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Abstract

Recent advances in test-time optimization have led to remarkable reasoning capabilities
in Large Language Models (LLMs), enabling them to solve highly complex problems in
math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still
significantly lag, especially for complex video-language tasks. To address this issue, we
present SiLVR, a Simple Language-based Video Reasoning framework that decomposes
complex video understanding into two stages. In the first stage, SILVR transforms raw video
into language-based representations using multisensory inputs, such as short clip captions
and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful
reasoning LLM to solve complex video-language understanding tasks. To handle long-context
multisensory inputs, we use an Adaptive Context Reduction scheme, which dynamically
determines the temporal granularity with which to sample the tokens. Our simple, modular,
and training-free video reasoning framework achieves the best-reported results on VideoMME
(long), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on
video reasoning capabilities shows that despite not being explicitly trained on video, strong
reasoning LLMs can effectively aggregate multisensory input information from video, speech,
and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning
tasks in video. More details can be found at https://sites.google.com/cs.unc.edu/silvr.

1 Introduction

Recent years have witnessed remarkable progress in general video understanding, with large multimodal
models achieving strong performance on tasks such as video question-answering (VideoQA) (Team et al.l
2023 Hurst et al., 2024 Bai et al.l [2025; [Zhang et al., 2024c), text-video retrieval (Zhao et al., [2023), and
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Question: }
Which of the following ingredients is :
not used in the artwork? 1]

[Reasoning Trace Q

The question is asking which ingredient is not used in the artwork. The options are: shell (option A), glue (option B), blue food
dye (option C), and oil (option D). Glue is definitely used (option B). Shells are also mentioned (option A). We also see a hand
adding a drop of blue food dye to the bottle (option C). Oil is also used (option D). So all four options are used?

Wait, maybe | made a mistake. Maybe the shells are part of the decorative items but not an ingredient used in the artwork’s
construction? The question is about ingredients used in the artwork. Therefore, the shells might be part of the decoration
around the bottle in the video but not part of the actual artwork (the bottle’s contents). So the answer would be A: Shell.

Figure 1: Strong reasoning capabilities of SILVR on complex video QA tasks. SiLVR leverages
recent advances in reasoning LLMs for complex video QA tasks. SiLVR achieves better performance than
strong proprietary non-reasoning models (i.e., GPT-40 and Gemini-1.5) on benchmarks like VideoMME (long),
Video-MMMU (Comprehension), Video-MMLU, and EgoLife, which include temporal, causal, long-context,
and external knowledge reasoning tasks. The example reasoning trace shows SiLVR’s capability to perform
self-correction, in which it successfully identifies that shells are decorative rather than functional.

temporal localization (Huang et all 2024; Ren et al., [2024; [Wang et al.l 2024c]). Despite the remarkable
progress, most existing methods struggle with complex video-language understanding tasks that require
strong reasoning capabilities (e.g., temporal, causal, long-context, external knowledge, etc.). Following the
success of reasoning LLMs (Guo et al., 2025; \Jaech et all [2024), several recent multimodal large language
models (MLLMs) proposed reasoning frameworks for multimodal image/video recognition tasks (Liu et al.
2025} [Fei et all 2024, Wang et al. 2024d}, [Wu et all, [2025}; [Feng et all 2025; [Chen et all 2025} [Li et al.
2025; Wang et all, 2025)). However, these methods either rely on high-quality Chain-of-Thought (CoT) data,
which is expensive and time-consuming to collect, or require task-specific reward designs, leading to poor
generalization. Moreover, such RL-based multimodal reasoning approaches are difficult to optimize and
often require a large amount of resources for training. Lastly, many recently proposed RL post-training
techniques lead to similar or sometimes even worse performance than standard Supervised Fine-tuning (SFT)
approaches (Wang & Peng, [2025; [Feng et al.l [2025]).

Motivated by the impressive reasoning abilities of recent LLMs (Guo et all 2025} [Jaech et al. [2024]), we
propose SiLVR, a simple, modular, and training-free language-based framework for complex video-language
reasoning tasks. SiLVR decomposes video understanding into two stages:

e In the first stage, we convert raw videos into rich language-based descriptions. Specifically, we densely
sample short clips from the input videos and use a pre-trained visual captioner (e.g., NVILA
2024D))) to extract captions for each clip. Additionally, we use automatic speech recognition (ASR) tools to
convert speech into language descriptions.

o In the second stage, we feed the rich language descriptions into a strong reasoning LLM (e.g. DeepSeek-

R1 (Guo et al., 2025)) to solve complex video-language understanding tasks.

To address the issue of processing a large number of tokens in potentially hour-long videos, we propose a
simple Adaptive Context Reduction scheme, which dynamically determines the temporal granularity with
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which to sample the speech and video tokens. Such a context reduction scheme enables us to significantly
reduce the number of input tokens to fit within the context length of an LLM, while maintaining strong
reasoning performance.

Compared to prior MLLM-based video reasoning frameworks, SiLVR is simple, modular, training-free, and
highly-performant. SiLVR achieves state-of-the-art results on multiple VideoQA benchmarks, including Video-
MME (long), Video-MMLU, CGBench, and EgoLife. Additionally, SILVR demonstrates strong spatiotemporal
grounding ability for video QA tasks that require localizing relevant video segments. On CGBench, a large-
scale grounded VideoQA benchmark, SiILVR outperforms the previous best method by a substantial margin
of 6.1% in mIoU. Additionally, our empirical study on video reasoning capabilities of our framework suggests
that despite not being trained on videos, strong reasoning LLMs can successfully aggregate information from
video, speech/audio for complex temporal, causal, long-context, and external knowledge reasoning tasks on
video inputs.

While SiLLVR is not based on any new complex design choices, it is simple, modular, training-free, and highly
performant and generalizes to multiple complex video-language understanding tasks. We believe the simple
yet effective design of SILVR will enable the research community to build on our work and use our simple
framework as a baseline to develop even more powerful video-language reasoning models.

2 Related Work

Language Reasoning Models. Recent work has significantly advanced the reasoning capabilities of
LLMs through various strategies, such as Chain-of-Thought (Wei et all, [2022; [Kojima et al, [2022), Self-
Consistency (Wang et al., 2023, and Monte Carlo Tree Search based methods (Wan et al., |2024; [Trinh|
let al., 2024; Xin et al [2024). Recently, works such as DeepSeek-R1 (Guo et al., 2025 demonstrated that
applying large-scale RL with accuracy and format rewards can induce emerging reasoning capabilities in LLMs.
These RL-based methods have shown strong improvements in tasks such as mathematics (Zheng et al., 2021}
|[Azerbayev et al. 2023) and code generation (Austin et all, 2021} [Hendrycks et al.| [2021). Motivated by these
successes, we propose to take advantage of the strong reasoning ability of LLMs for complex video-language
reasoning problems.

Multimodal Reasoning Models. There have been many efforts to augment MLLMs with reasoning
capabilities. One line of work focuses on decomposing the reasoning process into multiple sub-problems
let al) [2024} [Zhang et al. [2023c} [Xu et all [2024} [Zhang et all [2024b]). Motivated by the success of DeepSeek-
R1 (Guo et al. 2025), another line of work explores RL to elicit the reasoning ability of the MLLMs (Huang
let al., 2025; |Shen et al., 2025, |Yang et al., 2025b; |Zhang et al., |2025; Ouyang, 2025; Peng et al., [2025)). In the
video domain, VideoCoT (Wang et al., [2024d), Video-of-Thought (Fei et al., [2024), and VideoEspresso (Han|
propose to prompt the MLLMs with multiple reasoning steps before answering the question. In
addition, multiple concurrent works propose to use GRPO to enhance video reasoning (Wu et al.l [2025; [Feng
let al. |2025} |Chen et al., 2025} [Li et al., 2025; Wang et al., |2025). However, many of these RL-based methods
demand substantial training computation, and achieve only marginal improvements or perform even worse
than the SFT methods (Wang & Peng, [2025; [Feng et al., |2025). Unlike these methods, SiLVR is simple,
training-free, yet highly performant across a wide range of VideoQA benchmarks.

Complex Video-Language Understanding. A variety of benchmarks for complex video-language
understanding have been proposed, with a focus on comprehensive evaluation of videos with different
durations and questions spanning diverse categories (Fu et al., 2024} |[Li et al., 2024b; [Liu et al., 2024a; Rawall
let al.l |2024; Zhou et al. 2024). In parallel, several benchmarks have been introduced to assess the reasoning
capabilities of large video-language models (Hu et al. [2025; [Song et al 2025} |Zhao et al., |2025} [He et al.|
. On the modeling side, recent video MLLMs adapt image MLLMs by fine-tuning additional modules
for temporal modeling (Lin et al., [2023; [Li et al., |2023; [2024a; Zhang et al., 2023b). Several follow-up works
explored spatiotemporal token compression (Islam et al., 2025} Liu et al., [2024b; Bai et al., [2025; [Shen et al.|
[2024; |Shu et al., |2025), building hierarchical memory (Song et al., 2023; Jin et al., [2024; [Islam et al., 2024),
or incorporating information from external models (Tang et al., [2025; [Wang et al., [2024a)) for complex and
long video understanding. Another line of work explores training-free frameworks that first convert raw
videos into dense visual captions, then perform reasoning with off-the-shelf LLMs (Zhang et al., |2023a; Wang|

3 |
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:’ Question: what is the order of planet appearances in the video? ‘:
: A. Venus, Jupiter, Neptune. B. Mercury, Jupiter, Mars. :
=\ C. Venus, Neptune, Jupiter. D. Jupiter, Mercury, Neptune. ,=

Short Clip
Captioner

- - - - - \
2 Fire SRl 2 ] [ A mysterious, glowing object ] [ A massive volcanic ]:
I

1

f
1
@ H dark. aneular desien and suspended in the air against a eruption with thick, dark
{ el g backdrop of intense red and ... smoke and ash billowing ...
’

Speech \Cooo—————————————Z--———g--- - —e——m—————————————————e—o
00:03 -> 00:10 in the future Adaptive The questlfJn asks thc.e or(liler in whlch”planets are introduced.
. ...The subtitles mention "Mercury ..." around 00:03:23... After
ALY 673 SRS o context Jupiter, Saturn is mentioned with its rings and storms
00:07 -> 00:17 earth behind and Reduction i aw Sl o
Following Saturn, Neptune is discussed...Looking at the options,
search for a new home ... . > . - -
00:10 -> 00:20 in space but. where Reasonin option A is Venus, Jupiter, Neptune. Option C is Venus, Neptune,
: : sP o i Jupiter, which would be incorrect. @ visual Reasoning
our solar systemis a ... LLM

So the correct answer should be [~ A. [l Speech Reasoning

Figure 2: Method overview. SiLVR is a simple two-stage language-based video reasoning framework. Top:
The video is segmented into short clips and paired with speech. A clip captioner processes each segment
to generate visual descriptions. The speech is transcribed using ASR. Bottom: A reasoning LLM takes
the question, transcribed speech, and dense visual descriptions compressed by Adaptive Context Reduction
to perform complex video reasoning. In the shown example, SiLVR infers the correct order by integrating
information across both visual and speech modalities. The model correctly identifies the sequence through
reasoning and eliminating incorrect options.

et al.l 2024bj [Fan et al. |2024; [Ma et al.| 2024} [Liao et al., [2024; |Wang et al.| 2024¢; Min et al., [2024). In
contrast to prior agent-based video understanding methods, SiLVR focuses on solving complex video-language
reasoning problems with strong reasoning LLMs. Additionally, SILVR employs a simple single-pass design,
effectively integrates both visual and audio modality streams, and uses Adaptive Context Reduction to
efficiently manage long input context.

3 Method

Our method decomposes video-language QA into two stages: 1) extracting visual captions and transcribing
speech into text, and 2) performing language-based reasoning over the extracted textual descriptions. Such a
decomposed video reasoning design offers several benefits: 1) Simplicity: SiLVR does not require complex
RL-based video optimization or specialized modules for different tasks. 2) Generalizability: our method can
be applied to a wide range of complex video-language tasks without task-specific fine-tuning. 3) Modularity:
our method’s modular design enables seamless use of powerful visual captioning models and strong reasoning
LLMs. 4) Flexibility: SiLVR supports plug-and-play integration of different captioning models, speech
recognition models, and LLMs. An overview of our method is illustrated in Figure

3.1 Extracting Multimodal Descriptions

Given a video V, we first divide it into N non-overlapping short clips v = {v;}Y;, where each clip
v; € RTXHXWX3 contains T frames of height H and width W. Each clip is passed through a pretrained
visual captioning model M to produce a caption ¢;. The sequence of captions is denoted as C = {¢;}}¥,,

forming a temporally ordered description of the visual content.
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Algorithm 1 Adaptive Context Reduction
Require: Video V', Question @), LLM F'| Captioner M, Speech Recognition Model W, Initial Clip Length L
1: S < extractSubtitles(V, W)
2: limit < getContextLength(F)
3: while True do
4: v divideVideo(V, L)
C + generateCaptions(v, M)
Z < concat(S, C)
if countTokens(Z) > limit then
L+ Lx2
else
10: break
11: end if
12: end while
13: return answer(Z, Q, F)

In parallel, we apply an ASR model W to convert the speech into a sequence of textual descriptions
S = {s; }f:h where s; is a timestamped transcription of a spoken segment. K denotes the total number of
segments, which is determined by an ASR model. We then concatenate S and C one after the other to form
a rich, language-based description of the video (including audio/speech) and feed them into a reasoning LLM
as described next.

3.2 Language-Based Reasoning with Adaptive Context Reduction

To answer a question ) about the video, we feed the video captions C' and speech transcriptions S along
with @ into a reasoning LLM. We design several prompts to guide the LLM to reason jointly over visual
and speech information (for complete prompts see Supplementary Material). Unlike prior video reasoning
approaches, SiLVR performs reasoning entirely in the language space. However, the limited context window
of LLMs poses a significant challenge when processing long videos with rich multimodal content. To address
this issue, we introduce a simple adaptive context reduction scheme (see Algorithm . Our Adaptive Context
Reduction scheme dynamically adjusts the temporal granularity for sampling video clips. Specifically, it starts
with a small clip length and progressively increases it to reduce the total number of generated tokens. This
allows us to effectively fit the input tokens within the LLM’s context window for videos of varying durations
while maintaining strong video reasoning performance.

3.3 Implementation Details

We use NVILA (Liu et al., 2024b)) as the default visual captioning model. We use our Adaptive Context
Reduction scheme for all videos as described above. For speech transcription, we use Whisper-large-v3 (Radford
et al., [2022). Due to its strong reasoning performance, we use DeepSeek-R1 (Guo et all 2025) as the default
LLM and set the temperature to 1.0 for all experiments. We use the official evaluation code provided by
each benchmark, or use LMMs-Eval (Zhang et al 2024a)) when the official code is unavailable. Additional
implementation details are provided in the supplementary materials.

4 Experiments

4.1 Benchmarks and Evaluation Metrics

We conduct experiments on eight complex video-language understanding benchmarks: Video-MMMU (Hu
et al [2025), Video-MMLU (Song et al., [2025), MMVU (Zhao et al.| 2025), MMWorld (He et al., [2024),
VideoMME (Fu et al., [2024]), CGBench (Chen et al., [2024), EgoLife (Yang et al., 2025al) and CinePile (Rawal
et al., [2024)). Following Video-R1 (Feng et all [2025)), we group these benchmarks into two categories:
Reasoning Benchmarks and General Benchmarks. The reasoning benchmarks include Video-MMMU, Video-
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Table 1: Main results. We evaluate our method on a set of video reasoning benchmarks (Video-MMMU,
Video-MMLU, MMVU, MMWorld) and general video benchmarks (VideoMME, CGBench, EgoLife, CinePile).
We use the comprehension split of Video-MMMU and the long split of VideoMME (with subtitles). Based on
these results, we observe that SILVR achieves the best-reported results on Video-MMLU, VideoMME (long
split, with subtitles), CGBench, and EgoLife, outperforming strong proprietary models such as Gemini 2.0
and GPT-40. We bold and underline the best and the second best models in each benchmark, respectively.

Video Reasoning Benchmarks General Video Benchmarks

Video-MMMU Video-MMLU MMVU MMWorld‘VideoMME CGBench EgoLife CinePile

Model

Proprietary Models

Gemini 1.5 Flash 49.0 47.8 58.8 - 68.8 33.5 - 58.8
Gemini 1.5 Pro 53.5 - 65.4 51.0 77.4 37.8 36.9 60.1
Gemini 2.0 Flash - - 65.9 - - - - -
Gemini 2.5 Flash 79.2 - - - - - - -
Gemini 2.5 Pro 83.6 - - - - - - -
GPT-40 62.0 44.9 67.4 62.5 72.1 44.9 36.2 56.1
Claude 3.5 Sonnet 75.7 71.3 65.2 54.5 - 40.3 - -
Kimi-k1.6 76.7 - - - - - - -
OpenAl ol - - 75.5 - - - - -
Open-Source LMMs

LLaVA-OV-7B 31.0 33.4 37.9 - - 30.9 30.8 49.3
VideoLLaMA3-7B 46.0 - 45.0 - 61.0 - - -
Aria 53.0 - 49.3 - 66.3 - - -
DeepSeek-VL2 - - 52.1 - - - - -
Qwen-2-VL-72B - - 50.3 - 74.3 45.3 - -
Qwen-2.5-VL-7B 50.4 32.9 - - - - - -
Qwen-2.5-VL-7B 61.0 40.5 - - - - - -
Qwen-3-VL-8B 72.8 - - - - - - -
Qwen-3-VL-32B 79.0 - - - - - - -
Video-R1 52.4 - 52.1 - - - - -
SILVR (ours) 82.7 83.1 68.2 59.9 ‘ 7.7 51.8 42.0 59.4

MMLU, MMVU, and MMWorld, which primarily evaluate the reasoning capabilities of large video-language
models. Specifically, Video-MMMU and Video-MMLU focus on lecture-based video understanding, where
the model must extract knowledge from lecture videos to answer the questions. MMV U requires models to
apply domain-specific knowledge and perform expert-level reasoning to analyze specialized-domain videos.
MMWorld focuses on a diverse set of reasoning questions (e.g., counterfactual thinking, future prediction,
etc.) across videos from seven broad disciplines. The other four benchmarks (i.e., VidleoMME, CGBench,
EgoLife, and CinePile) are general video-language benchmarks, which contain various types of questions
and offer a comprehensive assessment of the video-language models. Specifically, VideoMME includes three
splits (short, medium, and long) based on the duration of the video. CGBench and EgoLife are designed
for long video understanding, with an average video duration of more than an hour. We focus on VideoQA
for all benchmarks and report QA accuracy as our primary evaluation metric. Additionally, we conduct
Grounded VideoQA experiments on CGBench to assess the model’s temporal grounding ability and use the
mean Intersection over Union (mloU) to evaluate the results.

4.2 Main Results

Video Reasoning Benchmarks. We present our results on video reasoning benchmarks on the left side
of Table[I] Our results indicate that SILVR achieves the strongest performance across all video reasoning
benchmarks among open-source models such as Qwen-3-VL-72B and Video-R1. Additionally, SILVR achieves
the best performance on Video-MMLU, outperforming the previous state-of-the-art model Claude 3.5 Sonnet
by a substantial 11.8%. On Video-MMMU, SiLVR outperforms strong proprietary models such as Gemini
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Table 2: Performance comparison between one reasoning (DeepSeek-R1) and two non-reasoning
(Llama 4, DeepSeek-V3) LLMs. Using DeepSeek-R1 reasoning LLM leads to significantly better results
over non-reasoning LLMs (Llama 4 and DeepSeek-V3). However, we also observe that the average gain on
video reasoning benchmarks (VideoMMMU, VideoMMLU, MMVU, MMWorld) is significantly larger than on
general video benchmarks (VideoMME, CGBench, EgoLife, CinePile). These results demonstrate that the
strong reasoning ability of DeepSeek-R1 is crucial for solving complex video reasoning tasks.

Video Reasoning Benchmarks General Video Benchmarks
VideoMMMU VideoMMLU MMVU MMWorld‘VideoMME CGBench EgoLife CinePile
Non-Reasoning LLMs

Model

SiLVR (Llama 4) 56.3 57.2 60.6 57.2 67.8 53.2 38.5 45.6
SiLVR (DeepSeek-V3) 65.7 74.7 62.9 58.7 75.0 50.2 42.2 56.7
Reasoning LLMs

SiLVR (DeepSeek-R1) 82.7 83.1 68.2 59.9 7.7 59.4 42.0 51.8

Average Gain over DeepSeek-V3: 48.0 Average Gain over DeepSeek-V3: +3.8

2.5 Flash by 3.5%. Furthermore, on MMVU, we observe that our modular framework, with DeepSeek-R1 as
the LLM, outperforms the unified multimodal model DeepSeek-VL2 by a significant margin of 15.9%. These
results suggest that despite the simplicity of our approach, it delivers strong performance across a wide range
of video-language reasoning tasks.

General Video Benchmarks. We present our results on general video benchmarks on the right side of
Table [I} Based on these results, we observe that SiLVR achieves state-of-the-art performance on three general
benchmarks: VideoMME (long split, with subtitles), CGBench, and EgoLife. Specifically, on VideoMME
and EgoLife, SiILVR outperforms the prior best performing method Gemini 1.5 Pro by 0.3% and 5.1%,
respectively. On CGBench, SiLVR achieves 51.8% accuracy, outperforming the previous state-of-the-art
method Qwen-2-VL-72B by a significant 6.9% margin. SiLVR also surpasses strong proprietary models,
outperforming GPT-40 by 6.9% and Claude 3.5 Sonnet by 11.5% on CGBench. Additionally, it is worth
noting that VideoMME (long), EgoLife, and CGBench are designed for very long-form video understanding,
with average video durations exceeding 60 minutes. Our strong results demonstrate that SILVR is highly
effective in comprehending long videos.

4.3 Reasoning Analysis

In this section, we conduct a more in-depth analysis of the video reasoning capabilities of our approach. To do
this, we systematically compare the performance of our framework when using reasoning (e.g., DeepSeek-R1)
vs. non-reasoning (e.g., Llama 4 and DeepSeek-V3) LLMs across multiple benchmarks. Additionally, we break
down the performance of our approach across different types of video reasoning questions (e.g., temporal,
causal, long-context, knowledge acquisition, etc.).

Reasoning vs Non-Reasoning LLMs. To study the impact of a strong reasoning LLM within our
framework, we compare the performance of our method when using one reasoning LLM (DeepSeek-R1) vs.
two non-reasoning LLMs (Llama 4 and DeepSeek-V3). The results are presented in Table [2l Our results
suggest several interesting trends. First, we observe that DeepSeek-R1 consistently outperforms Llama 4
across all benchmarks,; indicating that it is a much stronger LLM than Llama 4. Second, we note that using
DeepSeek-R1 leads to much larger performance gains on the reasoning benchmarks, where DeepSeek-R1
surpasses DeepSeek-V3 by a substantial 17.0% on Video-MMMU and 8.4% on Video-MMLU with an average
improvement of 8.0% on all video reasoning benchmarks. In contrast, while DeepSeek-R1 also produces
better results on general video benchmarks, the improvements over DeepSeek-V3 are much smaller (i.e.,
average improvement of 3.8% on general video benchmarks vs. 8.0% on the reasoning benchmarks). These
results suggest that the strong reasoning ability of DeepSeek-R1 is critical for solving complex video reasoning
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Table 3: Comparison with agent-based methods on VideoMME (long). Our method achieves
consistently higher performance than all other agent-based baselines, indicating its effectiveness for long-form
video reasoning.

Method Visual Captioner LLM Accuracy
VideoAgent CogAgent GPT-4 46.4
DrVideo LLaVA-NeXT GPT-4 51.7
VideoTree LLaVA1.6-7B GPT-40 54.2
VCA GPT-40 GPT-40 56.3
SiLVR (ours) NVILA-7B DeepSeek-R1 62.7

tasks and that our framework’s simple and modular design allows us to take full advantage of DeepSeek-R1’s
strong reasoning abilities on these complex video reasoning problems.

Performance Breakdown Across Different Tasks. In Figure[3] we report the performance gains of using
a reasoning LLM (DeepSeek-R1) over a non-reasoning LLM (Llama 4) for different question categories on
VideoMME, which contains 12 manually annotated categories. The four categories that we report on the left of
Figure belong to reasoning (e.g., temporal, spatial, object, and action reasoning). The other eight categories
are classified as non-reasoning and require general perception capabilities (e.g., action recognition, OCR,
etc.). Based on the results in Figure |3] we observe that compared to Llama 4, using DeepSeek-R1 achieves
a significantly larger improvement on reasoning questions (a gain of +11.1%) compared to non-reasoning
questions (a gain of +4.9%). This result is consistent with our observations in Table |2, which confirms that
reasoning LLMs bring greater benefits for tasks that require complex reasoning.

4.4 Comparison with Agent-based Methods

In Table [3] we compare our method with other agent-based approaches on the long split of VideoMME
(without subtitles). The baseline methods include VideoAgent Wang et al| (2024b)), VideoTree Wang et al.
(2024€)), DrVideo [Ma et al.| (2024), and VCA |[Yang et al. (2025c)). VideoAgent [Wang et al.| (2024Db)) iteratively
selects frames and gathers visual information before answering the query. VideoTree |Wang et al.| (2024¢)
builds a hierarchical and query-adaptive tree of keyframes to efficiently summarize long videos for LLM
reasoning. DrVideo Ma et al.| (2024) formulates long-video QA as iterative video-document construction,
where the model retrieves key frames and progressively generates the a textual description for reasoning.
VCA [Yang et al.| (2025¢) employs a reward-driven search strategy to explore informative video segments.
All baseline methods require multiple rounds of interaction between a heavy-weight LLM while our method
requires only a single LLM reasoning call. From Table [3] we can see that SiLVR substantially outperforms all
other agent-based methods, confirming its superior design for long-form video reasoning.

4.5 Efficiency Analysis

In Table [d we analyze the inference efficiency of our framework and compare it against prior video un-
derstanding models, including two video-native models (Qwen-2.5-VL, Video-R1) and two agent-based
methods (DrVideo (Ma et al., 2024)), VideoTree (Wang et al., [2024¢)). We follow the evaluation setup of
VideoTree (Wang et all 2024¢), which excludes ASR inputs, and measure the average processing time per
video on the VideoMME (Long) benchmark. To ensure fairness, we run all methods on a single A6000,
except for the Qwen-2.5-VL-7B (768-frame) setting, which requires four A6000 GPUs due to its high memory
demand. In addition to the best-performing variant of our method (SiLVR-best), we also report a more
efficient variant (SiLVR-fast), which uses a larger clip length to reduce the number of sampled clips and
generated captions.
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Table 4: Efficiency comparison with other methods on VideoMME (long). To ensure fair comparison,
we follow the evaluation setup of VideoTree and use the same GPUs for all methods. Both SiLVR-best and
SiLVR-fast significantly outperforms Qwen-2.5-VL, Video-R1, VideoTree and DrVideo. Notably, SiLVR-fast
runs 1.4x faster than Qwen-2.5-VL (768 frames), 5.3x faster than DrVideo, and 2.0x faster than VideoTree.
These results demonstrate that SILVR is both efficient and effective in complex video reasoning tasks.

Method Runtime (s) | Accuracy 1
Video-native Models

Qwen-2.5-VL 7B (32 frames) 5.2 44.7
Qwen-2.5-VL 7B (768 frames) 115.8 50.8
Video-R1 (32 frames) 14.2 50.2
Agent-based Methods

DrVideo 446 51.7
VideoTree 162 54.2
SiLVR-fast (ours) 83 57.2
SiLVR-best (ours) 442 62.7

Performance Gains of DeepSeek-R1
Compared to Llama-4

< 20 Reasoning Questions
Table 5: Results on knowledge acquisition and kal = m=m Non-Reasoning Questions
temporally grounded QA tasks. SiLVR achieves -% 15 Average Gain: 4.9%
the highest Axnowledge 0n VideoMMMU and the best 3 T
mloU on CGBench. g 10 %
VideoMMMU  CGBench £ H | I I 3
1deo enc o |
MOdel (Aknowledge) (HlIOU) E 0 il I ,,,,,,,,,,,,,,,,,, I Ii,
Qwen-2.5-VL-72B 9.7 - TR SR AR OR TF’Er?"i\}i’i\’c"b’c’"cié"é’r’m( S
Gemini-1.5 Pro 8.7 3.85 Question Category in VideoMME
Claude-3.5 Sonnet 114 4.17
GPT-40 15.6 5.73 Figure 3: Performance breakdown across dif-
VideoMind-7B - 7.10 ferent question categories. Using DeepSeek-R1
SiLVR (ours) 17.2 11.84 as an LLM yields larger gains on reasoning ques-

tions (+11.1%) than general perception questions
(+4.9%). Full category names are in the supple-
mentary materials (Table|[L8).

From Table [d we can observe that both SiLVR-best and SiLVR-fast achieve higher accuracy than all other
methods. Specifically, SILVR-best outperforms video-native models Qwen-2.5-VL 7B (768 frames) and Video-
R1 by 11.9% and 12.5%), respectively. SILVR-best also outperforms agent-based methods DrVideo (Ma
et al., [2024) and VideoTree (Wang et al., [2024¢]) by a significant margin of 11.0% and 8.4%, respectively.
Additionally, SiLVR-fast is highly efficient, running 1.4x faster than Qwen-2.5-VL-7B (768 frames), 5.3x
faster than DrVideo and 2.0x faster than VideoTree, while still achieving +6.4%, +5.5% and +3.0%
higher accuracy, respectively. Although Qwen-2.5-VL 7B (32 frames) adopts a sparse frame sampling strategy
to achieve high efficiency, this design leads to degraded performance (-12.5%) compared with SiLVR-fast.
These results demonstrate that our framework is able to achieve an effective balance between efficiency and
accuracy, making it both effective and efficient in complex video reasoning tasks.

4.6 Results on Other Tasks

Knowledge Acquisition from Videos. We also evaluate our method on the novel knowledge acquisition
task on Video-MMMU (Hu et al., [2025)). The task requires models to answer questions both before and after
watching a reference lecture video, with the goal of measuring how much knowledge the model gains from the
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Table 6: Impact of ASR. We remove the ASR module and evaluate our method on eight benchmarks.
Incorporating ASR consistently improves performance, highlighting the importance of speech information in
video reasoning.

Method Video-MMMU Video-MMLU MMVU MMWorld VideoMME CGBench EgoLife CinePile
SiLVR (w/ ASR) 82.7 83.1 68.2 59.9 77.7 51.8  42.0 59.4
SILVR (w/o ASR) 70.7 78.2 61.7 57.4 62.7 40.9 351 474

Table 7: Token reduction analysis. Accuracy on VideoMME (overall) when selectively dropping speech vs.
visual caption tokens. Based on these results, we observe that speech tokens are more informative than visual
caption tokens.

Dropping Rate Average Context Length Accuracy

Subtitles Captions

50% - 4.3k 65.3
75% - 2.6k 56.0
- 50% 7.2k 68.9
- 75% 6.0k 67.7

No Compression 9.3k 70.3

video. The metric for the knowledge acquisition task is defined as:

Accpost — Accpre

1 1
100% — Accpre X 100% (1)

Aknowledge =

where Accpre and Accpost denote the accuracy before and after watching the video, respectively.

Our results in Table [5| show that SILVR achieves 17.2% in Ayyowledge, oOutperforming the prior best method
GPT-40 by 1.6%. SiLVR also outperforms strong proprietary models such as Gemini-1.5 Pro and Claude-3.5
Sonnet by 8.5% and 5.8%, respectively. These results demonstrate that SiLVR is not only effective in
complex video reasoning, but also has strong knowledge acquisition capabilities.

Temporally Grounded QA. In Table [5| we also present our results on the temporally grounded QA task
on CGBench (Chen et al., [2024). The task requires the model to temporally localize relevant video segments
needed to answer the question (usually less than 10 seconds) in long videos that span over 60 minutes. Our
results in Table [§] show that SILVR achieves the highest performance in mIoU, outperforming concurrent
work VideoMind (Liu et al., [2025)) by a notable 4.74%. In addition, SiLVR also outperforms GPT-40 and
Claude-3.5 Sonnet by 6.11% and 7.67%, respectively. These results suggest that SiILVR. can correctly answer
complex questions and temporally ground the answer to relevant segments in the video, which improves
interpretability in video reasoning.

4.7 Ablation Studies

Unless otherwise specified, all ablation experiments are conducted on the VideoMME benchmark.

Impact of the ASR. To analyze the impact of ASR, we remove the ASR module of our method and
evaluate our method on eight benchmarks. The results are shown in Table[] From the table, we observe that
ASR plays a crucial role across many benchmarks. On the lecture understanding benchmark Video-MMMU,
incorporating ASR leads to a significant 12.0% accuracy gain, which aligns with the intuition that spoken
content in lectures provides essential cues. Additionally, adding ASR. leads to a 12.0% accuracy improvement
on the movie understanding benchmark CinePile. Furthermore, in EgoLife and CGBench, which focus
on analyzing short clues within long videos, ASR also provides notable gains. Finally, on general-purpose
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Table 8: Performance of Adaptive Context Reduction (ACR) vs. fixed clip length baselines.
ACR achieves the highest accuracy on VideoMME (overall), outperforming the best fixed-length baseline
(8s) by 2.5%. These results suggest that ACR effectively reduces redundant tokens while preserving strong
performance.

Clip Length (s) ACR 1 2 4 8 64
Accuracy 76.7 599 61.3 685 742 703

Table 9: Comparison between two context-reduction strategies on VideoMME (overall). Reducing
caption word limits and reducing the number of segments (Adaptive Context Reduction) show similar
performance.

Variant Accuracy
Change Word Limit 76.6
Change Segment Number (ACR) 76.7

benchmarks like VideoMME and MMVU, adding ASR improves performance by a large margin, demonstrating
that speech complements visual signals in multiple video understanding tasks.

Speech vs. Visual Caption Token Importance. To evaluate the relative contribution of visual and
audio information, we vary the fraction of tokens from speech transcripts and video captions and report the
QA performance on VideoMME. As shown in Table [7} the reduction of 50-75% speech tokens (while keeping
all visual caption tokens) leads to a significant decrease in performance (11.4%-20.7%). In comparison,
dropping the same fraction of visual caption tokens (while keeping all speech tokens) results in a much smaller
performance drop (7.8%-9.0%). There results indicate that speech tokens are more informative than visual
caption tokens.

Analysis of Adaptive Context Reduction. In Table 8] we compare Adaptive Context Reduction (ACR)
with several static baselines that use fixed video clip lengths. Among all baselines, the variant that uses an
8-second clip length achieves the highest accuracy of 74.2%. We note that a shorter clip variant (e.g., 1s)
generates a large number of captions for long videos, which often exceeds the context window of the LLMs,
thus leading to degraded performance. In contrast, a longer clip variant (e.g., 64s) reduces the number of
captions at the cost of sacrificing the granularity of visual information, which also leads to lower accuracy.
Compared to these static baselines, our proposed ACR consistently outperforms all fixed clip length baselines,
surpassing the best-performing variant (8s) by a significant margin of 2.5%. These results demonstrate that
ACR effectively reduces redundant tokens by adaptively adjusting the clip length, offering flexibility and
strong performance.

Context Reduction Method Ablation. In addition to Adaptive Context Reduction, we introduce an
alternative strategy for reducing the input context length of the LLM. Specifically, we modify the captioning
prompt to constrain each caption to 40, 20, or 10 words. When the context limit is exceeded, we progressively
reduce the per-segment caption length from 40 words to 20 words, and then to 10 words. The results are
shown in Table[0] From the results we can see that changing word limit yields similar results to changing the
segment number.

Comparison between Uniform and Non-uniform Sampling. We experiment with the non-uniform
frame sampling strategy used in VideoTree [Wang et al.|(2024¢|) and compare it against uniform sampling in
our framework. Specifically, VideoTree extracts CLIP features for each frame, performs k-means clustering
into 32 groups, and selects the cluster centers as representative frames. We use these non-uniformly sampled
frames in our framework and compared them to uniform sampling on VideoMME (Long, without subtitles).
The results are shown in Table [I0] From the table, we can observe that non-uniform sampling improves our
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Table 10: Comparison between uniform and Table 11: Effects of LLM input context length
non-uniform sampling. Following VideoTree, we ~ on VideoMME (overall). Increasing the LLM
evaluate our method on VideoMME (Long). We ap-  input context consistently improves the performance,
ply the non-uniform sampling strategy of VideoTree showing that the benefit of more information out-
to our framework. Non-uniform sampling improves weighs the increased context length in our framework.
our method by 0.8%, showing that our method can

benefit from advanced sampling techniques.

Average Context Length Accuracy
Sampling Method Accuracy 9.3k 703
Uniform Sampling 76.8 18.2k 74.2
Non-Uniform Sampling 77.6 29.5k 76.7

Table 12: Performance with different visual captioners on VideoMME. Qwen-2.5-VL 72B achieves
the best overall accuracy. We use NVILA 7B for all experiments because it provides the best accuracy-cost
trade-off.

Captioner Size Overall ~ Short  Medium  Long
LLaVA-OV 7B 67.2 57.7 68.1 75.9
NVILA 7B 70.3 63.2 70.4 77.3
Qwen-2.5-VL 7B 70.9 63.8 72.9 76.1
Qwen-2.5-VL 72B 71.2 65.0 72.2 76.4
Qwen-3-VL 3B 71.0 63.5 70.9 78.6
NVILA + Qwen-2.5-VL B 4+ 7B 74.1 68.3 74.6 79.4

Table 13: Performance of our framework with different LLMs on VideoMME. Llama-4 Maverick
achieves 66.2% overall accuracy, providing an effective trade-off between model sizes and performance.
DeepSeek R1 achieves the highest overall accuracy, outperforming DeepSeek V3 and GPT-4.1 by 3.5% and
0.8%, respectively.

LLM Size Overall Short Medium Long
Llama-4-Scout 17B 63.0 56.7 64.4 67.8
Llama-4-Maverick 17B 66.2 57.2 68.3 73.0
DeepSeek V3 6858 66.8 56.0 69.1 75.3
DeepSeek R1 6858 70.3 63.2 70.4 77.3
GPT-40 - 67.3 57.0 69.2 75.8
GPT-4.1 - 69.5 59.6 71.1 77.9
GPT-5 - 73.9 64.7 75.1 81.9
Gemini-2.5-Pro - 73.1 60.3 75.3 83.8

method by 0.8%, demonstrating that our method can immediately benefit from more advanced, non-uniform
sampling techniques.

Effects of LLM Context Length. Prior work suggests that excessively long inputs to the LLM can harm
reasoning quality [Levy et al. (2024); Kahatapitiya et al.| (2025). In our setting, increasing the number of
sampled clips provides more fine-grained visual information but also proportionally increases the context
length, potentially affecting LLM performance. To study this trade-off, we vary the clip length to control the
number of sampled clips and thus, the corresponding number of generated captions, which directly determines
the total input context length to the LLM. For each configuration, we measure the average context length
and evaluate the overall accuracy on VideoMME. The results are shown in Table From the table, we
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observe that increasing the context length consistently improves performance in our setting, suggesting that
the benefits of providing more fine-grained visual information outweigh the potential drawbacks of longer
input sequences.

Visual Captioning Model. Next, we study the effect of different visual captioners. As shown in Table
NVILA 7B and Qwen-2.5-VL 7B achieve similar performance, outperforming LLaVA-OV 7B by 2.9% and
3.7%, respectively. We also observe that Qwen-2.5-VL 72B achieves the higher overall accuracy compared
with Qwen-2.5-VL 7B, likely due to the larger LLM (72B), which leads to higher-quality captions. Since
NVILA 7B is faster than Qwen-2.5-VL 7B and achieves similar performance, we use NVILA 7B for all
experiments. We do not use Qwen-2.5-VL 72B due to the prohibitive computational cost. We also observe
that SILVR remains effective and achieves a strong result (71.0%) even with a 3B parameter captioner
(Qwen-3-VL 3B). Additionally, we explore the ensemble of two captioners (NVILA-7B + Qwen-2.5-VL-7B)
by concatenating the generated captions from each model. As shown in the table, the ensemble captioner
improves overall accuracy by 3.8% and 3.2% over NVILA-7B and Qwen-2.5-VL-7B individually, showing
that our framework consistently benefits from stronger captioners.

Different LLMs. Lastly, in Table [L3| we study the effect of different LLMs, including Llama-4-Scout 17B,
Llama-4-Maverick 17B, DeepSeek V3, DeepSeek R1, GPT-40, GPT-4.1, GPT-5, and Gemini-2.5-Pro. Our
results indicate that Gemini-2.5-Pro, as the LLM backbone, achieves the highest accuracy on the long split
of VideoMME, outperforming GPT-5 by a significant margin (1.9%). GPT-5 achieves the best overall
accuracy on VideoMME, outperforming Gemini-2.5-Pro by 0.8%. These results indicate that stronger
LLMs consistently leads to better performance in our framework. Furthermore, we note that Llama-4-
Maverick achieves 66.2% accuracy with only 17B parameters, offering an effective trade-off between model
size and performance. Lastly, we observe that DeepSeek R1 outperforms DeepSeek V3 by a significant 3.5%,
highlighting the effectiveness of using a reasoning LLM within our framework.

4.8 Qualitative Results

We present two reasoning traces of SILVR in Figure [ and Figure[5] In Figure[4] the video showcases the Tesla
Cybertruck, and the question asks about the size of its rear touchscreen display. Since the display appears
only briefly, the question is particularly challenging. As shown in the figure, SILVR first recognizes the vehicle
as a Tesla Cybertruck. Leveraging both visual cues and the LLM’s prior knowledge, SiLVR then correctly
infers that the size of the rear touchscreen is 15 inches. This example demonstrates SILVR’s capability to
incorporate visual information with the LLM’s prior knowledge for complex video reasoning. Figure [5[shows
a chemistry tutorial video and a follow-up question. SiLVR initially makes a tentative prediction but does not
terminate the reasoning process immediately. Instead, it continues to validate the predicted answer through
step-by-step reasoning. These two examples highlight that SILVR is effective across diverse video domains,
highlighting the generalizability of our proposed method. Additional qualitative analyses are provided in the
supplementary materials.

5 Conclusion

We present SiLVR, a simple, modular, and training-free language-based video reasoning framework.
SiLVR achieves state-of-the-art performance on VideoMME (long), Video-MMLU, CGBench, and Ego-
Life. SiLVR also achieves strong results in video-based knowledge acquisition and temporally grounded QA
tasks, demonstrating strong generalization. Lastly, we systematically analyze the reasoning capabilities of
SiLVR and perform ablations on several key design choices. We encourage the research community to build on
our simple yet effective video reasoning framework and hope that it will inspire new ideas in video reasoning
research.

Limitations

As with most modular frameworks, the performance of our method depends on its individual modules. On the
visual perception side, our method relies on the visual captioning model, which may produce hallucinations
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Video:

Question:
What is the size of the back touchscreen display in this video?
A.15inches. B.9.4inches. C.17.4inches. D.18.5inches.

e ——————
—————————’

/ Reasoning Trace

ﬂay, let's tackle this question. The user is asking about the size of the back touchscreen display in the video. The options are A through D witr\
different inch measurements. First, | need to check the subtitles and the captions provided. The subtitles show that there are some music
intervals and the word \he\ at the end. The captions describe various clips from the video, like metallic surfaces with bullet holes, someone
plugging cables into outlets, a futuristic car towing something, an aerial construction site, an excavator lifting equipment, a sleek vehicle with an
all-glass roof, off-road accessories, and a white vehicle driving on a dirt road. Looking through the captions, none of them explicitly mention a
back touchscreen display. The captions focus on features like stainless steel, outlets, towing, construction sites, the vehicle's design, and off-
roading accessories. There's no direct mention of a touchscreen size here. Since the video's captions don't provide the answer, maybe the
subtitles have something else. The subtitles only show music and \he\ at the end, which isn't helpful. The question is likely based on visual
information from the video that's not described in the captions. However, the user expects the answer to be derived from the given data. Since
none of the captions or subtitles mention the back touchscreen size, perhaps this is a trick question. The options might be standard sizes for Tesla
Cybertruck features. From prior knowledge, | recall that the Tesla Cybertruck has a 15-inch central touchscreen. But the question is about the back
touchscreen. Wait, some sources mention a 9.4-inch rear screen. Let me think. The Cybertruck's rear display for passengers is often reported as
9.4 inches. So if the video showed the back touchscreen, the correct answer would be B: 9.4 inches. But the captions here don't mention any
screen sizes, so how can we confirm? Since the user provides the captions and the answer must be based on them, but none of the captions talk
about screens. Maybe the answer is inferred from the video's content. For example, if in the clip where the person plugs into the outlets, there's a
Qlay visible in the background. But the captions don't note that. Alternatively, the answer might not be directly in the given data, but commy

knowledge. If this is part of a Cybertruck features video, the back screen is 9.4 inches. So the answer is B.

Figure 4: Example 1 of SiLVR’s reasoning trace. The question asks about the size of the back touchscreen
in the car shown in the video. The visual captioning module of SiLVR fails to capture the details about the
touchscreen, which appears briefly for only about one second. However, by identifying the vehicle type and
leveraging external knowledge from the LLM, SiLVR infers the correct answer.

N

Question:
Consider the two molecules that appeared in the video from 0:28 to 2:00, if we change the positions of the two green
atoms in the second molecule, will the two isomers now become Optical Isomerism?

A. Yes, as they cannot realign with each other by rotation B. Yes, as the molecular formula changes after swapping C. No,
as the bonds will break during the swap D. Yes, as it creates new asymmetric centers E. No, as they will become two same
molecules F. Yes, as it changes the overall symmetry of the molecule G. No, as the molecule will become unstable H. Yes,
as it creates mirror videos that cannot superimpose I. No, as green atoms have special bonding properties J. Yes, as it
\changes the molecular weight distribution

.
(T

Y
~

KBut in reality, if a chiral center has four different groups, swapping two groups would invert the configuration (from R to S or vice versa), which \
would create the enantiomer. However, in the case where you swap two groups in the enantiomer (the mirror image), does that bring it back to the
original? Wait, no. Let's take a specific example. Suppose the original is R configuration. The mirror image is S. If in the S configuration you swap two
groups, you could end up with another configuration. For example, swapping the first and second groups in the S configuration might convert it back
to R. So swapping two groups in the enantiomer would give the original configuration, making them the same molecule. But wait, the order of
swapping matters. The R and S configurations are determined by the Cahn-Ingold-Prelog priority rules. If you swap two groups in a chiral center, you
can invert the configuration. For example, if the original is R, swapping the first and second priority groups ... so the answer would be E: No, as they
will become two same molecules. But wait, the original mirror image couldn't be rotated to align. But swapping greens might allow rotation to align.

So the answer would be E. But | need to confirm. If you take the mirror image and swap two groups, does that result in the original molecule? For

example, if the original is R and the mirror image is S, swapping two groups in S might convert it to R. If that's the case, then the two would be the

same, so answer E. Yes. Swapping two groups in a chiral center inverts the configuration. So if the mirror image is S, swapping two groups might turn
@to R, which is the original. Therefore, they are the same molecule. Hence, the isomers would become the same molecule, so the answer is E.", /

"answer": "E",

Figure 5: Example 2 of SiLVR’s reasoning trace. Through step-by-step reasoning, SiLVR is capable of
solving complex domain-specific questions. Notably, SILVR does not immediately terminate the reasoning
process upon reaching a plausible answer. Instead, it continues to verify the correctness of the generated
answer before finalizing its response.

or descriptions that lack fine-grained visual details. However, since our framework is agnostic to the specific
use of visual captioning models, we believe that future advances in visual captioning models will mitigate
this issue. On the reasoning side, our framework may underperform when the reasoning trace generated by
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the LLM is incorrect. However, we view this as a broader limitation of current LLMs, and anticipate that
future advances in long-context modeling and reasoning for LLMs will further enhance the performance of
our framework.
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Our appendix consists of Additional Ablation Study (Section , More Experimental Results (Section ,
Additional Implementation Details (Section 7 and Qualitative Results (Section @[)

A Additional Ablation Study

Time-aware Caption Representation. We investigate the effectiveness of integrating time information into
captions on the Video-MMMU benchmark. The results are presented in Table The baseline concatenates
all captions in temporal order without explicit timestamps, whereas our proposed time-aware method explicitly
includes time information. Specifically, before each caption, we add a timestamp indicating the interval from
which it was extracted (e.g. 00:00:24 —> 00:00:32: A clear glass bottle being filled with water, surrounded by
seashells and a white cloth.) As shown in Table incorporating timestamp information leads to a notable
2.25% improvement in overall accuracy compared to the baseline. Furthermore, the time-aware method
consistently outperforms the baseline across all question categories. These results demonstrate that explicitly
providing time information effectively enhances the temporal perception and reasoning capabilities of the
LLMs. Consequently, we adopt the time-aware caption representation for all experiments.

Method Overall Perception Comprehension Adaptation

w/o time 72.86 81.00 80.67 56.90
w/ time 75.11 82.67 82.67 60.00

Table 14: Time-aware Caption Representation. Incorporating time information into the captions by
adding timestamps depicting time intervals from which the captions were extracted significantly boosts the
performance on Video-MMMU.

B More Experimental Results

HourVideo. We evaluate our method on the development set of HourVideo (Chandrasegaran et al., 2024),
a benchmark specifically designed for 3D reasoning over long videos. As shown in Table our method
performs surprisingly well, despite not incorporating any explicit 3D modeling. Specifically, it achieves an
accuracy of 36.3%, outperforming the concurrent method VAMBA (Ren et al., 2025) by a notable margin of
2.7%. These results demonstrate that our method is effective in reasoning about both the 3D physical world
and hour-long videos.

Method Overall Accuracy
Aria 39.2
Gemini 1.5 Pro 37.4
Qwen2-VL 7B 33.8
VAMBA 33.6
SiLVR, (ours) 36.3

Table 15: Performance of Our Method on HourVideo. SiLVR outperforms the concurrent work
VAMBA by a significant 2.7%.

CGBench-Reasoning. We evaluate our method on the reasoning split of CGBench. As shown in TabldI6]
SiLVR achieves the highest performance among the baseline models. Specifically, SILVR outperforms
Video-R1 by a significant 6.2%. Additionally, SILVR outperforms the concurrent video reasoning model
Video-Thinker-7B by 0.7%, showing the strong video reasoning ability.

VideoMME Overall Performance. We evaluate our method on VideoMME and report the overall
performance including the short, medium and long splits. As shown in the Table SiLVR achieves strong
performance among open-source models. Specifically, SILVR surpasses the widely used Qwen2.5-VL 7B by
2.6%. In addition, SiLVR also outperforms the video reasoning model Video-R1 by a substantial 12.8%,
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Method Overall Accuracy
Qwen2.5-VL 7B 32.6
Video-R1 7B 30.1
Video-Thinker 7B 35.6
SiLVR (ours) 36.3

Table 16: Performance of Our Method on CGBench-Reasoning. SiLVR outperforms the concurrent
video reasoning model Video-Thinker-7B by 0.7%.

highlighting its improved video comprehension capability. While proprietary large models such as Gemini
2.5-Pro achieve higher accuracy, SILVR remains highly competitive within the open-source models.

Method Overall Accuracy
Proprietary

Gemini 2.5-Flash 81.5
Gemini 2.5-Pro 86.9
Open-source

Qwen2.5-VL 7B 71.6
Qwen3-VL 8B 71.8
Qwen3-VL 32B 77.3
Video-R1 7B 61.4
SiLVR (ours) 74.2

Table 17: Performance of Our Method on VideoMME. We report the overall accuracy. SiILVR out-
performs Qwen2.5-VL 7B by 2.6% and Video-R1 by 12.8%, and remains competitive among open-source
methods.

Detailed VideoMME Results. In Table we present a detailed breakdown of our method’s performance
on VideoMME. From these results, we observe that our method achieves the lowest accuracy on the Counting
Problem. This is likely due to the complexity of counting tasks, which require precise temporal localization of
multiple events and subsequent reasoning. Any missed or incorrectly detected events could lead to incorrect
answers, making the Counting Problem particularly challenging.

Question Category Accuracy
Temporal Reasoning (TR) 74.6
Spatial Reasoning (SR) 94.6
Action Reasoning (AR) 76.1
Object Reasoning (OR) 79.5
Temporal Perception (TP) 85.5
Spatial Perception (SP) 74.1
Attribute Perception (AP) 80.2
Action Recognition (AC) 68.1
Object Recognition (OC) 82.5
OCR Problems (OP) 83.5
Counting Problem (CP) 50.7
Information Synopsis (IS) 88.5

Table 18: Detailed Results on VideoMME. Our method achieves the highest accuracy on Spatial
Reasoning while achieving the lowest performance on the challenging Counting Problem.
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C Additional Implementation Details

C.1 Captioner

For all LLaVA and Qwen models, we use the prompt "Briefly describe the video within 40 words" to
generate captions for each clip. We set max_new_tokens to 200 and employ greedy decoding. We utilize the
following model variants from Hugging Face: 1mms-lab/1lava-onevision-qwen2-7b-ov for LLaVA-OV 7B,
Qwen/Qwen2.5-VL-7B-Instruct for Qwen2.5-VL 7B, and Qwen/Qwen2.5-VL- 72B-Instruct for Qwen2.5-VL
72B. For the NVILA model, we use the NVILA-8B-Video variant with the prompt “generate caption” to
produce captions for each clip. We set max_new_tokens to 128 and employ greedy decoding similar to LLaVA
and Qwen models.

We use 4 H100 GPUs for generating captions.

C.2 LLM

We use the default temperature of 1.0 for all LLM experiments. We use the DeepSeek API to run DeepSeek-R1
and DeepSeek-V3 efficiently. To accelerate inference, we implement a parallel processing pipeline with up
to 64 concurrent processes, each handling raw captions and subtitles before sending requests to the API.
During off-peak hours, this setup allows us to evaluate our method on the complete VideoMME benchmark
in under 2 hours at a cost of less than $20. For GPT models, we use the OpenAl API. For Llama-4 models,
we use 4xH100 GPUs for local inference. However, we can only process a subset of videos locally due to
GPU memory constraints. For long videos, we use Lambda Cloud’s API service.

C.3 Prompt Design

Different VideoQA benchmarks include different types of questions (e.g., multiple-choice, open-ended, or
mixed). Additionally, the Grounded VideoQA task in CGBench requires models to predict the temporal
boundaries (start/end timestamps) of video segments relevant to each question. To accommodate these
differences, we design task-specific prompts. Specifically, for multiple-choice questions, we use the following
prompt template:

The video’s subtitles are listed below.
Subtitles.

The video’s captions are listed below. Each caption describes a Clip Length seconds clip.
Captions.

Select the best answer to the following multiple-choice question based on the video and the subtitles.
Respond with only the letter (A, B, C, D, E, etc.) of the correct option.

Question: Question.
Options: Options.

The answer is:

For open-ended questions, we use the following prompt template:

23



Published in Transactions on Machine Learning Research (01/2026)

The video’s subtitles are listed below.
Subtitles.

The video’s captions are listed below. Each caption describes a Clip Length seconds clip.
Captions.

Based on the video and the subtitles. Answer the following question with one sentence. Answer the
following question based on the video and the subtitles. The answer is short. Please directly respond with
the short answer.

Question: Question.

The answer is:

For the Grounded VideoQA task, we use the following prompt to generate the start and end seconds of the
question-related clips:

The video’s subtitles are listed below.
Subtitles.

The video’s captions are listed below. Each caption describes a Clip Length seconds clip.
Captions.

Your task is to determine in which intervals the clue exists that contain visual information needed to
answer the question.

Question: Question.

Only output the answer in the following format:

[[startl, endl], [start2, end2], ...]

In this output format, each ‘start’ and ‘end’ represents the beginning and end of an interval in seconds
(integer) where relevant clues can be found.

You must provide at least one interval and at most five intervals.

Here are some example outputs.

Example 1: [[5, 7]]

Example 2: [[200, 207], [209, 213], [214, 220]]

C.4 Evaluation

We evaluate our method on the validation set of MMVU and HourVideo. For the VideoQA task on CGBench,
we adopt the long-acc setting in which the model takes the entire long video as the input and answers the
given questions.

We follow the official evaluation code of each benchmark to make a fair comparison with prior methods. If
the official evaluation code is not provided, we use the code from LMMs Eval (Zhang et al. 2024a)).

For the Grounded VideoQA task on CGBench, we need to decode the timestamps from the LLM outputs. In
practice, we found that the Grounded QA prompt as shown in Section works surprisingly well, with each
output sentence following the list format exactly. Therefore, we simply use the eval function in Python to
decode the output text into a list object. We then use the official code provided by CGBench to compute the
mloU between the prediction and the ground truth.

D Additional Qualitative Results

We present and analyze several of SILVR’s reasoning traces in Figure [6] and Figure [7] From the figures, we
observe that SILVR effectively integrates information from both visual and speech modalities. Furthermore,
SiLVR is capable of performing complex video reasoning steps, including step-by-step reasoning, self-correction,
self-verification, and using relevant prior knowledge from the LLM to answer a given question.

24



Published in Transactions on Machine Learning Research (01/2026)

Video:
! Question:
i According to the video, which of the following ingredients is not used in the artwork?
! A. Shell B. Glue C. Blue Food Dye D. Oil.

Reasoning Trace

Okay, let's tackle this question. So, the question is asking which ingredient is not used in the artwork based on the video subtitles. The options are
shell, glue, blue food dye, oil. Looking at the subtitles provided, let me go through each timestamp to see what's mentioned. Starting from
00:00:00 to 00:00:08, there's a glass bottle with blue liquid and decorative items. The decorative items might include shells, but not sure yet. At
00:00:16, the caption mentions a bottle of EG000 adhesive surrounded by seashells and a plastic cup with yellowish liquid. E6000 is a type of glue,
so glue is definitely used (option B is present). Shells are also mentioned here, so shell (A) is used. At 00:00:32, a hand adds a drop of blue food
dye to the bottle. That's option C, which is used. Then at 00:00:40, the text says 'Fill 2/3 of bottle with oil' and there's a hand holding a green
dropper. So oil (D) is used. Wait, but the question is which is NOT used. Let me check again. All four options are mentioned except one. The
options are A: Shell, B: Glue, C: Blue Food Dye, D: Oil. From the subtitles: seashells are mentioned (so A is used). Glue (E6000 adhesive) is present
(B used). Blue food dye is added (C used). Oil is instructed to fill 2/3 of the bottle (D used). Wait, all options are used? That can't be..... Maybe the
shells are part of the decorative items but not an ingredient used in the artwork's construction? Wait, the question is about ingredients used in
the artwork. Are the shells part of the decoration but not part of the main mixture? Let's read the steps again. The steps involve filling the bottle
with water (00:00:24), adding blue dye (00:00:32), adding oil (00:00:40). Then there's mention of glue (E6000) which might be for sealing or
attaching something. The seashells are surrounding the glue and maybe used as decoration. But perhaps the shells are not part of the liquid
mixture inside the bottle but are just part of the surrounding decorations. If the question is about the ingredients inside the bottle, .... Therefore,
the shells might be part of the decoration around the bottle in the video but not part of the actual artwork (the bottle's contents). So the answer
would be A: Shell, as the shells are not an ingredient used in the artwork. But | need to make sure. The question says \ingredients\, which implies
components used in creating the main part of the artwork. If the shells are not inside the bottle or part of its structure, then they are not
ingredients. So the answer is A.

Figure 6: Example 1 of SiLVR’s Reasoning Trace. The question asks which ingredients are not used in
the video. Initially, SILVR identified all listed items as potential ingredients. However, through self-correction,
SiLVR correctly recognized that the shell is used as decoration rather than an ingredient.
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Question:
In what order are the following planets introduced in the video?
A. Venus, Jupiter, Neptune. B. Mercury, Jupiter, Mars.
C. Venus, Neptune, Jupiter. D. Jupiter, Mercury, Neptune.

Video:

o

/ Reasoning Trace

Okay, let me try to figure this out. The question is asking the order in which certain planets are introduced in the video. The options are A, B, C, D,
each listing a sequence of three planets. First, | need to recall the structure of the video based on the provided subtitles and captions. The
subtitles start by talking about humanity leaving Earth and exploring the solar system. Then they mention Mercury first, discussing its atmosphere
and temperature. The next planet discussed is Venus, with details about its thick atmosphere and the Soviet Venera missions. After Venus, the
video moves on to Mars, discussing its potential for human colonization, radiation issues, dust storms, etc. Then the video goes into the outer
planets, starting with Jupiter. They talk about its Great Red Spot, atmosphere, and moons like lo. After Jupiter, Saturn is mentioned with its rings
and storms. Following Saturn, Neptune is discussed, focusing on its high-speed winds and moon Triton. So the sequence of planets introduced is
Mercury - Venus - Mars = Jupiter - Saturn - Neptune. The question asks for the order among Venus, Jupiter, Neptune. From the sequence
above, Venus comes before Jupiter, which comes before Neptune. Looking at the options, option A is Venus, Jupiter, Neptune. Option C is Venus,
Neptune, Jupiter, which would be incorrect. The other options don't include the correct order. For example, option B lists Mercury, Jupiter, Mars,
which isn't correct because Mars comes after Mercury and Venus. So the correct answer should be A.

Figure 7: Example 2 of SiILVR’s Reasoning Trace. The video sequentially introduces six planets in
detail: Mercury, Venus, Mars, Jupiter, Saturn, and Neptune. SiLVR accurately identifies the correct order
of the planets and systematically inspects all answer choices, eliminating the incorrect ones through logical
reasoning.
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