
Continual Reinforcement Learning by Planning with Online World Models

Zichen Liu * 1 2 Guoji Fu * 2 Chao Du 1 Wee Sun Lee 2 Min Lin 1

Abstract
Continual reinforcement learning (CRL) refers to
a naturalistic setting where an agent needs to end-
lessly evolve, by trial and error, to solve multiple
tasks that are presented sequentially. One of the
largest obstacles to CRL is that the agent may
forget how to solve previous tasks when learn-
ing a new task, known as catastrophic forget-
ting. In this paper, we propose to address this
challenge by planning with online world models.
Specifically, we learn a Follow-The-Leader shal-
low model online to capture the world dynamics,
in which we plan using model predictive control
to solve a set of tasks specified by any reward
functions. The online world model is immune
to forgetting by construction with a proven re-
gret bound of O(

√
K2D log(T)) under mild as-

sumptions. The planner searches actions solely
based on the latest online model, thus forming a
FTL Online Agent (OA) that updates incremen-
tally. To assess OA, we further design Contin-
ual Bench, a dedicated environment for CRL,
and compare with several strong baselines un-
der the same model-planning algorithmic frame-
work. The empirical results show that OA learns
continuously to solve new tasks while not for-
getting old skills, outperforming agents built on
deep world models with various continual learn-
ing techniques.

1 Introduction

Continual reinforcement learning (CRL) (Khetarpal et al.,
2022; Abel et al., 2024) quests for agents that can continu-
ously evolve to solve possibly infinite number of tasks that
are revealed sequentially to them. From a task-level defini-
tion, a very strong baseline is to just train a separate agent
for each task, and use the information of the task ID to se-
lect the agent. Many existing works more or less fall within

*Equal contribution 1Sea AI Lab 2National University of Sin-
gapore. Correspondence to: Min Lin <linmin@sea.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

this “multitask” view of CRL because task-specific com-
ponents are constructed and used (e.g., separate weights,
task boundaries or IDs) (Kirkpatrick et al., 2017; Mallya
& Lazebnik, 2018; Chaudhry et al., 2019a; Kessler et al.,
2022; Gaya et al., 2023).

However, a more naturalistic scenario would involve a
learning agent that seamlessly interacts and learns in an en-
vironment where there is no clear cut tasks. To distinguish
with the above, we call such agent an Online Agent (OA).
We expect the solution of OA to contain learning compo-
nents that are shared through out the agent’s lifetime, and
can be updated incrementally.

Existing CRL methods are not building towards online
agents because of two challenges. First, not all RL compo-
nents have their online alternatives. For example, the value
function and policy are dependent on the reward function
defined by a task, thus it is innately not a learning compo-
nent that can be shared across tasks. To alleviate this is-
sue, prior works often learn them per-task (Chaudhry et al.,
2019a; Wołczyk et al., 2021). Second, for components that
can be shared, they should be learned incrementally with-
out forgetting under severe data distributional shift. Huang
et al. (2021) has attempted this with model-based RL, but
they still rely on per-task buffer and embedding.

In this paper, we aim to develop an OA to tackle the CRL
problem. We first notice that a unified world dynamics
is the key component that can be shared across tasks and
should be learned, and planning with the learned model
gives us a RL agent that maximizes long-term rewards
(Garcia et al., 1989; Hutter, 2000). Since the planner usu-
ally has no trainable parameters (De Boer et al., 2005;
Williams et al., 2015), the goal of OA is to learn an online
world model with low regret incrementally. To this end, we
employ the recent Follow-The-Leader (FTL) shallow mod-
els (Liu et al., 2024) which permit efficient online updates
for world modelling, and plan with the learned models us-
ing cross-entropy method (CEM) for acting. Under mild
assumptions, we theoretically show the sparsely updating
models (Liu et al., 2024) are no-regret, providing a defini-
tive answer for the design of OA. Consequently, OA’s ev-
ery interaction with the real world brings new information
to learn a more accurate world model without forgetting,
which immediately benefits the planning at the next step.

1

Continual Reinforcement Learning by Planning with Online World Models

To evaluate OA in the CRL settings, we further develop
Continual Bench, which explicitly focuses on the design
of a unified world dynamics. It also takes account of for-
getting and transfer simultaneously and is computationally
lightweight (see motivations in Section 2 part 2). The em-
pirical results demonstrate the superior performance of OA
over strong CRL baselines under the same model-planning
framework, suggesting its great promise in developing fu-
ture autonomous artificially agents.

2 Related Work

In this section, we provide an overview of how our work
integrates with existing literature. Since this work tries to
contribute in both algorithm and benchmark aspects, the
discussion is structured into the following two subsections.

Algorithm perspective. The most related work to ours is
Liu et al. (2024), where the authors propose a non-linear
encoding technique and an analytic update rule to learn
world models online. We follow their work to employ sim-
ilar online shallow networks to learn the world dynamics.
To bridge the gap between practice and theory, we further
analyze the convergence of the online sparse model learn-
ing, and identify that regularization is necessary to guaran-
tee it converges to the offline optimal solution. Our work
is also methodology-wise distinct from Liu et al. (2024),
which is based on the Dyna architecture (Sutton, 1990) and
still learns model-free components such as value and pol-
icy functions using model-synthetic data. This could fur-
ther compound difficulties of applying model-free methods
to develop continual agents, such as the need to maintain
a replay buffer (Isele & Cosgun, 2018), the loss of plastic-
ity (Abbas et al., 2023), and even the dependency on task-
specific models (Garcia & Thomas, 2019; Wołczyk et al.,
2021). In the supervised CL settings, (Zhuang et al., 2022;
2023; 2024) also employ an analytic solution to solve class
incremental learning without forgetting (an FTL approach),
but they rely on pretrained deep features over all tasks,
which is impossible for online agents. On the contrary, we
propose to use a model-planning framework to tackle the
CRL problem, given a unified world dynamics representa-
tion and external reward function, making our agent (OA)
potential to generalize to new tasks zero-shot (Sancaktar
et al., 2022).

Benchmark perspective. CRL has typically been eval-
uated on a sequence of Atari games (Kirkpatrick et al.,
2017; Schwarz et al., 2018; Rolnick et al., 2019). CORA
(Powers et al., 2022) recently extends this conventional
protocol to a set of image-based discrete control environ-
ments, additionally including procedurally-generated envi-
ronments (Cobbe et al., 2020; Küttler et al., 2020) and real-
istic home simulators (Kolve et al., 2017; Shridhar et al.,
2020). Their focus on image-based environments stems

Task 1 Task 2 Task 3

<latexit sha1_base64="jy9Obe8aOPB11pkaSW4FVgktpdg=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGC/YA2ls12067dZMPuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bRqWa8QZTUul2QA2XIuYNFCh5O9GcRoHkrWB0M/VbT1wboeJ7HCfcj+ggFqFgFK3UrD90kaa9UtmtuDOQZeLlpAw56r3SV7evWBrxGJmkxnQ8N0E/oxoFk3xS7KaGJ5SN6IB3LI1pxI2fza6dkFOr9EmotK0YyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J45WciTlLkMZsvClNJUJHp66QvNGcox5ZQpoW9lbAh1ZShDahoQ/AWX14mzfOKV61U7y7Ktes8jgIcwwmcgQeXUINbqEMDGDzCM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A3lkjxU=</latexit>

P ⌧ <latexit sha1_base64="UCSepWsj++bjfJ3pVBDoXyThnoI=">AAAB/HicdVDLSsNAFJ3UV62vaJduBosgFEJi27QuhKIblxXsA9pSJtNJO3QyCTMTsYT4K25cKOLWD3Hn3zh9CCp64MLhnHu59x4vYlQq2/4wMiura+sb2c3c1vbO7p65f9CSYSwwaeKQhaLjIUkY5aSpqGKkEwmCAo+Rtje5nPntWyIkDfmNmkakH6ARpz7FSGlpYObvBokqOik8hzOWwiJ0BmbBtpyaWylVoW2VK7WzcmlB3IoNHcueowCWaAzM994wxHFAuMIMSdl17Ej1EyQUxYykuV4sSYTwBI1IV1OOAiL7yfz4FB5rZQj9UOjiCs7V7xMJCqScBp7uDJAay9/eTPzL68bKr/UTyqNYEY4Xi/yYQRXCWRJwSAXBik01QVhQfSvEYyQQVjqvnA7h61P4P2mdWo5rudflQv1iGUcWHIIjcAIcUAV1cAUaoAkwmIIH8ASejXvj0XgxXhetGWM5kwc/YLx9AhVrk8o=</latexit>

xt+1 = xt + 1
<latexit sha1_base64="srlsc+iWd2Podg2RZHMmyYrtosg=">AAAB/HicdVDJSgNBEO2JW4zbaI5eGoMgiENPljEehKAXjxHMAkkYejqdpEnPQnePOAzxV7x4UMSrH+LNv7GzCCr6oODxXhVV9byIM6kQ+jAyS8srq2vZ9dzG5tb2jrm715RhLAhtkJCHou1hSTkLaEMxxWk7EhT7Hqctb3w59Vu3VEgWBjcqiWjPx8OADRjBSkuumb9zU3VsT+A5nLIJPIG2axaQZRerTqUCkVVC5RI6mxGngkrQttAMBbBA3TXfu/2QxD4NFOFYyo6NItVLsVCMcDrJdWNJI0zGeEg7mgbYp7KXzo6fwEOt9OEgFLoCBWfq94kU+1Imvqc7faxG8rc3Ff/yOrEaVHspC6JY0YDMFw1iDlUIp0nAPhOUKJ5ogolg+lZIRlhgonReOR3C16fwf9IsWrZjOdflQu1iEUcW7IMDcARscApq4ArUQQMQkIAH8ASejXvj0XgxXuetGWMxkwc/YLx9AvAHk7A=</latexit>

xt+1 = xt � 1

<latexit sha1_base64="AHVRl7U1cBuv9iCqtsmigtg5Ip0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2ls120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtJ1Sax/LBjBP0IzqQPOSMGivd1x/TXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs3ziletVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AE33Y3G</latexit>

Pu
<latexit sha1_base64="Wzy4d5zdN6uVQ4etddSqmDikps8=">AAACJ3icbVDLSsQwFE3H9/iqunQTHARhtLQi6kYQ3bgcwVGhU4c0k84Ek7Ykt+JQ+hf+hL/gVvfuRJf6JWYeiM54IOHknHu5NydMBdfguh9WaWJyanpmdq48v7C4tGyvrF7qJFOU1WkiEnUdEs0Ej1kdOAh2nSpGZCjYVXh72vOv7pjSPIkvoJuyQJJ2zCNOCRipaTuNUOb3RTOHqlfgI/zzLHAV+942dh1z7XjBTQOSFDftiuu4feBx4g1JBQ1Ra9pfjVZCM8lioIJo7XtuCkFOFHAqWFFuZJqlhN6SNvMNjYlkOsj7/yrwplFaOEqUOTHgvvq7IydS664MTaUk0NGjXk/8z/MziA6DnMdpBiymg0FRJjAkuBcSbnHFKIiuIYQqbnbFtEMUoWCi/DMllEXZhOKNRjBOLncdb9/ZP9+rHJ8M45lF62gDbSEPHaBjdIZqqI4oekBP6Bm9WI/Wq/VmvQ9KS9awZw39gfX5DexFo9M=</latexit>

xt+1 = xt + [1, 0.1,�1]>

<latexit sha1_base64="UdtCCTE5Tni1q3NgD+x1HBjCcMQ=">AAACDHicdVDLSsNAFJ3UV62vqks3g0UQCiFJ01YXQtGNSwVrCzWEyXSqQycPZm6kJeQX/AW3uncnbv0Ht36J01pBRQ8MnHvOvdw7J0gEV2BZb0Zhbn5hcam4XFpZXVvfKG9uXao4lZS1aSxi2Q2IYoJHrA0cBOsmkpEwEKwTDE8mfueWScXj6ALGCfNCch3xAacEtOSXt0d+BlU7x0d45AOuYsu0/XLFMl2nXjt0dOk0m27D0qRhu/Wag23TmqKCZjjzy+9X/ZimIYuACqJUz7YS8DIigVPB8tJVqlhC6JBcs56mEQmZ8rLp8Tne00ofD2KpXwR4qn6fyEio1DgMdGdI4Eb99ibiX14vhcGBl/EoSYFF9HPRIBUYYjxJAve5ZBTEWBNCJde3YnpDJKGg8/qxJQjzkg7l6+f4f3LpmHbDbJy7ldbxLJ4i2kG7aB/ZqIla6BSdoTaiaIzu0QN6NO6MJ+PZePlsLRizmW30A8brB5H3mcM=</latexit>

xt+1 = xt + 0.1

Figure 1: A motivating example comparing task-indexed dynam-
ics (P τ) with unified dynamics (Pu). Under the task-indexed
viewpoint, the state space of each task is the box’s location x ∈ R
while the action space is {“apply force rightwards", “apply force
leftwards"}. Clearly, for the same action “apply force rightwards"
(denoted as red arrows) applied at the same state xt, the dynamics
P τ is conflicting to each other. Hence, there is no solution for a
CRL agent to model the dynamics, unless incorporating task IDs.
In contrast, the unified dynamics Pu treats each task individually
and builds a “global" view of the world, where the solutions to all
tasks can co-exist without the need of task IDs.

from the need for a consistent shared observation space,
which they choose to be the pixel space. The games in-
cluded are also visually-distinct with little to no overlap-
ping, making the benchmark suitable for studying forget-
ting. However, the image-based environments demand pro-
hibitive computation resources, and the lack of meaning-
ful overlapping prevents us from evaluating the transfer of
CRL algorithms. Continual-World (Wołczyk et al., 2021),
on the other hand, focuses on continuous control and trans-
fer, using a sequence of 10 robot manipulation tasks se-
lected from Meta-World (Yu et al., 2019). Nevertheless,
their state-based inputs encode the positions of different
objects at fixed locations, which results in inconsistent state
space (further explained in Section 5), hindering the origi-
nal purpose of studying transfer. In this work, we propose
a lightweight but realistic benchmark environment, Contin-
ual Bench, that has a consistent state space and takes both
forgetting and transfer into consideration.

3 Preliminaries

3.1 Continual reinforcement learning

We first review some necessary RL basics and then define
the setting of continual RL. RL is usually formulated
as a Markov decision process (MDP) (Bellman, 1957)
M = (S,A, P,R, γ, ρ0), where st ∈ S and at ∈ A
are state and action at time step t, P : S × A 7→ S is
the transition dynamics, R : S × A 7→ R is a reward
function associated with a specific task, γ ∈ (0, 1) is a
discount factor, and ρ0 is the initial state distribution. An
RL agent aims to identify an optimal policy π : S 7→ A
that maximizes long-term reward (or return): π∗ =
argmaxπ Eπ,P [

∑∞
t=0 γ

tR (st,at, st+1) | s0 = s ∼ ρ0].
A continual RL agent (Abel et al., 2024), on the other hand,
needs to conduct indefinite search for policies to control
a sequence of MDPs Mτ = (S,A, Pu, Rτ , γ, ρτ0)τ with
a consistent and shared state and action space. We also
consider a unified dynamics Pu that describes the whole

2

Continual Reinforcement Learning by Planning with Online World Models

world an agent can see, instead of time-indexed pieces
P τ (Wołczyk et al., 2021; Khetarpal et al., 2022) that can
only be distinguished by explicit task IDs, or otherwise
becoming POMDPs whose task ID information needs to be
inferred (Nagabandi et al., 2018). We depict a motivating
example in Figure 1 to give intuitions on the differences
between P τ and Pu. While our definition offers a more
simplified formulation, it does not compromise nonstation-
arity, the core problem in CRL, because the nonstationary
reward function Rτ will drive the CRL agent to perform
different tasks, incurring distributional shift in state-action
visitation. This gives the objective of a continual agent

JT (π) :=
1

T

T∑
τ=1

Eπ,Pu

[∞∑
t=0

γtRτ(st,at, st+1)|s0=s ∼ ρτ0

]
.

(1)
Note that T in Eq. (1) is the number of tasks the agent has
seen till now, instead of the total number of tasks, which is
an unknown for a continual agent. In other words, a contin-
ual agent is expected to gain high return for all experienced
tasks. In this paper, we develop such an agent by learning
a world model online, and form its policy by planning with
the learned model.

3.2 Planning and model predictive control

Planning. Given the world dynamics P and reward func-
tion R, planning involves optimizing action sequences
at:t+H to maximize the H-step finite-horizon return given
current state st:

a⋆
t:t+H = argmax

at:t+H

H∑
i=0

R (st+i,at+i) |st+1 ∼ P (st,at).

(2)
As a model-based RL method, planning has the advantage
that it can reuse the same world dynamics and optimize for
different reward functions without adaptation. This is es-
pecially of our interest in developing a continual agent, be-
cause when facing a new task the agent can directly utilize
prior knowledge about the world to attempt to solve it.

Model predictive control (MPC) synthesizes a closed-
loop policy from the planning results. It takes the first ac-
tion at from the optimal action sequence, executes it in the
environment and re-plans based on the new environment
state. An MPC-based agent collects experiences following
such policy, while improving its internal estimation about
the world through experiences (Negenborn et al., 2005) for
better planning. In this paper, we focus on the unified world
dynamics learning driven by an external time-varying re-
ward function, which aligns with our CRL formulation.

4 Online Agent for Continual
Reinforcement Learning

In this section we present the proposed Online Agent (OA).
Section 4.1 introduces the online world model learning pro-

cess, followed by our results on the regret of the sparse
model learning (Section 4.2). Based on the learned no-
regret model, Section 4.3 describes how the policy is con-
structed using planning.

4.1 Online world model learning

We present the learning process of OA, where we employ
shallow but wide networks that support efficient Follow-
The-Leader (FTL) online learning to model the world. In
particular, we learn a model of the form y = Wσ(Px),
where P is a projection matrix filled with fixed random
values drawn from a Gaussian distribution, σ is an acti-
vation function and W contains learnable weights. Such
architecture allows universal approximation (Huang et al.,
2006) but requires a very high dimensional hidden layer to
have great capacity. Following Liu et al. (2024), we learn a
linear model online per time step, using a high-dimensional
sparse feature encoder for σ(Px) and solving for W in
closed form with FTL strategy.

Modeling. Let S and A denote the dimenionality of state
and action spaces. When the agent is in state st it exe-
cutes an action at and observes how the world changes.
The observation may incur a loss thus correcting its previ-
ous perception of the world dynamics, which is modeled
linearly by yt = ϕ(xt)

⊤W . W ∈ RD×S is the linear
layer, xt = [st,at] ∈ RS+A is the input for the world
model and ϕ(xt) ∈ RD is its sparse high-dimensional
projection, and yt = (st+1 − st) ∈ RS the state dif-
ferences. At the start of time step t, we have Φt−1 =
[ϕ(x1), . . . , ϕ(xt−1)]

⊤ ∈ R(t−1)×D accumulating all the
inputs and Yt−1 ∈ R(t−1)×S as well for targets. A FTL
world model can be solved by regularized least squares:

∀ t,W (t) = argmin
W∈RD×S

∥Φt−1W − Yt−1∥2F +
1

λ
∥W ∥2F ,

(3)
where ∥ · ∥F denotes the Frobenius norm.

Learning the world model simply requires finding a so-
lution to Eq. (3), which can be obtained analytically as
W (t) = (Φ⊤

t−1Φt−1 + 1
λI)

−1Φ⊤
t−1Yt−1. Though this

computation does not grow with the amount of data, the in-
version could still be inefficient since D is usually large for
modeling complex environments. We thus utilize the fea-
ture sparsity and conduct incremental update on the model:

W (t)
s =

(
A(t−1)

ss +
1

λ
I
)−1

(B(t−1)
s −A

(t−1)
ss W

(t−1)
s),

(4)
where A(t−1) = Φ⊤

t−1Φt−1 and B(t−1) = Φ⊤
t−1Yt−1, s

contains all the indices on which the latest input feature
ϕ(xt−1) has non-zero values, i.e., the newly coming data
point only activates K = |s| ≪ D nodes, and s is its
complement. Using them in subscript means taking a sub-
matrix from the original one. The activation ratio K/D is

3

Continual Reinforcement Learning by Planning with Online World Models

fixed and small for any input to guarantee a constant and
low update overhead. Note that when s covers all coordi-
nates (thus the feature is dense), Eq. (4) recovers the ana-
lytic solution to Eq. (3). We refer to Appendix A.1 for a
more detailed sparse feature construction process.

Despite the resemblance to the update rule in Algorithm
2 of Liu et al. (2024), Eq. (4) highlights a crucial differ-
ence that 1

λI derived from the ridge regularization term is
important for the local update to have a unique minimizer
(Lemma 1), or otherwise it may not converge (Peng & Vi-
dal, 2023) when A

(t−1)
ss is rank-deficient, which is the case

during the initial phase of the learning when data points are
only a few. We provide theoretical analysis in Section 4.2.

4.2 Regret analysis

In this section we show the sparse update rule (Eq. (4))
learns a no-regret (O(log(T)) world model. With the fol-
lowing mild assumptions for hyperparameters and inputs,
we have Theorem 1.

Assumption 1. For all t ≥ 1 and x1,x2, . . . ,xt, we as-
sume that there exists λ ≥ 1 such that

sup
x

∥∥∥ϕ(x)ϕ(x)⊤ − 1

t

t∑
i=1

ϕ(xi)ϕ(xi)
⊤
∥∥∥
2
≤ 1

λt
. (5)

Assumption 2. Assume that for all t ≥ 1, ∥yt∥2 ≤ cy with
yt,i ≥ 0, and ∥W ∥F ≤ cW .

Assumption 3. For all t ≥ 1, we set K such that

K ≥ min
{
D,

c2y

(∑t
i=1 ϕ(xi)ϕ(xi)

⊤

ϕ(xt)⊤ϕ(xt)
+1
)√∥∥∥A(t)

ss

(
A

(t)
ss +

1

λ
I
)−1
∥∥∥2
2
+1
}
.

Remark 1 (Discussions on the assumptions). Assump-
tion 1 ensures that as more data points are observed, the
feature mappings stabilize. The difference between the
outer product of any new input’s feature mapping and the
average outer product of the observed mappings decreases
as increases. In essence, as more data is gathered, the em-
pirical covariance matrix better approximates the true co-
variance matrix. The term 1

λt controls this stabilization
rate, with λ as a scaling factor. It ensures the model’s
representations become more reliable over time, improv-
ing generalization to new data. In practice, Assumption 1
holds if we explore new points near to the observed data,
i.e., within 1

λt away from the center in the feature space.
Assumption 2 assumes bounded input and output, which
is a mild condition. Assumption 3 states that the choice
of the hyperparameter K depends on two factors: (1) the
weights of the features at time t over all observed data and
(2) the sparsity of the activated elements in the feature ma-
trix A(t). Intuitively, If Ass is more significant than Ass

in spectral norm, or if the feature value at xt is larger than
previously observed data, a smaller K suffices to ensure
model performance. In practice, we choose K such that As-
sumption 3 hold.

Theorem 1 (Regret Bounds for Sparse Online Model
Learning). Let W̃ (1), W̃ (2), . . . be the sequence produced
by the sparse online model learning Eq. (4). Let rM ≥ 1 be
a constant defined as in Eq. (18). Suppose that there exist
cW , cy > 0 and λ ≥ 1 such that Assumptions 1 to 3 hold.
Then, for all T ≥ 1 and all ξ ∈ RD×S , we have

Regret(T) :=

T∑
t=1

ft(W̃
(t))−

T∑
t=1

ft(ξ)

≤ 1

λ
c2W + 5λ(K2r2M + 1)c2yD(log(T) + 1). (6)

If λ = cW /cy
√
5(K2r2M + 1)D(log(T) + 1) ≥ 1 and it

satisfies Assumptions 1 and 3, then we have

Regret(T) ≤ cW cy

√
20(K2r2M + 1)D(log(T) + 1). (7)

Proof Sketch (for formal proof see Appendix E.3.2). Note
that we can decompose the regret into:

Regret(T) =

T∑
t=1

(
ft(W̃

(t))− ft(W
(t))
)

+

(
T∑

t=1

ft(W
(t))−

T∑
t=1

ft(ξ)

)
.

The first term involves the gap between the solutions of
Eq. (3) and the sparse online model learning Eq. (4) at each
time step. By Schur’s Complement Lemma for block ma-
trix inversion (Zhang, 2006) together with the sparse up-
date rule Eq. (4), we can upper-bound the difference be-
tween W̃ (t) and W (t) (see Proposition 3), which is fur-
ther used to bound ft(W̃

(t))− ft(W
(t)) (see the proof in

Appendix E.3.2). The second term is the regret bound for
online model learning Eq. (3). By bounding the difference
between W (t) and W (t+1) (see Lemma 2), we can upper-
bound f(W (t)) − f(W (t+1)) (see Lemma 3). Then, fol-
lowing a similar proof (Shalev-Shwartz et al., 2012) for the
regret bounds of FTL models, we obtain the regret bound
for online model learning (see Corollary 1). Combining
the bounds for the two terms we conclude the proof. We
refer to Appendices E.2 and E.3 for more details and other
results.

4.3 Planning with online world models

Based on its internal no-regret model about the world, OA
acts in the environment by planning and MPC. For plan-
ning we use the cross-entropy method (CEM) (Rubinstein,

4

Continual Reinforcement Learning by Planning with Online World Models

1999; De Boer et al., 2005), a stochastic derivative-free
optimization technique that has demonstrated effectiveness
in different model-based RL scenarios (Chua et al., 2018;
Wang & Ba, 2020). It solves Eq. (2) in an iterative manner
as described below.

In each iteration, it first generates N action sequence candi-
dates C = {at:t+H}Nn=1 for a planning horizon H , in which
each ai is independently sampled from N (µ,diag(σ2))
with µ,σ ∈ RA. Then, individual candidates are evaluated
by simulating the action sequences in the learned model to
compute the total rewards. Finally, only a fixed number of
elite candidates with high total rewards is selected and used
to estimate the parameters {µ,σ} by maximum likelihood
for the next iteration. After a few iterations, an approxi-
mately optimal action sequence can be found and used by
MPC.

Instead of the plain CEM, we adopt several improvements
to make it efficient for model-based RL. The first modifica-
tion is shift-initialization. At time step (t+1), we initialize
the candidates C0t+1 using the solution of the previous de-
cision step C⋆t , shifted by one step. This is because MPC
only takes the first best action and discards the remaining
(H − 1) results, which could be utilized to provide bet-
ter initialization for the next time step. We also incorpo-
rate colored noise and memory proposed by Pinneri et al.
(2021) for better sample efficiency. The colored noise in-
jects temporal correlation along the planning horizon when
generating at:t+H , which potentially leads to deeper ex-
ploration of the state space. Meanwhile, the memory keeps
the elite candidates generated at each CEM iteration and
carry a fraction of them over to initialize the next iteration.
Reusing these high quality samples could speed up the con-
vergence of CEM iterations. We refer to Appendices A.2
and A.3 for a detailed algorithm and hyperparameters used
in this paper.

5 Continual Bench: An Environment for
CRL Evaluation

The field of machine learning in general benefits from
properly designed datasets and benchmarks to iterate al-
gorithms. However, in CRL, there are not many widely
adopted benchmarks, and prior works tend to themselves
create a sequence of tasks from an existing suite of envi-
ronments. For example, Kirkpatrick et al. (2017) select a
sequence of Atari games (Bellemare et al., 2013) to learn
sequentially, and Huang et al. (2021) vary the world prop-
erties (e.g. the density of the same object) in a single envi-
ronment. The former type may overlook knowledge trans-
fer across tasks due to the lack of meaningful overlapping,
and the latter kind could be unrealistic because real world
physics does not change.

Recently, Wołczyk et al. (2021) propose a benchmark

z

yx

Figure 2: Potential physical conflicts between two consecutive
tasks in Continual-World (Wołczyk et al., 2021). The handles of
the door and the drawer follow different trajectory when being
opened.

named Continual-World, where they select a sequence of
tasks from Meta-World (Yu et al., 2019) and run experi-
ments using soft actor-critic (SAC) (Haarnoja et al., 2018)
with various continual learning techniques. This bench-
mark has put explicit focus on low-level transfer, because
the same robotic arm is instructed to achieve different goals
by interacting with real-world objects. However, the poten-
tial underlying physical conflict impedes the original de-
sign purpose.

We use Figure 2 to illustrate how such conflict would ap-
pear and why it is undesirable. The figure shows two sim-
ilar tasks: open the door (left) and open the drawer (right).
As different tasks all share the same observation space
(Wołczyk et al., 2021), the locations of both the door handle
and the drawer handle will be regarded as “the first object
location”, thus their values are placed into the same posi-
tions of the observation vector. However, when the gripper
pulls the handle, the door will allow a circular movement in
the xy plane, but the drawer will constrain the displacement
to the y axis, immediately resulting in conflicting world dy-
namics. This could prevent us from studying forgetting or
transfer in CRL, because there is even no common solu-
tion about the world, not to mention how the skills learned
from one task can transfer to the next one. This issue is
not obvious in Wołczyk et al. (2021) because they work
with model-free methods, take advantage of task ID infor-
mation, and learn separate heads for different tasks.

Motivated by above-mentioned issues, we design Continual
Bench, a dedicated environment for CRL evaluation, for
assessing OA and comparing it with baselines. Our devel-
opment is based on the task primitives proposed by Meta-
World, but instead of directly concatenating several tasks
temporally like Continual-World, we redesign the environ-
ment to arrange different tasks spatially. This ensures the
existence of a unified world dynamics, which corresponds
to the multi-task solution, a basic assumption for achiev-
ing an ideal continual learner (Peng et al., 2023). Fig-
ure 3 gives an overview of the environment. Starting from
the lower left and anti-clockwise, the 6 selected tasks with
diverse difficulty levels are: peg-unplug, faucet-close,
pick-place, door-open, window-close, button-press.
They are placed in a circle with maximal distances to each
other, facilitating test on forgetting in the presence of dis-

5

Continual Reinforcement Learning by Planning with Online World Models

Figure 3: The Continual Bench environment consists of 6 tasks
with diverse difficulty levels. All tasks share the same unified
dynamics.

tributional shift in state-action visitation when switching
tasks. Different tasks also share meaningful overlapping,
allowing us to study transfer, though it is not the focus of
this work. We open source the code of Continual Bench1

and hope this realistic but lightweight environment can ac-
celerate the progress of CRL research. Please see Ap-
pendix B for detailed environment specifications.

6 Experiment

We evaluate OA using Continual Bench, and compare its
CRL capability with several continual learning baselines
under the same agent design framework.

6.1 Setup and metrics

We mainly focus on the model-based planning framework,
where all agents we compare are model-based RL agents
that learn a world model using experiences and act using
CEM planning with MPC (refer to Figure 7). In this setup,
OA learns the world model online (Section 4.1), while the
baselines employ a deep world models, a default choice
of many prior approaches (Chua et al., 2018; Wang & Ba,
2020; Kessler et al., 2023).

The reward function is provided to the agent and changed
upon task switch, but no task boundary information is given
to the world model learning (unless the continual learn-
ing baseline requires it). We let all agents run in Con-
tinual Bench to continuously solve a sequence of 6 tasks
in the order (pick-place, button-press, door-open,
peg-unplug, window-close, faucet-close). The order
is chosen such that adjacent tasks are as spatially far away
as possible to increase the nonstationarity.

The performance is measured in accordance to the CRL
objective defined in Eq. (1). Since all the tasks in Continual
Bench have a binary success measure depending on current
and goal state, we define average performance on all seen

1https://github.com/sail-sg/ContinualBench

Oracle
agent
Online
agent

Regret

Continual tasks

Su
cc

es
s r

at
e

Figure 4: Regret can be calculated with the area in blue, which
integrates the sub-optimality gap of the online agent.

tasks to evaluate agents at global time step w:

AP (w) =
1

Tw

Tw∑
τ=1

pτ (w), with

pτ (w) = Eπ,Pu

[∞∏
t=0

I(∥st − g∥22 < δ)|s0=s ∼ ρτ0

]
.

(8)

Tw is the number of tasks an agent has experienced at step
w, pτ (w) is the success rate of the policy at time w on task
τ , and I is the indicator function. Intuitively, this metric
reflects the offline performance of π at time step w across
all observed tasks, thus accounting for forgetting.

We also define regret to better capture the online perfor-
mance of an agent:

Reg(w) =
1

w

∫ w

τ=0

(1− pTτ
(τ))dτ, (9)

which effectively calculates the normalized area enclosed
by the online agent’s performance curve and that of an ora-
cle agent (with success rate always being 1), as depicted in
Figure 4.

6.2 Baselines

Continual learning (CL) methods can be categorized into
several paradigms, such as regularization-based methods
(Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al.,
2019b), replay-based methods (Riemer et al., 2018; Aljundi
et al., 2019a; Chaudhry et al., 2019b) and architecture-
based methods (Mallya & Lazebnik, 2018; Kang et al.,
2022). Prior CRL works typically apply CL methods
to base RL agents, such as the model-free Soft Actor-
Critic (SAC) (Haarnoja et al., 2018; Yang et al., 2023)
or the model-based Dyna (Sutton, 1990; Liu et al., 2024).
We follow the practices to test multiple representative CL
methods with both a model-free actor-critic agent and a
model-based planning agent. Concretely, we consider
EWC (Kirkpatrick et al., 2017) and SI (Zenke et al.,
2017) for regularization-based methods, PackNet (Mallya

6

https://github.com/sail-sg/ContinualBench

Continual Reinforcement Learning by Planning with Online World Models

0.0

0.2

0.4

0.6

0.8

S
u
cc

es
s

ra
te

Task 1: pick-place

0.0

0.2

0.4

0.6

0.8

1.0

Task 2: button-press

0.0

0.2

0.4

0.6

0.8

Task 3: door-open

0 1 2 3 4 5 6
Episodes £102

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

ra
te

Task 4: peg-unplug

0 1 2 3 4 5 6
Episodes £102

0.0

0.2

0.4

0.6

Task 5: window-close

0 1 2 3 4 5 6
Episodes £102

0.0

0.2

0.4

0.6

0.8

1.0
Task 6: faucet-close

0 100 200 300 400 500 600
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ev
al

/0
/s

u
cc

es
s

Fine-tuning SI Coreset Perfect Memory OA

Figure 5: Performance comparison of our agent OA with different deep model-based planning agents on Continual Bench environment.
Results are aggregated from 7 runs with different seeds. The solid lines show the means and shaded areas are the standard errors. The
grey regions denote the learning period for the current task τ ∈ [1, 2, . . . , 6].

& Lazebnik, 2018) for architecture-based methods, and
Coreset (Vitter, 1985) for replay-based methods. We also
include the vanilla baseline of Fine-tuning which fine-
tunes the model only on the current task, and upper-bound
baselines Perfect Memory that train on all previous data.
More details about the baselines can be found in Ap-
pendix A.5.

6.3 Learning curves of model-based agents

We first present the comparison of learning curves between
OA and baseline agents in the model-based planning set-
ting on the Continual Bench environment. Figure 5 shows
the performance (success rate) of different agents for all 6
tasks, measured along the learning process. Different tasks
are presented to the agents sequentially, with the shaded
region in grey denoting the learning period of that par-
ticular task. We first observe that during the learning pe-
riod of a particular task, all agents effectively learn to per-
form the task well, showing the plasticity of model-based
agents: it can reuse the knowledge of the world dynam-
ics and quickly adapt to new tasks by planning with cor-
responding reward functions. Focusing on the stability (to
retain the performance on previously seen tasks), we notice
that Fine-tuning agents immediately cease to perform well
on the old task when switching to the new one due to catas-
trophic forgetting. Using SI to regularize the weight up-
dates can alleviate the forgetting slightly, resulting in a bit
higher final performance on two tasks (button-press and

window-close). Maintaining a Coreset for experience re-
play performs better than SI, resembling the state-of-the-art
performance of replay-based methods in supervised contin-
ual learning (Boschini et al., 2022). However, its perfor-
mance diminishes as the proportion of older experiences
decreases. This suggests that determining the size of the
replay is a challenging design choice, especially when the
number of tasks and the number of samples in each task
are unknown. In comparison, OA stands out by demonstrat-
ing non-forgetting capability building on the online FTL
world models. For all tasks it has seen, OA maintains a
high performance over all remaining time steps, matching
the performance of Perfect Memory. However, Perfect
Memory ensures non-forgetting by keeping all the data and
performing SGD updates until convergence, which is inef-
ficient with unboundedly growing computation for lifelong
agents. OA, on the other hand, achieves the same perfor-
mance by a much more efficient online update with con-
stant overhead.

6.4 Average performance of model-based and
model-free agents

We show the average performance (Eq. (8)) curves over all
seen tasks in Figure 6(a). We scale the performance by
Tw

6 for better visual effect. The dashed lines denote task
switching, upon which we can observe a performance jump
of different scales for all agents. Due to the loss of stabil-
ity, deep agents (even with various continual learning tech-

7

Continual Reinforcement Learning by Planning with Online World Models

0 1 2 3 4 5 6

Episodes £102

0.0

0.2

0.4

0.6

0.8
Average performance

Fine-tuning

SI

Coreset

Perfect Memory

OA

0 1 2 3 4 5 6

Episodes £102

0.15

0.30

0.45

Sparse model utilization

0.2 0.3 0.4 0.5

Utilization

0

20

40

60

Final average performance
§

5

7

9

11

1 5000 10000 20000 141946

BuÆer size

0.2

0.4

0.6

0.8

Final average performance

Coreset

Perfect Memory

OA

(a) (b) (c) (d)

Figure 6: (a) The average performance curves of different methods. (b) Ratio of the activated weights of the OA sparse world model. (c)
Final agent performance with different buffer budgets. (d) Ablation on the world model sparsity.

Table 1: Comparison on average performance and regret (in %) of
regularization-based (à), architecture-based (), replay-based
(%) and perfect memory (�) methods.

Base Methods AP (↑) Reg (↓)

M
od

el
-f

re
e

(S
A

C
)

Fine-tuning 0.69 67.68
à EWC 31.45 77.38
 PackNet 41.72 78.50
% Coreset 37.31 77.97
� Perfect Memory 41.51 77.58

M
od

el
ba

se
d

Fine-tuning 24.86 37.74
à SI 39.96 33.57
% Coreset 61.83 30.83
� Perfect Memory 73.09 30.95

OA (ours) 72.93 27.62

niques) struggle to succeed on all sequentially seen tasks.
Only OA (and deep agent with perfect memory) can improve
the average performance continually. Table 1 gives quanti-
tative results of the average performance (AP) and the re-
gret (Reg) measured over all tasks at the final step of agent
learning. For model-free agents, various CL methods im-
prove AP compared to the Fine-tuning baseline, while they
all incur high regret. This might be because the learned
policy and value are hard to adapt to new tasks quickly. On
the other hand, model-based agents generally exhibit lower
regret by planning with the learned world model, which is
shared across tasks thus being more generalizable. Notably,
the proposed method achieves even lower regret than deep
agents with perfect memory. This is because our incremen-
tal update ensures the optimal solution at each step, while
SGD updates on all previous data are not guaranteed and
could be less efficient. While model-based results in Fig-
ure 5 & Table 1 measure the agent’s CRL performance (a
joint result of world model and planner), the world model
accuracy provides a more direct measure. Please see Ap-
pendix C for more results.

6.5 Ablation analysis

OA perceives the state-action inputs as high-dimensional
sparse features (Section 4.1), and naturally learns a sparse

world model. Figure 6(b) shows the change of the model
utilization (ratio of activated weights) of OA. Interestingly,
we can observe the sparse model gradually grows its uti-
lization as learning more new tasks. Note that even if OA
reaches nearly full model utilization, it can still learn from
newly coming data because the model solves for an overall
least squares solution based on sufficient statistics (Eq. (3))
and the sparse learning is no-regret (Theorem 1). In con-
trast, methods based on iterative solution finding from a
prior solution subspace (Farajtabar et al., 2020; Peng et al.,
2023) may exhaust the solution space quickly and fail to
learn from new data. Figure 6(c) compares the perfor-
mance against the buffer size, and shows that OA achieves
the best performance under buffer constraints. Finally, in
Figure 6(d) we ablate the effect of different sparsity of the
model. Λ denotes the number of bins in Losse ((Liu et al.,
2024), Appendix A.1); larger Λ means sparser models.
The results show that sparser model contains greater ca-
pacity and reaches higher performance with less activated
weights. This is a natural result as D increases with Λ (the
network is becoming wider), but the attractive property is
that both the update and inference computation remains al-
most the same since K is fixed. This shows the flexibility
of choosing suitable sparsity levels to model environments
with different complexities.

7 Conclusion

In this paper, we propose to tackle the CRL problem by de-
veloping Online Agents, which should learn a shared com-
ponent throughout the agent’s lifetime and update incre-
mentally. In environments with a unified world dynamics
across tasks, we learn such a shared component by online
FTL world modeling and act by planning. Theoretically
we prove that the sparse online update learns a no-regret
world model. To assess the agent’s CRL capability, we fur-
ther develop a benchmark named Continual Bench. Empir-
ical results show that our Online Agents outperform sev-
eral strong baselines under a fair setting, demonstrating its
effectiveness and promise in building future autonomous
agents.

8

Continual Reinforcement Learning by Planning with Online World Models

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,
M. C. Loss of plasticity in continual deep reinforcement
learning. In Proceedings of The 2nd Conference on Life-
long Learning Agents, 2023.

Abel, D., Barreto, A., Van Roy, B., Precup, D., van Has-
selt, H. P., and Singh, S. A definition of continual re-
inforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-
ent based sample selection for online continual learning.
Neural Information Processing Systems, 2019a.

Aljundi, R., Rohrbach, M., and Tuytelaars, T. Selfless se-
quential learning. International Conference on Learning
Representations, 2019b.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 2013.

Bellman, R. A markovian decision process. Journal of
mathematics and mechanics, 1957.

Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A., and
Calderara, S. Class-incremental continual learning into
the extended der-verse. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with A-GEM. In Interna-
tional Conference on Learning Representations, 2019a.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P., Torr, P., and Ranzato, M. Continual learning
with tiny episodic memories. In Workshop on Multi-Task
and Lifelong Reinforcement Learning at ICML, 2019b.

Chua, K., Calandra, R., McAllister, R., and Levine, S.
Deep reinforcement learning in a handful of trials us-
ing probabilistic dynamics models. Advances in Neural
Information Processing Systems, 2018.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leverag-
ing procedural generation to benchmark reinforcement
learning. International Conference on Machine Learn-
ing, 2020.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. A tutorial on the cross-entropy method. Annals of
operations research, 2005.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogo-
nal gradient descent for continual learning. In Chiappa,
S. and Calandra, R. (eds.), The 23rd International Con-
ference on Artificial Intelligence and Statistics, 2020.

Garcia, C. E., Prett, D. M., and Morari, M. Model predic-
tive control: Theory and practice—a survey. Automatica,
1989.

Garcia, F. M. and Thomas, P. A meta-mdp approach to
exploration for lifelong reinforcement learning. Neural
Information Processing Systems, 2019.

Gaya, J.-B., Doan, T., Caccia, L., Soulier, L., Denoyer, L.,
and Raileanu, R. Building a subspace of policies for
scalable continual learning. International Conference on
Learning Representations, 2023.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In Interna-
tional Conference on Machine Learning, 2018.

Huang, G.-B., Chen, L., Siew, C. K., et al. Universal ap-
proximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Trans. Neu-
ral Networks, 2006.

Huang, Y., Xie, K., Bharadhwaj, H., and Shkurti, F. Con-
tinual model-based reinforcement learning with hyper-
networks. In IEEE International Conference on Robotics
and Automation, 2021.

Hutter, M. A theory of universal artificial intelligence
based on algorithmic complexity. arXiv preprint arXiv:
cs0004001, 2000.

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. AAAI Conference on Artificial Intelli-
gence, 2018.

Johnson, W. B. and Lindenstrauss, J. Extensions of lip-
schitz mappings into a hilbert space. Contemporary
Mathematics, 1984.

Kang, H., Yoon, J., Madjid, S. R., Hwang, S. J., and
Yoo, C. D. Forget-free continual learning with soft-
winning subnetworks. International Conference on Ma-
chine Learning, 2022.

Kessler, S., Parker-Holder, J., Ball, P. J., Zohren, S., and
Roberts, S. J. Same state, different task: Continual rein-
forcement learning without interference. AAAI Confer-
ence on Artificial Intelligence, 2022.

9

Continual Reinforcement Learning by Planning with Online World Models

Kessler, S., Ostaszewski, M., Bortkiewicz, M. P., Żarski,
M., Wolczyk, M., Parker-Holder, J., Roberts, S. J., and
Miś, P. The effectiveness of world models for contin-
ual reinforcement learning. In Proceedings of The 2nd
Conference on Lifelong Learning Agents, 2023.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. To-
wards continual reinforcement learning: A review and
perspectives. Journal of Artificial Intelligence Research,
2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 2017.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Deitke, M., Ehsani, K., Gordon, D., Zhu, Y.,
et al. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474, 2017.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici,
M., Grefenstette, E., and Rocktäschel, T. The nethack
learning environment. Advances in Neural Information
Processing Systems, 2020.

Liu, Z., Du, C., Lee, W. S., and Lin, M. Locality sensitive
sparse encoding for learning world models online. In
International Conference on Learning Representations,
2024.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple
tasks to a single network by iterative pruning. IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2018.

Nagabandi, A., Finn, C., and Levine, S. Deep online learn-
ing via meta-learning: Continual adaptation for model-
based rl. International Conference on Learning Repre-
sentations, 2018.

Negenborn, R. R., De Schutter, B., Wiering, M. A., and
Hellendoorn, H. Learning-based model predictive con-
trol for markov decision processes. IFAC Proceedings
Volumes, 2005.

Peng, L. and Vidal, R. Block coordinate descent on smooth
manifolds: Convergence theory and twenty-one exam-
ples. Conference on Parsimony and Learning, 2023.

Peng, L., Giampouras, P. V., and Vidal, R. The ideal con-
tinual learner: An agent that never forgets. International
Conference on Machine Learning, 2023.

Pineda, L., Amos, B., Zhang, A., Lambert, N. O., and Ca-
landra, R. Mbrl-lib: A modular library for model-based
reinforcement learning. Arxiv, 2021.

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler,
J., Rolinek, M., and Martius, G. Sample-efficient cross-
entropy method for real-time planning. In Conference on
Robot Learning, 2021.

Powers, S., Xing, E., Kolve, E., Mottaghi, R., and Gupta,
A. Cora: Benchmarks, baselines, and metrics as a plat-
form for continual reinforcement learning agents. In
Proceedings of The 1st Conference on Lifelong Learn-
ing Agents, 2022.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y.,
and Tesauro, G. Learning to learn without forgetting by
maximizing transfer and minimizing interference. Inter-
national Conference on Learning Representations, 2018.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning.
Neural Information Processing Systems, 2019.

Rubinstein, R. The cross-entropy method for combinatorial
and continuous optimization. Methodology and comput-
ing in applied probability, 1999.

Sancaktar, C., Blaes, S., and Martius, G. Curious explo-
ration via structured world models yields zero-shot ob-
ject manipulation. In Advances in Neural Information
Processing Systems, 2022.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell, R.
Progress compress: A scalable framework for continual
learning. International Conference on Machine Learn-
ing, 2018.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends in Machine
Learning, 2012.

Sharma, A., Xu, K., Sardana, N., Gupta, A., Hausman,
K., Levine, S., and Finn, C. Autonomous reinforcement
learning: Formalism and benchmarking. International
Conference on Learning Representations, 2022.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2020.

Sutton, R. S. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Machine Learning Proceedings. 1990.

10

Continual Reinforcement Learning by Planning with Online World Models

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IEEE International
Conference on Intelligent Robots and Systems, 2012.

Vitter, J. S. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software, 1985.

Wang, T. and Ba, J. Exploring model-based planning with
policy networks. International Conference on Learning
Representations, 2020.

Williams, G., Aldrich, A., and Theodorou, E. Model
predictive path integral control using covariance vari-
able importance sampling. arXiv preprint arXiv:
1509.01149, 2015.

Wołczyk, M., Zając, M., Pascanu, R., Kuciński, Ł., and
Miłoś, P. Continual world: A robotic benchmark for
continual reinforcement learning. Advances in Neural
Information Processing Systems, 2021.

Yang, Y., Zhou, T., Jiang, J., Long, G., and Shi, Y. Con-
tinual task allocation in meta-policy network via sparse
prompting. In International Conference on Machine
Learning, pp. 39623–39638. PMLR, 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalu-
ation for multi-task and meta reinforcement learning. In
Conference on Robot Learning, 2019.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, 2017.

Zhang, F. The Schur complement and its applications, vol-
ume 4. Springer Science & Business Media, 2006.

Zhuang, H., Weng, Z., Wei, H., Xie, R., Toh, K.-A., and
Lin, Z. ACIL: Analytic class-incremental learning with
absolute memorization and privacy protection. In Ad-
vances in Neural Information Processing Systems, 2022.

Zhuang, H., Weng, Z., He, R., Lin, Z., and Zeng, Z.
GKEAL: Gaussian kernel embedded analytic learning
for few-shot class incremental task. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2023.

Zhuang, H., He, R., Tong, K., Zeng, Z., Chen, C., and
Lin, Z. DS-AL: A dual-stream analytic learning for
exemplar-free class-incremental learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 2024.

11

Continual Reinforcement Learning by Planning with Online World Models

A Agent details

In this section we provide more details about OA, including the sparse non-linear feature encoding, the learning and acting
process, the model hyperparameters, and the planing algorithm. We also include baseline and experimental details for
reproducibility.

A.1 Sparse feature encoding

We revisit the feature construction process of Losse (Liu et al., 2024), on which we will build our online world models for
planning. At time step t, given an input vector xt ∈ RS+A, we first randomly project it to obtain bounded random features
σ(xt) = sigmoid(Pxt), where P ∈ Rd×(S+A) is sampled from a multivariate Gaussian N (0, 1

S+AI) to preserve feature
similarity (Johnson & Lindenstrauss, 1984), and sigmoid is applied element-wise to ensure each feature value is bounded
between (0, 1), such that the binning edges can be clearly defined. Next, each element of σ(xt) is binned softly by locating
its neighboring edges and computing the distances from them. We illustrate using 1-dimensional feature grid with Λ bins.
For the i-th element of σ(xt), let Ii = (Λ − 1) · σ(xt)i denote its projection location on the grid. Then the “activated”
indices are

si = [⌊Ii⌋, ⌊Ii⌋+ 1],

and their associated values are

vi = [1− (Ii − ⌊Ii⌋) , Ii − ⌊Ii⌋].

Therefore, the i-th slice of the resulting feature vector is a Λ-long zero vector with non-zero values filled at indices si with
values vi, and the final feature ϕ(xt) is the concatenation of d such slices.

A.2 The learning and acting process

Online Agent (OA) Learning and Acting Loop

Require: zero-initialized agent memories A(0), B(0) and world model weights W (0);
sparse encoder ϕ : RS+A 7→ RD; initial index s = [D]; planner CEM; sequence of
tasks (Rτ)∞τ=1; initial state s1 ∼ ρ0; time step t = 1.

1: loop ▷ OA runs forever, updates per step
2: if task changes then
3: µt ← init values ∈ RA×H

4: else
5: µt ← shifted µt−1 (fill the last column with init values)
6: end if

7: W
(t)
s ← (A

(t−1)
ss + 1

λI)
−1(B

(t−1)
s −A

(t−1)
ss W

(t−1)
s)

8: at,µt+1 ← CEM(st,W (t),µt, R
τ) ▷ Appendix A.4 for details

9: st+1 ← environment(st,at)

10: xt ← [st,at]; yt ← st+1 − st
11: s← nonzero_index(ϕ(xt))

12: A
(t)
ss ← A

(t−1)
ss + ϕs(xt)ϕs(xt)

⊤

13: B
(t)
s ← B

(t−1)
s + ϕs(xt)y

⊤
t

14: t← t+ 1
15: end loop

Figure 7: OA learning and acting loop.

12

Continual Reinforcement Learning by Planning with Online World Models

A.3 OA hyperparameters

To build the sparse world model, we use 300 2-dimensional Losse features with Λ = 9. We perform a coarse sweeping
over different sparsity levels (Λ = (5, 7, 9, 11)) and find Λ = 5 slightly under-fits the environment while all others give
robust good performance. See Figure 6(d) for a comparison. We find 1

λ = 0.005 as a good regularization strength without
any tuning.

For the planner, we use a candidate sampling size of N = 150 with planning horizon H = 15 and K = 3 iterations. The
ratio of elite candidates is 0.1.

A.4 CEM planning

We give a detailed algorithm of CEM that we use to extract policy from a learned model below.

Require: candidate sampling size N ; number of iteration K; planning horizon H; init noise σinit.

1: function CEM(s,W ,µ, R)
2: σ ← init values ∈ RA×H

3: for k ← 1, K do
/* add colored noise */

4: candidates C = {a0:H}Nn=1← N samples from clip(µ+ Cβ(A,H)⊙ σ)
/* memory */

5: add a fraction of elite-set into C if k > 1
6: r ← unroll N trajectories to get returns

H∑
t=0

R(st,at) | s0 = s, st+1 = st + ϕ([st,at])
⊤W

7: elite-set← best K candidates
8: µ,σ ← fit Gaussian distribution to elite-set
9: end for

10: end function

A.5 Baseline details

Fine-tuning. This serves as a minimal baseline for agents that use deep world models. The agent is allowed to keep all the
data within the current task, but cannot carry the data over to the next task. The world model is repeatedly fine-tuned using
a sequence of datasets.

Coreset. This refers to replay-based CL methods where a small buffer is kept across all tasks. We use reservoir sampling
(Vitter, 1985), which updates the buffer such that its distribution approximates the empirical distribution of all observed
samples. We use a large buffer (10K) in our experiments.

Synaptic Intelligence (Zenke et al., 2017). As a regularization-based method, synaptic intelligence (SI) estimates the
importance of each parameter based on the gradients and weights deviation, and regularizes the parameter updates based
on the recorded importance. Similar to Fine-tuning only the data of the current task can be kept, and task boundary
information is needed for SI to recompute the importance measure. The two hyper-parameters used in SI, c = 0.5 and
ξ = 0.05, are selected using a coarse grid search.

Perfect Memory. It is impractical to assume unlimited buffer capacity, but this baseline serves as the upper bound for
agents using deep world models. It can also be regarded as a deep version of the FTL world model (Liu et al., 2024) – the
current model is optimized using all previous data – but in an inefficient way.

In all above baselines, we use a 4-layer MLP with hidden size 200 and ReLU activation for world modeling. We use the
Adam optimizer (Kingma & Ba, 2015) with learning rate of 4 × 10−4 and minibatch size of 256. Since updating deep
models per time step is computationally impractical, especially for CRL settings where the dataset size grows along inter-

13

Continual Reinforcement Learning by Planning with Online World Models

10°6

10°5

10°4

10°3

10°2

M
o
d
el

er
ro

r
Task 1: pick-place

10°6

10°5

10°4

10°3

Task 2: button-press

10°6

10°5

10°4

10°3

10°2

Task 3: door-open

0 1 2 3 4 5 6
Episodes £102

10°6

10°5

10°4

10°3

10°2

M
o
d
el

er
ro

r

Task 4: peg-unplug

0 1 2 3 4 5 6
Episodes £102

10°6

10°5

Task 5: window-close

0 1 2 3 4 5 6
Episodes £102

10°6

2£ 10°6

Task 6: faucet-close

0 100 200 300 400 500 600
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ev
al

/0
/s

u
cc

es
s

Fine-tuning SI Coreset Perfect Memory OA

Figure 8: Curves of the world model errors. Same as the performance measure in the main text, results are aggregated from 7 runs with
different seeds. The solid lines show the means and shaded areas are the standard errors. The grey regions denote the learning period for
the current task τ ∈ [1, 2, . . . , 6].

actions, we update the models every 250 environment step. On every update, the deep models are trained until convergence
over all available data (stopped when the validation loss on 5% holdout data does not improve over 5 consecutive epochs).
All hyperparameters of the planner are the same as OA’s for a fair comparison (see Appendix A.3).

A.6 Experimental details

All experiments in the paper are run on the internal cluster, with each job consuming one A100 GPU and 16 CPUs. The
training time of a single experiment ranges from 10 hours to 15 hours, given a total of 600 episodes budget. We develop
our agent and the baselines using the MBRL Library2 (Pineda et al., 2021) by Meta (MIT license, v0.2.0).

B Continual Bench details

We build Continual Bench based on the Mujoco (Todorov et al., 2012) physics engine and task primitives from Meta-World
(Yu et al., 2019). We include in total 6 tasks (pick-place, button-press, door-open, peg-unplug, window-close,
faucet-close) with diverse difficulty levels. Incorporating all the information about the world on the table, we have
dim(S) = 26. The state includes: hand position (3), gripper openness (1), button position (3), door handle position (3),
door opening angle (1), window handle position (3), faucet handle position (3), peg position (3), block position (3), gripper
velocity (1), gripper pad offsets (2). The action space is the same as Meta-World, a 2-tuple consisting the change of end-
effector position in 3D space (3) and a normalized torque applied to gripper fingers (1). When the environment starts, each
episode can be at most 500-step long, with early termination on task success. The reward function Rτ is changed according
to the task on hand upon switching. All reward functions are defined based on their well-crafted subroutines (Section E of
Yu et al. (2019)).

C More empirical results

We present more empirical results in this section. In Figure 8, we show the mean squared error (MSE) of world models
when the agents learn sequentially on the Continual World environment, to more directly investigate the forgetting issues.
We keep a separate buffer for each task, and measure the MSE of the model on the data of every seen task. We can observe
that the baseline agents (except the one with perfect memory) all exhibit increasing model errors when leaving the current
task, but OA can maintain nearly the same accuracy along the whole learning process.

2https://github.com/facebookresearch/mbrl-lib

14

https://github.com/facebookresearch/mbrl-lib

Continual Reinforcement Learning by Planning with Online World Models

D Limitations and Future Work

One limitation of the current OA is that the online world model can only deal with moderate-dimensional state-based
observation and does not capture world uncertainties. We envisage that developing highly capable probabilistic models
that permits efficient online learning is a future research avenue. Besides, though the current framework is simple yet
effective, the model planing does not incorporate explicit exploration. We leave this topic for future research. The proposed
benchmark environment, Continual Bench, is limited to episodic settings with explicit task switch across episodes. This is
mainly due to the challenge brought by irreversible states (Sharma et al., 2022) since the underlying MDP is non-ergodic
(e.g., a block falling outside the table can never be placed back). Developing a reset-free CRL environment consisting of
many tasks is a potential future work.

E Theoretical analysis and proofs

E.1 Closed-form solutions for sparse online world model learning

Lemma 1 (Sparse Online Model Learning Minimizer). For every t ∈ [1, T], s ⊆ [D], the following problem at time step t
has a unique global minimizer

W̃ (t)
s := argmin

Ws∈RK×S

∥Φt−1([W
(t−1)
s ;Ws])− Yt−1∥2F +

1

λ
∥[W (t−1)

s ;Ws]∥2F . (10)

The global minimizer W̃ (t)
s has a closed-form solution as Eq. (4), i.e.:

W̃ (t)
s =

(
A(t)

ss +
1

λ
I

)−1

(B(t)
s −A

(t)
ss W

(t−1)
s),

where W̃ (t) = [W
(t−1)
s ; W̃

(t)
s],A(t) = Φ⊤

t−1Φt−1,B
(t) = Φ⊤

t−1Yt−1 and they can be decomposed into

A(t) =

(
A

(t)
ss A

(t)
ss

A
(t)
ss A

(t)
ss

)
,B(t) =

(
B

(t)
s

B
(t)
s

)
, W̃ (t) =

(
W

(t−1)
s

W̃
(t)
s

)
.

Proof. Uniqueness. By the convexity of Frobenius norm and both two terms in Eq. (10) are quadratic in Ws, the objective
function Eq. (10) is strictly convex and has a unique solution.

Closed-form solution. Note that

∥ΦW − Y ∥2F +
1

λ
∥W ∥2F

=∥ΦW ∥2F + ∥Y ∥2F − 2⟨ΦW ,Y ⟩F +
1

λ
∥W ∥2F

=Tr
(
W⊤Φ⊤ΦW

)
+Tr

(
Y ⊤Y

)
− 2Tr

(
W⊤Φ⊤Y

)
+

1

λ
∥W ∥2F

=Tr
(
W⊤AW

)
+Tr

(
Y ⊤Y

)
− 2Tr

(
W⊤B

)
+

1

λ
∥W ∥2F

=Tr

((
Ws

Ws

)⊤(
Ass Ass

Ass Ass

)(
Ws

Ws

))
+Tr

(
Y ⊤Y

)
− 2Tr

((
Ws

Ws

)⊤(
Bs

Bs

))

+
1

λ
Tr

((
Ws

Ws

)⊤(
Ws

Ws

))
= Tr

(
W⊤

s AssWs

)
+Tr

(
W⊤

s AssWs

)
+ 2Tr

(
W⊤

s AssWs

)
+Tr

(
Y ⊤Y

)
− 2Tr

(
W⊤

s Bs

)
− 2Tr

(
W⊤

s Bs

)
+

1

λ
Tr
(
W⊤

s Ws

)
+

1

λ
Tr
(
W⊤

s Ws

)
15

Continual Reinforcement Learning by Planning with Online World Models

As a result,

min
Ws∈RK×S

∥Φt(Ws;Ws)− Yt∥2F +
1

λ
∥W ∥F

⇐⇒ min
Ws∈RK×S

Tr
(
W⊤

s AssWs

)
+ 2Tr

(
W⊤

s AssWs

)
− 2Tr

(
W⊤

s Bs

)
+

1

λ
Tr
(
W⊤

s Ws

)
(11)

Differentiate the objective function Eq. (11) w.r.t Ws and set it to zero, we obtain

W̃s =

(
Ass +

1

λ
I

)−1

(Bs −AssWs).

E.2 Theoretical analysis for online model Learning

Before we derive the regret bounds for sparse online model learning Eq. (10), we first derive the regret bound for online
model learning Eq. (3). The developed regret bound of online model learning, as given in Corollary 1, will be further used
to derive the regret bounds for sparse online model learning Eq. (10) in Appendix E.3.2.

E.2.1 ONLINE MODEL LEARNING

For t ≥ 1, i = 1, . . . , t, we define

fi(W) = Tr(W⊤ϕ(xi)ϕ(xi)
⊤W) + Tr(y⊤

i yi)− 2Tr(W⊤ϕ(xi)y
⊤
i),

ℓreg(W) =
1

λ
∥W ∥2F .

Then, the regularized least squares problem Eq. (3) can be rewritten as

∀t, W (t) = argmin
W∈RD×S

t−1∑
i=1

fi(W) +R(W). (12)

Lemma 2. Let W (1),W (2), . . . be the sequence produced by Eq. (12) (or equivalently Eq. (3)). Suppose that there exist
λ ≥ 1 such that Assumption 1 holds, then for all t ≥ 1, we have(

1− 1

t

)
W (t) +∆t ⪯W (t+1) ⪯W (t) +∆t,

where

∆t :=

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t . (13)

Proof.

∀t, dft(W)

dW
= 2ϕ(xt)ϕ(xt)

⊤W − 2ϕ(xt)y
⊤
t .

Then we have

d
∑t

i=1 fi(W)

dW
+

dℓreg(W)

dW
=

t∑
i=1

dfi(W)

dW
+

2

λ
W =

t∑
i=1

2ϕ(xi)ϕ(xi)
⊤W −

t∑
i=1

2ϕ(xi)y
⊤
i +

2

λ
W .

16

Continual Reinforcement Learning by Planning with Online World Models

Therefore, we get

W (t+1) =

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t∑
i=1

ϕ(xi)y
⊤
i

)

=

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t−1∑
i=1

ϕ(xi)y
⊤
i

)
+

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t

=

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)
W (t) +

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t

=

I −
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤

W (t) +∆t

⪰
(
I − 1

t
I

)
W (t) +∆t (Assumption 1)

=

(
1− 1

t

)
W (t) +∆t.

On the other hand,

W (t+1) =

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t∑
i=1

ϕ(xi)y
⊤
i

)

=

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t−1∑
i=1

ϕ(xi)y
⊤
i

)
+

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t

⪯
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t−1∑
i=1

ϕ(xi)y
⊤
i

)
+

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t

= W (t) +∆t.

Lemma 3. Let W (1),W (2), . . . be the sequence produced by Eq. (12) (or equivalently Eq. (3)). Suppose that there exist
λ ≥ 1, cy > 0 such that Assumptions 1 and 2 hold. Then for all t ≥ 1, we have

|ft(W (t))− ft(W
(t+1))| ≤ 5λc2yD

1

t
.

17

Continual Reinforcement Learning by Planning with Online World Models

Proof. Recall from Lemma 2 that ∆t − 1
tW

(t) ⪯W t+1 −W (t) ⪯ ∆t. Then we have

|ft(W (t+1))− ft(W
(t))|

=
∣∣Tr(ϕ(xt)ϕ(xt)

⊤W (t+1)W (t+1)⊤)− 2Tr(ϕ(xt)y
⊤
t W

(t+1)⊤)

− Tr(ϕ(xt)ϕ(xt)
⊤W (t)W (t)⊤) + 2Tr(ϕ(xt)y

⊤
t W

(t)⊤)
∣∣

=
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤(W (t+1) −W (t)
)(
W (t+1) −W (t)

)⊤)
+ 2Tr

(
ϕ(xt)ϕ(xt)

⊤(W (t+1) −W (t)
)
W (t)⊤

)
− 2Tr(ϕ(xt)y

⊤
t W

(t+1)⊤) + 2Tr(ϕ(xt)y
⊤
t W

(t)⊤)
∣∣∣

≤
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤(W (t+1) −W (t)
)(
W (t+1) −W (t)

)⊤)∣∣∣+ 2
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤(W (t+1) −W (t)
)
W (t)⊤

)∣∣∣
+ 2
∣∣∣Tr(ϕ(xt)y

⊤
t

(
W (t+1) −W (t)

)⊤)∣∣∣
≤
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)∣∣∣+ 2
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤∆tW
(t)⊤)∣∣∣+ 2

∣∣∣Tr(ϕ(xt)y
⊤
t ∆

⊤
t

)∣∣∣ (Lemma 2)

=
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)∣∣∣+ 2
∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤
(t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I
)−1

︸ ︷︷ ︸
⪯ 1

t I by Assumption 1

ϕ(xt)y
⊤
t W

(t)⊤
)∣∣∣

+ 2
∣∣∣Tr(ϕ(xt)y

⊤
t ytϕ(xt)

⊤
((t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I
)−1)⊤)∣∣∣

≤ Tr
(
ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)
+

2

t

∣∣∣Tr(ϕ(xt)y
⊤
t W

(t)⊤
)∣∣∣+ 2C2

y

∣∣∣Tr(ϕ(xt)ϕ(xt)
⊤
(t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I
)−1

︸ ︷︷ ︸
⪯ 1

t I by Assumption 1

)∣∣∣

≤ Tr
(
ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)
+

2

t

∣∣∣Tr(ϕ(xt)y
⊤
t W

(t)⊤
)∣∣∣+ C2

yD
2

t
.

For the first term on the right hand side of the above inequality, we have

Tr
(
ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)
= Tr

ϕ(xt)ϕ(xt)
⊤
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)y
⊤
t ytϕ(xt)

⊤

(t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)⊤−1

= ∥yt∥22 Tr

ϕ(xt)ϕ(xt)
⊤
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

≤ c2y Tr

ϕ(xt)ϕ(xt)
⊤
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤
(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

= c2y Tr

(

t∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤

︸ ︷︷ ︸
⪯ 1

t I

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤

︸ ︷︷ ︸
⪯ 1

t I

≤ c2yD

1

t2
(Assumption 1)

≤ c2yDλ
1

t
. (λ ≥ 1 ≥ 1

t for all t = 1, 2, . . .)

18

Continual Reinforcement Learning by Planning with Online World Models

For the second term, we have

1

t
Tr
(
ϕ(xt)y

⊤
t W

(t)⊤
)
= Tr

ϕ(xt)y
⊤
t

(
t−1∑
i=1

yiϕ(xi)
⊤
)(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

=
1

t
Tr

(t−1∑
i=1

ϕ(xt)y
⊤
t yiϕ(xi)

⊤
)(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

≤ c2y
1

t
Tr

(t−1∑
i=1

ϕ(xt)ϕ(xi)
⊤
)(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

= c2y
1

t
Tr

(t−1∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)⊤−1(
t−1∑
i=1

ϕ(xt)ϕ(xi)
⊤
)⊤

= c2y
1

t
Tr

(t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1(t−1∑
i=1

ϕ(xi)ϕ(xt)
⊤
)

≤ c2y
1

t
D. (Assumption 1)

Combining the above results, we obtain

|ft(W (t+1))− ft(W
(t))| ≤ Tr

(
ϕ(xt)ϕ(xt)

⊤∆t∆
⊤
t

)
+

4

t
Tr
(
ϕ(xt)y

⊤
t W

(t)⊤
)

≤ c2yDλ
1

t
+ 4c2yD

1

t

≤ c2yDλ
1

t
+ 4λc2yD

1

t
(λ ≥ 1)

= 5λc2yD
1

t
.

Lemma 4. Let W (1),W (2), . . . be the sequence produced by Eq. (12) (or equivalently Eq. (3)). For all t ≥ 1 and all
ξ ∈ RD×S we have

T∑
t=1

ft(W
(t+1)) ≤

T∑
t=1

ft(ξ)

Proof. We prove this lemma by induction. For T = 1, it follows directly from the definition of W (t+1), i.e., W (2) =
argminW∈RD×S f1(W), that

f1(W
(2)) ≤ f1(ξ).

Assume that the inequality holds for T − 1, then for all ξ ∈ RD×S we have

T−1∑
t=1

ft(W
(t+1)) ≤

T−1∑
t=1

ft(ξ).

Adding fT (W
(T+1)) to both sides we obtain

T∑
t=1

ft(W
(t+1)) ≤ fT (W

(T+1)) +

T−1∑
t=1

ft(ξ)

19

Continual Reinforcement Learning by Planning with Online World Models

The above holds for all ξ and in particular for ξ = W (T+1). Thus,

T∑
t=1

ft(W
(t+1)) ≤

T∑
t=1

ft(W
(T+1)) = min

W∈RD×S

T∑
t=1

ft(W)

Lemma 5. Let W (1),W (2), . . . be the sequence of vectors produced by Eq. (12) (or equivalently Eq. (3)). Then, for all
t ≥ 1 and all ξ ∈ RD×S we have

T∑
t=1

(ft(W
(t))− ft(ξ)) ≤ ℓreg(ξ)− ℓreg(W

(1)) +

T∑
t=1

(
ft(W

(t))− ft(W
(t+1))

)
Proof. Let f0(W) = ℓreg(W). Using Lemma 4 we obtain

T∑
t=0

ft(W
(t+1)) ≤

T∑
t=0

ft(ξ). (14)

Adding
∑T

t=0 ft(W
(t)) to both sides and rearrange, we get

T∑
t=0

ft(W
(t))−

T∑
t=0

ft(ξ) ≤
T∑

t=0

ft(W
(t))−

T∑
t=0

ft(W
(t+1)).

E.2.2 REGRET BOUND FOR ONLINE MODEL LEARNING

Now, we are ready to prove the regret bound for the online model learning problem Eq. (3):
Corollary 1 (Regret Bound for Online Model Learning). Let W (1),W (2), . . . be the sequence produced by Eq. (3) (or
equivalently Eq. (12)). Suppose that there exist λ ≥ 1, cW , cy > 0 such that Assumptions 1 and 2 hold. Then, for all T ≥ 1
and all ξ ∈ RD×S , we have

T∑
t=1

ft(W
(t))−

T∑
t=1

ft(ξ) ≤
1

λ
c2W + 5λc2yD(log(T) + 1).

Proof.

T∑
t=1

ft(W
(t))−

T∑
t=1

ft(ξ) ≤ ℓreg(ξ)− ℓreg(W
(1)) +

T∑
t=1

(
ft(W

(t))− ft(W
(t+1))

)
(Lemma 5)

≤ 1

λ
c2W +

T∑
t=1

5c2yDλ
1

t
(Lemma 3)

≤ 1

λ
c2W + 5λc2yD(log(T) + 1). (

∑T
t=1

1
t ≤ log(T) + 1)

E.3 Theoretical analysis for sparse online model learning

E.3.1 USEFUL LEMMAS

Lemma 6 (Schur Complement for Block Matrix Inversion (Zhang, 2006)). Given a matrix M that can be partitioned into
four blocks as below,

M =

(
M11 M12

M21 M22

)
20

Continual Reinforcement Learning by Planning with Online World Models

it can be inverted blockwise as:

M−1 =

(
M−1

11 +M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

)
,

where S = M22 −M21M
−1
11 M12 is the Schur complement.

Proposition 1. Given A,B,W (t) as defined by A = Φ⊤
t−1Φt−1,B = Φ⊤

t−1Yt−1, and W (t) =
(
A+ 1

λI
)−1

B and they
can be decomposed into

A =

(
Ass Ass

Ass Ass

)
,B =

(
Bs

Bs

)
,W (t) =

(
W

(t)
s

W
(t)
s

)
,

then, we have

W
(t)
s =

((
Ass +

1

λ
I

)−1

+D

)
Bs −

(
Ass +

1

λ
I

)−1

AssS
−1Bs,

W (t)
s = S−1Bs − S−1Ass

(
Ass +

1

λ
I

)−1

Bs,

where S := Ass +
1
λI −Ass

(
Ass +

1
λI
)−1

Ass, D := (Ass +
1
λI)

−1AssS
−1Ass(Ass +

1
λI)

−1.

Proof. Consider the inverse of A+ 1
λI , which can be written as:

A+
1

λ
I =

(
Ass +

1
λI Ass

Ass Ass +
1
λI

)
Applying Lemma 6 to our matrix A+ 1

λI , we get:

(
A+

1

λ
I

)−1

=

(
(Ass +

1
λI)

−1 + (Ass +
1
λI)

−1AssS
−1Ass(Ass +

1
λI)

−1 −(Ass +
1
λI)

−1AssS
−1

−S−1Ass(Ass +
1
λI)

−1 S−1

)
,

where S = Ass +
1
λI −Ass(Ass +

1
λI)

−1Ass.

Now, we can write the expression for W (t) as:

W (t) =

(
(Ass +

1
λI)

−1 + (Ass +
1
λI)

−1AssS
−1Ass(Ass +

1
λI)

−1 −(Ass +
1
λI)

−1AssS
−1

−S−1Ass(Ass +
1
λI)

−1 S−1

)(
Bs

Bs

)
Therefore, we get

W
(t)
s =

(
(Ass +

1

λ
I)−1 + (Ass +

1

λ
I)−1AssS

−1Ass(Ass +
1

λ
I)−1

)
Bs − (Ass +

1

λ
I)−1AssS

−1Bs,

W (t)
s = − S−1Ass(Ass +

1

λ
I)−1Bs + S−1Bs.

Let D := (Ass +
1
λI)

−1AssS
−1Ass(Ass +

1
λI)

−1, we obtain:

W
(t)
s =

((
Ass +

1

λ
I

)−1

+D

)
Bs − (Ass +

1

λ
I)−1AssS

−1Bs,

W (t)
s = S−1Bs − S−1Ass

(
Ass +

1

λ
I

)−1

Bs.

21

Continual Reinforcement Learning by Planning with Online World Models

Proposition 2. Suppose that Assumption 3 holds, then we have

(
0(

A
(t)
ss + 1

λI
)−1

B
(t)
s

)
⪯ K

(
A(t) +

1

λ
I

)−1

ϕ(xt)y
⊤
t .

Proof. Note that

A =

(
Ass Ass

Ass Ass

)
,B =

(
Bs

Bs

)
.

We have (
A+

1

λ
I

)(
0 0

0
(
Ass +

1
λI
)−1

)
=

(
Ass +

1
λI Ass

Ass Ass +
1
λI

)(
0 0

0
(
Ass +

1
λI
)−1

)
=

(
0 Ass

(
Ass +

1
λI
)−1

0 I

)
.

Then, we have (
0(

Ass +
1
λI
)−1

Bs

)
=

(
0 0

0
(
Ass +

1
λI
)−1

)(
Bs

Bs

)
=

(
A+

1

λ
I

)−1(
0 Ass

(
Ass +

1
λI
)−1

0 I

)
B. (15)

Note that by the properties of the block matrix’s spectral norm, we get

∥∥∥∥(0 Ass

(
Ass +

1
λI
)−1

0 I

)∥∥∥∥
2

≤

√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ ∥I∥22

=

√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ 1 (16)

Additionally, if Assumption 1 holds for cy ≥ 1, we have for all x

Bytϕ(xt)
⊤ϕ(xt)y

⊤
t =

(
t∑

i=1

ϕ(xi)y
⊤
i ytϕ(xt)

⊤
)
ϕ(xt)y

⊤
t

⪯ c2y

(
t∑

i=1

ϕ(xi)ϕ(xt)
⊤
)
ϕ(xt)y

⊤
t

⪯ c2y

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)
ϕ(xt)y

⊤
t (by Assumption 1)

Moreover, by (
ytϕ(xt)

⊤ϕ(xt)y
⊤
t

)−1
=
(
ϕ(xt)

⊤ϕ(xt)y
⊤
t yt

)−1
yty

⊤
t

22

Continual Reinforcement Learning by Planning with Online World Models

we obtain

B ⪯ c2y

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)
ϕ(xt)y

⊤
t

(
ytϕ(xt)

⊤ϕ(xt)y
⊤
t

)−1

= c2y

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)
ϕ(xt)y

⊤
t yty

⊤
t

(
ϕ(xt)

⊤ϕ(xt)y
⊤
t y

⊤
t

)−1

=
c2y

ϕ(xt)⊤ϕ(xt)

(
t∑

i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)
ϕ(xt)y

⊤
t

⪯ K ′ϕ(xt)y
⊤
t , (17)

where K ′ ≥ c2y

(∑t
i=1 ϕ(xi)

⊤ϕ(xi)

ϕ(xt)⊤ϕ(xt)
+ 1
)

.

Combining Eq. (15) to (17) we obtain,(
0(

Ass +
1
λI
)−1

Bs

)
=

(
A+

1

λ
I

)−1(
0 Ass

(
Ass +

1
λI
)−1

0 I

)
B

⪯

√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ 1

(
A+

1

λ
I

)−1

B

⪯ K ′

√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ 1

(
A+

1

λ
I

)−1

ϕ(xt)y
⊤
t

= K

(
A+

1

λ
I

)−1

ϕ(xt)y
⊤
t ,

where we choose

K = K ′

√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ 1

≥ c2y

(∑t
i=1 ϕ(xi)

⊤ϕ(xi)

ϕ(xt)⊤ϕ(xt)
+ 1

)√√√√∥∥∥∥∥Ass

(
Ass +

1

λ
I

)−1
∥∥∥∥∥
2

2

+ 1.

Proposition 3. Let W (1),W (2), . . . be the sequence produced by the online model learning Eq. (3) and W̃ (1), W̃ (2), . . .

be the sequence produced by the sparse model learning Eq. (4). For all t ≥ 1, let M (t) := A
(t)
ss

(
A

(t)
ss + 1

λI
)−1

A
(t)
ss and

rM := sup
t,s∈{s1,...,st}

∥∥(A(t)
ss +

1

λ
I +M (t)

)(
A(t)

ss +
1

λ
I −M (t)

)−1∥∥
F

(18)

Suppose that there exist λ such that Assumption 3 holds. Then, for all t ≥ 1, we have

W (t+1) − W̃ (t+1) ⪯ KrM∆t,

where ∆t is defined by Eq. (13) in Lemma 2.

Proof. Note that A is symmetric and Ass = A⊤
ss, then, M := Ass

(
Ass +

1
λI
)−1

Ass ⪰ 0, and we have S :=

Ass +
1
λI −Ass

(
Ass +

1
λI
)−1

Ass = Ass +
1
λI −M . Moreover,

AssD = Ass(Ass +
1

λ
I)−1AssS

−1Ass(Ass +
1

λ
I)−1

= MS−1(Ass +
1

λ
I)−1 ⪰ 0.

23

Continual Reinforcement Learning by Planning with Online World Models

Then, with Proposition 1, we get

W (t)
s −

(
Ass +

1

λ
I

)−1

Bs +

(
Ass +

1

λ
I

)−1

AssW
(t)
s

= S−1Bs − S−1Ass

(
Ass +

1

λ
I

)−1

Bs −
(
Ass +

1

λ
I

)−1

Bs

−
(
Ass +

1

λ
I

)−1

Ass

(((
Ass +

1

λ
I

)−1

+D

)
Bs − (Ass +

1

λ
I)−1AssS

−1Bs

)

=

(
S−1 +

(
Ass +

1

λ
I

)−1

Ass

(
Ass +

1

λ
I

)−1

AssS
−1 −

(
Ass +

1

λ
I

)−1
)
Bs

−
(
S−1Ass

(
Ass +

1

λ
I

)−1

+

(
Ass +

1

λ
I

)−1

Ass

((
Ass +

1

λ
I

)−1

+D

))
Bs

=

(
S−1 +

(
Ass +

1

λ
I

)−1

Ass

(
Ass +

1

λ
I

)−1

AssS
−1 −

(
Ass +

1

λ
I

)−1
)
Bs

−

(
S−1 +

(
Ass +

1

λ
I

)−1
)
Ass

(
Ass +

1

λ
I

)−1

︸ ︷︷ ︸
⪰0

+

(
Ass +

1

λ
I

)−1

AssD︸ ︷︷ ︸
⪰0

Bs

⪯
(
S−1 +

(
Ass +

1

λ
I

)−1

Ass

(
Ass +

1

λ
I

)−1

AssS
−1 −

(
Ass +

1

λ
I

)−1
)
Bs

=

(
S−1 +

(
Ass +

1

λ
I

)−1

MS−1 −
(
Ass +

1

λ
I

)−1
)
Bs.

Let rM := supt,s∈{s1,...,st}
∥∥(A(t)

ss + 1
λI +M (t)

)(
A

(t)
ss + 1

λI −M (t)
)−1∥∥

F
, we have

W (t)
s −

(
Ass +

1

λ
I

)−1

Bs +

(
Ass +

1

λ
I

)−1

AssW
(t)
s

⪯
(
S−1 +

(
Ass +

1

λ
I

)−1

MS−1 −
(
Ass +

1

λ
I

)−1
)
Bs

=

((
I +

(
Ass +

1

λ
I

)−1

M

)(
Ass +

1

λ
I −M

)−1

−
(
Ass +

1

λ
I

)−1
)
Bs

=

(
Ass +

1

λ
I

)−1(
Ass +

1

λ
I +M

)(
Ass +

1

λ
I −M

)−1

︸ ︷︷ ︸
⪯rMI

−
(
Ass +

1

λ
I

)−1

Bs

=

(
Ass +

1

λ
I

)−1
((

Ass +
1

λ
I +M

)(
Ass +

1

λ
I −M

)−1

− I

)
︸ ︷︷ ︸

⪯(rM−1)I

Bs

⪯ (rM − 1) ·
(
Ass +

1

λ
I

)−1

Bs

24

Continual Reinforcement Learning by Planning with Online World Models

Recall from Assumption 3 and Proposition 2 that

(
0(

A
(t)
ss + 1

λI
)−1

B
(t)
s

)
⪯ K

(
A(t) +

1

λ
I

)−1

ϕ(xt)y
⊤
t ,

which gives that

W (t+1) − W̃ (t+1)

= W (t+1) −
[
W

(t+1)
s ;W (t+1)

s

]
= W (t+1) −

[
W

(t)
s ;W (t+1)

s

]
⪯W (t) +∆t −

[
W

(t)
s ;W (t+1)

s

]
= W (t) +∆t −

[
W

(t)
s ;

(
A(t)

ss +
1

λ
I

)−1 (
B(t)

s −A
(t)
ss W

(t)
s

)]

=

[
0;W (t)

s −
(
A(t)

ss +
1

λ
I

)−1

B(t)
s +

(
A(t)

ss +
1

λ
I

)−1

A
(t)
ss W

(t)
s

]
+∆t

⪯
[
0; (rM − 1)

(
A(t)

ss +
1

λ
I

)−1

B(t)
s

]
+∆t

⪯ K(rM − 1)∆t +∆t (Assumption 3 and Proposition 2)
⪯ KrM∆t.

E.3.2 REGRET BOUNDS FOR SPARSE ONLINE MODEL LEARNING

Theorem 1 (Regret Bounds for Sparse Online Model Learning). Let W̃ (1), W̃ (2), . . . be the sequence produced by the
sparse online model learning Eq. (4). Let rM ≥ 1 be a constant defined as in Eq. (18). Suppose that there exist cW , cy > 0
and λ such that Assumptions 1 to 3 hold. Then, for all T ≥ 1 and all ξ ∈ RD×S , we have

Regret(T) :=

T∑
t=1

ft(W̃
(t))−

T∑
t=1

ft(ξ) ≤
1

λ
c2W + 5λ(K2r2M + 1)c2yD(log(T) + 1),

Furthermore, If λ = cW /cy
√
5(K2r2M + 1)D(log(T) + 1) ≥ 1 and it satisfies Assumptions 1 and 3, then we have

Regret(T) ≤ cW cy

√
20(K2r2M + 1)D(log(T) + 1).

Proof. For t = 1, we have ft(W̃
(1)) = ft(W

(1)) and ft(W̃
(1))− ft(W

(1)) = 0.

For t ≥ 2, denote by r′M := KrM , we have

25

Continual Reinforcement Learning by Planning with Online World Models

ft(W̃
(t))− ft(W

(t))

= Tr(W̃ (t)⊤ϕ(xt)ϕ(xt)
⊤W̃ (t)) + Tr(y⊤

t yt)− 2Tr(W̃ (t)⊤ϕ(xt)y
⊤
t)

− Tr(W (t)⊤ϕ(xt)ϕ(xt)
⊤W (t))− Tr(y⊤

t yt) + 2Tr(W (t)⊤ϕ(xt)y
⊤
t)

= Tr
(
ϕ(xt)ϕ(xt)

⊤W̃ (t)W̃ (t)⊤
)
− 2Tr

(
ϕ(xt)y

⊤
t W̃

(t)⊤
)

− Tr
(
ϕ(xt)ϕ(xt)

⊤W (t)W (t)⊤
)
+ 2Tr

(
ϕ(xt)y

⊤
t W

(t)⊤
)

≤
∣∣∣∣Tr(ϕ(xt)ϕ(xt)

⊤
(
W (t) − W̃ (t)

)(
W (t) − W̃ (t)

)⊤)∣∣∣∣+ 2

∣∣∣∣Tr(ϕ(xt)y
⊤
t

(
W (t) − W̃ (t)

)⊤)∣∣∣∣
≤ r′2M · Tr

(
ϕ(xt)ϕ(xt)

⊤∆t−1∆
⊤
t−1

)
+ 2r′M · Tr

(
ϕ(xt)y

⊤
t ∆

⊤
t−1

)
(Proposition 3)

For the first term in the right hand side of the above inequality, we have

Tr

(
ϕ(xt)ϕ(xt)

⊤∆t−1∆
⊤
t−1

)

= Tr

(
ϕ(xt)ϕ(xt)

⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt−1)y
⊤
t−1yt−1ϕ(xt−1)

⊤
((

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)⊤)−1)

= ∥yt−1∥22 Tr
(
ϕ(xt)ϕ(xt)

⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt−1)ϕ(xt−1)
⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1)

≤ c2y Tr

(
ϕ(xt)ϕ(xt)

⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt−1)ϕ(xt−1)
⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1)

= c2y Tr

((
t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt−1)ϕ(xt−1)
⊤

︸ ︷︷ ︸
⪯ 1

t−1 I

(
t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt)
⊤

︸ ︷︷ ︸
⪯ 1

t−1 I

)

≤ c2yD
1

(t− 1)2
(Assumption 1)

≤ c2yDλ
1

t− 1
. (λ ≥ 1 ≥ 1

t−1 for all t = 2, . . .)

For the last term, we have

Tr
(
ϕ(xt)y

⊤
t ∆

⊤
t−1

)
= Tr

(
ϕ(xt)y

⊤
t yt−1ϕ(xt−1)

⊤
((

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)⊤)−1)

≤ c2y Tr

(
ϕ(xt)ϕ(xt−1)

⊤
(

t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1)

= c2y Tr

((
t−1∑
i=1

ϕ(xi)ϕ(xi)
⊤ +

1

λ
I

)−1

ϕ(xt)ϕ(xt−1)
⊤

︸ ︷︷ ︸
⪯ 1

t−1 I

)

≤ c2yD
1

t− 1
.

26

Continual Reinforcement Learning by Planning with Online World Models

Therefore, the regret bound is upper-bounded as below:

Regret(T) =

T∑
t=1

ft(W̃
(t))−

T∑
t=1

ft(W
(t)) +

T∑
t=1

ft(W
(t))−

T∑
t=1

ft(ξ)

≤
T∑

t=1

(
ft(W̃

(t))− ft(W
(t))
)
+

1

λ
c2W + 5λc2yD(log(T) + 1) (Corollary 1)

≤ c2yD
(
r′2Mλ+ 2r′M

) T∑
t=2

1

t− 1
+

1

λ
c2W + 5λc2yD(log(T) + 1)

≤ c2yD
(
r′2Mλ+ 2r′M

)
(log(T − 1) + 1) +

1

λ
c2W + 5λc2yD(log(T) + 1)

≤ 1

λ
c2W + 5λ(r′2M + 1)c2yD(log(T) + 1), (λ ≥ 1, r′M ≥ 1)

which holds for all λ ≥ 1 that satisfies Assumptions 1 and 3.

Furthermore, If cW ≥ cy
√
5(K2r2M + 1)D(log(T) + 1), and λ =

√
c2W

5(K2r2M+1)c2yD(log(T)+1)
satisfies Assumptions 1

and 3, then we have

Regret(T) ≤ cW cy

√
20(K2r2M + 1)D(log(T) + 1).

27

	Introduction
	Related Work
	Preliminaries
	Continual reinforcement learning
	Planning and model predictive control

	Online Agent for Continual Reinforcement Learning
	Online world model learning
	Regret analysis
	Planning with online world models

	Continual Bench: An Environment for CRL Evaluation
	Experiment
	Setup and metrics
	Baselines
	Learning curves of model-based agents
	Average performance of model-based and model-free agents
	Ablation analysis

	Conclusion
	Agent details
	Sparse feature encoding
	The learning and acting process
	`3́9`42`"̇613A``45`47`"603AOA hyperparameters
	CEM planning
	Baseline details
	Experimental details

	Continual Bench details
	More empirical results
	Limitations and Future Work
	Theoretical analysis and proofs
	Closed-form solutions for sparse online world model learning
	Theoretical analysis for online model Learning
	Online model learning
	Regret bound for online model learning

	Theoretical analysis for sparse online model learning
	Useful lemmas
	Regret bounds for sparse online model learning

