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ABSTRACT

Diffusion-based offline reinforcement learning (RL) leverages Q-gradients of
noisy actions to guide the denoising process. Existing approaches fall into two
categories: (i) backpropagating the Q-gradient of the final denoised action through
all steps, or (ii) directly estimating the Q-gradient of noisy actions. The former
suffers from exploding or vanishing gradients as the number of denoising steps
increases, while the latter becomes inaccurate when noisy actions deviate substan-
tially from the dataset. In this work, we focus on addressing the limitations of the
second category. We introduce QUAD, an uncertainty-aware Q-gradient guidance
method. QUAD employs a Q-ensemble to estimate the uncertainty of Q-gradients
and uses this uncertainty to constrain unreliable guidance during denoising. By
down-weighting unreliable gradients, QUAD reduces the risk of producing sub-
optimal actions. Experiments on the D4RL benchmark show that QUAD outper-
forms state-of-the-art methods across most tasks.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in sequential decision-making tasks,
ranging from games (Mnih et al., 2013; Lample & Chaplot, 2017) to robotics (He et al., 2024b; Ze
et al., 2025). However, the majority of these successes rely heavily on abundant online interac-
tions. In many real-world domains, such as healthcare, autonomous driving, and industrial con-
trol, exploration is either prohibitively costly or inherently unsafe. Offline RL addresses this chal-
lenge by learning policies purely from pre-collected datasets (Fujimoto & Gu, 2021; Zhou et al.,
2025), thereby eliminating the need for online exploration. However, it suffers from distribution
shift (Levine et al., 2020): the learned policy may produce actions that deviate substantially from
those observed in the dataset, resulting in unreliable value estimates and degraded performance. A
key contributor to this issue is the limited expressiveness of conventional policy classes (e.g. Gaus-
sian), which struggle to capture complex, multimodal action distributions in real-world datasets,
worsening the mismatch between learned and behavior policies.

Diffusion models (Ho et al., 2020) have emerged as a powerful class of policies (Chi et al., 2023),
capable of capturing highly complex action distributions and generating diverse actions. Diffusion-
based offline RL methods typically combines two forms of guidance: behavior cloning (BC) guid-
ance and Q-guidance (Wang et al., 2022). BC guidance steers the denoising trajectory towards
dataset-like actions, thereby alleviating distributional shift, whereas Q-guidance leverages value es-
timates to promote higher-quality actions. Existing Q-guidance methods can be categorized into
two classes. The first backpropagates Q-gradients from the final denoised action through all diffu-
sion steps (Wang et al., 2022). While effective in principle, this approach suffers from vanishing
or exploding gradients as the number of denoising steps increases, leading to unstable optimization.
The second estimates Q-gradients of noisy actions directly at intermediate denoising steps (Fang
et al., 2024), thus avoiding backpropagation through the entire trajectory. Although more stable,
this method produces unreliable Q-gradients when noisy actions lie far from the data distribution,
resulting in suboptimal guidance.

To address the limitations of the second class of methods, we propose QUAD, a Q-gradient
uncertainty-aware guidance framework that improves the reliability of denoising guidance. Our

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Left: In offline RL, behavior cloning regularization makes the learned Q-function more
reliable near the dataset distribution (green), while yielding highly uncertain estimates for out-of-
distribution noisy actions (orange). Right: QUAD leverages a Q-ensemble to estimate the uncer-
tainty of Q-gradients and adaptively down-weights unreliable guidance during denoising.

key observation is that critics trained on offline data often yield highly unreliable Q estimates for
noisy actions, particularly those far from the dataset distribution (Figure 1, left). To overcome this
issue, QUAD employs a Q-ensemble to estimate gradient uncertainty and adaptively attenuate un-
reliable guidance signals (Figure 1, right). We further provide a theoretical analysis of Q-gradient
uncertainty and derive an optimal weighting scheme that minimizes the alignment risk along oracle
Q-gradient. Building on this analysis, we design a practical uncertainty-aware weighting mechanism
that approximates the theoretical optimum. By integrating this mechanism into the Q-guidance pro-
cess, QUAD effectively suppresses unreliable gradients, thereby enhancing policy performance.

We evaluate QUAD on the widely adopted D4RL benchmark (Fu et al., 2020), comparing it against
state-of-the-art offline RL methods, including both non-diffusion and diffusion-based approaches.
Experimental results show that QUAD consistently outperforms prior methods on most tasks and
achieves comparable performance on the remaining ones.

In summary, our contributions are threefold:

• We identify and theoretically analyze the limitations of existing Q-guidance methods in
diffusion-based offline RL, showing how Q-gradient uncertainty undermines reliability.

• We propose QUAD, a novel uncertainty-aware guidance framework that leverages a Q-
ensemble to estimate gradient uncertainty and adaptively down-weight unreliable signals.

• We conduct extensive experiments on D4RL, demonstrating that QUAD achieves state-of-
the-art performance across a diverse set of offline RL tasks.

2 PRELIMINARIES

A reinforcement learning (RL) problem is typically formulated as a Markov Decision Process
(MDP), represented by the tuple (S,A, T , r, d0, γ), where S denotes the state space, A the ac-
tion space, T (s′|s, a) the transition dynamics, r(s, a) the reward function, d0(s) the initial state
distribution, and γ ∈ (0, 1) the discount factor. The objective of RL is to learn a policy π(a|s) that
maximizes the expected discounted cumulative reward (Sutton et al., 1998):

J(π) = Eπ,T ,d0

[ ∞∑
t=0

γtr(st, at)

]
(1)

Offline Reinforcement Learning. Offline RL focuses on learning an effective policy solely from
a fixed dataset D = {(si, ai, ri, s′i)}Ni=1, which is generated by an (often unknown) behavior policy
πβ , without access to further environment interactions (Levine et al., 2020). A central challenge in
offline RL arises from the distributional shift between πβ and the learned policy π, which can lead
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to erroneous value estimates. To mitigate this issue, many approaches optimize the expected return
under Qπ(s, a) while constraining the learned policy to remain close to the behavior policy (Wu
et al., 2019):

max
π

Es∼D, a∼π(·|s)[Q
π(s, a)] s.t. D(π ∥πβ) < ϵ (2)

where D(·, ·) denotes a divergence measure (e.g., KL divergence) and ϵ is a tolerance parameter.

Diffusion models. Diffusion models (Ho et al., 2020; Song et al., 2020a) are a class of generative
models that assume latent variables follow a Markovian noising-denoising process. In the forward
process {x0:T }, Gaussian noise is gradually added to the clean data x0 ∼ p(x0) according to a
predefined variance schedule {β1:T }:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (3)

The marginal distribution admits a closed form:
qt(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), t ∈ {1, . . . , T} (4)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. Equivalently, a noisy sample can be reparameterized as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I) (5)

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) parameterize the reverse pro-
cess with Gaussian conditionals pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), leading to a genera-
tive process: pθ(x0:T ) = N (xT ;0, I)

∏T
t=1 pθ(xt−1|xt). In practice, DDPMs predict the noise ϵ in

Equation (5) using a neural network ϵθ(xt, t) to minimize the evidence lower bound loss:

L(θ) = Ex0∼p(x0), t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
(6)

Diffusion-based Offline RL. Following the DDPM framework, diffusion policies model action gen-
eration as a state-conditioned denoising process. Specifically, the noise predictor in (Equation (6)) is
replaced with a state-conditional network ϵθ(a

t, s, t) that predicts actions a0 ∈ A given the state s,
where at denotes the noisy action at denoising step t. This formulation recovers standard behavior
cloning (BC) when trained on the dataset D. In diffusion-based offline RL, however, pure behav-
ior cloning may fail to exploit Q value information. To address this, Q-function guidance can be
incorporated to bias the denoising process toward high-value actions. A straightforward approach,
as in Diffusion Q-learning (DQL) (Wang et al., 2022), backpropagates the Q-gradient from the final
denoised action a0 through all denoising steps, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T ),ϵ∼N (0,I)

[
∥ϵ− ϵθ(a

t, s, t)∥2
]

− η · Es∼D,a0∼πθ

[
Qϕ(s,a

0)
] (7)

where the first term corresponds to the denoising objective, and the second term encourages the
policy to generate actions with high Q-values. The coefficient η is a hyperparameter that balances
behavior cloning against Q-guidance. An alternative strategy, as in DAC (Fang et al., 2024), directly
estimates the Q-gradient of noisy actions at each denoising step, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T ),ϵ∼N (0,I)

[
η · ∥ϵ− ϵθ(a

t, s, t)∥2

+ w(t) · ϵθ(at, s, t) · ∇atQϕ(s,a
t)
] (8)

where w(t) is a step-dependent weight that controls the influence of Q-gradient guidance across
denoising steps. Rather than propagating gradients across the full sequence of denoising steps,
DAC-style methods reduce the risk of vanishing or exploding gradients, thereby providing more
stable optimization.

3 METHODS

We now introduce our proposed method, QUAD, which comprises three main components: (1) a
theoretical derivation of an uncertainty-aware weighting scheme for Q-gradient guidance; (2) the
formulation and implementation of a Q-gradient uncertainty-aware guidance mechanism; and (3) a
practical yet principled procedure for policy extraction. An overview of the QUAD framework is
shown in Figure 2.
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Figure 2: Overview of the QUAD framework: (1) In critic ensemble training, the target policy
generates next-step actions and updates critics by minimizing TD error with LCB regularization.
(2) In diffusion policy training, the target Q-ensemble estimates Q-gradients and their uncertainty
to adaptively down-weight unreliable guidance. (3) In policy extraction, the target diffusion policy
proposes candidate actions, and the action with the highest Q-value under the target Q-ensemble is
selected.

3.1 THEORETICAL ANALYSIS OF Q-GRADIENT UNCERTAINTY-AWARE WEIGHTING

3.1.1 Q-GRADIENT UNCERTAINTY AND OPTIMAL WEIGHTING

For convenience, we denote the oracle Q-gradient as g∗ = ∇atQ∗(s,at). In the ideal case, the
second term in Equation (8) encourages ϵθ to align with −g∗, and we define the alignment loss via
their inner product:

g∗ ≜ ϵθ · g∗. (9)
However, we can only access an approximation of g∗, denoted as gϕ = ∇atQϕ(s,a

t). Its alignment
loss along ϵθ is written as

gϕ ≜ ϵθ · gϕ. (10)
We assume (see Appendix A) that gϕ follows the biased–noisy decomposition:

gϕ = g∗ + b+ ξϕ, (11)

where b is a deterministic bias determined only by the offline dataset and the learning algorithm, and
ξϕ is a zero-mean random noise with finite covariance, arising from stochastic function approxima-
tion and training randomness rather than from the fixed data or algorithm design. Their alignment
losses along ϵθ are

b ≜ ϵθ · b, ξϕ ≜ ϵθ · ξϕ,
so that

gϕ = g∗ + b+ ξϕ. (12)
The combined term b + ξϕ captures the epistemic uncertainty of the Q-gradient induced by lim-
ited offline data and critic approximation, which we refer to as the Q-gradient uncertainty. Let
σ2(s,at, t) = Var(ξϕ) denote the variance of this random alignment noise at (s,at, t).

Although we cannot directly reduce the Q-gradient uncertainty, we can mitigate the risk of using gϕ
in the alignment loss. We define the alignment risk as the expected squared error between gϕ and
g∗:

R ≜ E
[
(gϕ − g∗)2

]
, (13)
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where the expectation is taken over the randomness in ξϕ. To reduce this risk, we introduce a per-
sample weighting factor λ(s,at, t) and consider the risk of the weighted alignment loss:

R(λ) ≜ E
[
(λgϕ − g∗)2

]
. (14)

Under the biased–noisy model above, the optimal weighting that minimizes R(λ) admits the
closed-form solution (details see Appendix A)

λ∗(s,at, t) =
g∗(g∗ + b)

(g∗ + b)2 + σ2(s,at, t)
. (15)

The sign structure of the oracle and biased term plays a crucial role:

• If g∗ and g∗ + b have the same sign (the approximate critic is directionally aligned), then
λ∗ ∈ (0, 1) and behaves as a shrinkage factor.

• If they have opposite signs (directionally misaligned), then λ∗ may become negative or
larger than 1, which is not reliably implementable without oracle access.

These two regimes are illustrated on a toy bandit example in Figure 3, where the wrong-direction
regime exhibits large variance and strong disagreement across critics. This motivates the variance-
only weighting strategy used in QUAD, described next.
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Figure 3: Bandit examples under four different data distributions: the highest reward is located
at point (0.4,−0.4), and QUAD (blue) can generate higher-reward actions that remain within the
behavior support (black circle). Uncertainty tends to be larger when there is a significant discrep-
ancy between the predicted Q-gradient (red or white arrow) and the ground-truth Q-gradient (black
arrow).

3.1.2 UNCERTAINTY-AWARE WEIGHTING IN PRACTICE

Although λ∗ provides the optimal weighting for the abstract Q-gradient uncertainty model above,
it depends on the unknown quantities g∗ and b, which are not identifiable from data. In practice, we
rely on a Q-ensemble to obtain multiple Q-gradient estimates and use their variance to approximate
the Q-gradient uncertainty.

Concretely, the variance of the projected gradients along ϵθ can be estimated from the ensemble as

v2(s,at, t) = Var
(
ϵθ(s,a

t, t) · gϕk
(s,at)

)
, (16)

where the variance is taken over the ensemble index k, and v2 serves as a practical estimate of the
Q-gradient uncertainty at (s,at, t). Empirically (see Figure 3), v2(s,at, t) is small to moderate
when the learned Q-gradients are directionally aligned with the oracle gradient, and becomes large
when different critics disagree strongly or the mean direction is misaligned.

These observations support a variance-only weighting principle: we discard the unidentifiable term
and let the per-sample weight be a monotone decreasing function of v2(s,at, t),

λ(s,at, t) = f
(
v2(s,at, t)

)
, (17)

where f : [0,∞)→ (0, 1]. In QUAD we instantiate f as an exponential:

λ(s,at, t) = exp

(
−v2(s,at, t)

τ

)
, τ > 0. (18)
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This choice has several benefits: (i) it guarantees λ ∈ (0, 1] and thus avoids negative or overly large
weights in the misaligned regime; (ii) for small variance, a first-order expansion gives λ ≈ 1−v2/τ ,
matching the desired shrinkage behavior of the oracle solution in the aligned regime; (iii) when the
ensemble variance is large, as in the wrong-direction regime, Equation (18) drives λ close to zero
and effectively turns off misleading critic guidance; and (iv) the exponential map is smooth and
numerically stable, making it easy to tune in diffusion policy training.

3.2 DIFFUSION POLICY WITH Q-GRADIENT UNCERTAINTY-AWARE GUIDANCE

Building on the above analysis, we implement QUAD by integrating the uncertainty-aware weight-
ing λ(s,at, t) into the diffusion policy training objective Equation (8), following the DAC frame-
work:

L(θ) = E(s,a∗)∼D, t∼U(1,T ), ϵ∼N (0,I)

[
η∥ϵ− ϵθ(a

t, s, t)∥2

+ λ(s,at, t) · w(t) · ϵθ(at, s, t) · ∇atQ̄ϕ(s,a
t)
]
,

(19)

where w(t) =
√
1− ᾱt modulates the strength of Q-guidance according to the noise level, ensuring

that the denoised action remains close to the behavior policy in later diffusion steps.

A central component of QUAD is the Q-ensemble, which provides diverse and informative gradient
estimates and enables approximation of epistemic uncertainty in the biased–noisy model. Con-
cretely, we maintain K parameterized Q-networks {Qϕk

}Kk=1 with corresponding target networks
{Q̂ϕk

}Kk=1. To reduce overestimation and better capture epistemic uncertainty, we train this ensem-
ble using a pessimistic Q-learning scheme (Ghasemipour et al., 2022). We adopt a lower confidence
bound (LCB) as the target value and optimize each critic with the loss

L(ϕi) =E(s,a,r,s′)∼D,a′∼πθ

[
r + γQLCB(s

′,a′)−Qϕi
(s,a)

]2
,

QLCB(s
′,a′) = E[Q̂(s′,a′)]− ρ

√
Var[Q̂(s′,a′)],

(20)

where ρ ≥ 0 controls the degree of pessimism, and E[Q̂] and Var[Q̂] denote the empirical mean and
variance across the target critics.

Subsequently, given a pair (s,a) sampled fromD, we add noise to the action following Equation (5)
to obtain (s,at). We then compute the ensemble alignment loss {gϕk

= ϵθ · ∇atQϕk
}Kk=1. Next,

we estimate the heteroscedastic Q-gradient uncertainty at (s,at) via the empirical variance of this
ensemble alignment loss:

v2ϕ =
1

K

K∑
k=1

(
gϕk
− ḡϕ

)2
, ḡϕ =

1

K

K∑
k=1

gϕk
. (21)

This variance v2ϕ approximates the theoretical quantity v2 in Equation (16) under the biased–noisy
model and serves as a data-driven estimate of the critic’s epistemic uncertainty along the policy
update direction. Finally, we plug v2ϕ into the exponential variance-only rule Equation (18) to obtain
the per-sample weight λ(s,at, t), which scales the Q-gradient guidance term in Equation (19). The
complete QUAD training procedure is summarized in Algorithm 1.

3.3 POLICY EXTRACTION

We denote πθ(a|s) as the diffusion policy trained via the denoising process with noise predictor
ϵθ(a

t, s, t). While πθ can directly generate actions, we further aim to reduce uncertainty during
evaluation. To this end, we draw a small batch of Na candidate actions from πθ(·|s) and select the
one with the highest ensemble-mean Q-value:

π∗(s) = arg max
a1,...,aNa∼πθ(·|s)

E
[
Q̂(s,a)

]
. (22)

This extraction strategy is commonly employed in settings where a stochastic actor is used for critic
learning, but a deterministic policy is deployed at evaluation. Because πθ is already trained to
approximate the target policy, only a small number of samples Na is needed. In our experiments,
QUAD achieves strong performance with Na = 10 following DAC, whereas SfBC and Diffusion
Q-learning typically require Na = 32 and Na = 50, respectively.
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4 RELATED WORK

4.1 OFFLINE RL

Offline RL aims to learn policies from fixed datasets, but suffers from distribution shift that leads to
value overestimation in the bootstrapping process (Levine et al., 2020). To address this issue, prior
works have developed strategies such as behavior regularization, conservative value estimation, and
explicit Bellman error modeling. Behavior-regularized methods constrain policies to stay close to
the behavior distribution via candidate-action generators or divergence penalties (Fujimoto et al.,
2019; Kumar et al., 2019; Wu et al., 2019). Conservative methods alleviate OOD effects by either
adding regularizers to the Q-learning objective (Kumar et al., 2020) or by learning in-sample con-
servative value functions (Kostrikov et al., 2021; Xu et al., 2023). Alternative approaches explicitly
model Bellman errors with a Gumbel distribution and directly learn soft value functions without
requiring action sampling (Garg et al., 2023). Our work is related to both behavior-regularized and
conservative approaches, as we model the behavior distribution with a diffusion policy and mitigate
overestimation bias via a pessimistic Q-ensemble.

4.2 DIFFUSION MODELS

Diffusion models are a class of generative models that consist of a forward diffusion process and a
reverse denoising process (Ho et al., 2020), which can also be interpreted as stochastic differential
equations (Song et al., 2020b). In the forward process, Gaussian noise is gradually added to the
data according to a variance schedule. In the reverse process, a neural network is trained to predict
the noise and iteratively recover the clean data. Several works improve efficiency by reducing the
number of denoising steps (Song et al., 2020a; Nichol & Dhariwal, 2021; Song et al., 2023). Others
explore alternative guidance strategies, such as classifier guidance (Dhariwal & Nichol, 2021) and
classifier-free guidance (Ho & Salimans, 2022). More recently, diffusion models have been extended
to sequential decision-making, where they are used to represent policies or trajectories (Janner et al.,
2022; Chi et al., 2023; Black et al., 2023). Our work builds on diffusion policies and introduces a
novel uncertainty-aware Q-gradient guidance mechanism to enhance policy learning in offline RL.

4.3 DIFFUSION-BASED OFFLINE RL

Diffusion-based offline RL combines diffusion models with offline RL techniques. A straightfor-
ward approach performs behavior cloning with diffusion models and then applies value-based se-
lection to choose high-value actions from the diffusion prior (Chen et al., 2022; Hansen-Estruch
et al., 2023). To reduce multi-step sampling cost, an efficient variant distills the diffusion prior into
a one-step Gaussian policy (Chen et al., 2024). Another line of work integrates Q-value informa-
tion directly into diffusion policy training (Wang et al., 2022). However, this approach requires
backpropagating Q-gradients through the entire denoising chain, which often causes vanishing or
exploding gradients. A more refined strategy applies Q-gradient guidance at each intermediate de-
noising step, rather than through all steps, as in DAC (Fang et al., 2024). Subsequent extensions
incorporate advantage modules or pathwise regularization to further stabilize training (Chen et al.,
2025; Gao et al., 2025). Despite their improved stability, these methods still suffer from unreli-
able Q-gradients when noisy actions deviate from the dataset distribution. Our method addresses
this limitation by employing a Q-ensemble to estimate gradient uncertainty and suppress unreliable
guidance, thereby improving the robustness of diffusion-based offline RL.

5 EXPERIMENTS

In our experiments, we aim to address the following questions:

• Does QUAD outperform state-of-the-art offline RL methods across diverse tasks?

• What is the effect of uncertainty-aware weighting on policy learning and performance?

• How sensitive is QUAD to the choice of uncertainty temperature τ?

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 SETUP

Offline Datasets. We evaluate QUAD on the widely used D4RL benchmark (Fu et al., 2020),
which covers a variety of continuous control tasks with different dataset compositions. Specifically,
we consider standard locomotion tasks (HalfCheetah, Hopper, Walker2d) and the more challenging
AntMaze tasks. For locomotion, we use version “v0” datasets of three quality levels: medium (m),
medium-replay (m-r), and medium-expert (m-e). For AntMaze, we use version “v2” datasets: umaze
(u), umaze-diverse (u-div), medium-play (m-play), medium-diverse (m-div), large-play (l-play), and
large-diverse (l-div).

Baselines. We compare QUAD against a range of offline RL methods, including both non-diffusion
and diffusion-based approaches. Non-diffusion baselines include One-step RL (Brandfonbrener
et al., 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), IVR (Xu et al., 2023)
and EQL (Garg et al., 2023). Diffusion-based baselines include, Diffuser (Janner et al., 2022),
SfBC (Chen et al., 2022), Diffusion Q-learning (DQL) (Wang et al., 2022), DTQL (Chen et al.,
2024), AlignIQL (He et al., 2024a), and DAC (Fang et al., 2024).

Implementation Details. We implement QUAD on top of the publicly available DAC code-
base (Fang et al., 2024). For fair comparison, we adopt the same network architectures and hy-
perparameters as DAC for both the diffusion policy and the Q-ensemble, unless otherwise specified.
We set the ensemble size to K = 10 and the temperature to τ = 1.0 for uncertainty weighting,
based on preliminary tuning. All models are trained for 2 million gradient steps and evaluated ev-
ery 20,000 steps using 10 episodes per evaluation. We report the average normalized scores over
4 random seeds for each task, and the final results are averaged over the last 5 evaluations, which
typically exhibit stable performance, following the DAC protocol. For baselines, we use the results
reported in their respective papers. A complete summary of experimental configurations is provided
in Appendix B.

5.2 MAIN RESULTS

As shown in Table 1, QUAD outperforms most baselines across a variety of tasks, demonstrating
the effectiveness of uncertainty-aware weighting and Q-ensemble learning. We also observe that
QUAD does not achieve the best performance on AntMaze “large” tasks, where the challenges
of sparse rewards and limited optimal trajectories persist. We hypothesize that in these datasets,
learning a reliable critic is particularly difficult, making uncertainty-aware weighting unstable and
revealing an important limitation of QUAD.

Table 1: Average normalized scores of QUAD vs. baselines. Abbreviations: “m” = medium, “r” =
replay, “e” = expert, “u” = umaze, “div” = diverse, “l” = large. Bold numbers denote the best scores,
or the second-best if achieved by our method.

Dataset Onestep-RL CQL IQL IVR EQL Diffuser DTQL AlignIQL SfBC DQL DAC QUAD (ours)
halfcheetah-m 48.4 44.0 47.4 48.3 48.3 44.2 57.9 46.0 45.9 51.1 59.1 59.2 ± 0.2
hopper-m 59.6 58.5 66.3 75.5 74.2 58.5 99.6 56.1 57.1 90.5 101.2 100.2 ± 3.5
walker2d-m 81.8 72.5 78.3 84.2 84.2 79.7 89.4 78.5 77.9 87.0 96.8 100.7 ± 2.4
halfcheetah-m-r 38.1 45.5 44.2 44.8 45.2 42.2 50.9 41.1 37.1 47.8 55.0 55.5 ± 0.3
hopper-m-r 97.5 95.0 94.7 99.7 100.7 96.8 100.0 74.8 86.2 101.3 103.1 103.6 ± 0.2
walker2d-m-r 49.5 77.2 73.9 81.2 82.2 61.2 88.5 76.5 65.1 95.5 96.8 98.9 ± 1.0
halfcheetah-m-e 93.4 91.6 86.7 94.0 94.2 79.8 92.7 89.1 92.6 96.8 99.1 100.1 ± 0.4
hopper-m-e 103.3 105.4 91.5 111.8 111.2 107.2 109.3 107.1 108.6 111.1 111.7 111.9± 0.4
walker2d-m-e 113.0 108.8 109.6 110.2 112.7 108.4 110.0 111.9 109.8 110.1 113.6 115.5 ± 1.0
locomotion total 684.6 698.5 749.7 749.7 752.9 678.0 798.3 681.1 680.3 791.2 836.4 845.6

antmaze-u 64.3 74.0 87.5 93.2 93.8 - 94.8 94.8 92.0 93.4 99.5 100.0 ± 0.0
antmaze-u-div 60.7 84.0 62.2 74.0 82.0 - 78.8 82.4 85.3 66.2 85.0 85.5 ± 16.5
antmaze-m-play 0.3 61.2 71.2 80.2 76.0 - 79.6 80.5 81.3 76.6 85.8 93.0 ± 3.3
antmaze-m-div 0.0 53.7 70.0 79.1 73.6 - 82.2 85.5 82.0 78.6 84.0 89.5 ± 2.6
antmaze-l-play 0.0 15.8 39.6 53.2 46.5 - 52.0 65.2 59.3 46.4 50.3 60.0 ± 4.2
antmaze-l-div 0.0 14.9 47.5 52.3 49.0 - 66.4 54.0 45.5 56.6 55.3 50.5 ± 19.5
antmaze total 125.3 303.6 378.0 432.0 420.9 - 441.4 474.8 445.4 417.8 459.9 479.0
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5.3 ABLATION STUDIES

Since our method builds on DAC, which can be viewed as an unweighted variant of QUAD, we
reproduce DAC using the same codebase and training protocol as QUAD, denoted as DAC-Rep. We
evaluate both methods on locomotion tasks with “medium-replay” datasets and AntMaze “medium”
and “large” tasks, as these settings are highly representative of dense- and sparse-reward regimes, re-
spectively. All hyperparameters are kept identical except for those related to uncertainty modeling.
As shown in Table 2, QUAD consistently outperforms DAC-Rep across these tasks, highlighting
the effectiveness of uncertainty weighting. These improvements stem from QUAD’s ability to mit-
igate the adverse effects of unreliable Q-gradients. The gains are particularly pronounced in the
challenging AntMaze tasks, where Q-gradients are especially uncertain during denoising.

Table 2: Uncertainty weight ablation on locomotion “medium-replay” datasets and AntMaze
“medium”/“large” tasks, comparing QUAD with its unweighted variant DAC-Rep. QUAD achieves
higher returns, especially on AntMaze where Q-gradients are highly uncertain.

uncertainty weight
walker2d hopper halfcheetah antmaze

m-r m-r m-r m-p m-d l-p l-d

w/o. (DAC-Rep) 98.1 ± 1.5 103.4 ± 0.2 55.3 ± 0.2 88.5 ± 3.0 82.5 ± 17.7 41.5 ± 24.4 42.5 ± 11.1

w. (QUAD) 98.9 ± 1.0 103.6 ± 0.2 55.5 ± 0.3 93.0 ± 3.3 89.5 ± 2.6 60.0 ± 4.2 50.5 ± 19.5

5.4 SENSITIVITY ANALYSIS

To examine the sensitivity of QUAD to key hyperparameters, we vary the uncertainty tempera-
ture τ ∈ {0.1, 0.5, 1.0, 10.0}. We present results on “walker2d-medium” and “walker2d-medium-
replay” in Figure 4, while full tasks are reported in Appendix B.4. Our findings indicate that QUAD
is more sensitive to τ in “medium” than in “medium-replay”, likely because the former exhibits a
narrower data distribution, making uncertainty estimates less reliable than in “medium-replay”.
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Figure 4: Sensitivity of QUAD to uncertainty temperature τ , with stronger effects in “medium” due
to its narrower data distribution.

6 CONCLUSION

We introduced QUAD, a diffusion-based offline RL method that incorporates uncertainty-aware Q-
gradient weighting to improve policy learning. By leveraging a Q-ensemble to estimate uncertainty,
QUAD mitigates the adverse effects of unreliable Q-gradients during denoising. Our theoretical
analysis shows that this weighting scheme stabilizes optimization and enhances policy performance.
Extensive experiments on the D4RL benchmark demonstrate that QUAD outperforms state-of-the-
art diffusion-based methods across diverse tasks, particularly in challenging high-uncertainty set-
tings. A limitation of QUAD lies in its reliance on the variance of Q-ensemble gradients for uncer-
tainty estimation. The diversity of the Q-ensemble is also crucial for reliable uncertainty estimates,
which may benefit from techniques such as data augmentation or ensemble diversity promotion. Fu-
ture work includes exploring more advanced uncertainty estimation methods and extending QUAD
to broader RL scenarios, such as offline meta-RL.
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THE USE OF LLMS
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authors are responsible for the content and presentation.

A DETAILED PROOFS AND EXTENSIONS OF QUAD THEORY

In this appendix we complement Section 3.1 by (i) deriving the closed-form optimal weighting λ∗

for the biased–noisy scalar model, and (ii) explaining how the ensemble variance v2(s,at, t) used
in practice approximates the theoretical Q-gradient uncertainty modeled in the main text.

A.1 DERIVATION OF THE OPTIMAL WEIGHTING

In the main text we work with scalar alignment losses

g∗ ≜ ϵθ · g∗, gϕ ≜ ϵθ · gϕ,

and assume the biased–noisy decomposition

gϕ = g∗ + b+ ξϕ,

where b is a deterministic bias determined only by the offline dataset and the learning algorithm, and
ξϕ is a zero-mean random noise with finite variance σ2(s,at, t), arising from stochastic function
approximation and training randomness. For a fixed (s,at, t) we drop the arguments and simply
write g∗, b, ξ, σ2.

The main text defines the alignment risk

R ≜ E
[
(gϕ − g∗)2

]
,

and, for a per-sample weight λ, the weighted risk

R(λ) ≜ E
[
(λgϕ − g∗)2

]
.

Substituting gϕ = g∗ + b+ ξ gives

R(λ) = E
[
(λ(g∗ + b+ ξ)− g∗)2

]
. (23)

We now expand Equation (23) step by step. Write

λ(g∗ + b+ ξ)− g∗ =
(
λ(g∗ + b)− g∗

)
+ λξ,

so that
R(λ) = E

[(
λ(g∗ + b)− g∗ + λξ

)2]
.

Using (x+ y)2 = x2 + 2xy + y2 with

x = λ(g∗ + b)− g∗, y = λξ,

we obtain
R(λ) = x2 + 2xE[y] + E[y2].

Since E[ξ] = 0 and E[ξ2] = σ2, we have E[y] = λE[ξ] = 0 and E[y2] = λ2σ2, hence

R(λ) =
(
λ(g∗ + b)− g∗

)2
+ λ2σ2. (24)

Expanding the first term in Equation (24) yields(
λ(g∗ + b)− g∗

)2
= λ2(g∗ + b)2 − 2λg∗(g∗ + b) + (g∗)2,

so
R(λ) = λ2(g∗ + b)2 − 2λg∗(g∗ + b) + (g∗)2 + λ2σ2

=
(
(g∗ + b)2 + σ2

)
λ2 − 2g∗(g∗ + b)λ+ (g∗)2.

(25)

This is a quadratic function of λ with positive leading coefficient (g∗+ b)2+σ2 > 0, so it is strictly
convex.

12
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Taking the derivative of Equation (25) with respect to λ and setting it to zero:
∂R(λ)
∂λ

= 2
(
(g∗ + b)2 + σ2

)
λ− 2g∗(g∗ + b) = 0,

we obtain the optimal weighting

λ∗ =
g∗(g∗ + b)

(g∗ + b)2 + σ2
, (26)

which is exactly the form used in the main text (with the dependence on (s,at, t) made explicit
there).

For completeness, evaluating Equation (25) at λ = 1 gives
R(1) = (g∗ + b)2 + σ2 − 2g∗(g∗ + b) + (g∗)2 = b2 + σ2.

Since Equation (25) is strictly convex and minimized at λ∗, we have R(λ∗) ≤ R(1) = b2 + σ2,
showing that there always exists a scalar weight that performs no worse (in alignment risk) than
using the unweighted critic.

A.2 WHAT DOES THE ENSEMBLE CAPTURE, AND HOW TO USE IT IN PRACTICE?

The scalar model in Section 3.1 parameterizes the Q-gradient uncertainty at a given (s,at, t) by a
deterministic bias b and a noise term ξ through

gϕ = g∗ + b+ ξ,

where b is a deterministic bias determined only by the offline dataset and the learning algorithm, and
ξ is zero-mean random noise with variance σ2(s,at, t) = Var(ξ), arising from stochastic function
approximation and training randomness rather than from the fixed data or algorithm design. The
combined term b+ ξ captures the epistemic uncertainty of the Q-gradient, which we refer to as the
Q-gradient uncertainty. In this model, the optimal weighting in Equation (26) depends on both b
and σ2(s,at, t).

In practice, QUAD cannot observe b or σ2(s,at, t) directly, and instead uses a Q-ensemble to ap-
proximate the Q-gradient uncertainty. We maintain K critics {Qϕk

}Kk=1 and define their gradient-
based alignment losses along ϵθ as

gk(s,a
t, t) ≜ ϵθ(a

t, s, t) · ∇atQϕk
(s,at), k = 1, . . . ,K.

Under the same biased–noisy picture, each gk can be written as
gk = g∗ + b+ ξk,

where the oracle alignment g∗ and the deterministic bias b are shared across critics at (s,at, t),
while the zero-mean noises ξk come from the randomness of individual function approximators and
training.

To obtain a data-driven estimate of this noise level, we use the empirical variance of the alignment
losses across the ensemble:

v2(s,at, t) =
1

K

K∑
k=1

(
gk(s,a

t, t)− ḡ(s,at, t)
)2
, ḡ(s,at, t) =

1

K

K∑
k=1

gk(s,a
t, t).

Under the usual assumption that the noises {ξk} are independent across k, v2(s,at, t) is a standard
sample-variance estimator of Var(gk) and provides a practical approximation of the Q-gradient
uncertainty that appears in the optimal weighting λ∗.

However, the exact form of λ∗ in Equation (26) depends on terms which are not identifiable from
data. Motivated by this, QUAD adopts a variance-only weighting rule that uses v2(s,at, t) as a
surrogate for the Q-gradient uncertainty and defines

λ(s,at, t) = f
(
v2(s,at, t)

)
,

where f : [0,∞) → (0, 1] is a decreasing function. In the main text we instantiate f as the expo-
nential

λ(s,at, t) = exp

(
−v2(s,at, t)

τ

)
,

as in Equation (18). This choice preserves the qualitative behavior of the theoretical optimal weight-
ing: when the ensemble variance (and thus the estimated Q-gradient uncertainty) is small, λ stays
close to 1 and preserves strong Q-gradient guidance; when the ensemble variance is large, λ decays
towards 0 and automatically down-weights unreliable critic signals.
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B DETAILS OF EXPERIMENTAL SETUP

We train all models for 2M gradient steps. Each environment is run with 4 independent seeds,
and performance is evaluated every 20k steps using 10 additional seeds, yielding 40 rollouts per
evaluation. We report the mean score over the final 50k steps without early stopping. Experiments
are conducted on 4 RTX 4090 GPUs, with each run taking about 2.5 hours including training and
evaluation. Our implementation builds on the jaxrl (Kostrikov, 2021) codebase.

B.1 NETWORK ARCHITECTURE

Both the actor and critic adopt a 3-layer MLP with hidden size 256 and Mish activation (Mish, 1908).
Target networks are used to stabilize training: ϵ̂θ and Q̂ϕk

are initialized with the same parameters
as ϵθ and Qϕk

, and track their exponential moving averages (EMA). The target actor is updated
every 5 gradient steps, while the target critics are updated after each step.

B.2 HYPERPARAMETERS

We use consistent hyperparameter settings for the diffusion models and networks across all tasks.
The hyperparameters are specified as follows:

Table 3: Hyperparameters for all networks and tasks.
Hyperparameter Value
T (Diffusion Steps) 5
βt (Noise Schedule) Variance Preserving ()
K (Ensemble Size) 10
B (Batch Size) 256
Learning Rates (for all networks) 3e-4, 1e-3 (antmaze-large)
Learning Rate Decay Cosine ()
Optimizer Adam ()
ηinit (Initial Behavior Cloning Strength) [0.1, 1]
αη (for Dual Gradient Ascent) 0.001
αema (EMA Learning Rate) 5e-3
Na (Number of sampled actions for evaluation) 10
b (Behavior Cloning Threshold) [0.05, 1]
ρ (Pessimistic factor) [0, 2]

QUAD adopts the same hyperparameters as DAC for the diffusion policy and Q-ensemble, except
for AntMaze “large” tasks where a smaller η is used. We sweep over τ ∈ {0.1, 0.5, 1.0, 10.0, 100}
and report the best value for each task in Table 4.

B.3 PSEUDO CODE OF QUAD

We provide the pseudo code of QUAD in Algorithm 1.

B.4 SENSITIVITY ANALYSIS

We present the full sensitivity analysis of QUAD to uncertainty temperature τ on all tasks in Fig-
ure 5.
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Table 4: Hyperparameters settings for tasks.
Tasks τ b η ρ Regularization Type
hopper-medium-v2 0.1 1 - 1.5 Learnable
hopper-medium-replay-v2 1 1 - 1.5 Learnable
hopper-medium-expert-v2 0.5 0.05 - 1.5 Learnable
walker2d-medium-v2 10 1 - 1 Learnable
walker2d-medium-replay-v2 1 1 - 1 Learnable
walker2d-medium-expert-v2 1 1 - 1 Learnable
halfcheetah-medium-v2 10 1 - 0 Learnable
halfcheetah-medium-replay-v2 0.5 1 - 0 Learnable
halfcheetah-medium-expert-v2 10 0.1 - 0 Learnable
antmaze-umaze-v0 0.5 - 0.1 1 Constant
antmaze-umaze-diverse-v0 0.5 - 0.1 1 Constant
antmaze-medium-play-v0 0.1 - 0.1 1 Constant
antmaze-medium-diverse-v0 0.1 - 0.1 1 Constant
antmaze-large-play-v0 0.1 - 0.1 1.1 Constant
antmaze-large-diverse-v0 0.1 - 0.1 1 Constant

Algorithm 1 QUAD: Q-gradient Uncertainty-aware Guidance Training
Require: offline dataset D, batch size B, learning rates αϕ, αθ, αη and αema, behavior cloning

threshold εb, pessimism factor ρ, initial Lagrangian multiplier ηinit, ensemble size K, uncertainty
temperature τ

1: Initialize: diffusion policy ϵθ, target diffusion policy ϵ̂θ = ϵθ, Q ensemble networks Qϕk
, target

Q ensemble networks Q̂ϕk
= Qϕk

(i = 1, 2, ...,K), Lagrangian multiplier η = ηinit
2: while training not convergent do
3: Sample a batch of B transitions {(s,a, r, s′)} ⊂ D
4: Sample a′ = a0 through denoising process using noise predictor ϵ̂θ(at, s, t).
5: for k in {1, 2, ...,K} do
6: Update ϕk ← ϕk − αϕ∇ϕk

L(ϕk) (Equation (20)) ▷ Q ensemble learning
7: end for
8: Sample ϵ ∼ N (0, I), t ∼ U(0, T ) and compute at =

√
ᾱta+

√
1− ᾱtϵ

9: Estimate Q-gradient∇atQπi
(s,at) using (Equation (21))

10: Estimate Q-gradient uncertainty weight λ(s,at) using (Equation (18))
11: θ ← θ − αθ∇θL(θ) (Equation (19)) ▷ Policy learning
12: η ← η + αη(||ϵθ(at, s, t)− ϵ||2 − εb) ▷ Dual gradient ascent (optional)
13: θ̂ ← (1− αema)θ̂ + αemaθ

14: ϕ̂i ← (1− αema)ϕ̂i + αemaϕi ▷ Update target networks using EMA
15: end while
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Figure 5: Sensitivity of QUAD to uncertainty temperature τ on various tasks.
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