from i) we have that ∥gρ(yj)∥ = ρ. We can therefore write

f(xi)
⊤gρ(yj) = cos(f(xi),gρ(yj)) · ci · ρ , (42)

and substituting this into Equation (41), we see that

p(yj |xi) =

1 +

k∑
ℓ=1,ℓ̸=j

exp
(
ci · ρ · (cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj)))

)−1

. (43)

Now since by assumption ii) cos(f(xi),gρ(yj)) > 0 and for all yℓ ̸= yj

cos(f(xi),gρ(yj)) > cos(f(xi),gρ(yℓ)) , (44)

we have that

cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj)) < 0 , (45)

Taking the limit in ρ, we get

exp(c · ρ · (cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj))))→ 0 for ρ→∞ (46)

Since every term of the sum in Equation (43) goes to zero for ρ→∞, the whole sum goes to zero,
which means that from Equation (43) we get that

p(yj |xi)→
1

1 + 0
= 1 for ρ→∞ . (47)

Similarly, we also have that

p′(yj |xi)→ 1 for ρ→∞ . (48)

This means that for yj = argmaxy∈Y p(y|xi), from combining Equation (47), Equation (48) and
Equation (39) we get that

p(yj |xi) log
p(yj |xi)
p′(yj |xi)

→ 1 · log 1

1
= 0 for ρ→∞ . (49)

Next, we consider the case where yj ̸= argmaxy∈Y p(y|xi). In this case, we consider

p(yj |xi) log
p(yj |xi)
p′(yj |xi)

= p(yj |xi)
(
log p(yj |xi)− log p′(yj |xi)

)
(50)

= p(yj |xi)
(
f(xi)

⊤gρ(yj)− logZ(xi)− f ′(xi)
⊤g′

ρ(yj) + logZ ′(xi)
)
(51)

= p(yj |xi)
(
f(xi)

⊤gρ(yj)− f ′(xi)
⊤g′

ρ(yj)
)
+ p(yj |xi) log

Z ′(xi)

Z(xi)
. (52)

We will consider the two terms in Equation (52) separately. First, we consider

p(yj |xi)
(
f(xi)

⊤gρ(yj)− f ′(xi)
⊤g′

ρ(yj)
)
. (53)

Similarly as for Equation (42), we have

f(xi)
⊤gρ(yj) = cos(f(xi),gρ(yj)) · ci · ρ . (54)

We use this to rewrite Equation (53) and see that

|f(xi)⊤gρ(yj)− f ′(xi)
⊤g′

ρ(yj)| = | cos(f(xi),gρ(yj)) · ci · ρ− cos(f ′(xi),g
′
ρ(yj)) · ci · ρ| (55)

= |ci · ρ · (cos(f(xi),gρ(yj))− cos(f ′(xi),g
′
ρ(yj)))| (56)

≤ 2ci · ρ . (57)

This gives us that

p(yj |xi)|f(xi)⊤gρ(yj)− f ′(xi)
⊤g′

ρ(yj)| ≤ 2ciρ · p(yj |xi) (58)
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Since |x| → 0 implies that x→ 0 and we have shown that the absolute values of the term is upper
bounded by 2ciρ · p(yj |xi), we will show that the term goes to zero by showing that 2ciρ · p(yj |xi)
goes to zero. We see that

2ciρ·p(yj |xi) =
2ci · ρ · exp(f(xi)⊤gρ(yj))∑k

ℓ=1 exp(f(xi)
⊤gρ(yℓ))

(59)

=
2ci · ρ

1 +
∑k
ℓ=1,ℓ̸=j exp(f(xi)

⊤gρ(yℓ)− f(xi)⊤gρ(yj))
(60)

=
2ci · ρ

1 +
∑k
ℓ=1,ℓ̸=j exp(ci · ρ · (cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj))))

(61)

= 2ci

/1/ρ+

k∑
ℓ=1,ℓ̸=j

exp
(
ci · ρ · (cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj)))

)
ρ

 . (62)

Consider now yr = argmaxy∈Y p(y|xi), recall we have yj ̸= yr. Considering this yr, we have by
assumption ii) that cos(f(xi),gρ(yr)) > 0 and

cos(f(xi),gρ(yr))− cos(f(xi),gρ(yj)) > 0 , (63)

Since for α ∈ R+, we have exp(αx)/x→∞ for x→∞, for this yr, we have that

exp(ci · ρ · (cos(f(xi),gρ(yr))− cos(f(xi),gρ(yj))))

ρ
→∞ for ρ→∞ . (64)

We can now define the denominator of Equation (62) as

d(ρ) :=
1

ρ
+

exp
(
ciρ

(
cos(f(xi),gρ(yr))− cos(f(xi),gρ(yj))

))
ρ

+

k∑
ℓ=1, ℓ ̸=j,r

exp
(
ciρ

(
cos(f(xi),gρ(yℓ))− cos(f(xi),gρ(yj))

))
ρ

(65)

and see that the first term of Equation (65) goes to zero, the second term goes to infinity Equation (64)
and the third term is always positive since exp(x) is always positive. Therefore we have that

d(ρ)→∞ for ρ→∞ (66)

which means that

2ciρ · p(yj |xi) =
2ci
d(ρ)

→ 0 for ρ→∞ (67)

Thus, we get for the first term of Equation (52) that

p(yj |xi)(f(xi)⊤gρ(yj)− f ′(xi)
⊤g′

ρ(yj))→ 0 for ρ→∞ (68)

which was the desired result.

We now consider the second term in Equation (52)

p(yj |xi) log
Z ′(xi)

Z(xi)
. (69)

We see that

Z ′(xi)

Z(xi)
=

∑k
ℓ=1 exp(cos(f

′(xi),g
′
ρ(yℓ)) · ci · ρ)∑k

m=1 exp(cos(f
′(xi),g′

ρ(ym)) · ci · ρ)
(70)

≤
∑k
ℓ=1 exp(1 · ci · ρ)∑k

m=1 exp(−1 · ci · ρ)
(71)

=
exp(ci · ρ)
exp(−ci · ρ)

(72)

= exp(2ci · ρ) . (73)

29



Which means we have that

p(yj |xi) log
Z ′(xi)

Z(xi)
≤ p(yj |xi) log exp(2ci · ρ) = 2ciρ · p(yj |xi) . (74)

We also have that

Z ′(xi)

Z(xi)
=

∑k
ℓ=1 exp(cos(f

′(xi),g
′
ρ(yℓ)) · ci · ρ)∑k

m=1 exp(cos(f
′(xi),g′

ρ(ym)) · ci · ρ)
(75)

≥
∑k
ℓ=1 exp(−1 · ci · ρ)∑k
m=1 exp(1 · ci · ρ)

(76)

=
exp(−ci · ρ)
exp(ci · ρ)

(77)

= exp(−2ci · ρ) . (78)
Which means we have that

p(yj |xi) log
Z ′(xi)

Z(xi)
≥ p(yj |xi) log exp(−2ci · ρ) (79)

= −2ciρ · p(yj |xi) . (80)
which gives us

−p(yj |xi) log
Z ′(xi)

Z(xi)
≤ 2ciρ · p(yj |xi) . (81)

Now Equation (74) and Equation (81) together give us that∣∣∣∣p(yj |xi) log Z ′(xi)

Z(xi)

∣∣∣∣ ≤ 2ciρ · p(yj |xi) (82)

Thus, we have upper bounded the absolute value of the term with 2ciρ ·p(yj |xi) like in Equation (58).
Using again that 2ciρ · p(yj |xi)→ 0 for ρ→∞ (Equation (67)), we get that

p(yj |xi) log
Z ′(xi)

Z(xi)
→ 0 for ρ→∞ . (83)

Since both terms in the sum (Equation (52)) go to zero for ρ→∞, the entire sum goes to zero and
for yj ̸= argmaxy∈Y p(y|xi), we have that

p(yj |xi) log
p(yj |xi)
p′(yj |xi)

→ 0 for ρ→∞ . (84)

Since we now have this result for both yj = argmaxy∈Y p(y|xi) and yj ̸= argmaxy∈Y p(y|xi), the
sum over all j in DKL(p(y|xi)∥p′(y|xi)) (Equation (39)) also goes to zero. Thus,

DKL(p(y|xi)∥p′(y|xi))→ 0 ∀xi ∈ X , (85)
which means that

dKL(p, p
′) = Ex∼p(x)[DKL(p(y|x)∥p′(y|x))]→ 0 for ρ→∞ (86)

proving the first claim of the theorem.

(2) We now present two constructions which satisfy the requirements i) to iv) above, but where f ′(x)
is not an invertible linear transformation of f(x). In the following, we use ei to denote the i-th unit
vector in RM , whose i-th component is equal to 1, and all other components are equal to zero.

Construction for k ≥ M + 2. For i = 1, . . . ,M , let gρ(yi) = ρ · ei. Let gρ(yM+1) = −ρ · e1
and gρ(yM+2) = −ρ · e2. For any remaining labels with index j > M + 2, let them be such
that gρ(yj) ̸= gρ(yℓ) for j ̸= ℓ and more than π/2 radian angle away from e2,−e1 and −e2. Let
{xn}∞n=1 ⊂ X and {xm}∞m=1 ⊂ X be two sets of inputs. We define

f(xn) =


cos(π − π

4 (1− 1
n ))

sin(π − π
4 (1− 1

n ))
0
...

 (87)
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Now {f(xn)}∞n=1 is a sequence with a well-defined finite limit, which we for ease of reference shall
call a

a = lim
n→∞

f(xn) =


cos( 3π4 )
sin( 3π4 )

0
...

 (88)

We now define f for the other set.

f(xm) =


cos( 3π4 − π

4m )
sin( 3π4 − π

4m )
0
...

 (89)

{f(xm)}∞m=1 is now a sequence with the same limit, that is,

lim
m→∞

f(xm) =


cos( 3π4 )
sin( 3π4 )

0
...

 = a (90)

For every remaining x ∈ X , construct f(x) such that there exists a label yj ∈ Y such that we have the
cosine similarities cos(f(x),gρ(yj)) > 0 and cos(f(x),gρ(yj)) > cos(f(x),gρ(yℓ)) for yℓ ̸= yj .
With this (f ,g) satisfies i) and ii).

We now construct the second model (f ′,g′). Let g′
ρ(yi) = gρ(yi) for i = 1, . . . ,M and i > M + 2.

Let g′
ρ(yM+1) = −ρ · e2 and g′

ρ(yM+2) = −ρ · e1. Note that we swapped the unembeddings for g′

of yM+1 and yM+2 compared to g. For all x ∈ X and the corresponding yj = argmaxy∈Y p(y|x)
such that yj ̸= yM+1, yM+2, let f ′(x) = f(x). However, for all x ∈ X and the corresponding
yj = argmaxy∈Y p(y|x) such that yj = M + 1, let ∥f ′(x)∥ = ∥f(x)∥ and let f ′(x) be rotated
counterclockwise with respect to the first two axes (i.e., the first two components of the representa-
tions) such that cos(f ′(x),g′

ρ(yj)) = cos(f(x),gρ(yj)). Also, for all xi ∈ X and the corresponding
yj = argmaxy∈Y p(y|xi) such that yj = M + 2, let ∥f ′(xi)∥ = ∥f(xi)∥ and let f ′(xi) be rotated
clockwise with respect to the first two axes such that cos(f ′(xi),g′

ρ(yj)) = cos(f(xi),gρ(yj)). This
construction satisfies the requirements i) to iv).

We will show that f ′(x) is not an invertible linear transformation of f(x) by showing that any function
τ : RM → RM with τ (f(x)) = f ′(x),∀x ∈ X cannot be continuous.

Let τ : RM → RM be such that τ (f(x)) = f ′(x),∀x ∈ X . We recall that a function h : RM → RM
is by definition continuous at c ∈ RM if

h(x)→ h(c) for x→ c (91)

Therefore, we consider the limits of the sequences {τ (f(xn))}∞n=1 and {τ (f(xm))}∞m=1. We first
note that by our construction, we have for the rotation matrix

R =


cos(π2 ) − sin(π2 ) 0 · · ·
sin(π2 ) cos(π2 ) 0 · · ·

0 0 1 · · ·
...

...
...

. . .

 (92)

that

f ′(xn) = Rf(xn) (93)

Which means that since τ (f(xn)) = f ′(xn), we have that

τ (f(xn)) = Rf(xn) =


cos( 3π2 − π

4 (1− 1
n ))

sin( 3π2 − π
4 (1− 1

n ))
0
...

 (94)
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and we see that when n→∞,

τ (f(xn))→ b :=


cos( 3π2 )
sin( 3π2 )

0
...

 for f(xn)→ a (95)

However, we also have that τ (f(xm)) = f ′(xm) = f(xm). This means that for m→∞, we have
τ (f(xm))→ a for f(xm)→ a (96)

Now since for b from Equation (95), we have b ̸= a, τ cannot be continuous. In particular, it cannot
be an invertible linear transformation, and thus f ′(x) is not an invertible linear transformation of
f(x).

Note that if either f or f ′ is not injective, then both f and f ′ can be smooth. However, if both f and f ′

are injective, then either f or f ′ has to be non-continuous.

Notice also that we can permute additional labels to bring the embeddings further from a linear
transformation. See for example Fig. 2 which has been constructed by permuting multiple labels.

Construction for k =M + 1. For i = 1, . . .M , let gρ(yi) = ρ · ei and gρ(yM+1) = −ρ · e1. Let
{xn}∞n=1 ⊂ X and {xm}∞m=1 ⊂ X be two sets of inputs. We define

f(xn) =


cos(π − π

4 (1− 1
n ))

sin(π − π
4 (1− 1

n ))
0
...

 (97)

Now {f(xn)}∞n=1 is a sequence with a well-defined finite limit, which we for ease of reference shall
call a

a = lim
n→∞

f(xn) =


cos( 3π4 )
sin( 3π4 )

0
...

 (98)

We now define f for the other set.

f(xm) =


cos( 3π4 − π

4m )
sin( 3π4 − π

4m )
0
...

 (99)

{f(xm)}∞m=1 is now a sequence with the same limit, that is,

lim
m→∞

f(xm) =


cos( 3π4 )
sin( 3π4 )

0
...

 = a (100)

For every remaining xi ∈ X , construct f(xi) such that there exists a label yj ∈ Y such that we
have the cosine similarities cos(f(xi),gρ(yj)) > 0 and cos(f(xi),gρ(yj)) > cos(f(xi),gρ(yℓ)) for
yℓ ̸= yj . With this (f ,g) satisfies i) and ii).

We now construct the second model (f ′,g′). Let g′
ρ(yi) = gρ(yi) for i = 1, . . . ,M and let

g′
ρ(yM+1) = −ρ · e2. For all xi ∈ X and the corresponding yj = argmaxy∈Y p(y|xi) such that
yj ̸= yM+1, let f ′(xi) = f(xi). For all xi ∈ X and the corresponding yj = argmaxy∈Y p(y|xi)
such that yj = yM+1, construct f ′(xi) from f(xi) by rotating it counterclockwise with respect to
the first two axes such that cos(f ′(xi),g′

ρ(yj)) = cos(f(xi),gρ(yj)). This construction satisfies the
requirements i) to iv) and by the same argument as used for the case with k ≥M + 2, f ′(x) is not an
invertible linear transformation of f(x).

32



C.2 Loss goes to Zero but Representations are Dissimilar

We denote the negative log-likelihood for a model p with respect to a data distribution pD as:

NLLpD (p) := E(x,y)∼pD [− log p(y | x)] . (101)

In the following, it is useful to establish the link between the negative log-likelihood and the DKL

divergence with the empirical distribution. To this end, we introduce the empirical distribution over
inputs and outputs pD(x, y), whose marginal on the input is given by pD(x). This can be rewritten
as:

pD(x, y) = pD(y | x)pD(x) . (102)
Notice that the conditional distribution underlies how labels are associated with the input. We can
connect the negative log-likelihood to the KL divergence with the empirical distribution, a well-known
fact in the literature, as shown in the next Lemma:
Lemma C.1. Let pD(x, y) = pD(y|x)pD(x) be the ground-truth data distribution. Let p(y|x) be
a model such that, for all x in the support of pD(x), we have pD(y | x) ≪ p(y | x).15 Define the
negative log-likelihood as NLLpD (p) := E(x,y)∼pD [− log p(y | x)]. Then:

NLLpD (p) = dKL

(
pD, p

)
+ Ex∼pD [H(pD(y | x))] , (103)

where H(q) := −Ex∼q[log q(x)] denotes the entropy of a distribution q.

Proof. From the definition of KL divergence and entropy:

DKL(pD(y | x)∥p(y | x)) = Ey∼pD(y|x) [log pD(y | x)− log p(y | x)] (104)

= −H(pD(y | x)) + Ey∼pD(y|x) [− log p(y | x)] . (105)

Moving the entropy to the other side and taking expectations w.r.t. pD(x), we get:

E(x,y)∼pD [− log p(y | x)] = Ex∼pD [DKL(pD(y | x)∥p(y | x))] + Ex∼pD [H(pD(y | x))] (106)

The statement follows by the definition of dKL (Equation (6)) and NLL.

Notice that, when the conditional distribution pD(y | x) is degenerate, i.e., to each x ∈ X a single
y ∈ Y is associated, the expectation of the conditional Shannon entropy vanishes.

Next, we restate Corollary 3.2 and prove in full details:
Corollary (Formal version of Corollary 3.2). Assume we have a data distribution where only one
label is associated with each unique input. Let (f ,g) ∈ Θ be a model with representations in RM .
Assume M ≥ 2. Let k := |Y| be the total number of unembeddings and assume k ≥M + 1. Assume
the model satisfies the following requirements:

i) The unembeddings have fixed norm, that is ∥g(yi)∥ = ∥g(yj)∥ = ρ, for all yi, yj ∈ Y ,
where ρ ∈ R+.

ii) For every xi ∈ X , let there be one element yj ∈ Y for which the cosine similarity
cos(f(xi),g(yj)) > 0 and cos(f(xi),g(yj)) > cos(f(xi),g(yℓ)) for all yℓ ̸= yj . Also,
assume yj is the only label associated with xi.

Let (f ′,g′) be a model which also satisfies i) and ii) and which is related to (f ,g) in the following
way:

iii) For every xi ∈ X , ∥f ′(xi)∥ = ∥f(xi)∥.
iv) For ŷ = argmaxy∈Y(p(y|xi)) we have that the angle between f ′(xi) and g′(ŷ) is equal to

the angle between f(xi) and g(ŷ), in particular, cos(f(xi),g(ŷ)) = cos(f ′(xi),g
′(ŷ)).

Then, making a sequence of pairs of models indexed by ρ, we have

NLL(pf ,g)→ 0 for ρ→∞ (107)
and

NLL(pf ′,g′)→ 0 for ρ→∞ . (108)
15Here ≪ denotes absolute continuity.
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Proof. Below, we use the shorthand p := pf ,g and p′ := pf ′,g′ . We make use of the same calculations
as for the proof of Theorem 3.1. We consider p(yj |xi) for yj the label assigned to xi according to
the data. We denote with ci ∈ R+ the value of the norm of the embeddings on xi, i.e., ∥f(xi)∥ =
∥f ′(xi)∥ = ci. In this case we have that

p(yj |xi) =
exp(f(xi)

⊤g(yj))∑k
ℓ=1 exp(f(xi)

⊤g(yℓ))
(109)

=
1

1 +
∑k
ℓ=1,ℓ̸=j exp(f(xi)

⊤g(yℓ)− f(xi)⊤g(yj))
(110)

By construction, ∥f(xi)∥ = ci. We use that

f(xi)
⊤g(yj) = cos(f(xi),g(yj)) · ci · ρ (111)

and see that

p(yj |xi) =

1 +

k∑
ℓ=1,ℓ̸=j

exp(ci · ρ · (cos(f(xi),g(yℓ))− cos(f(xi),g(yj))))

−1

(112)

Now since by construction, cos(f(xi),g(yj)) > 0, and for all ℓ ̸= j

cos(f(xi),g(yj)) > cos(f(xi),g(yℓ)) (113)

we have for all ℓ that

cos(f(xi),g(yℓ))− cos(f(xi),g(yj)) < 0 (114)

and

exp(ci · ρ · (cos(f(xi),g(yℓ))− cos(f(xi),g(yj))))→ 0 for ρ→∞ (115)

which means that combined with Equation (112) we get

p(yj |xi)→
1

1 + 0
= 1 for ρ→∞ (116)

Similarly, we have that

p′(yj |xi)→ 1 for ρ→∞ . (117)

Therefore, we have for the NLL:

NLL(p) = −
n∑
i=1

log p(yj |xi)→ 0 for ρ→∞ (118)

and

NLL(p′) = −
n∑
i=1

log p′(yj |xi)→ 0 for ρ→∞ . (119)
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D Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)

Partial least squares (PLS) algorithms are techniques that, for two random variables z and w, derive
the cross-covariance matrix Σzw using latent variables. We give here a short description of the two
variants that are relevant to our work. A more detailed description can be found in [65].

In our case, we will work with random variables of the same dimension. So in the following, we
consider z,w ∈ RM . We will mostly work with the centered and normalized versions of the random
variables. So if zi is the i’th dimension of the original random variable, we will consider

z′i =
zi − E[zi]√

Var[zi]
. (120)

D.1 PLS-SVD

PLS-SVD [53, 59] is a variant of PLS where the latent vectors are simply the left and right singular
vectors in the singular value decomposition of the cross-covariance matrix, Σzw.

In Algorithm 1, we report the algorithm in the case where we have n samples of our M -dimensional
random variables. In this case, we work with (n×M) matrices Z,W, where each row is a sample.
The aim of the algorithm is to get projection vectors u(r),v(r) such that CovZW[Zu(r),Wv(r)] is
as large as possible under the constraint that ∥u∥ = ∥v∥ = 1. The original algorithm includes a
choice of signs for the covariances. In this version of the algorithm, we have chosen all signs to be
positive. R > 0 denotes the maximal rank of the algorithm.

Algorithm 1 Iterative SVD Projection Extraction from Cross-Covariance Matrix

1: Set r ← 1
2: Center and scale Z and W
3: Compute cross-covariance matrix: C← Z⊤W

4: Set C(1) ← C
5: while C(r) ̸= 0 and r ≤ R do
6: Perform SVD: C(r) = UDV⊤

7: Extract leading singular vectors: u(r)
1 ← first column of U, v(r)

1 ← first column of V
8: Save u

(r)
1 and v

(r)
1 as the r-th projection vectors

9: Let σr ← leading singular value of C(r)

10: Update matrix: C(r+1) ← C(r) − σru(r)
1 v

(r)
1

⊤

11: r ← r + 1

Considering this algorithm, we see that the projection vectors we get, u(r),v(r), are exactly the first
m singular vectors of Z⊤W corresponding to the largest m singular values, where m is the value of
r at the exit point. Note that this relates to principal component analysis (PCA) in the sense that when
doing PCA, one uses the singular value decomposition of the covariance matrix to obtain components
that capture the variance in a dataset (a random variable). When doing PLS-SVD, one uses singular
value decomposition of the cross-covariance matrix to obtain components that capture the covariance
between two random variables.

D.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [21] seeks pairs of unit-length vectors uℓ ∈ RdZ and vℓ ∈
RdW (ℓ = 1, . . . , r) that maximize the correlation between the one-dimensional projections u⊤

ℓ z
and v⊤

ℓ w, subject to mutual orthogonality of successive directions. In other words, CCA finds the
singular value deconposition of the matrix Q = ΣzzΣzwΣww, consisting of a cross-covariance
matrix Σzw and two covariance matrices Σzz,Σww. The results of CCA and PLS-SVD will differ if
there are high covariances between the zi’s or the wi’s.

We can use CCA to define a similarity measure between random variablesz and w, known as the mean
canonical correlation mCCA(z,w), which is the mean of the maxima correlations for the centered
and rescaled random variables. Because of this centering and rescaling operations, mCCA will be
invariant to any invertible linear transformation.
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E When Closeness in Distribution Implies Representational Similarity -
Details

We here include all the technical details of Section 4.

E.1 The Connection Between Representations and Log-Likelihoods

Let (f ,g) ∈ Θ be a model satisfying the diversity condition (Definition 2.1) and consider
x1, . . . ,xM ∈ X and y1, ..., yM ∈ Y such that both the vectors {f0(x)}Mi=1 and {g0(yi)}Mi=1
are linearly independent. We recall some notation for use in the Lemma. We denote with L and N
the following matrices:

L :=
(
g0(y1), . . . ,g0(yM )

)
, N :=

(
f0(x1), . . . , f0(xM )

)
. (121)

We recall the definition of the following functions:
ψx(yi; p) :=

√
Varx[log p(yi|x)− log p(y0|x)] and ψy(xj ; p) :=

√
Vary[log p(y|xj)− log p(y|x0)] .

(122)
We also denote with S,S′,D,D′ ∈ RM×M the diagonal matrices with entries Sii := 1

ψx(yi;p)
, Dii :=

1
ψy(xj ;p)

, S′
ii :=

1
ψx(yi;p′)

, D′
ii :=

1
ψy(xj ;p′)

. We now have everything we need to state a Lemma
relating any two model representations.

Here, we provide the full statement for Lemma 4.1 and prove it:
Lemma (Complete version of Lemma 4.1). For any (f ,g), (f ′,g′) ∈ Θ satisfying the diversity
condition (Definition 2.1). Let Ã := L−⊤S−1S′L′⊤ and hf (x) := L−⊤S−1ϵy(x), where the i-th
entry of ϵy(x) is given by

ϵyi(x) =
log pf ,g(yi|x)− log pf ,g(y0|x)

ψx(yi; pf ,g)
− log pf ′,g′(yi|x)− log pf ′,g′(y0|x)

ψx(yi; pf ′,g′)
.

Let B := N−⊤D−1D′N′⊤ and hg(y) := N−⊤D−1ϵx(y), where the j-th entry of ϵx(y) is given by

ϵxj
(y) =

log pf ,g(y|xj)− log pf ,g(y|x0)

ψy(xj ; pf ,g)
− log pf ′,g′(y|xj)− log pf ′,g′(y|x0)

ψy(xj ; pf ′,g′)
.

Then we have:

f(x) = Ãf ′(x) + hf (x), g(y) = Bg′(y) + hg(y) . (123)

Proof. Using the definition of ϵ(x), we can relate the embeddings of the two models as follows:
SLf(x) = S′L′f ′(x) + SLf(x)− S′L′f ′(x) (124)

= S′L′f ′(x) + ϵy(x) . (125)
Therefore, multiplying by the inverse of S and of L, we get

f(x) = L−⊤S−1S′L′⊤f ′(x) + L−⊤S−1ϵy(x) (126)

= Ãf ′(x) + hf (x) . (127)
With similar steps, we obtain the relation between the unembeddings of the two models, proving
Equation (123).

Notice that the error term ϵy(x) is a function of x and comprises the yi’s from the diversity condition
(Definition 2.1). Also, B results from the product of the scaling matrices and those constructed from
the diversity condition applied to f . hg(y) depends on ϵx(y), which is a function of y using the xi’s
from the diversity condition.

The following corollary connects Lemma 4.1 to the identifiability results of Theorem 2.2:
Corollary E.1. Under the same assumptions of Lemma 4.1, if we assume that the distributions of the
models (f ,g), (f ′,g′) ∈ Θ are equal, then we get (as in Theorem 2.2):

f(x) = Af ′(x) (128)

g0(y) = A−⊤g′
0(y) , (129)

where A = L−⊤L′⊤.
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Proof. Below, we use the shorthand p := pf ,g and p′ := pf ′,g′ .

When the two models entail the same distribution, we get that

ψx(yi; p) =
√
Varx[log p(yi|x)− log p(y0|x)] = ψx(yi; p

′) . (130)
which means that

ϵyi(x) =
f(x)⊤g0(yi)√
Varx[L⊤

i f(x)]
− f ′(x)⊤g′

0(yi)√
Varx[L′

i
⊤f ′(x)]

=
log pf ,g(yi|x)− log pf ,g(y0|x)

ψx(yi; pf ,g)
− log pf ′,g′(yi|x)− log pf ′,g′(y0|x)

ψx(yi; pf ′,g′)

=
1

ψx(yi; pf ,g)
(log pf ,g(yi|x)− log pf ′,g′(yi|x) + log pf ′,g′(y0|x)− log pf ,g(y0|x))

= 0 .

Also, since √
Varx[L⊤

i f(x)] =
√
Varx[log p(yi|x)− log p(y0|x)] (131)

=
√

Varx[log p′(yi|x)− log p′(y0|x)] (132)

=

√
Varx[L′

i
⊤f ′(x)] (133)

and S is a diagonal matrix, we have that
S−1S′ = S−1S = I . (134)

Finally, we get
A = L−⊤S−1S′L′⊤ = L−⊤L′⊤ . (135)

and since the error term vanishes, we obtain:
f(x) = Af ′(x) , (136)

showing the identifiability of the embeddings. The result for the unembeddings proceeds in a similar
way, by noticing that also ϵx is zero, therefore getting the same result of Theorem 2.2.

The result of Lemma 4.1 also gives us the following corollary, showing a connection between the
distributions and the representations:
Corollary E.2. Under the same assumptions as in Lemma 4.1, we have:

Varx[ϵyi(x)] = 2(1− Corr[Lif(x),L′
if

′(x)]). (137)

Proof. We can write

SL⊤f(x) = S′L
′⊤f ′(x) + SL⊤f(x)− S′L

′⊤f ′(x) . (138)
So setting

ϵy(x) = SL⊤f(x)− S′L
′⊤f ′(x) (139)

gives ϵyi(x) as in Equation (8). Since L⊤ and S are invertible, the inverses exist, and we can left
multiply with these inverses. We now consider the variance of ϵyi(x). Recall that

Varzw[z + w] = Varz[z] + Varw[w] + 2Covzw[z, w] (140)
This results in

Varx[ϵyi(x)] = Varx[
Lif(x)√

Varx[Lif(x)]
− L′

if
′(x)√

Var[L′
if

′(x)]
] (141)

= Varx[
Lif(x)√

Varx[Lif(x)]
] + Varx[

L′
if

′(x)√
Varx[L′

if
′(x)]

] (142)

− 2Covxx[
Lif(x)√

Var[Lif(x)]
,

L′
if

′(x)√
Var[L′

if
′(x)]

] (143)

= 2− 2Covxx[
Lif(x)√

Var[Lif(x)]
,

L′
if

′(x)√
Var[L′

if
′(x)]

] (144)

= 2(1− Corr[Lif(x),L′
if

′(x)]) , (145)
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where we use Equation (140) for the second equality and that Varz[z/std(z)] = 1 in the third equality.
We thus have the result.

There are three things that are important from this result.

Firstly, as seen in Corollary E.1, when the distributions are equal, the error term becomes zero and
we are back in the case of Theorem 2.2.

Secondly, the shape of the error term suggests what a distance should measure if we want it to give a
guarantee for how far representations are from being invertible linear transformations of each other.
We notice that Equation (8) can be rewritten as

ϵyi(x) =
log p(yi|x)√

Varx[log p(yi|x)− log p(y0|x)]
− log p′(yi|x)√

Varx[log p′(yi|x)− log p′(y0|x)]
(146)

+
log p′(y0|x)√

Varx[log p′(yi|x)− log p′(y0|x)]
− log p(y0|x)√

Varx[log p(yi|x)− log p(y0|x)]
(147)

that is, entirely in terms of the logarithm of distributions. We also see that if ϵyi(x) is a constant
(or equivalently, Var[ϵyi(x)] = 0), the embeddings will be invertible linear transformations of each
other.

Thirdly, Lemma 4.1 fits with the observation made in Section 3. The KL divergence depends on the
difference of the logarithms of distributions, but it also multiplies that difference by the likelihood of
the label. Which means that we can have a relatively large difference in logarithms of distributions,
even though the KL divergence would result in a small value.

A similar result for the unembeddings can be found below.
Corollary E.3. Under the same assumptions as in Lemma 4.1, we have:

Vary[ϵxi(y)] = 2(1− Corr[Nig(y),N
′
ig

′(y)]). (148)

Proof. We can write

SN⊤g(y) = S′N
′⊤g′(y) + SN⊤g(y)− S′N

′⊤g′(y) . (149)

So setting

ϵx(y) = SN⊤g(y)− S′N
′⊤g′(y) (150)

gives ϵxi(y) as the error term for the unembeddings.

We now consider the variance of ϵxi(y).

Vary[ϵxi(y)] = Vary

[
Nig(y)√

Vary[Nig(y)]
− N′

ig
′(y)√

Vary[N′
ig

′(y)]

]
(151)

= Vary[
Nig(y)√

Vary[Nig(y)]
] + Vary[

N′
ig

′(y)√
Vary[N′

ig
′(y)]

] (152)

− 2Covyy[
Nig(y)√

Vary[Nig(y)]
,

N′
ig

′(y)√
Vary[N′

ig
′(y)]

] (153)

= 2− 2Covyy[
Nig(y)√

Vary[Nig(y)]
,

N′
ig

′(y)√
Vary[N′

ig
′(y)]

] (154)

= 2(1− Corr[Nig(y),N
′
ig

′(y)]) , (155)

which gives us the result.

E.2 Distance Between Distributions

Recall that we use the following notation:

ψx(yi; p) :=
√

Varx[log p(yi|x)− log p(y0|x)] and ψy(xj ; p) :=
√
Vary[log p(y|xj)− log p(y|x0)] .

We restate Definition 4.4 and then prove its a distance metric.
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Definition 4.4 (Log-likelihood variance distance between distributions). For any two probability
distributions p, p′ for which there exists a common choice of XLLV ⊂ X and YLLV ⊂ Y such that
they both satisfy Assumption 4.3, for a fixed λ ∈ R+, and by considering the following terms:

t1 := max
y∈YLLV\{y0}

{√
Varx

[
log p(y|x)
ψx(y; p)

− log p′(y|x)
ψx(y; p′)

]
,

√
Varx

[
log p(y0|x)
ψx(y; p)

− log p′(y0|x)
ψx(y; p′)

]}

t2 := max
x∈XLLV\{x0}

{√
Vary

[
log p(y|x)
ψy(x; p)

− log p′(y|x)
ψy(x; p′)

]
,

√
Vary

[
log p(y|x0)

ψy(x; p)
− log p′(y|x0)

ψy(x; p′)

]}
t3 := max

y∈YLLV\{y0}
|ψx(y; p)− ψx(y; p

′)| , t4 := max
x∈XLLV\{x0}

|ψy(x; p)− ψy(x; p′)| ,

the log-likelihood variance (LLV) distance between p and p′ is given by

dλLLV(p, p
′) := max {t1, t2, λt3, λt4} . (10)

To show that dλLLV is a distance metric between sets of conditional probability distributions, we
have to prove that: i) it is non-negative, ii) it is zero if and only if the models are equal (that is, the
distributions are equal for all labels and all inputs) iii) it is symmetric and iv) it satisfies the triangle
inequality.

Proof. i) Since variance is non-negative, the first two terms are non-negative. The second two terms
are absolute values, so also non-negative. Thus, the maximum of these four terms is also non-negative.

ii) From the expression of dλLLV, if the distributions are equal for all x ∈ X and all y ∈ Y , then the
distance becomes zero.

Now, assume the distance is zero. Then, in particular, t4 = 0. So we have√
Vary[log p(y|xj)− log p(y|x0)] =

√
Vary[log p′(y|xj)− log p′(y|x0)] (156)

for all xj ∈ XLLV \ {x0}. So since t2 = 0, we have

Vary [log p(y|xj)− log p′(y|xj)] = 0 , (157)

for all xj ∈ XLLV. This means that for each xj , we have that the log difference of the distributions is
a constant for all yi ∈ YLLV, and so

log p(yi|xj)− log p′(yi|xj) = cj , (158)

for all yi. This means that

log p(yi|xj) = log p′(yi|xj) + cj (159)

p(yi|xj) = p′(yi|xj) · exp(cj) . (160)

Now since p and p′ are probability distributions over the yi’s, we have

1 =

c∑
i=1

p(yi|xj) = exp(cj)

c∑
i=1

p′(yi|xj) = exp(cj) (161)

This means that p(y|xj) = p′(y|xj) for all y ∈ Y and for the xj ∈ XLLV. Since we have t1 = t3 = 0,
we get that

Varx [log p(yi|x)− log p′(yi|x)] = 0 , (162)

for all yi ∈ YLLV and all inputs x ∈ X . Thus, we have

log p(yi|x)− log p′(yi|x) = ci (163)

for every choice of yi except one left out of the label set and all x. This results in

p(yi|x) = p′(yi|x) · exp(ci) (164)

for all x ∈ X . In particular, this is true for xj ∈ XLLV. So we have

p(yi|xj) = p′(yi|xj) · exp(ci) = p′(yi|xj) (165)
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and thus, exp(ci) = 1 for all yi ∈ YLLV. Since the probability of the last label, yk is fixed by the
other labels, i.e.

p(yk|x) = 1−
∑
i̸=k

p(yi|x) (166)

this gives us that

p(yi|x) = p′(yi|x) (167)

for all yi ∈ Y and all x ∈ X .

iii) dλLLV is symmetric because it depends on variances and on absolute values, which are symmetric.

iv) We prove that dλLLV satisfies the triangle inequality by showing that all terms in it satisfy the
triangle inequality. Assume we have three random variables X,Y, Z, then√

Var[X − Z] =
√
Var[X − Y + Y − Z] (168)

=
√
Var[X − Y ] + Var[Y − Z] + 2Cov[X − Y, Y − Z] (169)

≤
√
Var[X − Y ] + Var[Y − Z] + 2

√
Var[X − Y ]

√
Var[Y − Z] (170)

=

√(√
Var[X − Y ] +

√
Var[Y − Z]

)2

(171)

=
√
Var[X − Y ] +

√
Var[Y − Z] . (172)

So the square root of the variance of differences of random variables satisfies the triangle inequality.
Taking the maximum also preserves the triangle inequality. Therefore, t1 and t2 satisfy the triangle
inequality. Concerning the last two terms t3 and t4, we see that for models p, p′, p∗ we have∣∣∣∣√Vary[log p(y|xj)− log p(y|xk)]−

√
Vary[log p′(y|xj)− log p′(y|xk)]

∣∣∣∣
=

∣∣∣∣√Vary[log p(y|xj)− log p(y|xk)]−
√
Vary[log p∗(y|xj)− log p∗(y|xk)]

+
√

Vary[log p∗(y|xj)− log p∗(y|xk)]−
√

Vary[log p′(y|xj)− log p′(y|xk)]
∣∣∣∣

≤
∣∣∣∣√Vary[log p(y|xj)− log p(y|xk)]−

√
Vary[log p∗(y|xj)− log p∗(y|xk)]

∣∣∣∣
+

∣∣∣∣√Vary[log p∗(y|xj)− log p∗(y|xk)]−
√
Vary[log p′(y|xj)− log p′(y|xk)]

∣∣∣∣ .
So the second two terms also satisfy the triangle inequality. Thus, the sum of these four terms satisfies
the triangle inequality.

E.3 Implementation of the Log-Likelihood Variance Distance

Here, we collect the implementation details of dλLLV. We set the weighting constant λ to 10−5. To
choose the best pivot y0 ∈ Y and the left-out label y∅ ∈ Y , we evaluate t1 for all possible choices of
(y0, y∅), then select those giving the smallest value of dλLLV. For the input set XLLV, we use M + 1
inputs. In our experiments, the representational dimension is 2, so we collect 3 inputs. We randomly
draw 200 samples of sets from X containing 3 inputs, and choose the set giving the smallest t2.

In our experiments, we only make pairwise comparisons of models. Notice that, in the case where
one would like to compare three or more models, the same pivot y0, left-out label y∅, and input set
XLLV must be chosen for all models.

E.4 Using PLS SVD to Define a Dissimilarity Measure

We restate Definition 4.5 and then prove some important properties.
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Definition 4.5 (PLS SVD distance between vectors). Let z,w be two M -dimensional random
vectors, and define z′,w′ by standardizing their components: z′i = (zi − E[zi])/ std(zi), w′

i =
(wi − E[wi])/ std(wi). Let {ui}Mi=1 and {vi}Mi=1 be the left and right singular vectors of the cross-
covariance matrix Σz′w′ . We define

mSVD(z,w) := 1
M

∑M
i=1 Covz′w′ [u⊤

i z
′,v⊤

i w
′], dSVD(z,w) := 1−mSVD(z,w) . (12)

We show that this measure is zero from a vector to itself and is invariant to multiplications of the
scaled variables with orthonormal matrices. Before proceeding, we recall the following property of
the trace of two matrices:

tr(AB) = tr(BA) . (173)

In the next Proposition, we prove that dSVD(z, z) = 0.
Proposition E.4. Let z be an M -dimensional random variable and assume that the covariance
matrix Σz′z′ of the centered and scaled variable z′ is non-singular. Then

mSVD(z, z) =
1

M

M∑
i=1

Covz′z′ [u⊤
i z

′,u⊤
i z

′] = 1 , (174)

where ui is the i’th singular vector of Σz′z′ .

Proof. Let

Σz′z′ = UDU⊤ (175)

be the singular value decomposition of the covariance matrix of z′ with itself. Then, using Equa-
tion (173), we have that

tr(Σz′z′) = tr(UDU⊤) = tr(U⊤UD) = tr(D) =

M∑
i=1

σi , (176)

where σi are the singular values of Σz′z′ . Since Var[z′i] = 1 for all i ∈ {1, . . . ,M}, we also have
that

tr(Σz′z′) =

M∑
i=1

Varz′ [z′i] =M . (177)

Combining the two results, we get
M∑
i=1

σi =M . (178)

Therefore, the mean of the covariances becomes

mSVD(z, z) =
1

M

M∑
i=1

Covz′z′ [u⊤
i z

′,u⊤
i z

′] (179)

=
1

M
tr(U⊤ Covz′z′ [z′, z′]U) (180)

=
1

M

M∑
i=1

σi =
M

M
= 1 (181)

which proves the claim.

Next, we prove the invariance to translation and orthogonal transformations of the members in mSVD:
Proposition E.5. Let z and w be M -dimensional random variables. Then, the measure

mSVD(z,w) =
1

M

M∑
i=1

Covz′w′ [u⊤
i z

′,v⊤
i w

′] (182)

is invariant to translations and multiplications with an orthonormal matrix after the scaling.

41



Proof. Invariance to translations. Since mSVD(z,w) is based on covariances, and covariances are
invariant to translations, mSVD(z,w) is invariant to translations.

Invariance to multiplication with orthonormal matrix. Assume T and R are orthonormal matrices.
Let h = Tz′ and k = Rw′. Let the singular value decomposition of Σz′w′ be:

Σz′w′ = UDV⊤ , (183)

then

Σhk = TUDV⊤R⊤ (184)

= (TU)D(RV)⊤ . (185)

Since T and R are orthonormal, TU and RV are also orthonormal, so Covhk[h,k] has the same
singular values as Σz′w′ . Thus, the measure is invariant to multiplications with orthonormal matrices
(rotations) after the scaling.

E.5 Lower Bound on Mean PLS-SVD

To show how the probability distributions are connected to the representations, we need an intermedi-
ate result, where we bound mSVD. To prove this bound, we will make use of Weyl’s Inequality and
we therefore restate it from [58].
Theorem E.6 (Weyl’s Inequality). Let A be a n ×m matrix. Let B = A + E. Let σi be the i’th
singular value of A and let σ̃i be the i’th singular value of B (ordered from largest to smallest). Then

|σi − σ̃i| ≤ ∥E∥s , (186)

where ∥.∥s is the spectral norm defined as

∥E∥s = max
∥v∥=1

∥Ev∥2 (187)

and ∥.∥2 is the Euclidean vector norm. Or equivalently:

∥E∥s = σmax(E) , (188)

where σmax(E) is the largest singular value of E.

We now state and prove a bound on mSVD.
Lemma E.7. Let z,w be two M -dimensional random vectors, and define z′,w′ by standardizing
their components: z′i = (zi − E[zi])/ std(zi), w′

i = (wi − E[wi])/ std(wi). Assume the M ×M
matrices Σz′z′ and Σz′w′ ∈ RM×M are full-rank. Let {ui}Mi=1 and {vi}Mi=1 be the left and right
singular vectors of Σz′w′ . Then, the following bound holds:

mSVD(z,w) =
1

M

M∑
i=1

Covz′w′
[
u⊤
i z

′,v⊤
i w

′] ≥ 1−

√√√√M

M∑
l=1

Varz′,w′ [z′l − w′
l] (189)

where Varz,w[z′l − w′
l] denotes the variance over the joint distribution over z′ and w′.

Proof. For ease of notation, assume z and w are M -dimensional random variables which are already
centered and scaled. So Var[zi] = 1 for all components i = 1, . . . ,M . Below we will make use of
the covariance inequality, which says that for scalar variables z, w,

−
√

Varz[z]
√

Varw[w] ≤ Covzw[z, w] ≤
√

Varz[z]
√

Varw[w] . (190)

Let A := Σzw be the cross-covariance matrix of z and w, and let B := Σzz be the covariance matrix
of z. Then

B = A+ (B−A) , (191)

and we define E := B−A. We can write the i, j’th entry of E as

(E)i,j = Covzz[zi, zj ]− Covzw[zi, wj ] = Covzw[zi, zj − wj ] , (192)
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because of the bilinearity of the covariance, see section 13.2.7 of Adhikari and Pitman [1], "The Main
Property: Bilinearity".

The singular value decompositions of A and B always exist and can be written as follows:

A = UDV⊤, B = WΣW⊤ , (193)
where U,V and W are orthonormal matrices and D and Σ are diagonal matrices containing the
singular values. Note that since B is symmetric and positive definite, the left and right singular
vectors coincide. Let σ̃i be the i’th singular value of A (sorted from largest to smallest) and let σi be
the i’th singular value of B. Now Weyl’s inequality E.6 gives us that

|σi − σ̃i| ≤ ∥E∥s . (194)
Since the spectral norm of E is the largest singular value of E

∥E∥s = σmax(E) (195)
and the frobenius norm is the square root of the sum of the squared singular values

∥E∥F =

√√√√ M∑
i=1

σ2
i (E) =

√
trace(E⊤E) , (196)

we have that

∥E∥s ≤ ∥E∥F =
√

trace(E⊤E) . (197)

Next, we bound the trace of E⊤E:

trace(E⊤E) =

M∑
l=1

M∑
k=1

Covzw[zk, zl − wl]2 (198)

≤
M∑
l=1

M∑
k=1

(
√

Varz[zk]
√

Varz,w[zl − wl])2 (199)

=

M∑
l=1

MVarz,w[zl − wl] , (200)

where in the first step we use the covariance inequality (Equation (190)) and in the second we use
that Var[zk] = 1 by construction. Combining the inequalities from Equations (194), (197) and (200)
we obtain

|σi − σ̃i| ≤

√√√√ M∑
l=1

MVarz,w[zl − wl] , (201)

which means that the difference between σi and σ̃i is at most
√∑M

l=1MVarz,w[zl − wl]. This
means that if σ̃i < σi, we still have :

σ̃i ≥ σi −

√√√√ M∑
l=1

MVarz,w[zl − wl] . (202)

and if σ̃i ≥ σi, we also have

σ̃i ≥ σi −

√√√√ M∑
l=1

MVarz,w[zl − wl] . (203)

since
√∑M

l=1MVar[zl − wl] ≥ 0. Let vi be the i’th column of V and recall that from the SVD of
we have

σ̃i = u⊤
i Avi = Covzw

[
M∑
k=1

uikzk,

M∑
l=1

vilwl

]
(204)

= Covzw
[
u⊤
i z,v

⊤
i w

]
, (205)
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because of the bilinearity of the covariance. Thus, Equation (202) gives us the bound

Covzw
[
u⊤
i z,v

⊤
i w

]
≥ σi −

√√√√ M∑
l=1

MVarz,w[zl − wl] (206)

and therefore

mSVD(z,w) =
1

m

M∑
i=1

[Covzw[u⊤
i z,v

⊤
i w]] ≥ 1−

√√√√ M∑
l=1

MVarz,w[zl − wl] , (207)

where we used that 1
m

∑M
i=1 σi = 1 from Proposition E.4.

E.6 Bounding Representational Similarity with Distribution Distance

We can now use Definitions 4.4 and 4.5 and Lemma E.7 to show how a bound on the distance
between probability distributions can give us a bound on the distance between representations. For
the result below, let L,L′ be defined as in Theorem 2.2. Let N (resp. N′) be the matrix with
columns f0(x) (resp. f ′0(x)). We denote with z1 := L⊤f(x), z2 := L

′⊤f ′(x), w1 := N⊤g(y) and
w2 := N

′⊤g′(y).

Theorem 4.7. Let (f ,g), (f ′,g′) ∈ Θ be two models such that: (1) There exist XLLV ⊂ X and
YLLV ⊂ Y , consisting of a pivot point and all labels but one, such that all L,L′ and N,N′ matrices
constructed from these sets are invertible;16 (2) Both pf ,g and pf ′,g′ satisfy Assumption 4.3 for
XLLV and YLLV; (3) The covariance matrices Σz1z1

,Σw1w1
and the cross-covariance matrices

Σz1z2
,Σw1w2

are non-singular. Then, for any weighting constant λ ∈ R+, we have

dλLLV(pf ,g, pf ′,g′) ≤ ϵ =⇒ df ,g((f ,g), (f
′,g′)) ≤ 2Mϵ . (14)

Proof. We start from

dSVD(L
⊤f(x),L

′⊤f ′(x)) = 1−mSVD(L
⊤f(x),L

′⊤f ′(x)) (208)

and consider the components Ll,L′
l, which are l’th row of L⊤,L

′⊤, respectively. In the following,
notice that

ψx(yl; p) :=
√
Varx[log p(yl|x)− log p(y0|x)] =

√
Var[Llf(x)] (209)

Using Lemma E.7, we have that

mSVD(L
⊤f(x),L

′⊤f ′(x)) ≥ 1−

√√√√ M∑
l=1

MVar

[
Llf(x)√

Var[Llf(x)]
− L′

lf
′(x)√

Var[L′
lf

′(x)]

]
. (210)

Therefore, we have

dSVD(L
⊤f(x),L

′⊤f ′(x)) ≤

√√√√ M∑
l=1

MVar

[
Llf(x)√

Var[Llf(x)]
− L′

lf
′(x)√

Var[L′
lf

′(x)]

]
. (211)

16This is slightly stronger than the diversity condition (Definition 2.1) in the sense that we need diversity to
hold for all sets using labels from YLLV and the chosen pivot point.
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Considering the variance term, we can rewrite it as follows:

Var

[
Llf(x)√

Var[Llf(x)]
− L′

lf
′(x)√

Var[L′
lf

′(x)]

]
= Var

[
log p(yl|x)− log p(y0|x)√

Var[Llf(x)]
− log p′(yl|x)− log p′(y0|x)√

Var[L′
lf

′(x)]

]

= Var

[
log p(yl|x)√
Var[Llf(x)]

− log p′(yl|x)√
Var[L′

lf
′(x)]

]

+Var

[
log p′(y0|x)√
Var[L′

lf
′(x)]

− log p(y0|x)√
Var[Llf(x)]

]

+ 2Cov

[
log p(yl|x)√
Var[Llf(x)]

− log p′(yl|x)√
Var[L′

lf
′(x)]

,
log p′(y0|x)√
Var[L′

lf
′(x)]

− log p(y0|x)√
Var[Llf(x)]

]

≤ Var

[
log p(yl|x)√
Var[Llf(x)]

− log p′(yl|x)√
Var[L′

lf
′(x)]

]

+Var

[
log p′(y0|x)√
Var[L′

lf
′(x)]

− log p(y0|x)√
Var[Llf(x)]

]

+ 2

√√√√Var

[
log p(yl|x)√
Var[Llf(x)]

− log p′(yl|x)√
Var[L′

lf
′(x)]

]√√√√Var

[
log p′(y0|x)√
Var[L′

lf
′(x)]

− log p(y0|x)√
Var[Llf(x)]

]
.

By assumption, dλLLV(p, p
′) ≤ ϵ, which means that for all yl ∈ YLLV:√√√√Var

[
log p(yl|x)√
Var[Llf(x)]

− log p′(yl|x)√
Var[L′

lf
′(x)]

]
≤ ϵ . (212)

Hence, we obtain

dSVD(L
⊤f(x),L

′⊤f ′(x)) ≤

√√√√ M∑
l=1

MVar

[
Llf(x)√

Var[Llf(x)]
− L′

lf
′(x)√

Var[L′
lf

′(x)]

]
(213)

≤

√√√√ M∑
l=1

M(ϵ2 + ϵ2 + 2ϵ2) (214)

=
√
M24ϵ2 = 2Mϵ , (215)

giving the first part of the result. Next, we consider

dSVD(N
⊤g(y),N

′⊤g′(y)) = 1−mSVD(N
⊤g(y),N

′⊤g′(y)) . (216)

Let Nj ,N
′
j be the j’th row of N⊤,N

′⊤. Using Lemma E.7, we obtain:

mSVD(N
⊤g(y),N

′⊤g′(y)) ≥ 1−

√√√√√ M∑
l=1

MVar

 Njg(y)√
Var[Njg(y)]

−
N′
jg

′(y)√
Var[N′

jg
′(y)]

 . (217)

This implies the following:

dSVD(N
⊤g(y),N

′⊤g′(y)) ≤

√√√√√ M∑
l=1

MVar

 Njg(y)√
Var[Njg(y)]

−
N′
jg

′(y)√
Var[N′

jg
′(y)]

 . (218)
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Considering the variance term, we can rework it as follows:

Var

 Njg(y)√
Var[Njg(y)]

−
N′
jg

′(y)√
Var[N′

jg
′(y)]

 = Var

 log p(y|xj)− log p(y|x0)√
Var[Njg(y)]

− log p′(y|xj)− log p′(y|x0)√
Var[N′

jg
′(y)]


= Var

 log p(y|xj)√
Var[Njg(y)]

− log p′(y|xj)√
Var[N′

jg
′(y)]


+Var

 log p′(y|x0)√
Var[N′

jg
′(y)]

− log p(y|x0)√
Var[Njg(y)]


+ 2Cov

 log p(y|xj)√
Var[Njg(y)]

− log p′(y|xj)√
Var[L′

jf
′(x)]

,
log p′(y|x0)√
Var[L′

jf
′(x)]

− log p(y|x0)√
Var[Njg(y)]


≤ Var

 log p(y|xj)√
Var[Njg(y)]

− log p′(y|xj)√
Var[N′

jg
′(y)]


+Var

 log p′(y|x0)√
Var[N′

jg
′(y)]

− log p(y|x0)√
Var[Njg(y)]



+ 2

√√√√√Var

 log p(y|xj)√
Var[Njg(y)]

− log p′(y|xj)√
Var[N′

jg
′(y)]


√√√√√Var

 log p′(y|x0)√
Var[N′

jg
′(y)]

− log p(y|x0)√
Var[Njg(y)]

 .
Since by assumption dλLLV(p, p

′) ≤ ϵ, this implies that t2 ≤ ϵ and that for xj ∈ XLLV:√√√√√Var

 log p(y|xj)√
Var[Njg(y)]

− log p′(y|xj)√
Var[N′

jg
′(y)]

 ≤ ϵ (219)

and √√√√√Var

 log p(y|x0)√
Var[Njg(y)]

− log p′(y|x0)√
Var[N′

jg
′(y)]

 ≤ ϵ . (220)

Therefore, we get:

dSVD(N
⊤g(y),N

′⊤g′(y)) ≤

√√√√√ M∑
l=1

MVar

 Njg(y)√
Var[Njg(y)]

−
N′
jg

′(y)√
Var[N′

jg
′(y)]

 (221)

≤

√√√√ M∑
l=1

M(ϵ2 + ϵ2 + 2ϵ2) (222)

=
√
M24ϵ2 = 2Mϵ (223)

showing the second part of the result. Taking the maximum between Equation (215) and Equa-
tion (223), we get the result of the claim.

To see how this result connects to how far the embedding functions f(x), f ′(x) are from being
invertible linear transformations of each other, notice that if L⊤ and L

′⊤ are both invertible, then
if there exists an invertible linear transformation, B, such that L⊤f(x) = BL

′⊤f ′(x), then we also
have an invertible linear transformation A = L−⊤BL

′⊤ such that f(x) = Af ′(x).
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Since mSVD(x, y) is always non-negative, for this bound in Theorem 4.7 to be non-vacuous, we need

dSVD(L
⊤f(x),L

′⊤f ′(x)) ≤ 2Mϵ < 1 =⇒ ϵ <
1

2M
. (224)

This means that for higher dimensional representations, we need the variance of the differences of
log-likelihoods to be smaller, if we want a guarantee from this result.

Next, we prove that the dissimilarity between representations induced by Theorem 4.7 is invariant to
substituting the members with models that are ∼L-equivalent.
Lemma E.8. For any two models (f ,g), (f ′,g′) ∈ Θ, and for any other model (f∗,g∗) ∈ Θ such
that (f∗,g∗) ∼L (f ,g), we have that:

dSVD(L
⊤f(x),L′⊤f ′(x)) = dSVD(L

∗⊤f∗(x),L′⊤f ′(x)) , (225)

dSVD(N
⊤g(y),N′⊤g′(y)) = dSVD(N

∗⊤g∗(y),N′⊤g′(y)) . (226)

Proof. The proof follows using the linear equivalence relation Theorem 2.2. For any two models
(f ,g) ∼ (f∗,g∗) we have that:

g0(y)
⊤f(x) = g′

0(y)
⊤f ′(x) , (227)

for all x ∈ X and y ∈ Y . By considering M elements in Y , we get

L⊤f(x) = L′⊤f ′(x) , (228)
where L,L′ ∈ RM×M are the matrices constructed with columns the vectors g0(y) and g′

0(y),
respectively. Therefore, we get Equation (225):

dSVD(L
⊤f(x),L′⊤f ′(x)) = dSVD(L

∗⊤f∗(x),L′⊤f ′(x) . (229)
To obtain Equation (226), notice that with similar steps we can write

N⊤g(y) = N′⊤g′(y) + b . (230)
where b ∈ R is a displacement vector. We have

dSVD(N
⊤g(y),N′⊤g′(y)) = dSVD(N

∗⊤g∗(y) + b,N′⊤g′(y)) (231)
and given that dSV D is invariant to translations, we arrive at the final result

dSVD(N
⊤g(y),N′⊤g′(y)) = dSVD(N

∗⊤g∗(y),N′⊤g′(y)) . (232)
This shows the claim.

E.7 Invariances of our Representational Distance and CCA

As noted in Appendix D.2, mCCA(f , f
′) is invariant to any invertible linear transformation of f

and f ′. In contrast, when considering our dissimilarity measure, df ,g, and the transformations to
which it is invariant, it is important to note that it relies on both dSVD(L

⊤f(x),L
′⊤f ′(x)) and

dSVD(N
⊤g(y),N

′⊤g′(y)). In both these expressions, embeddings and unembeddings are coupled,
since the matrices L,L′ (resp. N,N′) depend on the unembeddings g,g′ (resp. the embeddings f , f ′).
By contrast, mCCA(f , f

′) can be computed independently of the unembeddings g,g′.

Consequently, the two similarity measures (dissimilarity in the case of df ,g) differ in their invariance
properties, as demonstrated below. Consider two models (f ,g), (f ′,g′) ∈ Θ such that f(x) = Af ′(x)

and g0(y) = Bg′
0(y), with A and B invertible matrices but such that B ̸= A−⊤, i.e., (f ,g) and

(f ′,g′) are not in the same identifiability class. Since A and B are invertible matrices, we have
mCCA(f , f

′) = mCCA(g,g
′) = 1. In contrast, we get:

df ,g((f ,g), (f
′,g′)) = max

{
dSVD(L

⊤f(x),L
′⊤f ′(x)), dSVD(N

⊤g(y),N
′⊤g′(y))

}
≥ 0 ,

(233)
where the equality holds if and only if there exist orthogonal matrices O,O′ and diagonal ma-
trices S,S′,D,D′ ∈ RM×M with entries Sii := (ψx(yi; p))

−1, Dii := (ψy(xj ; p))
−1, S′

ii :=
(ψx(yi; p

′))−1, D′
ii := (ψy(xj ; p

′))−1, and displacement vectors a,b such that:

L⊤f(x) = S−1OS′L
′⊤f ′(x) + a, N⊤g(y) = D−1O′D′N

′⊤g′(y) + b . (234)
Because the set of matrices described above is a subset of all linear invertible transformations, it is
then possible to find cases where, in Equation (233), the equality does not hold for a careful choice of
(f ,g), (f ′,g′) ∈ Θ.
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F Experimental Details

This section contains details of the implementation of all our experiments. A repository with code for
reproducing the experiments is available at github17.

F.1 Constructed Models

In the following, we will detail how to construct the models which we will use to illustrate Theorem 3.1
and generate Table 1; and to illustrate the bound in Theorem 4.7 (see Appendix F.6).

We choose classification models with a representation space equal to R2. To construct the reference
model (f ,g) ∈ Θ, we distribute its unembeddings uniformly on the unit circle, ensuring that the
angle between any two adjacent unembeddings is equal. We then sample its embeddings such that
each embedding corresponding to a given label lies closer—measured by angular distance—to its
associated unembedding than to any other.

We construct another model (f ′g′) ∈ Θ by permuting the unembeddings and their associated
embeddings. For both models, we then vary the norm of the unembeddings and measure dKL and
dλLLV between models and the maximum of dSVD between embeddings.

To illustrate how dλLLV and the bound derived in Theorem 4.7 increase with increasing differences
in representations, we compare a reference model with a perturbed version constructed by adding a
small amount of Gaussian noise to the reference model’s embeddings. By increasing the amount of
noise, dλLLV grows, as well as the maximum of dSVD.

F.2 Models Trained on Synthetic Data

Synthetic data generation. We consider data with two-dimensional input and with c classes, where
each class consists of a slice of the circle together with the opposite slice. See Fig. 4 for an example
with c = 6. We construct the data by drawing 20, 000 samples from a two-dimensional Gaussian
(µ = 0, σ = 3) and assigning labels based on angle to the first axis.

Figure 4: Illustration of training data for 6
classes. Each color represents a different
class label.

Model training. We trained classification models with
c ∈ {4, 6, 10, 18} classes, using a representation space
equal to R2. Each model consists of three fully-connected
layers, with layer sizes chosen from {16, 32, 64, 128, 256}.
We use LeakyReLU activation functions. We train four
types of models: one where the norms of both the embed-
dings and unembeddings are constrained to be equal to
20, one where the norm of the embeddings are equal to
20 and with unconstrained unembeddings, one where the
norm of the embeddings is unconstrained and the norm
of the unembeddings is 20, and one with no constraints
on the norms. To obtain the results in Section 5.2, we
only consider models with unconstrained norms. For each
combination of the number of classes, the layer size, and
whether the restriction is applied or not, we train with 20
random seeds. All models are trained with a batch size of
128 for 15, 000 steps using the ADAM optimizer [28].

F.3 Models Trained on CIFAR-10

We trained classification models on CIFAR-10 [31], where the embedding network consisted of
a ResNet18 [20]18 but choosing the representation space to be 2, 3 or 5-dimensional. For each
dimension we trained 10 seeds. The unembedding network consisted of three fully connected layers
of width 128, followed by an output layer of size 2, 3 or 5, thus giving us representations in the
desired number of dimensions. The models were trained for 20, 000 steps with a batch size of 32

17github.com/bemigini/close-dist-rep-sim
18For this, we used code based on https://github.com/kuangliu/pytorch-cifar/blob/master/

models/resnet.py
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Figure 5: For models trained on CIFAR-10 with representational dimensions of 2, 3 and 5, difference in test loss
vs mCCA of the embeddings of the models. We see that there can both be a small difference in loss and a larger
difference in representations or a larger difference in loss and a smaller difference in representations.

Figure 6: Illustration of representations of model trained on CIFAR-10, seed 0.

using the ADAM optimizer [28]. The ResNet model used ReLU activation functions, while the
networks for the unembeddings used LeakyReLU activation functions.

F.4 Loss Difference vs Embedding mCCA

To illustrate Corollary 3.2 and that a small difference in test loss does not guarantee similar represen-
tations for our models trained on CIFAR-10, we present Fig. 5. Here we compare difference in test
loss with mCCA of embeddings of models, where the dimension of the representations are 2, 3 and 5.
We see that there can both be a small difference in loss and a larger difference in representations or a
larger difference in loss and a smaller difference in representations.

F.5 All Two-dimensional Representations of CIFAR-10 Models

We here present all the embedding and unembedding representations of our models trained on CIFAR-
10 with 2-dimensional representations: seed 0 in Fig. 6, seed 1 in Fig. 7, seed 2 in Fig. 8, seed 3 in
Fig. 9, seed 4 in Fig. 10, seed 5 in Fig. 11, seed 6 in Fig. 12, seed 7 in Fig. 13, seed 8 in Fig. 14, seed
9 in Fig. 15.

We see that some labels are neighbours for all ten models. For example, “automobile” and “truck”
are neighbours for all seeds and “cat” and “dog” are neighbours for all seeds. However, other labels
sometimes have varying neighbours. For example “airplane” and “bird” are neighbours for seeds 2, 3,
5, 6, 7, but not for the remaining seeds. In seeds 1, 4, 8 and 9, the “frog” label is put between them,
and in seed 0 the labels are permuted even further. This behaviour might arise because inputs for
some labels are so similar that it would aversely affect the performance of the model to place them
far apart, while the embeddings of inputs for other labels can be placed in several equally good ways.
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Figure 7: Illustration of representations of model trained on CIFAR-10, seed 1.

Figure 8: Illustration of representations of model trained on CIFAR-10, seed 2.

Figure 9: Illustration of representations of model trained on CIFAR-10, seed 3.

Figure 10: Illustration of representations of model trained on CIFAR-10, seed 4.

50



Figure 11: Illustration of representations of model trained on CIFAR-10, seed 5.

Figure 12: Illustration of representations of model trained on CIFAR-10, seed 6.

Figure 13: Illustration of representations of model trained on CIFAR-10, seed 7.

Figure 14: Illustration of representations of model trained on CIFAR-10, seed 8.
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Figure 15: Illustration of representations of model trained on CIFAR-10, seed 9.

Figure 16: (Left) We evaluatedλLLV and df ,g for a reference model and a constructed one where we progressively
increase the noise added to the embeddings. As more noise is injected, the two models display higher dλLLV (up
to 0.25), while the representation dissimilarity df ,g does not exceed 0.1. (Right) We observe a similar trend
for trained models, with a slight increase in df ,g when dλLLV approaches 0.25. We note that the bound given by
Theorem 4.7 remains valid for both cases.

F.6 Illustration of Bound on Constructed and Trained Models

Experimental setup. We compare both constructed models and models trained on synthetic data. For
the constructed models, we compare a reference model to a perturbed version constructed by adding
Gaussian noise to the reference model’s embedding representations (as described in Appendix F.1).
For models trained on synthetic data, the setup is the same as described in Appendix F.2

Results. In Fig. 16 (left), we observe that the maximum distance between representations gradually
increases with the distance between probability distributions while staying below the bound of the
Theorem 4.7. We find that not all the trained models have distance dλLLV small enough for the bound
to be non-vacuous. In this case, we report only those distances that are small enough for the bound to
be non-vacuous between trained models in Fig. 16 (right) and see that the bound remains valid.

F.7 Wider Models Have more Similar Distributions - Extra Plots

We here report the empirical trend that wider networks induce more similar distributions and more
similar representations for models with 10 classes (Fig. 17 dLLV(left) and max dSVD(right)) and 18
classes (Fig. 18 dLLV(left) and max dSVD(right)). Note that with more classes, we have less models
among the most narrow networks which achieve more than 90% accuracy. We have therefore left out
results in the plots where we had fewer than 5 models for the comparison. For 10 classes, this means
that starting at a width of 32, we have 9, 16, 19, and 19 models for the comparisons in the plot. For
18 classes, starting at a width of 64, we have 10, 12, and 19 models for the comparisons in the plot.
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Figure 17: We display how mean dLLV and max dLLV varies with increasing the neural network width for
models trained to classify among 10 classes. (Left) We observe decreasing mean dLLV as the network width
grows. The shaded area represents the standard deviations evaluated from different random seeds retraining.
(Right) A similar trend is also observed for max dLLV when increasing the network width.

Figure 18: We display how mean dLLV and max dLLV varies with increasing the neural network width for
models trained to classify among 18 classes. (Left) We observe decreasing mean dLLV as the network width
grows. The shaded area represents the standard deviations evaluated from different random seeds retraining.
(Right) A similar trend is also observed for max dLLV when increasing the network width.

G Computing Resources

Each model was trained using a single NVIDIA RTX A5000. For each number of classes (4, 6, 10,
18), training 20 seeds on the synthetic data took about 34 hours, summing to a total of 136 hours to
train the models on synthetic data. For the models on CIFAR-10, training 10 seeds took ∼27 hours.

The distances are calculated on a CPU-only machine: computing the distances for the models on
synthetic data required less than 2 hours, whereas the evaluation on models in CIFAR-10 required
around 4 hours. Evaluating the accuracy of models on synthetic data was also done on the CPU,
taking less than 20 minutes in total.

H Assets

CIFAR-10. We used the CIFAR-10 dataset as loaded with torchvision package19. The dataset
from[31] and contains 50, 000 images for train and validation, and 10, 000 images for testing.

Python Packages. All experiments are conducted with Python 3.11 and used pytorch 2.5.1. Other
packages are reported in the repository at github.com/bemigini/close-dist-rep-sim.

19https://docs.pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html
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