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Evaluating VLMs’ General Capability on Next Location Prediction
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Abstract

Predicting the next location is a hallmark of spa-
tial intelligence. In real-world scenarios, humans
often rely on visual estimation to perform next-
location prediction, such as anticipating move-
ment to avoid collisions with others. With the
emergence of large models demonstrating general
visual capabilities, we explore whether vision-
language models (VLMs) can perform similar
next location prediction as human. We present
VLMLocPredictor, a benchmark for evaluat-
ing VLMs on next location prediction tasks by
contributing: (1) the Visual Guided Location
Search (VGLS) module, a recursive refinement
strategy leveraging visual guidance to iteratively
narrow the search space for predictions; (2) a
comprehensive vision-based dataset integrating
open-source map taxi trajectory; (3) a human
benchmark established via a large-scale social
experiment. Through over 1000 queries on 14
VLMs, our findings indicate that VLMs exhibit
promising potential for next-location prediction
through our methods. However, their perfor-
mance currently does not reach human-level ac-
curacy. While some VLMs show potential to out-
perform humans in 24% scenarios, we believe in
the near future, VLMs will surpass the average
human performance in next-location prediction
tasks. The benchmark and resources are available
at https://ihhh.cn.

1. Introduction
Next-location prediction is a hallmark of spatial intelligence.
Driven by environmental factors, temporal intervals, move-
ment trends, and the intrinsic characteristics of moving en-
tities, the next position of a trajectory exhibits a degree
of predictability(Song et al., 2010). Interestingly, when

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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encountering scenes like anticipating movement to avoid
collisions with others, humans often make these predictions
not through mathematical calculations but through visual
estimations. This observation suggests that next-location
prediction is also a manifestation of visual intelligence.

With the rapid advancement of large models, vision-
language models (VLMs) have demonstrated remark-
able capabilities in comprehending and interpreting im-
ages(OpenAI, 2024a; Claude, 2024b; Gemini Team, 2024b).
Some researchers even argue that these models exhibit early
signs of artificial general intelligence (AGI)(Bubeck et al.,
2023). This paper, therefore, investigates a foundational
question: Do vision-language models (VLMs) have the
capability to make next-location predictions using vision
intelligence like human?

If VLMs possess similar capabilities, they also hold signifi-
cant promise to the task of next location prediction. Tradi-
tionally, next-location prediction frameworks have relied on
training specialized models for specific cities using large
volumes of data. However, leveraging the general VLMs
to perform universal next location prediction could enable
the development of generalized models for next location
prediction, transcending city-specific constraints.

To advance this investigation, we propose VLMLocPredic-
tor, a new vision-based benchmark that focuses on next
location prediction. This is a challenging task due to sev-
eral factors: 1) The movement of objects is influenced by
both their prior states and environmental constraints. 2) The
trajectories of objects exhibit logical patterns. 3) Object mo-
tion is further constrained by temporal intervals. Although
next-location prediction inherently involves uncertainty and
cannot achieve 100% accuracy, human predictions often
converge to a low error margin, demonstrating the spatial
capability. The framework is shown in Figure 1.

In VLMLocPredictor, we first developed a Visual Guided
Location Search (VGLS) module. This innovative module
employs a recursive strategy of iterative binary partitioning
of feasible regions. At each step, visual guidance is utilized
to divide the current region into smaller subregions, prompt-
ing the VLM to assess and prioritize the subregion most
likely to contain the next location, progressively narrowing
the search space and enhancing prediction accuracy.
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Problem

Hello, you are an expert in next-location prediction … 
This trajectory represents the movement of a taxi … 
Each arrow represents the distance of movement 
about 45 seconds … Gray lines in the [IMAGE] 
represent drivable roads … determine whether the 
next position … is more likely to be in the blue region 
or the yellow region … [omitted for brevity]

IMAGE

VLM

The user wants to predict the location of a taxi driver … I 
need to analyze the direction of movements  and the road 
network to extrapolate the likely next direction.
• The last arrow points roughly north-west.
• The roads around point 12 seem to allow movement …
• ...
  I will return the answer in JSON format, containing a 
key         . If the final answer is the blue region, the value 
should be      ; if the final answer is the yellow region, the 
value should be      .

Prompt

Update
Image

× N

Use Python to Draw Next Image

Reformat

Matching

The latitude and longitude of the 
predicted next location is
 [-8.632813,41.154516].

Real Next Location : [-8.630829,41.154498]
Predicted Next Location : [-8.632813,41.154516].
Distance Error (unit: meter) : 385.176, 

…

Open-Source Trajectory

Open-Source Map

Use Python to Calculate the AnswerUse Python to Calculate the Error Metrices

Figure 1. Overview of VLMLocPredictor. Using open-source trajectory and map datasets, we constructed trajectory images overlaid on
road networks. For each trajectory, we designed visual guidance that is input into pre-prompted VLMs, followed by iterative questioning
based on the model’s responses. Through this multi-step dialogue with the VLM, we derived predictions for the next location point. These
predictions were then compared with ground truth values to calculate the error.

Second, because taxi trajectories can be interpreted as mov-
ing objects, while road networks provide an environmental
context for their operation, we constructed a comprehensive
dataset by integrating open-source map data with publicly
available taxi trajectory data. Using this dataset, we sys-
tematically evaluate the performance of 14 different VLMs.
Each model’s performance was assessed through meticu-
lously curated 1160 queries.

Finally, we conducted a social experiment to evaluate hu-
man performance in the next location prediction. We devel-
oped an interactive trajectory prediction platform where
participants were tasked with predicting the next point
in the same test set as the large-scale models. This ex-
periment has collected over 10000 results and provides a
valuable benchmark for comparing human reasoning with
model performance. The platform is publicly accessible at
https://ihhh.cn.

Here are the main findings:

• Through the proposed method, VLMs are successfully
endowed with the ability to predict the next location.
The experimental results demonstrate that VLMs can
produce meaningful predictions rather than random
guesses. Moreover, they are capable of making com-
plex decisions, such as taking turns, while also adher-
ing to the constraints imposed by the road network.

• At present, the capabilities of VLMs still lag behind
those of humans. However, the best-performing VLM
has surpassed human performance in 24% scenarios
and outperformed experts in 15% cases, which we
consider an optimistic result.

• Based on the experimental results presented in this
paper, we hypothesize that, in the near future, VLMs
will approach the average human performance in next-
location prediction tasks on urban maps, and may even
surpass deep learning models and experts.

The goal of this study is to evaluate the capabilities of
general VLMs with training-free setting and demonstrate
that VLMs possess the ability to understand maps and
predict next locations. Given that Large Language Models
(LLMs) struggle to process complex map data(Wang et al.,
2023a), we believe that our findings pave the way for the
development of more effective next-location prediction mod-
els. We leave tuning specialized VLMs to be a promising
direction for future work.

2. Preliminaries
Definition 1 (Trajectory): Let a trajectory T be defined
as an ordered sequence of 13 spatial points, denoted as
T = {p1, p2, . . . , p13}. Each point pi (i = 1, 2, . . . , 13) is

2
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represented by its geographic coordinates pi = (lati, loni),
where lati and loni correspond to the latitude and longitude
values, respectively. To ensure consistency and applicability
in next location prediction tasks, the trajectory is processed
to be uniform with a constant temporal interval ∆t = 45s.

Definition 2 (Next Location Prediction): Next Location
Prediction is to learn a predictive function f such that:
f(T1:12) = p̂13, where p̂13 is the predicted location that
approximates the ground-truth p13.

3. VLMLocPredictor
In this section, we present the VLMLocPredictor, a compre-
hensive framework designed to evaluate the capabilities of
VLMs in the Next Location Prediction task.

3.1. Visual Guided Location Search

⋯

“Considering the road network 
topology, is the next location of the 
trajectory more likely to be in the 
blue area or the yellow area?”

VLM

“Considering the road network 
topology, is the next location of the 
trajectory more likely to be in the 
blue area or the yellow area?”

VLM

“Considering the road network 
topology, is the next location of the 
trajectory more likely to be in the 
blue area or the yellow area?”

VLM

Step 1:

Step 2:

Step N:

Because [Reason]
The next location is 
more likely to be at 
the yellow area.

Because [Reason]
The next location is 
more likely to be at 
the blue area.

Because [Reason]
The next location is 
more likely to be at 
the blue area.

More…

Figure 2. An illustration of VGLS. The image was initially di-
vided into two halves, colored blue and yellow. After querying the
VLM, the feedback was used to identify a probable region, which
was then further divided. The process was iteratively repeated over
multiple steps. Through this iterative feedback loop, the VLM
eventually provided a feasible solution for the next location point.

To evaluate the capability of VLMs to predict the next lo-
cation point, one critical challenge is how to equip these
models with the ability to predict the next location. At the
time of submission, VLMs do not inherently possess the
ability to annotate or localize points on a map. Given the
goal of this study is to assess the visual intelligence of
general VLMs, we deliberately avoid fine-tuning meth-
ods, as such approaches would contradict the premise of
evaluating general capabilities. Moreover, the emphasis on
visual intelligence precludes using explicit textual out-
puts, since animals themselves cannot directly calculate the
precise coordinates of the next point by texts.

We are inspired by related works that proved VLMs are
capable of interpreting specific regions delineated by a cir-
cle(Shtedritski et al., 2023) and can handle tasks recur-
sively(Wu & Xie, 2024). Building on these insights, we
propose a Visual Guided Location Search (VGLS) mech-
anism. The core idea is as follows: we begin by dividing
the map into two regions, coloring one half blue and the
other half yellow. The VLM is then tasked with determining
whether the next trajectory point is more likely located in
the blue or yellow region. Take the model that identifies
the blue region as more likely as an example, the blue re-
gion is further subdivided into one half colored blue and the
other yellow. This iterative process is repeated for N steps,
progressively narrowing down the feasible region until a
satisfactory resolution is achieved.

Fundamentally, we designed a hierarchical question-
answering process. In the first iteration, the model only
needs to answer a relatively simple question: which half
of the map is more likely to contain the next point? As
the process continues, the questions become increasingly
challenging, with scenarios emerging where both blue and
yellow regions may contain plausible solutions. This iter-
ative refinement ensures a systematic localization process,
leveraging the visual reasoning capabilities of VLMs.

3.2. Dataset

As the objective of this study is to evaluate VLMs by leverag-
ing the next location prediction task, we choose to conduct
our evaluation on taxi trajectory data for several key reasons:
(1) Taxi trajectories are inherently constrained by the road
network, as taxis primarily operate on predefined roads. (2)
Taxi trips are typically goal-oriented, meaning that consec-
utive trajectory points exhibit strong logical dependencies.
(3) There exist extensive open-source datasets of taxi tra-
jectories and road networks, providing a rich resource for
benchmarking VLMs in this task.

Dataset Construction: To this end, we selected two of the
most commonly used taxi datasets: the Porto Taxi Dataset1

and the DiDi (Chengdu) Dataset2. Both datasets comprise
hundreds of thousands of taxi trajectories, providing a solid
foundation for next location prediction. Additionally, we
obtained the road network data for these two cities from
OpenStreetMap3. Trajectories and road networks were over-
laid on the images and underwent a series of post-processing
and selection steps to ensure visibility.

Dataset Separation: Furthermore, through detailed data

1https://archive.ics.uci.edu/dataset/
339/taxi+service+trajectory+prediction+
challenge+ecml+pkdd+2015

2http://outreach.didichuxing.com/
research/opendata/en/

3https://www.openstreetmap.org/
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Evaluating VLMs’ General Capability on Next Location Prediction

Table 1. The Statistic of Our Dataset.
Easy Medium Hard

Number of Trajectories 36 44 36
Number of Queries 360 440 360
Average D12,13(m) 186 298 510
Average D1,13(m) 1957 2818 3085
Average Number of Roads 690 1045 1639
Average Square(km2) 6.94 9.3 10.08

analysis (see Appendix B.1), we identify a statistically posi-
tive correlation between the model’s performance and two
key factors: the number of roads present in the image
(Nroad) and the distance between the 12th and 13th trajec-
tory points (D12,13). Based on these findings, we partition
the dataset into three subsets: hard, medium, and easy.
Specifically, samples where both Nroad and D12,13 exceed
the median number are classified as hard, while those where
both values fall below the median number are labeled as
easy. The remaining samples constitute the medium cate-
gory. The detailed statistics of these subsets are provided
in Table 1. The table clearly demonstrates that the task
difficulty levels we defined follow a progressive pattern,

Prompt Consideration: Given that the task involves feed-
ing trajectory containing images into a VLM, prompt design
plays a critical role. Since our goal is to evaluate the visual
intelligence of VLMs, we deliberately avoid inputting GPS
coordinates directly into the model. Including GPS coordi-
nates might lead the model to bypass visual reasoning and
solve the problem directly through textual input. Hence, we
exclude explicit GPS information in the prompts to preserve
the task’s visual nature. The complete prompt can be found
in the Appendix A.

3.3. Human Evaluation Website

Figure 3. The screenshot of the website for human participants to
predict the next location

To evaluate whether the capability of VLMs can rival human

intelligence, we conducted a large-scale human experiment.
We developed an online platform where users are presented
with the same input prompts and images as the VLMs. The
task required users to directly select the most likely next
location within the given image. This platform is shown in
the Figure 3. By the time of this submission, the platform
has gathered over 10,000 annotated next-location predic-
tions from more than 100 participants. On average, each
trajectory includes over 100 human predictions, and the data
collection is still ongoing.

3.4. Evaluation

To compare our method with various baselines, we first
select metrics that enable fair comparisons across different
models. Therefore, we use Mean Absolute Error (MAE)
and Rooted Mean Squared Error (MSE) as evaluation
metrics. These metrics measure the error between the actual
12th point pi12 and the predicted 12th point, converted to a
distance measure (i.e., meters).

Since MAE and MSE only provide a macro-level quan-
titative assessment, they may not capture the usability of
predictions in certain applications. Often, only predictions
with errors below a specific threshold are considered useful.
To address this, we introduce a pass rate metric. We define
Rr as the proportion of predictions with errors less than r:

Rr =
1

N

N∑
i=1

I
(
ϕ
(
pi12, p̂

i
12

)
< r

)
, (1)

where I(·) is the indicator function, which equals 1 if the
condition is satisfied and 0 otherwise, and the function ϕ
converted the difference to a distance measure.

4. Experiment
4.1. Baselines

We selected four categories of models for our experiments.

1. State-of-the-art VLMs: These can be further
divided into the following subcategories: Inference-
time scaling VLMs, such as GeminiFlash2 Think-
ing 1219(Gemini Team, 2024b)(Guessed to be
∼175B), and QVQ-72B-Preview(Team, 2024).
General generative VLMs, including Claude3.5-
Sonet(∼175B)(Claude, 2024b), Claude3-Haiku(Guessed to
be ∼8B)(Claude, 2024a), Qwen2VL-72B-Instruct(Wang
et al., 2024), Qwen2VL-7B-Instruct(Wang et al., 2024),
Pixtral-Large-2411(124B)(MistralAI, 2024), Pixtral-
12B(Agrawal et al., 2024), GeminiPro-1.5(Guessed to
be ∼175B)(Gemini Team, 2024a), GeminiFlash1.5-
8B(Gemini Team, 2024a), GPT4o(∼200B)(OpenAI,
2024a), GPT4o-mini(∼8B)(OpenAI, 2024b), Llama3.2-
90B-vision-Instruct(Llama, 2024), and Llama3.2-11B-
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People

Random

Expert
RNN

Figure 4. The performance of models benchmarked in VLMLocPredictor. The x-axis represents the model’s parameter size, while the
y-axis denotes the MAE across all datasets. Circular markers indicate models with publicly known parameter sizes, whereas triangular
markers represent models whose parameter sizes are estimated either in this study or based on related literature.

vision-Instruct(Llama, 2024). The number of parameters of
some models are derived from (Abacha et al., 2025). The
Instruct in the model name may be omitted for simplicity.
Because GPT-o1(OpenAI, 2024c) temporarily only supports
their tier-5 users, we did not compare with it.

2. Human performance: We first collect individuals from
around 100 volunteers, whose performance is referred to
as the baseline People. Additionally, we engaged 20 do-
main experts specializing in trajectory analysis to predict
the next trajectory point, with their performance serving as
the baseline Expert.

3. Random Baseline: The baseline replicates the procedure
of our VGLS but outputs blue and yellow randomly.

4. Deep learning model: As this is not the primary focus of
our work, we selected the simplest model in this category, a
single-layer RNN(Elman, 1990). Moreover, this compari-
son is inherently unfair, as RNN are extensively trained on
urban trajectory data, whereas our evaluated models are gen-
eral VLMs that have not undergone any specialized training
for trajectory prediction.

4.2. Experimental Settings

Most VLMs were accessed via the OpenRouter API4. Es-
pecially, GeminiFlash2 Thinking was accessed through

4https://openrouter.ai

Google AI Studio5. For the RNN model, we configured the
hidden layer size to 64 with a single layer. The learning rate
was selected from the range [1e-4, 5e-4, 1e-3, 5e-3, 1e-2],
with the optimal value being 1e-3.

4.3. Overall Evaluation

4.3.1. QUANTITATIVE COMPARISON

To provide a clear illustration, Figure 4 presents the overall
MAE of all models across different settings. It is evident
that the Gemini1.5 series, Qwen2 series, Claude 3-Haiku,
and Llama 3.2 series exhibit either no or very weak capa-
bility in next-location prediction on maps. Notably, the
Gemini 1.5 series performs significantly worse than even
the Random baseline, despite the theoretical expectation
that random blue and yellow guessing should be the worst-
case scenario. This suggests that Gemini 1.5 may have an
inherently confused understanding of map-based spatial re-
lationships. In contrast, the Pixtral series, GPT-4o series,
QVQ, and Claude 3.5 Sonet demonstrate a certain level of
next-location prediction capability. Furthermore, as model
size increases, we observe a clear scaling effect, indicating
that larger models tend to perform better.

Additionally, Table 2 presents the complete experimental
results. One striking observation is that ordinary humans

5https://aistudio.google.com/

5
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Table 2. The results benchmarked in VLMLocPredictor. The bolded values represent the best-performing results among all VLMs.
Easy Medium Hard

Model Name MAE RMSE R100 R500 R2000 MAE RMSE R100 R500 R2000 MAE RMSE R100 R500 R2000

Expert 136.09 154.56 38.89 100.00 100.00 205.25 244.81 22.73 97.73 100.00 309.40 345.57 5.56 91.67 100.00
People 236.45 245.15 0.00 100.00 100.00 340.93 366.93 0.00 90.91 100.00 420.62 443.49 0.00 80.56 100.00

RNN 119.23 134.91 41.67 100.00 100.00 235.80 272.13 18.18 95.45 100.00 338.94 396.53 11.11 75.00 100.00

Random 1471.20 1623.26 0.00 5.56 72.22 1869.11 2126.27 0.00 11.36 59.09 1799.79 2063.48 0.00 11.11 52.78

Claude3.5-Sonnet 395.11 456.33 8.33 66.67 100.00 411.31 492.60 6.82 65.91 100.00 574.31 634.87 5.56 33.33 100.00
GPT4o 593.12 672.79 5.56 41.67 100.00 615.57 697.32 4.55 43.18 100.00 705.17 820.04 2.78 36.11 97.22

GeminiFlash2-Thinking 616.94 851.46 16.67 55.56 94.44 674.08 834.34 4.55 38.64 95.45 808.84 1097.23 5.56 41.67 94.44
Pixtral-Large-2411 639.85 773.43 8.33 47.22 97.22 912.35 1172.99 0.00 36.36 88.64 1180.27 1351.08 2.78 8.33 86.11
QVQ-72B-Preview 774.08 885.34 2.78 25.00 97.22 882.45 1164.98 2.27 27.27 95.45 1026.00 1418.25 0.00 22.22 86.11

GPT4o-mini 950.89 1113.79 0.00 16.67 97.22 1019.16 1333.31 2.27 29.55 88.64 1238.64 1467.57 0.00 8.33 80.56
Llama3.2-11B-vision 1155.59 1347.48 0.00 19.44 83.33 1579.42 1902.44 0.00 15.91 63.64 1301.34 1567.87 0.00 19.44 77.78

Pixtral-12B 1158.86 1434.75 0.00 25.00 80.56 1315.29 1720.98 0.00 15.91 81.82 1443.41 1720.40 0.00 19.44 69.44
Qwen2VL-72B 1212.56 1398.39 2.78 11.11 83.33 1485.76 1727.43 2.27 9.09 77.27 1591.81 1784.99 0.00 2.78 75.00

Llama3.2-90B-vision 1311.17 1451.96 0.00 11.11 83.33 1521.25 1737.67 0.00 4.55 75.00 1622.60 1810.81 0.00 8.33 72.22
Qwen2VL-7B 1381.97 1550.44 0.00 11.11 75.00 1514.28 1842.73 0.00 18.18 75.00 2000.92 2272.47 0.00 8.33 61.11
GeminiPro-1.5 1485.57 1710.08 0.00 0.00 75.00 1889.97 2237.94 0.00 0.00 59.09 2029.69 2424.87 0.00 5.56 66.67
Claude3-Haiku 1674.99 1840.93 0.00 0.00 66.67 1753.63 2133.02 0.00 2.27 63.64 1779.91 2015.82 0.00 2.78 66.67

GeminiFlash1.5-8B 1792.72 1945.49 0.00 0.00 63.89 2178.22 2482.96 0.00 0.00 52.27 2671.60 2965.60 0.00 0.00 33.33

fail to achieve an accurate prediction error below 100 meters
on any category of trajectory tasks. However, certain VLMs
successfully reduce the prediction error to below 100 meters,
suggesting that VLMs possess some level of intelligence
in predicting unknown future locations. However, human
consistently keep most trajectory errors below 500 meters,
with all errors below 2000 meters, demonstrating a strong
commonsense reasoning capability in spatial intelligence.
Among the VLMs, only Claude 3.5 Sonet is capable of keep-
ing all trajectory errors under 2000 meters. Moreover, in
terms of accuracy within the 500-meter range, there remains
a considerable gap between human performance and that of
current VLMs, indicating that most models still lack essen-
tial commonsense intelligence in spatial understanding.

Furthermore, as the task difficulty increases, more models
perform worse than even the Random baseline. For instance,
GPT-4o-mini performs comparably to Random in Easy and
Medium settings, but in the Hard setting, its R500 score even
falls below that of Random, suggesting its limitations in
comprehending complex road networks. In such challenging
scenarios, only the three largest models achieve satisfactory
performance, implying that model size plays a critical role
in understanding intricate maps.

Although VLMs have not yet surpassed RNNs, it is im-
portant to note that not all scenarios have sufficient data
for training RNNs. In contrast, the VLMs examined in
this study serve as a training-free approach to next-location
prediction, demonstrating the ability to adapt to various
scenarios without the need for task-specific training.

4.3.2. VLM V.S. HUMAN

By now, our results indicate that none of the current VLMs
outperform human performance. However, it is evident
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Figure 5. The win rate between baselines. The value in the i-
th row and j-th column represents the percentage of scenarios in
which the i-th model outperforms the j-th baseline.

that with increasing model scale, the performance of larger
VLMs is approaching that of humans. This suggests that,
in the near future, VLMs may reach human-level perfor-
mance averages.

We also conducted experiments comparing the win rates
between baselines as shown in Figure 5. The win rate for
each pair of models was determined by evaluating the error
comparison for each trajectory: for any two models, the
model with the smaller error was considered the winner.
The average win rate across the entire dataset was then
computed. The error for humans was represented as the
average human error.
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Chengdu 44Chengdu 160 Chengdu 12 Porto 111Porto 95 Porto 41

√ √ √ √ × ×

Figure 6. Case Study. The examples are all taken from the predictions of Claude3.5 Sonet. The first four represent reasonable predictions,
while the last two correspond to less reasonable predictions. The colored regions indicate areas that the model has excluded from
consideration, and the red star marks the model’s final predicted location.

From this experiment, we observe that experts outperform
all models in terms of accuracy. However, it is promising
that in 24% of cases, the best-performing VLM outperforms
the average human prediction. Moreover, in 23% of cases,
a VLM that was not specifically fine-tuning on trajec-
tory data outperforms an RNN that was pre-trained on
such data, demonstrating their potential to surpass models
specialized in trajectory prediction.

4.4. Ablation Study

Ours

w/o Taxi pmt

w/o Time pmt

w/o COT pmt

w/o Number pmt

w/o Road pmt
0

500

1000

1500

M
AE

 V
al

ue
s

    

Ours

w/o Taxi pmt

w/o Time pmt

w/o COT pmt

w/o Number pmt

w/o Road pmt
0

500

1000

1500

RM
SE

 V
al

ue
s

    
Ours
w/o Taxi pmt

w/o Time pmt
w/o COT pmt

w/o Number pmt
w/o Road pmt

Figure 7. The illustration of ablation study. This experiment
validates that all the proposed prompts exhibit a certain degree of
effectiveness. The notation w/o denotes the removal of a specific
prompt.

In Figure 7, we conduct a comprehensive ablation study on
the Pixtral12b model using the Porto dataset to validate the
effectiveness of each prompt in our method. In this experi-
ment: Ours refers to using the full set of prompts. w/o taxi
pmt removes the prompt describing the trajectory as that of
a taxi driver. w/o Time pmt removes the prompt indicating
that each trajectory point corresponds to a 45-second inter-
val. w/o COT pmt removes the chain-of-thought reasoning
prompt. w/o Number pmt removes the prompt specifying

that point 1 is the first and point 12 is the twelfth in the
trajectory. w/o Road pmt removes the prompt describing
the road network. The Pixtral12b model was chosen for its
optimal balance of performance and computational cost.

Our results show that the full-prompt configuration (Ours)
achieves the best MAE across all setups. Furthermore, we
observe the following: The most impactful prompt is the
taxi pmt. This likely indicates that explicitly constraining
the trajectory to the road significantly reduces the possible
trajectory space. The Time pmt, Road pmt, and COT pmt
all contribute significantly to performance, suggesting that
providing auxiliary information is effective in improving
model predictions. Although the w/o Number pmt config-
uration shows slightly better results in RMSE, the MAE
metric provides a more intuitive measure of prediction qual-
ity. Therefore, we retain the Number pmt in our final design.

4.5. Case Study

In this section, we present a visual analysis of selected
prediction results from Claude3.5 Sonet. The first four
examples illustrate reasonable predictions, while the last two
exhibit less reasonable outcomes. More examples including
textual outputs can be found in the Appendix D.1.

First, in the Chengdu160 trajectory, which features near-
uniform motion, the model accurately predicts the next loca-
tion along the uniform trajectory, demonstrating its inherent
spatial reasoning capabilities. Similarly, in the Chengdu12
trajectory, the model successfully identifies a feasible turn-
ing point after a curve, suggesting that it has learned a
reasonable understanding of the topological relationships
within the road network. In more complex scenarios, such
as Porto95 and Porto111, the model effectively selects a
viable next location based on both the trajectory and road
network constraints, further supporting its capability for
next-location prediction.
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However, the model’s predictions can sometimes be in-
fluenced by previous trajectory patterns. For instance, in
Chengdu44, the movement from the fourth to the fifth point
is minimal, leading the model to predict a stop at the 13th
point. Conversely, in Porto41, where the displacement be-
tween the 6th and 7th points is large, the model overesti-
mates the movement range when predicting the 13th point.
While these latter predictions may appear suboptimal, they
still indicate that the model is capturing historical trajectory
patterns. This suggests that its predictive capabilities can be
further improved with additional refinement and training.

4.6. The Accuracy in Each Step

To evaluate the step-wise accuracy of our proposed method
and assess whether the progressively smaller colored regions
in later steps affect the results, we conducted a comprehen-
sive experiment on six baseline models using the Chengdu
Dataset. At each step i, the model was provided with images
where the first i−1 steps were correct, allowing us to isolate
and assess its accuracy at step i.

Our findings indicate that Claude 3.5 Sonnet aligns well with
our expectations. The model demonstrates high accuracy
when the prediction region is large, as determining the next
location within a broad area is relatively straightforward
(e.g., distinguishing between left and right hemispheres).
However, as the prediction region shrinks, the accuracy
gradually declines, ultimately approaching 50% in the final
steps, where multiple directions may be equally plausible.
Nevertheless, due to constraints imposed by road networks
and spatial structure, its accuracy remains slightly above
50%, suggesting a strong capability to interpret maps and
perceive fine-grained spatial information.

In contrast, models such as GPT-4o experience a sharp accu-
racy drop beyond the eighth step, with performance rapidly
approaching or even falling below 50%, indicating diffi-
culties in processing small-scale visual inputs. Moreover,
Gemini Flash 1.5-8B and Qwen2VL-7B exhibit accuracy
fluctuations of around 50% throughout all steps, suggesting
that these models may lack the inherent capability to directly
interpret map-based spatial data, which ultimately results in
subpar performance.

5. Related Work
Due to the space limit, we only provide related works on
next location prediction. The full version of related work
can be found in the Appendix C.

In this paper, we define the Next Location Prediction task as
predicting the next location point given a sequence of past
trajectory points sampled at regular intervals. Historically,
early approaches modeled dynamic relationships in human
mobility using Markov chains(Norris, 1998), but these mod-

1 2 3 4 5 6 7 8 9 10
Step
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80

100
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cu

ra
cy

 (%
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Model

Claude3.5-Sonnet
Claude3-Haiku
GeminiFlash1.5-8B

GPT4o
GPT4o-mini
Qwen2VL-7B

Figure 8. The illustration of the accuracy in each step. Only
Claude 3.5 Sonet demonstrates relatively stable and strong predic-
tive performance. In contrast, all other models exhibit instability or
produce results that tend to be random when dealing with smaller-
scale images.

els were limited to first-order dependencies like (Gao et al.,
2019; Wang et al., 2021). With the advent of deep learning,
recurrent neural networks (RNNs)(Elman, 1990) became
popular for next-point prediction, yielding promising results
such as (Chen et al., 2023; Feng et al., 2022a;b). Recently,
large language models (LLMs) have been investigated for
leveraging semantic information along the journey to further
improve location predictions. The representive works are
LLM-Mob(Wang et al., 2023b) and Agent-Move(Du et al.,
2024). However, these approaches still face challenges
related to cross-city transferability. While some language-
based models have demonstrated a degree of cross-city
adaptation, this often requires fine-tuning LLMs, which
does not fully showcase their generalization capabilities.

6. Conclusion
In this work, we explored the capability of VLMs to predict
the next location point on map data through our bench-
mark, VLMLocPredictor. To this end, we proposed the
Visual Guided Location Search (VGLS) framework, which
equips VLMs with the ability to predict subsequent trajec-
tory points. We evaluated this framework by constructing
datasets and conducting human experiments. Our findings
demonstrate that VLMs possess a certain degree of predic-
tive capability for next-location tasks. Although current
VLMs still fall short of the performance achieved by RNNs
and human predictions, our experiments reveal that VLMs
surpass human predictions in 24% of scenarios and out-
perform experts in 15% of scenarios. Given that Large
Language Models (LLMs) struggle to process complex map
data, we believe that our findings pave the way for the devel-
opment of more effective next-location prediction models.
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A. Prompt

Figure 9. Our prompt.

B. Further Experiment
B.1. Do different situations affect model performance?

In this experiment, we investigate whether different contextual factors influence model performance, which in turn determines
the classification of tasks into easy, medium, and hard. We consider six potential factors: 1. The cumulative distance from
the first point to the twelfth point (D1,12). 2. The distance between the twelfth and thirteenth points (D12,13). 3. The
cumulative rotation angle from the first point to the twelfth point (A1,12). 4. The rotation angle between the twelfth and
thirteenth points (A12,13). 5. The number of roads present in the map (Road Count). 6. The geographical area covered (Area
Square).

For each of these factors, we compute its Pearson correlation coefficient with human prediction errors, as well as the
corresponding p-value. The Pearson correlation coefficient quantifies the linear relationship between two variables, while
the p-value measures the statistical significance of the correlation.

Table 3. PCC and Significance for Different Metrics
Metric PCC p-value
D1,12 0.16 0.09
D12,13 0.21 0.03
A1,12 0.16 0.08
A12,13 0.00 0.98
Road Count 0.21 0.02
Area Square 0.18 0.06

Our findings reveal that both D12,13 and Road Count exhibit a positive correlation (PCC> 0.2 and p-value < 0.05) with
prediction errors, suggesting that these two factors play a crucial role in determining task difficulty. Based on these results,
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we classify the dataset into easy, medium, and hard categories according to the methodology described earlier, using D12,13

and Road Count as the primary indicators.

B.2. Choice of Color Combinations

We also investigated the impact of two specific color pairs on the model’s performance in image-based trajectory prediction.
Six different color pairs were tested: Blue-Green, Blue-Yellow, Green-Yellow, Red-Blue, Red-Yellow, and Red-Green.
These tests were conducted using the Pixtral12b model on the Porto dataset.

Our findings reveal that the Blue-Yellow color pair yields the best results across all models. Consequently, in the previous
experiments, we chose Blue and Yellow as the distinguishing colors. This result is somewhat surprising, as one might expect
color pairs with stronger contrast, such as Red-Blue and Red-Green, to perform better. However, these high-contrast color
pairs resulted in poorer performance, suggesting that contrast might not always enhance model accuracy and could even
negatively affect the model’s decision-making process.

Table 4. Performance of Different Color Combinations for Annotation
Color Combination MAE RMSE

Blue-Green 1268.26 1483.99
Blue-Yellow 1136.82 1357.96
Green-Yellow 1366.23 1626.04
Red-Blue 1578.96 1972.51
Red-Yellow 1469.21 1737.07
Red-Green 1613.08 1978.04

C. Full Related Work
C.1. Vision-Language Model

Vision-language models (VLMs) are capable of reasoning through the input of both text and images. Inspired by the
success of large language models such as GPT(Brown et al., 2020), Claude(Anthropic, 2023), and LLaMA(Dubey et al.,
2024), which many believe mark the advent of AGI(Bubeck et al., 2023), researchers have naturally begun exploring
whether general-purpose models can also understand images. These models leverage large-scale datasets containing paired
image-text samples, enabling them to capture rich semantic relationships between modalities.

VLMs can broadly be categorized into two main types based on their underlying methodology. The first category includes
models such as CLIP(Radford et al., 2021), GLIP(Li et al., 2022), which rely on contrastive learning to generate representa-
tions by aligning image and text embeddings in a shared space. However, these models are not capable of generating texts.
The second category comprises generative models such as GPT4 series(OpenAI, 2024a;b), Gemini series(Gemini Team,
2024b;a), Pixtral (Agrawal et al., 2024; MistralAI, 2024), and Claude series(Claude, 2024a;b; Anthropic, 2023). These
models go beyond simple alignment, aiming to generate coherent and contextually rich outputs conditioned on multi-modal
inputs. By employing transformer-based architectures(Vaswani et al., 2017), these generative VLMs excel in complex
reasoning and content generation tasks, making them well-suited for applications requiring in-depth understanding and
generation of multi-modal data.

In this work, we focus on generative vision-language models, leveraging their capability to model complex spatial and
temporal relationships. However, while VLMs have already shown excellent performance across most datasets, fundamental
visual intelligence required for survival in many animals, such as Next Location Prediction, remains untested by existing
benchmarks.

C.2. Next Location Prediction

In this paper, we define the Next Location Prediction task as the problem of predicting the next location point given a
sequence of past trajectory points sampled at regular intervals. This task represents a fundamental aspect of biological
intelligence. For example, cats predict the next point in a mouse’s trajectory to catch it, and humans predict the next position
of nearby vehicles to avoid collisions. The focus of this work is on predicting the next location for taxis, a task of significant
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real-world importance. Accurate predictions can lead to reduced waiting times, improved route optimization, and better
resource allocation within transportation networks.

Historically, early approaches modeled dynamic relationships in human mobility using Markov chains(Norris, 1998), but
these models were limited to first-order dependencies like (Gao et al., 2019; Wang et al., 2021). With the advent of deep
learning, recurrent neural networks (RNNs)(Elman, 1990) became popular for next-point prediction, yielding promising
results such as (Chen et al., 2023; Feng et al., 2022a;b). Subsequently, Graph-based models and geographic feature data
were explored to enhance next-point prediction in works like (Li et al., 2021; Yang et al., 2022). Recently, large language
models (LLMs) have been investigated for leveraging semantic information along the journey to further improve location
predictions. The representive works are LLM-Mob(Wang et al., 2023b) and Agent-Move(Du et al., 2024). However, these
approaches still face challenges related to cross-city transferability. While some language-based models have demonstrated
a degree of cross-city adaptation, this often requires specialized LLMs, which do not fully showcase their generalization
capabilities.

D. Selected Dialogue Records
In this section, we present a complete ten step dialogue with the VLM, illustrating the iterative reasoning process. Addition-
ally, we showcase several failure cases where the VLM makes incorrect predictions. In these cases, the erroneous regions
are highlighted in red to clearly indicate the model’s mistakes.

D.1. A Complete Dialogue Procedure

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 1)
Let me analyze this step by step:

1. Trajectory Pattern Analysis:

- The taxi shows a consistent directional movement from point 1 to point 12

- The movement appears to be following a major road

- The arrows indicate relatively steady speed and direction

2. Current Position Analysis:

- Point 12 is located in the yellow region

- The taxi appears to be on what looks like a main road

- The movement has been predominantly in one direction

3. Movement Characteristics:

- The taxi has maintained a fairly straight path

- There are no sharp turns in the recent trajectory

- The speed (arrow length) has been consistent

4. Road Network Analysis:

- The taxi is following what appears to be a major road

- The road continues in the same direction in the yellow region

- There are no immediate major intersections visible that would suggest a turn

5. Final Reasoning:

- Given the consistent straight movement

- The continuation of the road in the same direction

- The absence of any obvious reason to turn back

- The momentum and direction of travel

- The taxi is most likely to continue in the same direction within the yellow region

Therefore, the next position (13th point) is more likely to be in the yellow region.

{"ANS": 1}

Chengdu

164
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 2)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi starts from point 1 and follows a relatively consistent direction

- The arrows show a general diagonal movement from left to right

- The most recent arrows (leading to point 12) show upward movement into the blue region

2. Road Network Analysis:

- The current position (point 12) is on a road in the blue region

- There appear to be continuous road connections in both the blue and yellow regions

- The road network shows a grid-like pattern

3. Recent Trajectory Consideration:

- The last few movements show a clear trend moving upward

- The taxi has just completed a significant northward movement

- The momentum and direction suggest continued movement in this direction

4. Final Analysis:

- Given the recent upward trajectory

- Considering the road network allows for continued movement in this direction

- The momentum and pattern suggests the taxi is more likely to continue into the blue region

- The last few movements strongly indicate a destination in the blue region rather than reversing course to the yellow 

region

{"ANS": 0}

Chengdu

164

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 3)
Let me think about this step by step:

1. First, let's analyze the movement pattern:

- The taxi started from point 1 and moved consistently eastward

- After crossing a major intersection, it made a sharp turn northeast

- The movement has been relatively steady in terms of speed (arrow lengths)

- The taxi is currently at point 12, heading in a northeastern direction

2. Looking at the road network:

- The current position (point 12) is at the boundary of blue and yellow regions

- There are available roads continuing in both regions

- The taxi appears to be on a main road that continues into the yellow region

3. Considering momentum and direction:

- The last few arrows show a clear northeastern trajectory

- The natural continuation of this path would lead into the yellow region

- To enter the blue region would require a sharp turn to the left, which breaks the current movement pattern

4. Based on typical driving behavior:

- Drivers tend to continue in their current direction unless there's a specific reason to turn

- The road structure supports continuing straight into the yellow region

- The recent trajectory suggests a destination in the yellow region

5. Final analysis:

- Given the consistent northeastern movement

- The road network layout

- The momentum of the trajectory

- The most likely next position would be in the yellow region

{"ANS": 1}

Chengdu

164

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Evaluating VLMs’ General Capability on Next Location Prediction

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 4)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi has been moving in a generally eastward direction

- The movement shows a clear pattern of following the road network

- The arrows indicate relatively consistent speed and direction changes aligned with road structure

2. Current Position Analysis:

- Point 12 is located at the edge of both yellow and blue regions

- The taxi has just completed a turn and reached this intersection

- There are road options available in both regions

3. Road Network Analysis:

- Looking at the gray lines (roads), there are viable paths in both the blue and yellow regions

- The road network appears to be denser in the yellow region

- The yellow region seems to be a more developed area with more potential destinations

4. Momentum and Direction:

- The last few arrows show the taxi moving towards and into the yellow region

- The final arrow's direction suggests continued movement into the yellow region

- There's no indication of an immediate turn that would take it into the blue region

5. Final Reasoning:

- Given the taxi's current momentum and direction

- Considering the denser road network in the yellow region

- Taking into account the natural flow of the trajectory

- The taxi is more likely to continue into the yellow region rather than make a turn into the blue region

{"ANS": 1}

Chengdu

164

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 5)
Let me think about this step by step:

1. Trajectory Analysis:

- The taxi started from point 1 and moved consistently eastward

- After crossing a major intersection, it made a sharp turn towards the northeast

- The movement has been relatively steady and purposeful

2. Current Position Analysis:

- Point 12 is at the edge of the blue region

- The taxi appears to be moving into the blue region based on the last arrow

- The road network continues in both blue and yellow regions

3. Movement Patterns:

- The taxi has maintained consistent direction changes

- No sudden U-turns or erratic movements are observed

- The most recent movement shows entry into the blue region

4. Road Network Consideration:

- Both blue and yellow regions have accessible roads

- The taxi's current trajectory aligns more with the blue region's road network

- Continuing the current direction would naturally lead into the blue region

5. Final Analysis:

- Given the steady movement pattern

- The current direction heading into the blue region

- The natural flow of the road network

- The momentum of the trajectory

Based on these observations, the taxi is more likely to continue into the blue region rather than make a turn into the 

yellow region.

{"ANS": 0}

Chengdu

164
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 6)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi has been moving in a generally consistent direction

- The arrows show a relatively smooth trajectory with few sharp turns

- The most recent movements are heading towards the northeast

2. Current Position (Point 12):

- Located at an intersection

- Has two main possible directions: continue straight (into blue region) or turn right (into yellow region)

3. Road Network Analysis:

- The road continues in both directions (blue and yellow regions)

- Both regions appear to be accessible from the current position

4. Movement Momentum:

- The last few arrows show a clear directional trend

- The taxi appears to be maintaining its forward momentum

- There's no indication of an upcoming turn

5. Final Analysis:

- Given the consistent forward movement pattern

- The momentum of the trajectory

- The lack of turning indicators in recent movements

- The natural continuation would be into the blue region

Based on these observations, the taxi is more likely to continue its forward momentum into the blue region rather 

than make a turn into the yellow region.

{"ANS": 0}

Chengdu

164

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 7)
Let me analyze this step by step:

1. Trajectory Pattern Analysis:

- The taxi has been moving in a generally consistent direction

- The movement shows a clear path from west to east

- The arrows indicate relatively uniform speed and direction

2. Current Position Analysis:

- Point 12 is at an intersection

- The taxi has just completed a turn towards the northeast

- There are two possible paths forward: straight ahead (yellow region) or continuing the turn (blue region)

3. Road Network Analysis:

- The road continues in both directions (into both blue and yellow regions)

- The yellow region represents continuing straight on the current trajectory

- The blue region would require maintaining the turning motion

4. Movement Physics:

- Given the taxi has just completed a turn

- It would be more natural to straighten out rather than continue turning

- The previous momentum suggests a straightening of trajectory

5. Decision Factors:

- Natural driving behavior typically straightens out after completing a turn

- The yellow region aligns better with the general east-bound trajectory

- The road network allows for straightforward movement into the yellow region

Based on these observations, the taxi is more likely to continue straight into the yellow region rather than continue 

turning into the blue region.

{"ANS": 1}

Chengdu

164
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 8)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi has been moving in a generally consistent direction

- The arrows show a relatively straight path with few major turns

- The most recent movements show the taxi heading towards the intersection where the blue and yellow regions are 

located

2. Road Network Analysis:

- The current position (point 12) is at an intersection

- There are two possible paths: one leading to the blue region and one leading to the yellow region

- Both regions appear to be accessible via the road network

3. Movement Momentum:

- The recent trajectory shows the taxi has been maintaining a fairly straight path

- The last few arrows indicate a slight tendency towards the direction of the yellow region

- Given the momentum and direction of travel, continuing straight ahead seems more likely

4. Distance and Time Consideration:

- Given that each movement takes about 45 seconds

- The distance to both regions appears similar

- The yellow region would require less turning and maintain the current direction

5. Final Analysis:

- Based on the momentum of movement

- The straightforward path ahead

- The natural flow of the trajectory

- The yellow region appears to be the more likely next position

{"ANS": 1}

Chengdu

164

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 9)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi has been moving in a generally consistent direction

- The trajectory shows a smooth path following the road network

- The arrows indicate steady movement with similar distances

2. Road Network Analysis:

- The taxi is currently at point 12

- There are two possible paths ahead: one leading to the blue region and one leading to the yellow region

- Both regions are accessible via the road network

3. Momentum and Direction Analysis:

- The last few arrows show the taxi moving upward and slightly to the right

- The taxi's current momentum and direction align more naturally with continuing straight ahead

- The turn required to reach the yellow region would be less natural given the current trajectory

4. Distance Consideration:

- Both regions appear to be within reasonable distance for a 45-second movement

- The blue region would require less deviation from the current path

- The yellow region would require a sharp turn to the right

5. Final Assessment:

- Given the taxi's consistent movement pattern

- Considering the natural flow of traffic

- Taking into account the momentum and current direction

- The blue region appears to be the more likely next location

{"ANS": 0}
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 10)
Let me analyze this step by step:

1. Looking at the trajectory pattern:

   - The taxi starts from point 1 and moves in a generally eastward direction

   - The movement shows a clear purpose, following the road network

   - The arrows indicate relatively consistent speed and direction changes that align with the road structure

2. Analyzing the current position (point 12):

   - The taxi is at an intersection

   - There are two immediate possible directions: straight ahead (blue region) or right turn (yellow region)

   - The taxi has just completed a relatively straight movement to reach this point

3. Considering road network:

   - The blue region continues along the current road

   - The yellow region requires a right turn

   - Both options are valid paths according to the road network

4. Pattern analysis:

   - The previous movements show a preference for maintaining direction when possible

   - The taxi has already made its major turns to reach the destination area

   - The momentum and direction suggest continuing straight ahead

5. Conclusion:

   - Given the consistent movement pattern

   - The preference for maintaining direction

   - The natural flow of traffic

   - The blue region appears more likely as the next position

{"ANS": 0}

Chengdu
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D.2. The Dialogue of Wrong Cases

User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 8, GPT-4o)
To predict the next position of the taxi driver (the 13th trajectory point), let's analyze the current trajectory and road 

options:

1. **Current Movement Pattern:** 

   - The trajectory shows a consistent movement along the main road, moving southward from point 1 to point 12.

2. **Road Analysis from Point 12:**

   - The road from point 12 continues straight south, potentially leading towards the blue and yellow regions.

   - There is no immediate intersection or turn visible that would suggest a deviation from the current southward 

direction.

3. **Proximity to Regions:**

   - The blue region is directly south of the current position and aligns more closely with the road trajectory.

   - The yellow region seems to be slightly off the main road and more to the southwest.

4. **Direction and Likelihood:**

   - Given the consistent pattern of southward movement, it is likely that the taxi will continue southward into 

the blue region.

Based on this reasoning, the next position is more likely to be in the blue region.

{

  "ANS": 0

}
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 2, GPT4o)
To predict the next location, let's analyze the trajectory and road layout:

1. **Current Movement Direction**: The trajectory from point 1 to point 12 is predominantly southward. 

2. **Available Roads**: The taxi is currently on a road heading directly south. The road continues into the yellow 

region.

3. **Road Layout**: The road layout suggests a continuation into the yellow region, as the blue region would require 

a left turn, which seems less aligned with the current trajectory.

4. **Obstacles**: There are no visible road connections leading directly into the blue region without deviating 

from the current path.

Given these observations, the taxi is more likely to continue south into the yellow region.

{  "ANS": 1}
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 4, GPT4o)
Response: 

 To determine whether the next position is more likely to be in the blue region or the yellow region, let's analyze the 

trajectory step by step:

1. **Trajectory Analysis**: The arrows indicate a clear pattern of movement primarily in the north-west direction 

from point 1 to point 12.

2. **Current Position**: At point 12, the trajectory is moving northwest along the road.

3. **Road Layout**: The road network suggests that continuing in the northwest direction aligns with the roads 

leading into the blue region.

4. **Region Proximity**: The blue region is in the direct path of the continuation of the current trajectory, 

while the yellow region is further north and might require a change in direction.

5. **Prediction**: Given the consistent directional movement and road alignment, it is more likely that the next 

trajectory point will fall within the blue region.

Therefore, the prediction for the next position, approximately 45 seconds later, is as follows:

{"ANS": 0}
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 5, Claude3.5 Sonet)
Let me analyze this step by step:

1. Looking at the trajectory pattern:

   - The taxi started from point 1 and moved eastward

   - Then took a sharp turn northward

   - Has been moving consistently northward for several segments

   - Currently at point 12, still moving in a northward direction

2. Analyzing the momentum:

   - The last few arrows show a strong and consistent northward movement

   - The taxi appears to be traveling along a main road

   - There's no indication of slowing down or turning

3. Looking at the road network:

   - The taxi is on what appears to be a major north-south road

   - This road continues northward into both regions

   - The blue region is directly north of the current position

   - The yellow region is slightly northeast/northwest of the current position

4. Considering probable behavior:

   - Given the consistent northward movement

   - The direct continuation of the road into the blue region

   - The momentum of the trajectory

   - The taxi is more likely to continue straight north

5. Conclusion:

   - Based on the trajectory's momentum and road network

   - The blue region (directly north) is the more likely next location

   - It would be the natural continuation of the current movement pattern

{"ANS": 0}
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User

Hello, you are an expert in next-location prediction … 

determine whether the next position … is more likely to 

be in the blue region or the yellow region … [See the 

full version in Appendix A]

VLM (Round 5, Claude3.5 Sonet)
Let me analyze this step by step:

1. Movement Pattern Analysis:

- The taxi has been moving consistently northward for the entire trajectory

- The arrows show a very straight path with minimal deviation

- The movement speed (arrow length) appears relatively constant

2. Current Position Analysis:

- Point 12 is at an intersection

- The taxi has just arrived at this junction

- There are multiple possible directions to turn from this point

3. Road Network Analysis:

- The yellow region has more complex road networks and intersections

- The blue region appears to have simpler, more direct routes

- Both regions are immediately accessible from the current position

4. Momentum Consideration:

- Given the consistent northward movement, there's a higher probability of continuing in the same general direction

- The momentum and direction suggest movement toward the blue region is more likely

5. Decision Factors:

- Historical trajectory shows strong directional consistency

- The blue region aligns with the established movement pattern

- The immediate road layout allows for continuation in this direction

- The 45-second timeframe would likely keep the taxi within the marked regions

Based on these observations, particularly the strong northward momentum and consistent movement pattern, the next 

position is more likely to be in the blue region.

{"ANS": 0}
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