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Abstract. Vector bin packing is a problem in combinatorial optimiza-
tion that is particularly relevant in the area of cloud computing but also
finds application in various areas of logistics. The problem deals with
how to optimally place items into bins with constraints on multiple sep-
arate resource dimensions. We extend the problem to a cluster structure
of bins, including variable bin sizes and cluster costs. The proposed ex-
tension of vector bin packing, which we term VCSCVBP, allows us to
model a practical problem in the area of cloud computing, namely, the
cloud capacity planning problem, where servers are organized in clusters.
Optimizing data center capacity in terms of costs and fulfillment of cus-
tomer demands in the form of virtual machines has become crucial due
to the increasing demand for computing resources. We introduce several
novel heuristics, called CS-P heuristics, consisting of a packing and a
cluster selection step. The algorithms are evaluated with a benchmark
based on practically relevant cloud computing data. Substantial runtime
improvements are demonstrated by the computational experiments. For
two out of three considered cost scenarios, only a slight deviation of the
objective value obtained by the CS-P heuristics from the objective value
obtained by the solver is observed. By exploiting cluster information and
discarding certain cluster types through an additional procedure, this is
also achieved for the third cost scenario.

Keywords: Real-World Vector Bin Packing · Capacity Planning · Cloud
Computing

1 Introduction

In this paper, we extend the vector bin packing (VBP) problem to a cluster
structure of bins and consider cluster costs and variable bin sizes. Each cluster
consists of a set of bins and is associated with different costs. If at least one bin of
the cluster is used, the overall cluster costs are taken into account. This problem
applies to the area of cloud capacity planning for data centers, where virtual
machines (VMs) need to be placed on hosts, which are organized in clusters.
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Data center optimization has gained considerable relevance in recent years due
to the increasing demand for computing resources. As McKinsey & Company [4]
forecasts, the global spending on data center construction will be 49$ billion
in 2030, corresponding to a compound annual growth rate of 5.4%. Moreover,
since cost minimization is considered the main challenge in cloud computing,
according to the Flexera 2024 State of the Cloud Report [9], planning and using
cloud resources in the best possible way is of utmost importance.

Therefore, we formulate a novel model for cost minimization in tactical ca-
pacity planning in data centers. The model expecially allows for the definition
of clusters of hardware, which is a typical way of organizing servers in data cen-
ters. The proposed model is based on a VBP formulation, which we extend by
a cluster structure. In the following, we give an overview of the related work on
VBP and cloud capacity planning.

First, we discuss the related literature in the field of VBP. In d-dimensional
VBP, a finite set J of items is considered, where each item j has a defined size wjk

in dimension k with 1 ≤ k ≤ d. The items need to be packed into a bin i of
the set I of bins without exceeding the bin capacities Wik. The item sizes in the
different dimensions can be seen as d-dimensional vectors to be packed into the
d-dimensional bin size vectors. In the literature, the VBP problem is also known
as the multi-dimensional bin packing problem [14]. VBP is a generalization of
bin packing (BP), where items are packed into one-dimensional bins. Due to its
NP-hardness, several publications explore the development of heuristics for VBP.
A comprehensive overview of the different algorithms for VBP can be found in
Mommessin et al. [17]. The different approaches are divided into item-centric,
bin-centric, and multi-bin approaches. In addition, Nagel et al. [18] provide an
extensive analysis of different VBP heuristics. Various further work on the topic
of different problems in VBP exist. Research on BP and VBP, which focuses
on minimizing costs or considering variable bin sizes, is particularly relevant to
cloud capacity planning. Examples of such research include the variable cost and
size bin packing problem (VCSBPP) [6], vector bin packing with heterogeneous
bins (VBPHB) [10], and the two-dimensional vector packing problem with piece-
wise linear cost function (2DVPP-PLC) [12]. With respect to clustering, existing
studies address problems categorized as bin packing with clustering, but in this
context clustering refers to assigning items to a cluster such that only items of
the same cluster are packed together [3]. In contrast, our approach refers to clus-
ters as a grouping of bins into higher-level structures and additionally includes
costs associated with these clusters. This is where the novelty of our approach
lies. Beyond its application in cloud capacity planning, the introduced problem
is also relevant to the field of logistics, particularly for packing with predefined
compartments. In this paper, we select and adapt a subset of the algorithms
analyzed in [17] and [18] as a subroutine to the proposed heuristics for the novel
model formulation of VBP with bin clusters and costs. Section 3 gives a detailed
overview and justification of the selected algorithms.

Next, we continue with an overview of the related work on cloud capacity plan-
ning. Cloud computing offers access to on-demand computing resources [16]. A
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customer’s application is typically run in a VM that consumes resources in differ-
ent dimensions (memory, CPU, storage, and others) of the underlying physical
hardware (host/server) on which it is placed. In order to fulfill the customer de-
mand and not over-provide computational resources associated with high costs,
cloud providers have to estimate the required resources in their data centers.
Capacity management describes the cloud provider’s management process as-
sociated with the IT infrastructure and services [15]. Capacity planning, a sub-
process of capacity management, focuses on defining the capacity of the required
resources. Due to supply chain cycles of five months to one and a half years, the
data center providers have to decide which hardware to use regularly [2]. We
focus on the tactical task of cloud capacity planning from a cloud provider’s
perspective with a mid-term planning horizon and cost minimization as the ob-
jective. As tactical planning, we consider mid-term planning with a planning
scope of 6 to 24 months to meet demand in the most effective and profitable
manner [21]. Different publications cover the topic of cloud capacity planning.
The ones using mathematical programming mainly combine purchasing decisions
with long-term planning, such as location planning [8,19], or with short-term de-
cisions, such as scheduling [5]. Numerous publications deal with the operational
problem of VM placement on the hosts of the existing data center servers, which
is often modeled as VBP with different objectives, such as the minimization of
active hosts or energy consumption [22]. Other methods besides mathematical
programming include time series analysis [13] or simulation [2].

Since hosts in data centers are typically organized in physical clusters and
racks, sharing technical components, it is crucial to consider a higher level struc-
ture than host level as the planning size on a tactical level. A cluster structure
of hosts is already considered in Andreadis et al. [2], who also include a survey
of practitioners in their approach and whose problem scope comes closest to this
paper. In contrast to this paper, Andreadis et al. use discrete-event simulation
instead of mathematical programming to deal with cloud capacity planning. To
the best of our knowledge, no other publication in cloud capacity planning uses
mathematical programming and a cluster structure of hosts as purchasing and
operating size for planning. Therefore, we expand the existing VBP formulation
by a cluster structure of bins, shown in the following Section 2. A preliminary
version of the model formulated more specifically on cloud capacity planning
and not on VBP in general was introduced by us in [23].

The contributions of our paper with respect to the current state of research
are as follows:

– We introduce a mathematical problem formulation for variable cost and size
cluster vector bin packing (VCSCVBP).

– We present the novel CS-P heuristics with a focus on clusters with homoge-
neous bins that enable reduced runtime.

– We evaluate the CS-P heuristics with computational experiments based on a
benchmark data set generated with data from the field of cloud computing.

Therefore, Section 2 introduces the mathematical formulation and explains
its application to cloud capacity planning. The proposed CS-P heuristics to
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reduce runtime significantly for large instances are described in Section 3 and
numerically evaluated in Section 4. Section 5 summarizes the findings of this
paper and provides an outlook on further topics.

2 Problem Definition and Model

In this section, we present the variable cost and size cluster vector bin packing
(VCSCVBP) problem. This formulation builds upon the formulations of the
VBP and the BP problem with variable bin sizes and costs. For VCSCVBP, we
combine these problems and add a cluster structure of bins with cluster costs.

We consider a finite set I of bins. Each bin i ∈ I is specified by its sizes Wik

in the different dimensions k and has a maximum fill level fik. Moreover, we
have a finite set G of clusters. Each cluster g ∈ G consists of a fixed number and
configuration of bins IGg and has a fixed individual cost parameter cg. Every bin
belongs to a cluster. In addition, we consider a finite set J of items specified by
their sizes wjk in the d different dimensions. All sets and parameters are listed
in Table 1, together with the decision variables. In the considered problem, the
goal is to place each item into a bin in such a way that the costs for the used
clusters are minimized. Therefore, for each bin and cluster, the decision has to
be made whether or not to use it and, if yes, which items to place.

Table 1: Sets, parameters, and decision variables of the VCSCVBP
Sets
G Clusters
I Bins
IGg Bins in cluster g ∈ G
J Items
K Resource dimensions
Parameters
cg Costs of cluster g ∈ G
fik Max. fill level of resource dimension k ∈ K of bin i ∈ I
wjk Size of item j ∈ J in resource dimension k ∈ K
Wik Capacity of bin i ∈ I in resource dimension k ∈ K
Variables

xg =

{
1 If cluster g ∈ G is chosen,
0 otherwise.

yi =

{
1 If bin i ∈ I is chosen,
0 otherwise.

zij =

{
1 If item j ∈ J is placed into bin i ∈ I,
0 otherwise.
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VCSCVBP:

min Z =
∑
g∈G

cgxg (1)

s.t. xg ≤
∑
i∈IG

g

yi g ∈ G (2)

xg ≥ yi g ∈ G, i ∈ IGg (3)∑
i∈I

zij = 1 j ∈ J (4)∑
j∈J

wjkzij ≤ fikWikyi i ∈ I, k ∈ K (5)

xg, yi, zij ∈ {0, 1} g ∈ G, i ∈ I, j ∈ J (6)

The VCSCVBP problem can now be stated as follows: The objective (1) is
to minimize the overall costs composed of the sum of individual cluster costs.
Constraints (2) and (3) state that if one bin of a cluster is used, the overall
cluster is considered. Constraints (4) ensure that each item must be placed in
exactly one of the bins. Constraints (5) guarantee that the capacity of the bins
is not exceeded in any dimension k ∈ K, taking into account a maximum fill
level prescribed by fik. The cluster structure distinguishes the proposed model
from the related work on VBP presented in Section 1.

Next, we show how the VCSCVBP problem can serve as a model for cloud
capacity planning. Each bin represents a physical host in a data center. The
hosts are grouped into clusters, racks or any other grouping of hosts that share
the same infrastructure. VMs are used to place customer jobs on physical hosts.
Hence, each VM can be seen as an item in the packing problem. The cost param-
eters cg are used to model the individual costs of each cluster of hosts, which
can consist of multiple cost components and typically vary depending on the
specific underlying host configurations. For example, it might be much lower for
already existing clusters than for new ones. The parameter fik serves to keep a
safety buffer for each host or to allow over-provisioning in the planning. Note
that we choose a BP formulation instead of a cutting stock formulation in order
to be able to take placement restrictions of individual VMs into account. Such
placement restrictions typically occur in terms of VM affinities to specific hosts
or anti-affinities among VMs. The proposed model formulation is NP-hard. As
high solver runtimes pose a challenge in the practical application, we propose
heuristics for the VCSCVBP in Section 3.

3 Vector Bin Packing Heuristics for VCSCVBP

In this section, we present novel heuristics for solving the introduced mathemati-
cal formulation of the VCSCVBP problem. We differentiate two different cluster
structures concerning the contained bin types: Clusters with homogeneous bins
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and clusters with heterogeneous bins. A cluster with homogeneous bins consists
of a set of bins of the same type, i.e., all contained bins share the same technical
configuration. However, different cluster types can contain different bin types. A
cluster with heterogeneous bins may contain bins of different types. In this pa-
per, we present heuristics that can be applied to both clusters with homogeneous
and heterogeneous bins. However, the presented heuristics are more tailored to-
wards scenarios consisting of multiple types of clusters of homogeneous bins,
i.e., where each cluster type contains only bins of the same type, but different
cluster types can contain different bin types. For clusters consisting of heteroge-
neous bins with significantly different resource dimensions, alternate heuristics
might be more advantageous, or the presented heuristic could create an initial
solution to be improved with the help of further (meta)heuristics. Heuristics
specifically tailored towards clusters with a heterogeneous structure of bins will
be the subject of future work.

The presented heuristics consist of two parts, namely, (i) one of the several
vector bin packing algorithms and (ii) a cluster selection algorithm. Therefore,
the name of each introduced heuristic CS-P is made up of the general cluster
selection CS and the respective packing method P adjusted to the cluster struc-
ture, for example, CS-FFD for the cluster selection in combination with a First
Fit Decreasing algorithm. The two parts of the heuristics alternate. First, the
cluster selection begins with selecting the first cluster to be used. This is followed
by a loop of vector packing and cluster selection. Before we present the algo-
rithms in detail in Sections 3.1 and 3.2, we first introduce the terminology used
to define and update the status of bins and clusters. Therefore, we divide the
available bins into the following categories: A bin is called active if it is currently
considered in the packing algorithm. Moreover, a bin is called closed if it has
already been packed and is not considered for packing anymore. In addition, a
bin is called an unused bin of a used cluster if other bins in the same cluster are
already active or closed. Finally, a bin is called a bin of an unused cluster if none
of the bins in the cluster has been used yet. Opening a bin describes changing
the status of an unused bin in a used cluster to an active bin. Clusters can be
divided into two categories: A cluster is called a used cluster if one of the bins
of this cluster is active or closed, and an unused cluster otherwise.

The packing algorithms presented in Section 3.1 take a given set of clusters
as input or can work with a set of cluster types with an infinite set of clusters
each. For the clusters to be used, the algorithms determine which items to place
into which bin of which available cluster. This includes the decisions on when
to open a new bin from the unused bins of used clusters and when to close an
active bin. Only if a new active bin is needed and there are no unused bins of
used clusters, the cluster selection process presented in Section 3.2 determines
which additional cluster to use next. The bins of the selected cluster then change
their status from bins of an unused cluster to unused bins of a used cluster. Next,
the packing algorithm is called with the additional bins of the newly used cluster
as input. Initially, we start with a cluster selection phase because no bins are
in a used cluster. We set the status of the first chosen cluster to used and the
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contained bins to unused bins in a used cluster. Then, the first packing process
starts, and we continue the packing and cluster selection loop.

3.1 Vector Bin Packing Algorithms

We apply different state-of-the-art heuristics for the packing procedure, which
we describe in the following, including all adjustments that we introduce due to
the cluster structure of the bins. For the VBP algorithms, we orient ourselves
mainly on the analysis of the heuristics of Nagel et al. [18] and complement
it with the evaluation of Mommessin et al. [17]. Table 2 gives an overview of
the heuristics used and adjusted. Below, we describe each in detail. Different
methods to define weights to balance the different resource dimensions against
each other can be used.

Table 2: Overview of the used VBP algorithms for the CS-P heuristics
Algorithm Class Algorithm Norm
Item-centric First Fit Decreasing (FFD) [14] L2

Bin-centric Norm-based Greedy (NBG) [20] L2

Dot Product (DP) [20] Dot product
Local Search (LS) [18] L2

Multi-bin activation Hybrid Heuristic (HyL2, HyDP) [18] L2, dot product

For item-centric approaches, as Mommessin et al. [17] state, Best Fit Decreas-
ing (BFD) and Worst Fit Decreasing (WFD) algorithms do not significantly
outperform First Fit Decreasing (FFD) algorithms. We, therefore, use FFD in-
troduced by Kou and Markowsky [14]. Items are sorted in a decreasing order
and assigned to the bins using the first fit. Different norms, such as L1, L2, and
L∞, and the weights define the combined size v to sort the items. We iteratively
add a new bin each time the item to be placed does not fit in the active bins.

Three different bin-centric approaches are evaluated for the VCSCVBP prob-
lem: The Norm-based Greedy (NBG) and the Dot Product (DP) by Panigraphy
et al. [20] as well as the Local Search (LS) by Nagel et al. [18]. Only one bin
is active at a time. The algorithms by Panigraphy et al. [20] follow the same
procedure: In each iteration, the algorithm selects one item to be placed into
the active bin. Panigraphy et al. [20] introduce different methods to define this
item. NBG chooses the item that reduces the difference between the item size
and the remaining capacity of the active bin the most, considering the L2-norm.
DP selects the item with the largest dot product of the remaining capacity in
the active bin and the item size. If no unplaced item fits into the active bin,
the bin is closed, and a new one is opened. In contrast, the Local Search (LS)
algorithm follows a different procedure. First, LS [18] opens a bin, in which the
item with the largest combined size v fits, places it into this active bin, assigns
random items to fill the bin, and tries afterward to exchange placed items to
reduce the remaining space of the active bin concerning the L2-norm.

The third algorithm class considered is multi-bin activation. We apply the
Hybrid Heuristic (Hy) proposed by Nagel et al. [18] to the VCSCVBP problem.



8 L. Wolf et al.

Here, several bins are active simultaneously. Then, the best bin and the best
item to be placed are defined considering the remaining bin capacities of active
bins and the sizes of the unplaced items. A new bin is opened if one of the non-
assigned items cannot be placed into any of the active bins. To adapt the Hybrid
Heuristic to the considered cluster structure of bins, we use an incremental bin
activation strategy and add only one new bin at a time from the unused bins of
used clusters to the active bins. As suggested by Nagel et al. [18], we use the
L2-norm (HyL2) and the dot product (HyDP). The cluster selection algorithm
complementing the packing algorithm is presented in Section 3.2.

3.2 Cluster Selection Algorithm

This section presents the cluster selection process. When a new active bin is
needed to continue the packing algorithm, and there are still unused bins of used
clusters, one of these is set to active and filled. However, if there are no unused
bins of used clusters or the item to be placed does not fit into the bins of the used
clusters, then the cluster selection algorithm starts. Besides the used clusters, the
unused clusters, and the bins in the categories active bins, closed bins, and bins
of unused clusters, the algorithm takes an item as input. This item depends on
the packing algorithm.

In the following, the cluster selection algorithm is described, as displayed in
Algorithm 1. First, all unused clusters are sorted in ascending order by a newly
introduced cost/combined size ratio (c/v-ratio). To define the combined size v,
we use the same norm as the one used by the respective vector packing algorithm,
and we have the option to include weights. If the dot product is chosen, we
apply the L2-norm. Unit cost to volume ratios are also used in heuristics for
the VCSBPP [6]. For each cluster, the combined size of each of its single bins
is determined first and then summed up to define the cluster’s combined size
v. For clusters with the same c/v-ratio, the cluster with lower total costs c is
prioritized. Next, it is checked into which bin of the clusters in the sorted list
the item fits first. This cluster is set to active. The item considered depends
on the packing algorithm. For the item-centric algorithm, we hand over only
the current item we want to place to the cluster selection algorithm. For the
bin-centric algorithms, we use the largest combined size unplaced item, and for
the Hybrid Heuristic, we hand over the largest combined size item that was not
placeable into the active bins. In the case of clusters with heterogeneous bins,
the bins are sorted in a descending order considering v to fill larger bins first.

After all items are placed, we perform an additional post-processing step. We
want to prevent having a last used cluster with a low c/v-ratio ratio but with
high total costs, which is only partially filled. Therefore, we adjust the post-
processing procedure mentioned by Crainic et al. [6] for the VCSCVBP problem
to a cluster structure of bins. Suppose the items placed into the last cluster can
be packed into another cluster with lower total costs, even though the c/v-ratio
is higher than for the primarily chosen cluster. In that case, we repack the items
to reduce the overall costs. In Section 4, we conduct computational experiments
to evaluate the different heuristics.
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Algorithm 1 Cluster Selection

sort clusters_unused by c/v-ratio in ascending order
for cluster in clusters_unused do

if item fits into any bin of cluster then
add cluster to clusters_used
sort bins of cluster by v in descending order
append bins of cluster to unused_bins_of_used_clusters
delete cluster from clusters_unused
break

end if
end for

4 Computational Experiments

This section delineates the computational experiments to evaluate the introduced
heuristics. First, we describe the data set and the test environment used in the
experimental setup. Second, we investigate the results.

4.1 Experimental Setup

We create a data set based on publicly available data from cloud capacity plan-
ning and consider a two-dimensional problem (d = 2) with memory and CPU
as resource dimensions. Nevertheless, the introduced algorithms are all designed
for an arbitrary number of dimensions. As stated in Section 3, the CS-P heuris-
tics focus on a problem setting with clusters of homogeneous bins. We consider
four different cluster types. Due to the widespread use of Dell servers [11], we
use these for defining the host sizes [7]. The numbers of hosts per cluster are
generated arbitrarily. The cluster configurations are shown in Table 3. Note that
we consider three different cost scenarios: In cost scenario (a), the c/v-ratio in-
creases, and in cost scenario (b), the c/v-ratio decreases with increasing host
size. In cost scenario (c), the c/v-ratio increases more than in cost scenario (a).
Table 4 delineates the VM sizes. We use AWS EC2 instance sizes [1] and select
VM types with different memory-to-CPU ratios as they are typical for different
workloads: The VM types V1.x correspond to VMs for general purpose, whereas
V2.x are compute-optimized, and V3.x are memory-optimized VMs.

Table 5 presents the instance classes we use for the numerical evaluation. For
every instance class, we create ten different instances, where for each instance,
the actual VM demands per VM size are sampled randomly. The demand num-
ber displayed in the table serves as the mean for a normal distribution with a
standard deviation of 10% of the mean. The different VM sizes correspond to
the VM sizes displayed in Table 4. For example, in Class A1, the demand of Vx.1
means that we independently sample for V1.1, V2.1, and V3.1 with a mean of
µ = 5. As stated in [2], current practice in industrial applications is to over-
provision CPU resources while avoiding overprovisioning memory. Therefore, we
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Table 3: Cluster and host configurations of the cloud benchmark
Cluster type C1 C2 C3 C4
Logical cores per host 96 112 128 192
RAM [GB] per host 512 768 1024 2048
Hosts per cluster 15 15 10 10
c/v-ratio in cost scenario (a) 0.7 0.8 0.9 1
c/v-ratio in cost scenario (b) 1.3 1.2 1.1 1
c/v-ratio in cost scenario (c) 0.2 0.4 0.6 1

Table 4: VM configurations of the cloud benchmark
General-purpose VM V1.1 V1.2 V1.3 V1.4 V1.5 V1.6 V1.7
vCPU 8 16 32 48 64 96 192
RAM [GiB] 32 64 128 192 256 384 768

Compute-optimized VM V2.1 V2.2 V2.3 V2.4 V2.5 V2.6 V2.7
vCPU 8 16 32 48 64 96 192
RAM [GiB] 16 32 64 96 128 192 384

Memory-optimized VM V3.1 V3.2 V3.3 V3.4 V3.5 V3.6 V3.7
vCPU 8 16 32 48 64 96 192
RAM [GiB] 64 128 256 384 512 768 1536

arbitrarily select fCPU = 2 and fmemory = 0.9 as the maximum fill levels for
all hosts. For a given instance class and cluster type, we determine the number
of clusters needed if all items are placed only on this cluster type as an upper
bound for the solver. With nine different instance classes, three cost scenarios,
and a sample size of ten, we include 270 instances in our evaluation.

Table 5: Problem instances of the cloud benchmark

Class No. of clusters No. of demanded VMs
C1 C2 C3 C4 Vx.1 Vx.2 Vx.3 Vx.4 Vx.5 Vx.6 Vx.7

A1 10 7 7 5 5 5 5 5 5 5 5
A2 10 7 7 5 10 10 5 5 5 0 0
A3 10 7 7 5 0 0 5 5 5 10 10
A4 20 15 15 10 10 10 10 10 10 10 10
A5 20 15 15 10 20 20 10 10 10 0 0
A6 20 15 15 10 0 0 10 10 10 20 20
A7 30 25 25 15 20 20 20 20 20 20 20
A8 30 25 25 15 30 30 20 20 20 10 10
A9 30 25 25 15 10 10 20 20 20 30 30

The model is implemented in Python 3.10 and solved with Gurobi. All com-
putations are conducted with a computational time limit of 900 seconds. The
computational experiments run on an Intel Core i5 processor with 2.60 GHz and
16 GB of RAM running Windows 11.
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4.2 Computational Results

This section presents the computational results considering the introduced cloud
data set. First, we investigate the following three aspects: (i) runtimes of the
CS-P heuristics, (ii) solution quality of the CS-P heuristics, and (iii) comparison
of the best solution found by the CS-P heuristics and by the solver. Note that the
displayed results are obtained using static reciprocal average weights to prioritize
among dimensions. They are defined as the inverse of static average weights,
which are based on the average resource demand in this dimension [10,17].

Figure 1 displays the runtime of the different CS-P heuristics. Since the results
of the two bin-centric approaches, CS-NBG and CS-DP, are similar in terms
of runtime, we only show one of the two for clarity. The same applies to the
two Hybrid Heuristics. For all instance sizes, the item-centric heuristic CS-FFD
outperforms the bin-centric approaches CS-NBG, CS-DP, and CS-LS in terms
of runtime. The multi-bin activation heuristics CS-HyL2 and CS-HyDP have the
highest runtimes.

Fig. 1: Runtime comparison of the CS-P heuristics on the cloud benchmark
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Table 6 compares the different CS-P heuristics in terms of the best solution
found. It shows the percentage difference between the average minimal objective
value obtained over all heuristics’ solutions and the average objective value of the
currently considered heuristic. CS-LS outperforms the other heuristics on average
for most of the instance classes. This confirms the findings from Nagel et al. [18],
who show that LS performs as one of the best among the heuristics shown
for VBP. Nevertheless, CS-P heuristics other than CS-LS sometimes achieve
better results for an individual instance of the corresponding class. In addition,
particularly in small instance classes, the other CS-P heuristics often perform as
well as CS-LS on average. This results from the cluster structure of bins and the
fact that additional costs only occur for a new cluster and not for single bins.

Next, we compare the best solution obtained by the CS-P heuristics with those
obtained by the solver, as displayed in Table 7 and Table 8. Note that we limit
the comparison to the instance classes A1-A6. There exists a widening MIP gap
already for the instance classes A4-A6; hence, the informative value of larger
instances is reduced. Due to the different performances of the CS-P heuristics
depending on the instance, we use a combined approach. For each instance,
we calculate the objective value with each CS-P heuristic individually, more pre-
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Table 6: Performance comparison of the CS-P heuristics in % compared to the
best found solution with a CS-P heuristic on the cloud benchmark

Class
CS-

Class
CS-

FFD NBG DP LS Hy Hy FFD NBG DP LS Hy Hy
L2 DP L2 DP

A1_a 0 0 0 2.9 3.9 3.9 A5_c 0 0 0 0 0 0
A1_b 0 0 0 0 0 0 A6_a 1.0 1.0 1.0 0 1.0 1.0
A1_c 7.0 7.0 7.0 0 1.9 1.9 A6_b 2.9 2.9 2.9 0 2.9 2.9
A2_a 0 0 0 0 0 0 A6_c 3.8 3.8 3.8 0 3.8 3.8
A2_b 0 0 0 0 0 0 A7_a 0 0 0 0.7 0.4 1.6
A2_c 0 0 0 0 0 0 A7_b 8.8 8.8 8.8 0 8.8 8.8
A3_a 5.8 5.8 5.8 0 5.8 4.4 A7_c 5.0 5.0 5.0 0 4.1 4.6
A3_b 5.3 5.3 5.3 0 5.3 5.3 A8_a 0 0 0 0.3 0.5 1.3
A3_c 10.6 10.6 10.6 0 10.6 10.0 A8_b 0 0 0 0 0 0
A4_a 0.3 0.3 0.3 0 1.1 1.1 A8_c 4.0 4.0 4.0 0 3.9 4.3
A4_b 7.3 7.3 7.3 0 7.3 7.3 A9_a 0.6 0.6 0.6 0 0.9 0.5
A4_c 5.8 5.8 5.8 0 5.6 5.6 A9_b 8.5 8.5 8.5 0 8.5 8.5
A5_a 0 0 0 0 0 0 A9_c 3.2 3.2 3.2 0 2.6 2.4
A5_b 33.3 33.3 33.3 0 33.3 33.3

cisely, with all six introduced heuristics. We then use the minimal objective value
obtained over all heuristics’ solutions and compare it as a percentage difference
with the best solution found by the solver. In this case, the runtime of the com-
bined CS-P heuristic is the sum of the runtimes of all six different CS-P heuristics
applied to the problem instance. To improve the runtime in the future, it is also
possible to combine only a selection of the six heuristics. Tables 7 and 8 display
∆Z and ∆t as performance measures. ∆Z outlines the average deviation from
the best solution found by the solver. For every instance, the difference between
the objective value of the combined CS-P heuristic and the one achieved with the
solver, in relation to the latter, is calculated. Subsequently, the value is averaged
across all ten instances of the instance class. ∆t is the average difference in the
runtimes of the solver and the combined CS-P heuristic. In a similar fashion, ∆t
is calculated for each instance and averaged across the instance class. Significant
performance differences in the heuristics concerning the different cost structures
are evident. As Table 7 shows, the average ∆Z for cost structures (b) and (c)
is 3.1% and 3.7%, respectively. Hence, the combined CS-P heuristic performs
very well for these cost structures.

However, for cost structure (a), the average ∆Z is 15.4%, resulting from the
second column of Table 8. The significant difference for cost structure (a) results
from the fact that clusters with larger bins only have a slightly larger, i.e.,
worse c/v-ratio than clusters with smaller bins. However, larger bins enable more
packing possibilities. This may outweigh the slightly higher costs, which are not
considered so far in the CS-P heuristics. Based on this observation, we expand our
approach by introducing additional iterations of the combined CS-P heuristic.
In each iteration, an additional cluster type is excluded from consideration and,
thus, cannot be used: In the second iteration, only cluster types C2-C4; in the
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Table 7: Comparison of the combined CS-P heuristic with the solver on
instances of the cloud benchmark for cost scenario (b) and (c)

Class ∆Z ∆t MIP gap Termi- Class ∆Z ∆t MIP gap Termi-
(%) (s) (%) nated (%) (s) (%) nated

A1_b 0.0 1.9 0.0 10/10 A1_c 8.0 29.1 0.0 10/10
A2_b 0.0 -0.9 0.0 10/10 A2_c 0.0 14.1 0.0 10/10
A3_b 5.7 717.3 14.1 2/10 A3_c -0.1 462.6 1.2 8/10
A4_b 4.6 185.2 0.7 9/10 A4_c 1.5 866.5 5.9 0/10
A5_b 2.2 331.0 1.7 8/10 A5_c 11.2 541.1 3.7 6/10
A6_b 6.1 878.2 9.4 0/10 A6_c 1.7 874.4 5.7 0/10

third iteration, C3-C4; and in the fourth only C4 are considered. During the
post-processing of the last filled cluster, all cluster types can be used again. This
procedure increases the runtime but achieves a reduction of the deviation of the
best solution found by the combined CS-P heuristics from 15.4% to 2.0% for cost
scenario (a) as displayed in the fourth column of Table 8. This corresponds to an
improvement of the best solution found for 55 out of 60 instances. As anticipated,
cost structures (b) and (c) exhibit significantly less improvement. Consequently,
we do not present detailed results for these structures in the table: Regarding cost
structure (b), an improvement of the solution through the additional iterations
is only observed for 14 out of 60 instances, which results in a decrease of the
average ∆Z from 3.1% to 2.3%. For cost structure (c), only 4 out of 60 instances
can be improved by the additional iterations, which corresponds to a decrease
in the average ∆Z from 3.7% to 3.2%. It is important to note that the strategic
exclusion of cluster types should be adapted to the respective cost structure,
which is particularly beneficial when there are slight differences in the c/v-ratio.
Runtime can be reduced by considering only certain cluster type combinations
defined with the help of test runs.

Table 8: Comparison of the combined CS-P heuristic with the
solver on instances of the cloud benchmark for cost scenario (a)

Without Extension With Extension Solver

Class ∆Z ∆t ∆Z ∆t MIP gap Termi-
(%) (s) (%) (s) (%) nated

A1_a 9.4 29.7 0.0 18.0 0.0 10/10
A2_a 22.5 12.9 0.0 3.6 0.0 10/10
A3_a 10.5 633.8 5.0 620.7 9.5 3/10
A4_a 15.7 717.8 3.0 631.0 3.6 3/10
A5_a 21.8 782.0 0.9 728.9 5.4 3/10
A6_a 12.5 873.6 3.3 791.2 10.3 0/10

5 Conclusion and Outlook

In this paper, we introduced a new mathematical model called VCSCVBP, which
describes a VBP problem with a cluster structure of bins, variable bin sizes, and
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cluster costs. We motivated its application in the area of cloud capacity planning
with clusters as relevant cost drivers. Due to the increasing demand for cloud
computing resources, an optimization approach for tactical cloud capacity plan-
ning is of high importance to balance cost optimization and hardware utilization.
We introduced the novel CS-P heuristics for the VCSCVBP problem with a fo-
cus on clusters of homogeneous bins in the same cluster type consisting of the
two parts of vector packing and cluster selection. For the cluster selection, we
defined a new metric called cost/combined size-ratio (c/v-ratio). By conducting
computational experiments, we demonstrated the runtime benefits of the pro-
posed CS-P heuristics on a self-generated data set based on realistic data from
cloud computing. In two out of three cost scenarios, an average deviation of at
most 3.7% from the objective value obtained by the solver was reached with a
combined heuristic of the different CS-P heuristics. For the third cost structure,
we introduced an extension discarding different cluster types, which resulted in
an average deviation of 2.0% from the best solution found by the solver. While
this paper focused on clusters of homogeneous bins in the same cluster type, we
are currently extending our work to clusters of heterogeneous bins. Overall, this
paper opens up a new VBP problem setting for further research with a real-world
application.
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