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Abstract
We explore the downstream task performances
for graph neural network (GNN) self-supervised
learning (SSL) methods trained on subgraphs ex-
tracted from relational databases (RDBs). Intu-
itively, this joint use of SSL and GNNs allows
us to leverage more of the available data, which
could translate to better results. However, while
we observe positive transfer in some cases, others
showed systematic performance degradation, in-
cluding some spectacular ones. We hypothesize a
mechanism that could explain this behaviour and
draft the plan for future work testing it by charac-
terizing how much relevant information different
strategies can (theoretically and/or empirically)
extract from (synthetic and/or real) RDBs.

1. Introduction
The success story of large language models (Devlin et al.,
2018; Brown et al., 2020) hinges on self-supervised learn-
ing (SSL): however small is your task-specific dataset, your
model may now be pre-trained on a large chunk of hu-
mankind’s text records, with startling transfer performances
on downstream tasks. Deep neural networks (DNNs) in
other domains have similarly benefited from different SSL
techniques, including some based on image augmentations
(Chen et al., 2020; Caron et al., 2020; Chen & He, 2021).

Yet tasks often thought as “easier”—like predicting entries
from relational database (RDB) tables—are still addressed
by practitioners with fully-supervised, non-deep machine
learning (ML) models. Typically, one first “flattens” the
RDB to a single table: this lossy pre-processing step enables
the use of ML models accepting “tabular data” (Borisov
et al., 2021), a domain that has recently been called “the last
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unconquered castle for deep learning” (Kadra et al., 2021).

An attack angle toward this conquest is that DNNs need
not restrict themselves to tabular inputs: they may lever-
age more of the original RDB’s structure, an hypothesis
supported graph neural networks (GNNs) work (Cvitkovic,
2019; 2020). However, publications on deep graph-based
models for RDB data remain very rare, a situation perhaps
partly due to the lack of appropriate tooling (Vasiloglou
et al., 2021), but also to an embarrassing fact: even with ac-
cess to extra structural information, systematically beating
gradient boosted decision trees (GBDT) on RDBs flattened
with deep feature synthesis (DFS) (Kanter & Veeramacha-
neni, 2015) remains a challenge (Cvitkovic, 2019; 2020).

SSL presents another conquest opportunity for DNNs (Arik
& Pfister, 2021; Huang et al., 2020; Yoon et al., 2020;
Somepalli et al., 2021; Bahri et al., 2022): business ML
tasks often have access to a vast number of unlabeled RDB
entries in addition to the few labeled ones. Leveraging such
untapped data should only do better, right? Wrong. In our
experiments, pre-training on unlabeled data (followed by
fine tuning) often performed worse than a fully-supervised
version of the same model, with few cases doing slightly
better. In fact, some seemingly “reasonable” choices of SSL
strategy gave systematically worse linear probing perfor-
mances than a randomly initialized (untrained) instance
of the same model. The use of InfoNode, introduced in
Section 3, has shown limited improvements in some cases.

Taking a step back, we consider what kind of underlying
mechanisms could explain these observations. Simply put,
we hypothesize that SSL may have no way to discriminate
“useless” information (noise) from the one “useful” to the
downstream task (signal). We propose a framework allow-
ing future work to further investigate the question.

Contributions. To the best of our knowledge, we are the
first to approach classification tasks on RDB using GNNs
while leveraging unlabeled data using SSL pre-training. We
empirically show that, while the use of SSL may confer
some advantages for some datasets and labeled/unlabeled
ratio, SSL can actually lead to severe performance decrease,
i.e., negative transfer. We introduce InfoNode, which helps
to a limited extent. We propose an hypothesis as to what
phenomenon may cause the observed negative transfer, and
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(a) RDB. (b) Tabular data.

Figure 1: (a) A relational database (RDB) with three tables. (b) The
same information presented as tabular data (single table). Not all
RDBs may be so flattened without loss of information. In both
cases, the task is to predict the value of the target column Y .

elaborate a plan for future characterization work.

2. Background
Tabular data and relational databases. For our present
purpose, we define a Relational Database (RDB) as a col-
lection of tables whose columns may reference one-another
(or even themselves), while we reserve the term tabular data
to the case where there is a single table with no reference
whatsoever. Figure 1 gives examples of both these formats.

Following Cvitkovic (2020), we focus on the broad class of
problems where the goal is to predict values from a specified
target column of a specified target table from a specified
RDB, given all available relevant information in the RDB.

However, it is common in applications that some (or even
most) of the target column’s entries are unavailable at train-
ing time (e.g., requiring human labelling and/or relating to
future events), which precludes the use of the corresponding
rows in a supervised learning paradigm. In this work, we ex-
tend the supervised learning problem statement (Cvitkovic,
2020), allowing algorithms to leverage such unlabeled data.

Handling RDBs in a Machine Learning Pipeline. RDBs
(multiple tables) are commonly treated as tabular data (sin-
gle table) in ML pipelines. Of course, we may seek to
salvage some information from the other tables by adding
columns to the target table through procedures such as join
operations (e.g., taking Fig. 1(a) to Fig. 1(b)). Methods like
DFS (Kanter & Veeramachaneni, 2015) have been proposed
to automate such feature engineering. Regardless of how
the RDB was converted to a single table, it may be fed to
any machine learning algorithm for tabular data, including
tree-based (Ho, 1995; Chen & Guestrin, 2016) and deep
learning (Arik & Pfister, 2021; Yoon et al., 2020; Huang
et al., 2020; Somepalli et al., 2021; Bahri et al., 2022) ones.

Another approach represents a RDB as an RDB graph—a
graph with labeled directed edges, node types and node
features that has the same informational content as the RDB.
Indeed, each row of a table can be represented as a node
whose type identifies the corresponding table, the row’s
non-reference columns are stored as node features, and the

row’s reference columns specify the destination of a directed
edge bearing a label identifying the corresponding column.
The sampling strategy RDBTOGRAPH (Cvitkovic, 2020)
has been proposed as a pre-processing step to generate one
subgraph of the RDB graph for each row of the target table.

Concretely, such an RDB subgraph can be represented as
the model input x = (A,E). The node feature informa-
tion A is such that Ai provides the values Aik for the k-th
non-reference column of the row associated with node i
(excluding the target column for the target node, i.e., the
only node of this subgraph associated to the target table),
to which we append the name of the associated table (i.e.,
the node’s type). The edge information E specifies the ad-
jacency information: column r of the row associated with
node i has a reference to the row associated with node j if
and only if (i, r, j) ∈ E (i.e., there is a directed edge with
label r from node i to node j). When it is known, we note y
the entry in the target column of the row corresponding to
the target node (i.e., the value to be predicted).

Graph neural network on RDB graphs. GNNs are DNNs
designed so that their computational graph aligns with the
data’s graph structure, and many variations have been pro-
posed (Kipf & Welling, 2016; Gilmer et al., 2017; Xu et al.,
2018; Corso et al., 2020). Given an input x = (A,E), the
first step is to embed the node feature information A as an
initial representation

h0
i = Embed(Ai) ∀i, (1)

where the embedding function Embed(·) is typically
adapted to each node’s type. The structural information
E is then leveraged to update this representation using an
iterative scheme whose details depends on which kind of
GNN is being used. In the case of message passing neural
networks (MPNNs), message passing layers (Gilmer et al.,
2017) provide the node representation ht

i at layer t

mt
i =

∑
(i,r,j)∈E

Messaget−1

(
ht−1

i , r,ht−1
j

)
,

ht
i = Updatet−1

(
ht−1

i ,mt
i

)
,

(2)

where Messaget−1 and Updatet−1 are the message passing
and node update functions on layer t−1, and mt

i is the mes-
sage representation. Note that the message’s dependency on
r is not actually used in this work1.

Repeating this for T message passing layers provides the
node-level representation hT

i , which encodes information
up to the T -hops neighborhood of node i. If a graph-level
representation hg is required, it can be obtained by by ap-
plying a readout function Readout to the aggregate hT of

1The datasets we consider are such that, given an edge
(i, r, j) ∈ E, the type of node i and the type of node j uniquely
specify the value of r, so having Messaget−1 depend on r would
be redundant information.
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Table 1: Main results on three datasets. Dataset sizes are shown in parentheses. We use 80-10-10 for train-valid-test split. We run each
algorithm with 3 different random seeds and we report the mean and standard deviation of the ROC-AUC. When present, SSL pre-training
is always performed on the full (unlabeled) training set, while fine tuning is done on a (labeled) fraction S.

SSL
pre-training

Model Acquire (160k) Home Credit (307k) KDD Cup (619k)
S=10% S=100% S=10% S=100% S=10% S=100%

— RF 66.12 ± 0.03 68.38 ± 0.01 69.45 ± 0.23 71.68 ± 0.29 73.45 ± 0.34 76.98 ± 0.11
XGB 66.68 ± 0.00 68.53 ± 0.00 73.10 ± 0.00 77.72 ± 0.00 75.01 ± 0.00 79.86 ± 0.00

Built-in
TabNet 67.45 ± 0.08 67.61 ± 0.09 73.47 ± 0.65 77.89 ± 0.09 74.87 ± 0.58 78.16 ± 1.12
TabTrans 67.23 ± 0.13 68.45 ± 0.03 68.48 ± 0.42 70.29 ± 0.28 71.40 ± 0.64 76.83 ± 0.13
VIME 64.46 ± 2.96 67.20 ± 0.28 62.74 ± 0.86 70.64 ± 0.44 66.41 ± 1.07 73.60 ± 1.13

— GCN 67.93 ± 0.01 70.17 ± 0.08 76.08 ± 0.08 78.36 ± 0.08 75.09 ± 0.12 79.52 ± 0.21
PNA 69.31 ± 0.07 71.79 ± 0.05 76.38 ± 0.16 78.92 ± 0.06 75.23 ± 0.29 79.63 ± 0.03

Generative GCN 66.88 ± 0.08 69.75 ± 0.03 75.87 ± 0.07 78.16 ± 0.16 75.27 ± 0.06 79.75 ± 0.09
PNA 68.50 ± 0.07 71.48 ± 0.06 75.52 ± 0.19 78.60 ± 0.13 75.37 ± 0.11 79.72 ± 0.05

Contrastive:
InfoGraph

GCN 68.11 ± 0.16 70.06 ± 0.19 75.11 ± 0.08 77.96 ± 0.08 75.34 ± 0.06 79.43 ± 0.08
PNA 68.75 ± 0.18 71.39 ± 0.14 75.39 ± 0.33 78.76 ± 0.10 61.10 ± 0.34 79.31 ± 0.04

Hybrid:
InfoGraph

GCN 67.43 ± 0.02 69.95 ± 0.05 75.44 ± 0.01 78.04 ± 0.05 75.38 ± 0.04 79.73 ± 0.04
PNA 68.32 ± 0.13 71.51 ± 0.13 75.74 ± 0.06 78.65 ± 0.16 74.88 ± 0.03 79.87 ± 0.11

Contrastive:
InfoNode

GCN 66.23 ± 0.22 69.90 ± 0.06 75.02 ± 0.46 77.77 ± 0.17 74.06 ± 0.10 78.94 ± 0.05
PNA 67.35 ± 0.17 71.50 ± 0.14 65.52 ± 0.26 78.73 ± 0.06 64.78 ± 0.39 78.36 ± 0.28

Hybrid:
InfoNode

GCN 67.15 ± 0.05 69.78 ± 0.08 75.70 ± 0.04 77.90 ± 0.06 75.74 ± 0.05 79.80 ± 0.08
PNA 68.64 ± 0.07 71.71 ± 0.21 75.23 ± 0.04 78.70 ± 0.07 75.84 ± 0.05 79.64 ± 0.11

all the individual hT
i

hg = Readout
(
hT
)
. (3)

Finally, the prediction ŷ for the target column of the target
table can be obtained by applying a multi-layer perceptron
(MLP) to the graph-level representation hg, which is the
method favoured in (Cvitkovic, 2020). Alternatively, be-
cause of the special role played by the target node in the
RDB graph, we may directly apply the MLP to the target
node’s representation hT

0 .

3. Self-Supervised Learning on RDB Graph
We introduce five SSL strategies—one generative, two con-
trastive and two hybrid—allowing us to leverage our large
unlabeled dataset to pre-train the GNN.

Generative SSL. Denoising tasks are one of the most
widely-used generative SSL method. Here we adopt a sim-
ple strategy: mask-out a small fraction of the node attributes
by replacing them by random values. Concretely, for each
node i, a binary mask vector β of the same length as Ai

is generated, a node j of the same type as i is randomly
selected from the current batch, and the masked attributes
are A′i = β · Ai + (1 − β) · Aj . The objective is then to
recover the original attributes A from the noisy represen-
tation h′T = MPNN(A′, E). The actual loss LG is a sum
of mean squared errors for the continuous attributes and of
cross entropies for the categorical ones.

Contrastive SSL: InfoGraph. In general, contrastive SSL
maximizes the mutual information between two views of

the data. Taking the two views to be the node- and graph-
level representations has been widely explored, including
InfoGraph (Sun et al., 2020). Concretely, a pair of node-
and graph-level representations is positive if the node comes
from that graph and negative if it comes from another graph
of the batch. Given a function f(·, ·) (here the dot product)
and noting Pos (resp. Neg) the set of positive (resp. negative)
pairs, the EBM-NCE objective (Liu et al., 2022b) is:

LC-InfoGraph = E(i,g)∈Pos
[
σ(f(hT

i ,hg)
]

+ E(i′,g′)∈Neg
[
1− σ(f(hT

i′ ,hg′)
]
.

(4)

Contrastive SSL: InfoNode. Potential issues have been as-
sociated with GNN (Alon & Yahav, 2020). Of those issues,
“over-smoothing” states that node-level representations may
become indistinguishable and prediction performance may
thus severely degrade as the number of layers increases.
Conjecturing that it may be desirable for a node to “remem-
ber about itself”, we introduce InfoNode: a variation of
InfoGraph with extra contrastive terms where the two views
are the node’s initial (h0

i ) and final (hT
i ) representations:

LC-InfoNode = E(i,g)∈Pos
[
σ(f(h0

i ,h
T
i ) + σ(f(hT

i ,hg)
]

+ E(i′,j′)∈Neg
[
1− σ(f(h0

i′ ,h
T
j′)
]

+ E(i′,g′)∈Neg
[
1− σ(f(hT

i′ ,hg′)
]
.

(5)

Hybrid objective. We follow Somepalli et al. (2021); Liu
et al. (2022b), where combining contrastive and generative
SSL can augment the pre-trained representation. Using LC
to denote either of LC-InfoGraph or LC-InfoNode, and writing α0
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and α1 the coefficients for the generative and contrastive
objectives, the resulting objective function is:

L = α0 · LG + α1 · LC. (6)

4. Experiments and discussion
Datasets and evaluation metrics. We consider the same 3
RDB datasets as in Cvitkovic (2020), all pre-processed with
RDBTOGRAPH. For these datasets, the predicted labels are
binary and imbalanced, motivating the use of ROC-AUC.

Baselines and backbone models. We consider 2 decision
models: random forest (RF) and XGBoost (XGB) (Chen &
Guestrin, 2016). We consider 3 recent deep tabular models
supporting SSL pre-training: TabNet (Arik & Pfister, 2021),
TabTrans (Huang et al., 2020), and VIME (Yoon et al.,
2020). We consider 2 backbone models GNNs: GCN (Kipf
& Welling, 2016) and PNA (Corso et al., 2020). The readout
function is an attention module from Li et al. (2015).

Main results. Our main results are presented in Table 1. We
first emphasize the strength of XGBoost (Chen & Guestrin,
2016) on RDBs that were flattened with DFS (Kanter &
Veeramachaneni, 2015), and how straightforward it is to ap-
ply such methods compared to DNNs: these facts are often
missing in the DNN literature narrative, and embody the
“unconquered castle” mentioned in introduction. We also
reproduce past results (Cvitkovic, 2019; 2020) on the ad-
vantage of leveraging more of the RDB’s structure through
GNN-based supervised learning.

However, it is difficult to reach a clear conclusion con-
cerning our main hypothesis that leveraging unlabeled data
through SSL pre-training should improve downstream task
performances. Consider for example the case of the KDD
Cup dataset with S = 10% of labeled samples: for PNA,
both contrastive SSL strategies underperform by more than
10 points when compared to a purely supervised version of
the same model, yet the generative–InfoNode hybrid brings
the best results. For the two other datasets, we observe that
SSL pre-training typically results in weaker downstream
performances than the corresponding fully-supervised mod-
els. Appendix A reports linear probing results, with even
clearer examples of both negative and positive transfer.

5. Updated hypothesis and future work.
According to our original hypothesis, leveraging unlabeled
data with SSL should typically improve downstream task
performances. Of course, we were aware that there is no
free lunch (Wolpert & Macready, 1997): due to its inductive
biases, a model may be good for some tasks and bad for
others. However, we believe that our results are not just
random edge cases, but instead reveal a more systematic
SSL failure mode. In particular, we posit that RDB data
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Figure 2: Plan for a future characterization work. Arrows indicate
information flow while diamonds represent “and/or” aggregation
(closed diamond means “always present”). (a) We distinguish four
kinds of contributions to the data distribution using an information-
theoretic perspective. We call punctual noise the information from
an entry Aik that is independent from both the label y and the
other entries A \ {Aik}, and punctual signal the information inde-
pendent from other entries but shared with y. Similarly, we call
mutual noise the information shared by two (or more) entries Aik

and Ajl but not with y, and mutual signal the one shared with
y. (b) Conceptually, we can understand (labeled and unlabeled)
datasets as being “sampled” from the data distribution. How much
of the node properties and graph structure actually “makes it” to
the model depends on the pre-processing and representation strate-
gies: using the target table on its own gets less information than
DFS (Kanter & Veeramachaneni, 2015), which itself gets less than
RDBTOGRAPH (Cvitkovic, 2020). But “more information” does
not necessarily imply better downstream task performances: part
of that information is “noise”. (c) While supervised learning may
directly learn to ignore “noise” contributions and focus on “signal”
ones, only “punctual” and “mutual” information may be distin-
guished using unlabeled data alone. Our plan is to obtain analytical
bounds and measure empirical performances for different training
paradigms and/or SSL strategies, for real and synthetic datasets.

distributions contain traps—“interesting-looking noise”—
that some SSL strategies may “fall for”, and that “better”
models may be more prone to these traps.

Example of a simple “trap”. As an illustration of how
such traps may exist, consider a single-table RDB with 3
non-label columns—so a graph made of an isolated node
with 3 properties—and suppose that its probability distri-
bution factorizes as P(A) = P(A00) P(A01, A02). Given
unlabeled data samples A, the “best” that any SSL strategy
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could do is to learn P(A00) and P(A01, A02). The ability to
uncover the presence of mutual information I(A01;A02) be-
tween the corresponding datum is one of the characteristics
typically associated with “good” SSL models.

Now further suppose that P(y|A) = P(y|A00): any model
capacity dedicated on learning P(A01, A02) during pre-
training has, in retrospect, been wasted. From the perspec-
tive of predicting y,A01 andA02 are “noise”, all the “signal”
resides in A00. “Better” models, capable of uncovering the
intricate dependences in P(A01, A02), are more prone to
fall for the trap of noise made “interesting-looking” by its
mutual information.

Data distribution. More generally, we concretize the
noise/signal and mutual/punctual dichotomies alluded to
above and distinguish four kinds of contributions to the data
distribution, illustrated in Figure 2(a). In each case, we quan-
tify the information involved for a pair of datum (Aik, Ajl)
in relation to the label y, but this is only an example: our
proposed naming convention is meant to generalize beyond
such pairs (Bell, 2003), as reflected in the descriptive text.

• Punctual noise, e.g., H(Aik|Ajl, y)+H(Ajl|Aik, y), is
the information in individual datum that is independent
from both the label and the rest of the input.

• Punctual signal, e.g., I(Aik; y|Ajl) + I(Ajl; y|Aik), is
the mutual information between individual datum and
the label, but independent from the rest of the input.

• Mutual noise, e.g., I(Aik;Ajl|y), is the information
that is shared by more than one datum, but that is
independent of the label.

• Mutual signal, e.g., I(Aik;Ajl)− I(Aik;Ajl|y), is the
information that is shared by more than one datum as
well as by the label. It is a co-information (Bell, 2003),
e.g., I(Aik;Ajl; y), and may thus be negative.2

Notice that what constitutes “noise” or “signal” is here ex-
plicitly dependent on the downstream task: it is a priori
impossible to distinguish noise from signal at pre-training
time. However, it is possible to distinguish “mutual” con-
tributions from “punctual” ones: many SSL pre-training
strategies have the built-in inductive bias that “mutual is
a predictor for signal”. In those cases, systematic failure

2For example, suppose that Aik and Ajl are binary coin flips
and that y = Aik XORAjl. There are only 2 bits to be known
about (Aik, Ajl, y), but each of those three quantities indepen-
dently has 1 bit of entropy. No pair among those three quantities
has nonzero mutual information, but the co-information of the
three of them together is −1 bit. Interestingly, “good” SSL pre-
training strategies would conclude that there is likely nothing to be
gained by considering Aik and Ajl together, whereas their joint
knowledge actually gives a perfect predictor of y.

modes may be associated with a strong mutual noise and/or
punctual signal, both present in the above “trap” example.

Dataset pre-processing and model input. Models with
such a “mutual is a predictor for signal” bias may not fall
for traps they can’t see, making pre-processing and input
representation an important aspect of understanding how
this inductive bias may affects pre-training performances
(Figure 2(b)). In its simplest form, this is rather trivial: the
model cannot learn from columns and/or tables that were
dropped during the pre-processing of a RDB. But things
may be more subtle: a model’s ability to leverage graph
structure may play against it.

Suppose that there are N nodes, each with a single property
Ai0. Further suppose that neighbouring nodes (i, j) exhibit
mutual noise I(Ai0, Aj0|y), and that there is otherwise no
mutual information in A. If the number of edges is much
smaller than 1

2N(N − 1), a model that has no access to
the graph structure may be unable to identify such mutual
information. Conversely, a graph-aware model may have an
inductive bias that neighbouring nodes are more likely to
exhibit mutual information, and thus fall for the trap.

Future characterization work. We posited that many
SSL strategies may share the “mutual is a predictor for
signal” inductive bias, and that this could contribute to
why pre-training may cause negative transfer. But this
mutual/punctual dichotomy is definitely not the sole angle
we could consider and—far from having established cause-
effect relationships—we merely glossed over the plausibility
of such mechanisms.

Figure 2 shows an high-level plan to address such issues
in a future work. Our goal is to obtain analytical bounds
and measure empirical performances for different train-
ing paradigms and/or SSL strategies, probing them using
datasets as the independent variable. To this end, we will
characterize real-world datasets and specify synthetic ones
in terms of different high-level properties, such as the four
kinds of contributions listed above as well as their relation
to the graph structure.

In light of recent results indicating that pre-training molec-
ular graphs may also cause negative transfer (Wang et al.,
2022), it is natural to wonder what are the commonalities
shared with RDB. The graph nature of the data is an obvious
suspect, but it is not clear if it is part of the root cause, if
it merely exacerbates an already-present problem, and/or if
the problem is actually inherent to the tool—GNNs—and
not to the data.
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A. Linear Probing Results
Table 2 reports linear probing (LP) results as an indicator of the quality of the representations learned by different SSL
strategies. Interestingly, contrastive methods taken on their own perform rather poorly from this linear probing perspective:
the learned representations are at best comparable to random representations, and in many cases are much worse (“negative
transfer”). While not being particularly impressive, generative and hybrid SSL results do not show this counter-intuitive
behavior. Our understanding is that this generative/contrastive dichotomy is less visible in Table 1 because the models are
given the opportunity to “unlearn” bad representations during fine-tuning. The mechanisms hypothesized in Figure 2 could
a priori apply to both generative and contrastive SSL strategies, and investigating the mechanistic source of this dichotomy
is part of our plan for a future characterization work.

Table 2: Continuation of Table 1 for linear probing results. In all cases, a linear classifier is trained on the representations of frozen
models. For the first two rows, these frozen models have never been trained: they are still in their randomly-initialized state. In the
remaining rows, the models were first pre-trained with the different SSL strategies before being frozen.

SSL
pre-training

Model Acquire (160k) Home Credit (307k) KDD Cup (619k)
S=10% S=100% S=10% S=100% S=10% S=100%

Untrained
(random init.)

GCN-LP 54.36 ± 0.12 54.16 ± 0.22 52.00 ± 0.08 56.37 ± 1.72 51.78 ± 1.03 58.95 ± 0.45
PNA-LP 58.71 ± 0.73 61.68 ± 0.33 55.75 ± 1.96 62.76 ± 0.96 56.08 ± 2.43 62.05 ± 1.29

Generative GCN-LP 56.78 ± 0.08 58.19 ± 0.11 55.85 ± 0.00 62.52 ± 0.05 59.38 ± 0.05 64.38 ± 0.01
PNA-LP 64.85 ± 0.12 66.34 ± 0.06 61.53 ± 0.04 67.43 ± 0.04 65.65 ± 0.01 69.11 ± 0.06

Contrastive:
InfoGraph

GCN-LP 53.97 ± 0.26 54.52 ± 0.53 52.75 ± 0.07 55.54 ± 0.06 51.59 ± 0.00 52.05 ± 0.04
PNA-LP 50.83 ± 0.24 54.98 ± 0.22 52.68 ± 0.30 54.50 ± 0.69 51.20 ± 0.34 51.44 ± 0.10

Hybrid:
InfoGraph

GCN-LP 57.47 ± 0.13 58.43 ± 0.09 54.20 ± 0.01 60.54 ± 0.04 59.00 ± 0.01 62.86 ± 0.03
PNA-LP 63.78 ± 0.08 66.48 ± 0.02 59.57 ± 0.15 67.13 ± 0.14 55.39 ± 0.05 66.18 ± 0.02

Contrastive:
InfoNode

GCN-LP 53.76 ± 0.06 54.12 ± 0.09 54.78 ± 0.00 56.00 ± 0.04 52.69 ± 0.02 53.98 ± 0.08
PNA-LP 51.51 ± 0.33 51.64 ± 0.22 55.09 ± 0.49 55.80 ± 0.40 51.81 ± 0.42 53.12 ± 0.12

Hybrid:
InfoNode

GCN-LP 56.02 ± 0.15 58.19 ± 0.11 55.69 ± 0.02 59.79 ± 0.09 57.33 ± 0.01 60.21 ± 0.02
PNA-LP 65.42 ± 0.00 66.60 ± 0.03 59.35 ± 0.07 66.46 ± 0.15 64.52 ± 0.07 70.24 ± 0.02

B. Related Work: Self-Supervised Learning on Graph
Self-supervised learning (SSL) methods have attracted massive attention in graph structured data (Hu et al., 2020; Sun et al.,
2020; Liu et al., 2019; You et al., 2020). SSL strategies are often divided in two main categories (Liu et al., 2021b; Xie et al.,
2021; Wu et al., 2021; Liu et al., 2021a): generative and contrastive.

Generative SSL. Generative SSL focuses on reconstructing the original sample at the intra-data level. For example, Hu
et al. (2020) mask some nodes in the graph, and do the reconstruction on the masked items. More recently, Liu et al. (2022a)
add noise to the pairwise distances in the 3D molecular graph and the goal is to reconstruct the original distances.

Contrastive SSL. Contrastive SSL gets its supervised signals from the inter-data level. Positive and negative view pairs
are first defined, and the training task amounts to align the representations of positive pairs while contrasting the negative
ones. How such view pairs are defined is highly flexible. For example, Infograph (Sun et al., 2020; Velickovic et al., 2019)
uses node-graph pairs from the same graph as positives and pairs from different graphs as negatives.


