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ABSTRACT

Diffusion-based offline reinforcement learning (RL) leverages Q-gradients of
noisy actions to guide the denoising process. Existing approaches fall into two
categories: (i) backpropagating the Q-gradient of the final denoised action through
all steps, or (ii) directly estimating the Q-gradient of noisy actions. The former
suffers from exploding or vanishing gradients as the number of denoising steps
increases, while the latter becomes inaccurate when noisy actions deviate substan-
tially from the dataset. In this work, we focus on addressing the limitations of the
second category. We introduce QUAD, an uncertainty-aware Q-gradient guidance
method. QUAD employs a Q-ensemble to estimate the uncertainty of Q-gradients
and uses this uncertainty to constrain unreliable guidance during denoising. By
down-weighting unreliable gradients, QUAD reduces the risk of producing sub-
optimal actions. Experiments on the D4RL benchmark show that QUAD outper-
forms state-of-the-art methods across most tasks.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in sequential decision-making tasks,
ranging from games (Mnih et al., 2013; Lample & Chaplot, 2017) to robotics (He et al., 2024b; Ze
et al., 2025). However, the majority of these successes rely heavily on abundant online interac-
tions. In many real-world domains, such as healthcare, autonomous driving, and industrial con-
trol, exploration is either prohibitively costly or inherently unsafe. Offline RL addresses this chal-
lenge by learning policies purely from pre-collected datasets (Fujimoto & Gu, 2021; Zhou et al.,
2025), thereby eliminating the need for online exploration. However, it suffers from distribution
shift (Levine et al., 2020): the learned policy may produce actions that deviate substantially from
those observed in the dataset, resulting in unreliable value estimates and degraded performance. A
key contributor to this issue is the limited expressiveness of conventional policy classes (e.g. Gaus-
sian), which struggle to capture complex, multimodal action distributions in real-world datasets,
worsening the mismatch between learned and behavior policies.

Diffusion models (Ho et al., 2020) have emerged as a powerful class of policies (Chi et al., 2023),
capable of capturing highly complex action distributions and generating diverse actions. Diffusion-
based offline RL methods typically combines two forms of guidance: behavior cloning (BC) guid-
ance and Q-guidance (Wang et al., 2022). BC guidance steers the denoising trajectory towards
dataset-like actions, thereby alleviating distributional shift, whereas Q-guidance leverages value es-
timates to promote higher-quality actions. Existing Q-guidance methods can be categorized into
two classes. The first backpropagates Q-gradients from the final denoised action through all diffu-
sion steps (Wang et al., 2022). While effective in principle, this approach suffers from vanishing
or exploding gradients as the number of denoising steps increases, leading to unstable optimization.
The second estimates Q-gradients of noisy actions directly at intermediate denoising steps (Fang
et al., 2024), thus avoiding backpropagation through the entire trajectory. Although more stable,
this method produces unreliable Q-gradients when noisy actions lie far from the data distribution,
resulting in suboptimal guidance.

To address the limitations of the second class of methods, we propose QUAD, a Q-gradient
uncertainty-aware guidance framework that improves the reliability of denoising guidance. Our
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Figure 1: Left: In offline RL, behavior cloning regularization makes the learned Q-function more
reliable near the dataset distribution (green), while yielding highly uncertain estimates for out-of-
distribution noisy actions (orange). Right: QUAD leverages a Q-ensemble to estimate the uncer-
tainty of Q-gradients and adaptively down-weights unreliable guidance during denoising.

key observation is that critics trained on offline data often yield highly unreliable Q estimates for
noisy actions, particularly those far from the dataset distribution (Figure 1, left). To overcome this
issue, QUAD employs a Q-ensemble to estimate gradient uncertainty and adaptively attenuate un-
reliable guidance signals (Figure 1, right). We further provide a theoretical analysis of Q-gradient
uncertainty and derive an optimal weighting scheme that minimizes the alignment risk along oracle
Q-gradient. Building on this analysis, we design a practical uncertainty-aware weighting mechanism
that approximates the theoretical optimum. By integrating this mechanism into the Q-guidance pro-
cess, QUAD effectively suppresses unreliable gradients, thereby enhancing policy performance.

We evaluate QUAD on the widely adopted D4RL benchmark (Fu et al., 2020), comparing it against
state-of-the-art offline RL methods, including both non-diffusion and diffusion-based approaches.
Experimental results show that QUAD consistently outperforms prior methods on most tasks and
achieves comparable performance on the remaining ones.

In summary, our contributions are threefold:

• We identify and theoretically analyze the limitations of existing Q-guidance methods in
diffusion-based offline RL, showing how Q-gradient uncertainty undermines reliability.

• We propose QUAD, a novel uncertainty-aware guidance framework that leverages a Q-
ensemble to estimate gradient uncertainty and adaptively down-weight unreliable signals.

• We conduct extensive experiments on D4RL, demonstrating that QUAD achieves state-of-
the-art performance across a diverse set of offline RL tasks.

2 PRELIMINARIES

A reinforcement learning (RL) problem is typically formulated as a Markov Decision Process
(MDP), represented by the tuple (S,A, T , r, d0, γ), where S denotes the state space, A the ac-
tion space, T (s′|s, a) the transition dynamics, r(s, a) the reward function, d0(s) the initial state
distribution, and γ ∈ (0, 1) the discount factor. The objective of RL is to learn a policy π(a|s) that
maximizes the expected discounted cumulative reward (Sutton et al., 1998):

J(π) = Eπ,T ,d0

[ ∞∑
t=0

γtr(st, at)

]
(1)

Offline Reinforcement Learning. Offline RL focuses on learning an effective policy solely from
a fixed dataset D = {(si, ai, ri, s′i)}Ni=1, which is generated by an (often unknown) behavior policy
πβ , without access to further environment interactions (Levine et al., 2020). A central challenge in
offline RL arises from the distributional shift between πβ and the learned policy π, which can lead

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to erroneous value estimates. To mitigate this issue, many approaches optimize the expected return
under Qπ(s, a) while constraining the learned policy to remain close to the behavior policy (Wu
et al., 2019):

max
π

Es∼D, a∼π(·|s)[Q
π(s, a)] s.t. D(π ∥πβ) < ϵ (2)

where D(·, ·) denotes a divergence measure (e.g., KL divergence) and ϵ is a tolerance parameter.

Diffusion models. Diffusion models (Ho et al., 2020; Song et al., 2020a) are a class of generative
models that assume latent variables follow a Markovian noising-denoising process. In the forward
process {x0:T }, Gaussian noise is gradually added to the clean data x0 ∼ p(x0) according to a
predefined variance schedule {β1:T }:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (3)

The marginal distribution admits a closed form:
qt(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), t ∈ {1, . . . , T} (4)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. Equivalently, a noisy sample can be reparameterized as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I) (5)

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) parameterize the reverse pro-
cess with Gaussian conditionals pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), leading to a genera-
tive process: pθ(x0:T ) = N (xT ;0, I)

∏T
t=1 pθ(xt−1|xt). In practice, DDPMs predict the noise ϵ in

Equation (5) using a neural network ϵθ(xt, t) to minimize the evidence lower bound loss:

L(θ) = Ex0∼p(x0), t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
(6)

Diffusion-based Offline RL. Following the DDPM framework, diffusion policies model action gen-
eration as a state-conditioned denoising process. Specifically, the noise predictor in (Equation (6)) is
replaced with a state-conditional network ϵθ(a

t, s, t) that predicts actions a0 ∈ A given the state s,
where at denotes the noisy action at denoising step t. This formulation recovers standard behavior
cloning (BC) when trained on the dataset D. In diffusion-based offline RL, however, pure behav-
ior cloning may fail to exploit Q value information. To address this, Q-function guidance can be
incorporated to bias the denoising process toward high-value actions. A straightforward approach,
as in Diffusion Q-learning (DQL) (Wang et al., 2022), backpropagates the Q-gradient from the final
denoised action a0 through all denoising steps, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T ),ϵ∼N (0,I)

[
∥ϵ− ϵθ(a

t, s, t)∥2
]

− η · Es∼D,a0∼πθ

[
Qϕ(s,a

0)
] (7)

where the first term corresponds to the denoising objective, and the second term encourages the
policy to generate actions with high Q-values. The coefficient η is a hyperparameter that balances
behavior cloning against Q-guidance. An alternative strategy, as in DAC (Fang et al., 2024), directly
estimates the Q-gradient of noisy actions at each denoising step, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T ),ϵ∼N (0,I)

[
η · ∥ϵ− ϵθ(a

t, s, t)∥2

+ w(t) · ϵθ(at, s, t) · ∇atQϕ(s,a
t)
] (8)

where w(t) is a step-dependent weight that controls the influence of Q-gradient guidance across
denoising steps. Rather than propagating gradients across the full sequence of denoising steps,
DAC-style methods reduce the risk of vanishing or exploding gradients, thereby providing more
stable optimization.

3 METHODS

We now introduce our proposed method, QUAD, which comprises three main components: (1) a
theoretical derivation of the optimal uncertainty-aware weighting scheme for Q-gradient guidance;
(2) the formulation and implementation of a Q-gradient uncertainty-aware guidance mechanism; and
(3) a practical yet principled procedure for policy extraction. An overview of the QUAD framework
is shown in Figure 2.
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Figure 2: Overview of the QUAD framework: (1) In critic ensemble training, the target policy
generates next-step actions and updates critics by minimizing TD error with LCB regularization.
(2) In diffusion policy training, the target Q-ensemble estimates Q-gradients and their uncertainty
to adaptively down-weight unreliable guidance. (3) In policy extraction, the target diffusion policy
proposes candidate actions, and the action with the highest Q-value under the target Q-ensemble is
selected.

3.1 THEORETICAL ANALYSIS OF Q-GRADIENT UNCERTAINTY-AWARE WEIGHTING

3.1.1 UNCERTAINTY IN Q-GRADIENT GUIDANCE

We denote the oracle critic gradient as g∗(s,at) = ∇atQ∗(s,at). The Q-gradient guidance loss
in Equation (8) aims to enforce anti-alignment between the noise predictor ϵθ(at, s, t) and g∗, i.e.,
to encourage updates along −g∗. For analytical purposes, let u ≡ uθ(s,a

t, t) be the unit vector
colinear with ϵθ(a

t, s, t). We then introduce the oracle alignment loss:

L∗
align ≜ u⊤g∗. (9)

Minimization of L∗
align promotes anti-alignment with g∗. Since g∗ is inaccessible in practice, it is

replaced by an ensemble-based estimator ĝ:

ĝ(s,at) = 1
K

K∑
k=1

∇atQϕk
(s,at). (10)

It is reasonable to assume that ĝ provides an unbiased estimate of g∗, while exhibiting heteroscedas-
tic variance across different (s,at). Accordingly, ĝ can be decomposed as the oracle component
plus a stochastic perturbation:

ĝ(s,at) = g∗(s,at) + ξ(s,at), (11)
with E[ξ] = 0 and Cov[ξ] = Σ(s,at). Thus, the alignment loss implemented in practice is

Lalign ≜ u⊤ĝ = u⊤g∗ + u⊤ξ. (12)

Here, the perturbation term u⊤ξ has zero expectation and variance σ2(s,at) = u⊤Σu, thereby
introducing stochastic uncertainty into the alignment objective.

3.1.2 OPTIMAL UNCERTAINTY-AWARE WEIGHTING

To mitigate the negative impact of such uncertainty, we introduce a per-sample weight λ(s,at) ∈
(0, 1] to rescale the alignment loss:

Lλ
align ≜ λu⊤ĝ. (13)
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Intuitively, samples associated with larger variance should receive smaller weight. Formally, we
analyze the problem as one of estimating the oracle alignment L∗

align from the noisy measurement
Lalign. We define the per-sample risk R(λ;σ2) as the mean-squared error under heteroscedastic
noise:

R(λ;σ2) ≜ E
[
(Lλ

align − L∗
align)

2 | σ2
]

= E
[
(λu⊤ĝ − u⊤g∗)2 | σ2

]
.

(14)

Let ν2 ≜ E[ (u⊤g∗)
2
] denote the second moment of the oracle target. The risk expression can be

reformulated as:
R(λ;σ2) = (λ− 1)2 ν2 + λ2 σ2. (15)

The minimizer admits a closed-form solution:

λ∗(σ2) =
ν2

ν2 + σ2
. (16)

This solution satisfies λ∗(0) = 1 and is strictly decreasing in σ2. Detailed derivations are provided in
the Appendix A. Furthermore, Equation (15) explicitly characterizes the bias–variance tradeoff: de-
creasing λ inflates bias (λ−1)2ν2 while reducing variance λ2σ2. The resulting balance corresponds
precisely to inverse-variance shrinkage: high-variance samples are systematically down-weighted,
whereas noise-free samples retain full weight.

3.1.3 A PRACTICAL UNCERTAINTY-AWARE WEIGHTING SCHEME

Although Equation (16) provides the oracle-optimal weight, it cannot be directly computed because
ν2 is unobserved. Nevertheless, since ĝ is an unbiased estimator of g∗, the scalar u⊤ĝ can be re-
garded as an unbiased yet heteroscedastic observation of u⊤g∗. This property allows us to estimate
ν2 from the dataset {(si,at

i)}Ni=1:

ν2 ≈ ν̂2 = 1
N

N∑
i=1

[ (u⊤ĝ)2 ]. (17)

By substituting this estimate into Equation (16), we obtain a practical weighting scheme:

λ(s,at) =
ν̂2

ν̂2 + σ2(s,at) + δ
, δ > 0. (18)

Here, δ is a small positive constant that ensures numerical stability and prevents division by near-
zero denominators.

3.2 DIFFUSION POLICY WITH Q-GRADIENT UNCERTAINTY-AWARE GUIDANCE

Building on the above analysis, we implement QUAD by integrating the uncertainty-aware weight-
ing λ(s,at) into the diffusion policy training objective Equation (8), following the DAC framework:

L(θ) = E(s,a∗)∼D, t∼U(1,T ), ϵ∼N (0,I)

[
η∥ϵ− ϵθ(a

t, s, t)∥2

+ λ(s,at) · w(t) · ϵθ(at, s, t) · ∇atQ̄ϕ(s,a
t)
]
,

(19)

where w(t) =
√
1− ᾱt modulates the strength of Q-guidance according to the noise level, ensuring

that the denoised action remains close to the behavior policy in later diffusion steps.

3.2.1 Q-ENSEMBLE TRAINING.

A central component of QUAD is the Q-ensemble, which provides unbiased and diverse gra-
dient estimates. To reduce overestimation bias, we train the ensemble using a pessimistic Q-
learning scheme (Ghasemipour et al., 2022). Concretely, we maintain K parameterized Q-networks
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{Qϕk
}Kk=1 with corresponding target networks {Q̂ϕk

}Kk=1, and employ a lower confidence bound
(LCB) as the target value. The critic learning objective for each network is:

L(ϕi) =E(s,a,r,s′)∼D,a′∼πθ

[
r + γQLCB(s

′,a′)−Qϕi
(s,a)

]2
,

QLCB(s
′,a′) = E[Q̂(s′,a′)]− ρ

√
Var[Q̂(s′,a′)],

(20)

where ρ ≥ 0 controls the degree of pessimism, and E[Q̂] and Var[Q̂] denote the empirical mean and
variance across the target critics.

3.2.2 UNCERTAINTY-AWARE WEIGHTING.

For stable training, we maintain a target policy ϵ̂θ and target Q-ensemble {Q̂ϕk
}Kk=1 using expo-

nential moving averages (EMA). Given a batch {(s,a)}B1 sampled from D, we first add noise to a
following Equation (5), yielding {(s,at)}B1 . We then compute the alignment loss of each Q-network
relative to the predicted noise direction:

lkalign(s,a
t) = u⊤

θ ∇atQ̂ϕk
(s,at), uθ =

ϵθ(a
t, s, t)

∥ϵθ(at, s, t)∥
. (21)

It is then natural to estimate the heteroscedastic uncertainty σ2(s,at) using the variance of
{lkalign(s,at)}Kk=1:

σ2(s,at) =
1

K

K∑
k=1

(
lkalign(s,a

t)− l̄align(s,a
t)
)2
, l̄align(s,a

t) =
1

K

K∑
k=1

lkalign(s,a
t). (22)

Following Equation (17), for computational efficiency, we estimate ν2 using the empirical variance
of {l̄align(si,at

i)}Bi=1 within the batch, and update it using EMA:

ν̂2 =
1

B

B∑
i=1

(
l̄align(si,a

t
i)− ¯̄lalign

)2
, ¯̄lalign =

1

B

B∑
i=1

l̄align(si,a
t
i). (23)

Finally, we compute the uncertainty-aware weight λ(s,at) according to Equation (18), and intro-
duce a temperature hyperparameter τ to control the aggressiveness of the weighting:

λ(s,at) =
ν̂2

ν̂2 + σ2(s,at)/τ + δ
. (24)

When τ → 0, the weighting becomes more aggressive, sharply suppressing high-uncertainty gradi-
ents, while as τ →∞, it approaches uniform weighting. The complete QUAD training procedure is
summarized in Algorithm 1.

3.3 POLICY EXTRACTION

We denote πθ(a|s) as the diffusion policy trained via the denoising process with noise predictor
ϵθ(a

t, s, t). While πθ can directly generate actions, we further aim to reduce uncertainty during
evaluation. To this end, we draw a small batch of Na candidate actions from πθ(·|s) and select the
one with the highest ensemble-mean Q-value:

π∗(s) = arg max
a1,...,aNa∼πθ(·|s)

E
[
Q̂(s,a)

]
. (25)

This extraction strategy is commonly employed in settings where a stochastic actor is used for critic
learning, but a deterministic policy is deployed at evaluation. Because πθ is already trained to
approximate the target policy, only a small number of samples Na is needed. In our experiments,
QUAD achieves strong performance with Na = 10 following DAC, whereas SfBC and Diffusion
Q-learning typically require Na = 32 and Na = 50, respectively.
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4 RELATED WORK

4.1 OFFLINE RL

Offline RL aims to learn policies from fixed datasets, but suffers from distribution shift that leads to
value overestimation in the bootstrapping process (Levine et al., 2020). To address this issue, prior
works have developed strategies such as behavior regularization, conservative value estimation, and
explicit Bellman error modeling. Behavior-regularized methods constrain policies to stay close to
the behavior distribution via candidate-action generators or divergence penalties (Fujimoto et al.,
2019; Kumar et al., 2019; Wu et al., 2019). Conservative methods alleviate OOD effects by either
adding regularizers to the Q-learning objective (Kumar et al., 2020) or by learning in-sample con-
servative value functions (Kostrikov et al., 2021; Xu et al., 2023). Alternative approaches explicitly
model Bellman errors with a Gumbel distribution and directly learn soft value functions without
requiring action sampling (Garg et al., 2023). Our work is related to both behavior-regularized and
conservative approaches, as we model the behavior distribution with a diffusion policy and mitigate
overestimation bias via a pessimistic Q-ensemble.

4.2 DIFFUSION MODELS

Diffusion models are a class of generative models that consist of a forward diffusion process and a
reverse denoising process (Ho et al., 2020), which can also be interpreted as stochastic differential
equations (Song et al., 2020b). In the forward process, Gaussian noise is gradually added to the
data according to a variance schedule. In the reverse process, a neural network is trained to predict
the noise and iteratively recover the clean data. Several works improve efficiency by reducing the
number of denoising steps (Song et al., 2020a; Nichol & Dhariwal, 2021; Song et al., 2023). Others
explore alternative guidance strategies, such as classifier guidance (Dhariwal & Nichol, 2021) and
classifier-free guidance (Ho & Salimans, 2022). More recently, diffusion models have been extended
to sequential decision-making, where they are used to represent policies or trajectories (Janner et al.,
2022; Chi et al., 2023; Black et al., 2023). Our work builds on diffusion policies and introduces a
novel uncertainty-aware Q-gradient guidance mechanism to enhance policy learning in offline RL.

4.3 DIFFUSION-BASED OFFLINE RL

Diffusion-based offline RL combines diffusion models with offline RL techniques. A straightfor-
ward approach performs behavior cloning with diffusion models and then applies value-based se-
lection to choose high-value actions from the diffusion prior (Chen et al., 2022; Hansen-Estruch
et al., 2023). To reduce multi-step sampling cost, an efficient variant distills the diffusion prior into
a one-step Gaussian policy (Chen et al., 2024). Another line of work integrates Q-value informa-
tion directly into diffusion policy training (Wang et al., 2022). However, this approach requires
backpropagating Q-gradients through the entire denoising chain, which often causes vanishing or
exploding gradients. A more refined strategy applies Q-gradient guidance at each intermediate de-
noising step, rather than through all steps, as in DAC (Fang et al., 2024). Subsequent extensions
incorporate advantage modules or pathwise regularization to further stabilize training (Chen et al.,
2025; Gao et al., 2025). Despite their improved stability, these methods still suffer from unreli-
able Q-gradients when noisy actions deviate from the dataset distribution. Our method addresses
this limitation by employing a Q-ensemble to estimate gradient uncertainty and suppress unreliable
guidance, thereby improving the robustness of diffusion-based offline RL.

5 EXPERIMENTS

In our experiments, we aim to address the following questions:

• Does QUAD outperform state-of-the-art offline RL methods across diverse tasks?

• What is the effect of uncertainty-aware weighting on policy learning and performance?

• How sensitive is QUAD to the choice of uncertainty temperature τ?

7
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Table 1: Average normalized scores of QUAD vs. baselines. Abbreviations: “m” = medium, “r” =
replay, “e” = expert, “u” = umaze, “div” = diverse, “l” = large. Bold numbers denote the best scores,
or the second-best if achieved by our method.

Dataset Onestep-RL CQL IQL IVR EQL Diffuser DTQL AlignIQL SfBC DQL DAC QUAD (ours)
halfcheetah-m 48.4 44.0 47.4 48.3 48.3 44.2 57.9 46.0 45.9 51.1 59.1 62.5 ± 0.6
hopper-m 59.6 58.5 66.3 75.5 74.2 58.5 99.6 56.1 57.1 90.5 101.2 98.7 ± 2.9
walker2d-m 81.8 72.5 78.3 84.2 84.2 79.7 89.4 78.5 77.9 87.0 96.8 92.9 ± 6.3
halfcheetah-m-r 38.1 45.5 44.2 44.8 45.2 42.2 50.9 41.1 37.1 47.8 55.0 57.2 ± 0.7
hopper-m-r 97.5 95.0 94.7 99.7 100.7 96.8 100.0 74.8 86.2 101.3 103.1 104.9 ± 0.2
walker2d-m-r 49.5 77.2 73.9 81.2 82.2 61.2 88.5 76.5 65.1 95.5 96.8 99.9 ± 0.4
halfcheetah-m-e 93.4 91.6 86.7 94.0 94.2 79.8 92.7 89.1 92.6 96.8 99.1 100.1 ± 0.4
hopper-m-e 103.3 105.4 91.5 111.8 111.2 107.2 109.3 107.1 108.6 111.1 111.7 111.1 ± 1.7
walker2d-m-e 113.0 108.8 109.6 110.2 112.7 108.4 110.0 111.9 109.8 110.1 113.6 115.5 ± 1.2
locomotion total 684.6 698.5 749.7 749.7 752.9 678.0 798.3 681.1 680.3 791.2 836.4 842.8

antmaze-u 64.3 74.0 87.5 93.2 93.8 - 94.8 94.8 92.0 93.4 99.5 100.0 ± 0.0
antmaze-u-div 60.7 84.0 62.2 74.0 82.0 - 78.8 82.4 85.3 66.2 85.0 85.0 ± 4.6
antmaze-m-play 0.3 61.2 71.2 80.2 76.0 - 79.6 80.5 81.3 76.6 85.8 89.5 ± 1.7
antmaze-m-div 0.0 53.7 70.0 79.1 73.6 - 82.2 85.5 82.0 78.6 84.0 90.5 ± 4.5
antmaze-l-play 0.0 15.8 39.6 53.2 46.5 - 52.0 65.2 59.3 46.4 50.3 61.0 ± 3.0
antmaze-l-div 0.0 14.9 47.5 52.3 49.0 - 66.4 54.0 45.5 56.6 55.3 63.0 ± 5.4
antmaze total 125.3 303.6 378.0 432.0 420.9 - 441.4 474.8 445.4 417.8 459.9 489.0

5.1 SETUP

Offline Datasets. We evaluate QUAD on the widely used D4RL benchmark (Fu et al., 2020),
which covers a variety of continuous control tasks with different dataset compositions. Specifically,
we consider standard locomotion tasks (HalfCheetah, Hopper, Walker2d) and the more challenging
AntMaze tasks. For locomotion, we use version “v0” datasets of three quality levels: medium (m),
medium-replay (m-r), and medium-expert (m-e). For AntMaze, we use version “v2” datasets: umaze
(u), umaze-diverse (u-div), medium-play (m-play), medium-diverse (m-div), large-play (l-play), and
large-diverse (l-div).

Baselines. We compare QUAD against a range of offline RL methods, including both non-diffusion
and diffusion-based approaches. Non-diffusion baselines include One-step RL (Brandfonbrener
et al., 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), IVR (Xu et al., 2023)
and EQL (Garg et al., 2023). Diffusion-based baselines include, Diffuser (Janner et al., 2022),
SfBC (Chen et al., 2022), Diffusion Q-learning (DQL) (Wang et al., 2022), DTQL (Chen et al.,
2024), AlignIQL (He et al., 2024a), and DAC (Fang et al., 2024).

Implementation Details. We implement QUAD on top of the publicly available DAC code-
base (Fang et al., 2024). For fair comparison, we adopt the same network architectures and hy-
perparameters as DAC for both the diffusion policy and the Q-ensemble, unless otherwise specified.
We set the ensemble size to K = 10 and the temperature to τ = 1.0 for uncertainty weighting,
based on preliminary tuning. All models are trained for 2 million gradient steps and evaluated ev-
ery 20,000 steps using 10 episodes per evaluation. We report the average normalized scores over
4 random seeds for each task, and the final results are averaged over the last 5 evaluations, which
typically exhibit stable performance, following the DAC protocol. For baselines, we use the results
reported in their respective papers. A complete summary of experimental configurations is provided
in Appendix B.

5.2 MAIN RESULTS

As shown in Table 1, QUAD outperforms most baselines across a variety of tasks, demonstrating the
effectiveness of uncertainty-aware weighting and Q-ensemble learning. In particular, QUAD consis-
tently achieves strong performance on the “medium-replay” locomotion datasets and the “medium,
large” AntMaze datasets, where broader dataset coverage is available. We hypothesize that in these
datasets, the discrepancy in Q-value accuracy between low-uncertainty and high-uncertainty regions
is more pronounced, making uncertainty-aware weighting especially beneficial.
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5.3 ABLATION STUDIES

Since our method builds on DAC, which can be viewed as the unweighted variant of QUAD, we
reproduce DAC results using the same codebase and training protocol as QUAD, indicated by DAC-
Rep. We evaluate both methods on locomotion tasks with “medium-replay” datasets and AntMaze
“medium” and “large” tasks, where Q-gradient uncertainty is more prevalent. All hyperparameters
are kept identical except for those related to uncertainty modeling. As shown in Table 2, QUAD
consistently outperforms DAC-Rep across these tasks and exhibits lower variance across random
seeds, indicating more stable learning. These gains can be attributed to QUAD’s ability to mitigate
the negative impact of unreliable Q-gradients. The improvements are particularly pronounced in the
challenging AntMaze tasks, where Q-gradients are especially uncertain during denoising.

Table 2: Uncertainty weight ablation on locomotion “medium-replay” datasets and AntMaze
“medium”/“large” tasks, comparing QUAD with its unweighted variant DAC-Rep. QUAD achieves
higher returns with lower variance, especially on AntMaze where Q-gradients are highly uncertain.

uncertainty weight
walker2d hopper halfcheetah antmaze

m-r m-r m-r m-p m-d l-p l-d

w/o. (DAC-Rep) 98.1 ± 1.5 103.4 ± 0.2 55.3 ± 0.2 88.5 ± 3.0 82.5 ± 17.7 41.5 ± 24.4 42.5 ± 11.1

w. (QUAD) 99.9 ± 0.4 104.9 ± 0.2 57.2 ± 0.7 89.5 ± 1.7 90.5 ± 4.5 61.0 ± 3.0 63.0 ± 5.4

5.4 SENSITIVITY ANALYSIS

To examine the sensitivity of QUAD to key hyperparameters, we vary the uncertainty temperature
τ ∈ {0.1, 0.5, 1.0, 10.0, 100}. We present results on “walker2d-medium” and “walker2d-medium-
replay” in Figure 3, while full tasks are reported in Appendix B.4. Our findings indicate that QUAD
is more sensitive to τ in “medium” than in “medium-replay”, likely because the former exhibits a
narrower data distribution, making uncertainty estimates less reliable than in “medium-replay”.
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Figure 3: Sensitivity of QUAD to uncertainty temperature τ , with stronger effects in “medium” due
to its narrower data distribution.

6 CONCLUSION

We introduced QUAD, a diffusion-based offline RL method that incorporates uncertainty-aware Q-
gradient weighting to improve policy learning. By leveraging a Q-ensemble to estimate uncertainty,
QUAD mitigates the adverse effects of unreliable Q-gradients during denoising. Our theoretical
analysis shows that this weighting scheme stabilizes optimization and enhances policy performance.
Extensive experiments on the D4RL benchmark demonstrate that QUAD outperforms state-of-the-
art diffusion-based methods across diverse tasks, particularly in challenging high-uncertainty set-
tings. A limitation of QUAD lies in its reliance on the variance of Q-ensemble gradients for uncer-
tainty estimation. The diversity of the Q-ensemble is also crucial for reliable uncertainty estimates,
which may benefit from techniques such as data augmentation or ensemble diversity promotion. Fu-
ture work includes exploring more advanced uncertainty estimation methods and extending QUAD
to broader RL scenarios, such as offline meta-RL.
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THE USE OF LLMS

We thank ChatGPT-5 for its assistance in polishing the writing and proofreading of this paper. The
authors are responsible for the content and presentation.

A DETAILED PROOFS AND EXTENSIONS OF QUAD THEORY

In this appendix, we give complete derivations for the risk decomposition and the optimal per-sample
weight. Recall that for a state–action pair (s,at) and a unit direction u ≡ uθ(s,a

t, t), the oracle
alignment loss and the noisy measurement are

L∗
align ≜ u⊤g∗, Lalign ≜ u⊤ĝ = u⊤g∗ + u⊤ξ. (26)

The rescaled alignment loss is
Lλ

align ≜ λu⊤ĝ. (27)

Let ν2 ≜ E[ (u⊤g∗)2 ] denote the second moment of the oracle target along u.

R(λ;σ2) ≜ E
[
(Lλ

align − L∗
align)

2 | σ2
]

= E
[
(λu⊤ĝ − u⊤g∗)2 | σ2

]
= E

[(
λ
(
u⊤ĝ − u⊤g∗)+ (λ− 1)u⊤g∗)2 |σ2

]
= E

[
λ2

(
u⊤ĝ − u⊤g∗)2 + 2λ(λ− 1)

(
u⊤ĝ − u⊤g∗)u⊤g∗ + (λ− 1)

2 (
u⊤g∗)2 |σ2

]
= λ2E

[(
u⊤ĝ − u⊤g∗)2 |σ2

]
+ 2λ(λ− 1)E

[(
u⊤ĝ − u⊤g∗)u⊤g∗|σ2

]
+ (λ− 1)

2 E
[(
u⊤g∗)2 |σ2

]
= λ2E

[(
u⊤ξ

)2 |σ2
]
+ 2λ(λ− 1)E

[(
u⊤ξ

) (
u⊤g∗) |σ2

]
+ (λ− 1)

2 E
[(
u⊤g∗)2 |σ2

]
= λ2σ2 + (λ− 1)

2
ν2

(28)

The last equality holds because the perturbation term u⊤ξ has zero expectation and variance
σ2(s,at),while the oracle component g∗(s,at) and thestochastic perturbation ξ(s,at) are inde-
pendent.

Expanding the quadratic form yields

R(λ;σ2) = λ2σ2 + (λ2 − 2λ+ 1)ν2 = (ν2 + σ2)λ2 − 2ν2λ+ ν2. (29)

Since ν2 + σ2 > 0, the function is strictly convex in λ. Taking the derivative and setting it to zero,

∂R
∂λ

= 2(ν2 + σ2)λ− 2ν2 = 0, (30)

we obtain the unique minimizer

λ∗(σ2) =
ν2

ν2 + σ2
. (31)

B DETAILS OF EXPERIMENTAL SETUP

We train all models for 2M gradient steps. Each environment is run with 4 independent seeds,
and performance is evaluated every 20k steps using 10 additional seeds, yielding 40 rollouts per
evaluation. We report the mean score over the final 50k steps without early stopping. Experiments
are conducted on 4 RTX 4090 GPUs, with each run taking about 2.5 hours including training and
evaluation. Our implementation builds on the jaxrl (Kostrikov, 2021) codebase.
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B.1 NETWORK ARCHITECTURE

Both the actor and critic adopt a 3-layer MLP with hidden size 256 and Mish activation (Mish, 1908).
Target networks are used to stabilize training: ϵ̂θ and Q̂ϕk

are initialized with the same parameters
as ϵθ and Qϕk

, and track their exponential moving averages (EMA). The target actor is updated
every 5 gradient steps, while the target critics are updated after each step.

B.2 HYPERPARAMETERS

We use consistent hyperparameter settings for the diffusion models and networks across all tasks.
The hyperparameters are specified as follows:

Table 3: Hyperparameters for all networks and tasks.
Hyperparameter Value
T (Diffusion Steps) 5
βt (Noise Schedule) Variance Preserving
K (Ensemble Size) 10
B (Batch Size) 256
Learning Rates (for all networks) 3e-4, 1e-3 (antmaze-large)
Learning Rate Decay Cosine
Optimizer Adam
ηinit (Initial Behavior Cloning Strength) [0.1, 1]
αη (for Dual Gradient Ascent) 0.001
αema (EMA Learning Rate) 5e-3
Na (Number of sampled actions for evaluation) 10
b (Behavior Cloning Threshold) [0.05, 1]
ρ (Pessimistic factor) [0, 2]

QUAD adopts the same hyperparameters as DAC for the diffusion policy and Q-ensemble, except
for AntMaze “large” tasks where a smaller η is used. We sweep over τ ∈ {0.1, 0.5, 1.0, 10.0, 100}
and report the best value for each task in Table 4.

Table 4: Hyperparameters settings for tasks.
Tasks τ b η ρ Regularization Type
hopper-medium-v2 10 1 - 1.5 Learnable
hopper-medium-replay-v2 0.1 1 - 1.5 Learnable
hopper-medium-expert-v2 0.1 0.05 - 1.5 Learnable
walker2d-medium-v2 100 1 - 1 Learnable
walker2d-medium-replay-v2 100 1 - 1 Learnable
walker2d-medium-expert-v2 100 1 - 1 Learnable
halfcheetah-medium-v2 0.1 1 - 0 Learnable
halfcheetah-medium-replay-v2 1.0 1 - 0 Learnable
halfcheetah-medium-expert-v2 100 0.1 - 0 Learnable
antmaze-umaze-v0 10 - 0.1 1 Constant
antmaze-umaze-diverse-v0 10 - 0.1 1 Constant
antmaze-medium-play-v0 10 - 0.1 1 Constant
antmaze-medium-diverse-v0 10 - 0.1 1 Constant
antmaze-large-play-v0 1 - 0.01 1.1 Constant
antmaze-large-diverse-v0 1 - 0.01 1 Constant

B.3 PSEUDO CODE OF QUAD

We provide the pseudo code of QUAD in Algorithm 1.
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Algorithm 1 QUAD: Q-gradient Uncertainty-aware Guidance Training
Require: offline dataset D, batch size B, learning rates αϕ, αθ, αη and αema, behavior cloning

threshold εb, pessimism factor ρ, initial Lagrangian multiplier ηinit, ensemble size K, uncertainty
temperature τ

1: Initialize: diffusion policy ϵθ, target diffusion policy ϵ̂θ = ϵθ, Q ensemble networks Qϕk
, target

Q ensemble networks Q̂ϕk
= Qϕk

(i = 1, 2, ...,K), Lagrangian multiplier η = ηinit
2: while training not convergent do
3: Sample a batch of B transitions {(s,a, r, s′)} ⊂ D
4: Sample a′ = a0 through denoising process using noise predictor ϵ̂θ(at, s, t).
5: for k in {1, 2, ...,K} do
6: Update ϕk ← ϕk − αϕ∇ϕk

L(ϕk) (Equation (20)) ▷ Q ensemble learning
7: end for
8: Sample ϵ ∼ N (0, I), t ∼ U(0, T ) and compute at =

√
ᾱta+

√
1− ᾱtϵ

9: Estimate Q-gradient∇atQπi(s,a
t) using (Equation (10))

10: Estimate Q-gradient uncertainty weight λ(s,at) using (Equation (18))
11: θ ← θ − αθ∇θL(θ) (Equation (19)) ▷ Policy learning
12: η ← η + αη(||ϵθ(at, s, t)− ϵ||2 − εb) ▷ Dual gradient ascent (optional)
13: θ̂ ← (1− αema)θ̂ + αemaθ

14: ϕ̂i ← (1− αema)ϕ̂i + αemaϕi ▷ Update target networks using EMA
15: end while

B.4 SENSITIVITY ANALYSIS

We present the full sensitivity analysis of QUAD to uncertainty temperature τ on all tasks in Fig-
ure 4.
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Figure 4: Sensitivity of QUAD to uncertainty temperature τ on various tasks.
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