
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUAD: Q-GRADIENT UNCERTAINTY-AWARE GUID-
ANCE FOR DIFFUSION POLICIES IN OFFLINE REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based offline reinforcement learning (RL) leverages Q-gradients of
noisy actions to guide the denoising process. Existing approaches fall into two
categories: (i) backpropagating the Q-gradient of the final denoised action through
all steps, or (ii) directly estimating the Q-gradient of noisy actions. The former
suffers from exploding or vanishing gradients as the number of denoising steps
increases, while the latter becomes inaccurate when noisy actions deviate substan-
tially from the dataset. In this work, we focus on addressing the limitations of the
second category. We introduce QUAD, an uncertainty-aware Q-gradient guidance
method. QUAD employs a Q-ensemble to estimate the uncertainty of Q-gradients
and uses this uncertainty to constrain unreliable guidance during denoising. By
down-weighting unreliable gradients, QUAD reduces the risk of producing sub-
optimal actions. Experiments on the D4RL benchmark show that QUAD outper-
forms state-of-the-art methods across most tasks.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in sequential decision-making tasks,
ranging from games (Mnih et al., 2013; Lample & Chaplot, 2017) to robotics (He et al., 2024b; Ze
et al., 2025). However, the majority of these successes rely heavily on abundant online interac-
tions. In many real-world domains, such as healthcare, autonomous driving, and industrial con-
trol, exploration is either prohibitively costly or inherently unsafe. Offline RL addresses this chal-
lenge by learning policies purely from pre-collected datasets (Fujimoto & Gu, 2021; Zhou et al.,
2025), thereby eliminating the need for online exploration. However, it suffers from distribution
shift (Levine et al., 2020): the learned policy may produce actions that deviate substantially from
those observed in the dataset, resulting in unreliable value estimates and degraded performance. A
key contributor to this issue is the limited expressiveness of conventional policy classes (e.g. Gaus-
sian), which struggle to capture complex, multimodal action distributions in real-world datasets,
worsening the mismatch between learned and behavior policies.

Diffusion models (Ho et al., 2020) have emerged as a powerful class of policies (Chi et al., 2023),
capable of capturing highly complex action distributions and generating diverse actions. Diffusion-
based offline RL methods typically combines two forms of guidance: behavior cloning (BC) guid-
ance and Q-guidance (Wang et al., 2022). BC guidance steers the denoising trajectory towards
dataset-like actions, thereby alleviating distributional shift, whereas Q-guidance leverages value es-
timates to promote higher-quality actions. Existing Q-guidance methods can be categorized into
two classes. The first backpropagates Q-gradients from the final denoised action through all diffu-
sion steps (Wang et al., 2022). While effective in principle, this approach suffers from vanishing
or exploding gradients as the number of denoising steps increases, leading to unstable optimization.
The second estimates Q-gradients of noisy actions directly at intermediate denoising steps (Fang
et al., 2024), thus avoiding backpropagation through the entire trajectory. Although more stable,
this method produces unreliable Q-gradients when noisy actions lie far from the data distribution,
resulting in suboptimal guidance.

To address the limitations of the second class of methods, we propose QUAD, a Q-gradient
uncertainty-aware guidance framework that improves the reliability of denoising guidance. Our

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Left: In offline RL, behavior cloning regularization makes the learned Q-function more
reliable near the dataset distribution (green), while yielding highly uncertain estimates for out-of-
distribution noisy actions (orange). Right: QUAD leverages a Q-ensemble to estimate the uncer-
tainty of Q-gradients and adaptively down-weights unreliable guidance during denoising.

key observation is that critics trained on offline data often yield highly unreliable Q estimates for
noisy actions, particularly those far from the dataset distribution (Figure 1, left). To overcome this
issue, QUAD employs a Q-ensemble to estimate gradient uncertainty and adaptively attenuate un-
reliable guidance signals (Figure 1, right). We further provide a theoretical analysis of Q-gradient
uncertainty and derive an optimal weighting scheme that minimizes the alignment risk along oracle
Q-gradient. Building on this analysis, we design a practical uncertainty-aware weighting mechanism
that approximates the theoretical optimum. By integrating this mechanism into the Q-guidance pro-
cess, QUAD effectively suppresses unreliable gradients, thereby enhancing policy performance.

We evaluate QUAD on the widely adopted D4RL benchmark (Fu et al., 2020), comparing it against
state-of-the-art offline RL methods, including both non-diffusion and diffusion-based approaches.
Experimental results show that QUAD consistently outperforms prior methods on most tasks and
achieves comparable performance on the remaining ones.

In summary, our contributions are threefold:

• We identify and theoretically analyze the limitations of existing Q-guidance methods in
diffusion-based offline RL, showing how Q-gradient uncertainty undermines reliability.

• We propose QUAD, a novel uncertainty-aware guidance framework that leverages a Q-
ensemble to estimate gradient uncertainty and adaptively down-weight unreliable signals.

• We conduct extensive experiments on D4RL, demonstrating that QUAD achieves state-of-
the-art performance across a diverse set of offline RL tasks.

2 PRELIMINARIES

A reinforcement learning (RL) problem is typically formulated as a Markov Decision Process
(MDP), represented by the tuple (S,A, T , r, d0, γ), where S denotes the state space, A the ac-
tion space, T (s′|s, a) the transition dynamics, r(s, a) the reward function, d0(s) the initial state
distribution, and γ ∈ (0, 1) the discount factor. The objective of RL is to learn a policy π(a|s) that
maximizes the expected discounted cumulative reward (Sutton et al., 1998):

J(π) = Eπ,T ,d0

[∞∑
t=0

γtr(st, at)

]
(1)

Offline Reinforcement Learning. Offline RL focuses on learning an effective policy solely from
a fixed dataset D = {(si, ai, ri, s′i)}Ni=1, which is generated by an (often unknown) behavior policy
πβ , without access to further environment interactions (Levine et al., 2020). A central challenge in
offline RL arises from the distributional shift between πβ and the learned policy π, which can lead

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to erroneous value estimates. To mitigate this issue, many approaches optimize the expected return
under Qπ(s, a) while constraining the learned policy to remain close to the behavior policy (Wu
et al., 2019):

max
π

Es∼D, a∼π(·|s)[Q
π(s, a)] s.t. D(π ∥πβ) < ϵ (2)

where D(·, ·) denotes a divergence measure (e.g., KL divergence) and ϵ is a tolerance parameter.

Diffusion models. Diffusion models (Ho et al., 2020; Song et al., 2020a) are a class of generative
models that assume latent variables follow a Markovian noising-denoising process. In the forward
process {x0:T }, Gaussian noise is gradually added to the clean data x0 ∼ p(x0) according to a
predefined variance schedule {β1:T }:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (3)

The marginal distribution admits a closed form:
qt(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), t ∈ {1, . . . , T} (4)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. Equivalently, a noisy sample can be reparameterized as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I) (5)

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) parameterize the reverse pro-
cess with Gaussian conditionals pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), leading to a genera-
tive process: pθ(x0:T) = N (xT ;0, I)

∏T
t=1 pθ(xt−1|xt). In practice, DDPMs predict the noise ϵ in

Equation (5) using a neural network ϵθ(xt, t) to minimize the evidence lower bound loss:

L(θ) = Ex0∼p(x0), t∼U(1,T), ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
(6)

Diffusion-based Offline RL. Following the DDPM framework, diffusion policies model action gen-
eration as a state-conditioned denoising process. Specifically, the noise predictor in (Equation (6)) is
replaced with a state-conditional network ϵθ(a

t, s, t) that predicts actions a0 ∈ A given the state s,
where at denotes the noisy action at denoising step t. This formulation recovers standard behavior
cloning (BC) when trained on the dataset D. In diffusion-based offline RL, however, pure behav-
ior cloning may fail to exploit Q value information. To address this, Q-function guidance can be
incorporated to bias the denoising process toward high-value actions. A straightforward approach,
as in Diffusion Q-learning (DQL) (Wang et al., 2022), backpropagates the Q-gradient from the final
denoised action a0 through all denoising steps, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T),ϵ∼N (0,I)

[
∥ϵ− ϵθ(a

t, s, t)∥2
]

− η · Es∼D,a0∼πθ

[
Qϕ(s,a

0)
] (7)

where the first term corresponds to the denoising objective, and the second term encourages the
policy to generate actions with high Q-values. The coefficient η is a hyperparameter that balances
behavior cloning against Q-guidance. An alternative strategy, as in DAC (Fang et al., 2024), directly
estimates the Q-gradient of noisy actions at each denoising step, leading to the following objective:

argmin
πθ

L(θ) =E(s,a)∼D,t∼U(1,T),ϵ∼N (0,I)

[
η · ∥ϵ− ϵθ(a

t, s, t)∥2

+ w(t) · ϵθ(at, s, t) · ∇atQϕ(s,a
t)
] (8)

where w(t) is a step-dependent weight that controls the influence of Q-gradient guidance across
denoising steps. Rather than propagating gradients across the full sequence of denoising steps,
DAC-style methods reduce the risk of vanishing or exploding gradients, thereby providing more
stable optimization.

3 METHODS

We now introduce our proposed method, QUAD, which comprises three main components: (1) a
theoretical derivation of the optimal uncertainty-aware weighting scheme for Q-gradient guidance;
(2) the formulation and implementation of a Q-gradient uncertainty-aware guidance mechanism; and
(3) a practical yet principled procedure for policy extraction. An overview of the QUAD framework
is shown in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the QUAD framework: (1) In critic ensemble training, the target policy
generates next-step actions and updates critics by minimizing TD error with LCB regularization.
(2) In diffusion policy training, the target Q-ensemble estimates Q-gradients and their uncertainty
to adaptively down-weight unreliable guidance. (3) In policy extraction, the target diffusion policy
proposes candidate actions, and the action with the highest Q-value under the target Q-ensemble is
selected.

3.1 THEORETICAL ANALYSIS OF Q-GRADIENT UNCERTAINTY-AWARE WEIGHTING

3.1.1 UNCERTAINTY IN Q-GRADIENT GUIDANCE

We denote the oracle critic gradient as g∗(s,at) = ∇atQ∗(s,at). The Q-gradient guidance loss
in Equation (8) aims to enforce anti-alignment between the noise predictor ϵθ(at, s, t) and g∗, i.e.,
to encourage updates along −g∗. For analytical purposes, let u ≡ uθ(s,a

t, t) be the unit vector
colinear with ϵθ(a

t, s, t). We then introduce the oracle alignment loss:

L∗
align ≜ u⊤g∗. (9)

Minimization of L∗
align promotes anti-alignment with g∗. Since g∗ is inaccessible in practice, it is

replaced by an ensemble-based estimator ĝ:

ĝ(s,at) = 1
K

K∑
k=1

∇atQϕk
(s,at). (10)

It is reasonable to assume that ĝ provides an unbiased estimate of g∗, while exhibiting heteroscedas-
tic variance across different (s,at). Accordingly, ĝ can be decomposed as the oracle component
plus a stochastic perturbation:

ĝ(s,at) = g∗(s,at) + ξ(s,at), (11)
with E[ξ] = 0 and Cov[ξ] = Σ(s,at). Thus, the alignment loss implemented in practice is

Lalign ≜ u⊤ĝ = u⊤g∗ + u⊤ξ. (12)

Here, the perturbation term u⊤ξ has zero expectation and variance σ2(s,at) = u⊤Σu, thereby
introducing stochastic uncertainty into the alignment objective.

3.1.2 OPTIMAL UNCERTAINTY-AWARE WEIGHTING

To mitigate the negative impact of such uncertainty, we introduce a per-sample weight λ(s,at) ∈
(0, 1] to rescale the alignment loss:

Lλ
align ≜ λu⊤ĝ. (13)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Intuitively, samples associated with larger variance should receive smaller weight. Formally, we
analyze the problem as one of estimating the oracle alignment L∗

align from the noisy measurement
Lalign. We define the per-sample risk R(λ;σ2) as the mean-squared error under heteroscedastic
noise:

R(λ;σ2) ≜ E
[
(Lλ

align − L∗
align)

2 | σ2
]

= E
[
(λu⊤ĝ − u⊤g∗)2 | σ2

]
.

(14)

Let ν2 ≜ E[(u⊤g∗)
2
] denote the second moment of the oracle target. The risk expression can be

reformulated as:
R(λ;σ2) = (λ− 1)2 ν2 + λ2 σ2. (15)

The minimizer admits a closed-form solution:

λ∗(σ2) =
ν2

ν2 + σ2
. (16)

This solution satisfies λ∗(0) = 1 and is strictly decreasing in σ2. Detailed derivations are provided in
the Appendix A. Furthermore, Equation (15) explicitly characterizes the bias–variance tradeoff: de-
creasing λ inflates bias (λ−1)2ν2 while reducing variance λ2σ2. The resulting balance corresponds
precisely to inverse-variance shrinkage: high-variance samples are systematically down-weighted,
whereas noise-free samples retain full weight.

3.1.3 A PRACTICAL UNCERTAINTY-AWARE WEIGHTING SCHEME

Although Equation (16) provides the oracle-optimal weight, it cannot be directly computed because
ν2 is unobserved. Nevertheless, since ĝ is an unbiased estimator of g∗, the scalar u⊤ĝ can be re-
garded as an unbiased yet heteroscedastic observation of u⊤g∗. This property allows us to estimate
ν2 from the dataset {(si,at

i)}Ni=1:

ν2 ≈ ν̂2 = 1
N

N∑
i=1

[(u⊤ĝ)2]. (17)

By substituting this estimate into Equation (16), we obtain a practical weighting scheme:

λ(s,at) =
ν̂2

ν̂2 + σ2(s,at) + δ
, δ > 0. (18)

Here, δ is a small positive constant that ensures numerical stability and prevents division by near-
zero denominators.

3.2 DIFFUSION POLICY WITH Q-GRADIENT UNCERTAINTY-AWARE GUIDANCE

Building on the above analysis, we implement QUAD by integrating the uncertainty-aware weight-
ing λ(s,at) into the diffusion policy training objective Equation (8), following the DAC framework:

L(θ) = E(s,a∗)∼D, t∼U(1,T), ϵ∼N (0,I)

[
η∥ϵ− ϵθ(a

t, s, t)∥2

+ λ(s,at) · w(t) · ϵθ(at, s, t) · ∇atQ̄ϕ(s,a
t)
]
,

(19)

where w(t) =
√
1− ᾱt modulates the strength of Q-guidance according to the noise level, ensuring

that the denoised action remains close to the behavior policy in later diffusion steps.

3.2.1 Q-ENSEMBLE TRAINING.

A central component of QUAD is the Q-ensemble, which provides unbiased and diverse gra-
dient estimates. To reduce overestimation bias, we train the ensemble using a pessimistic Q-
learning scheme (Ghasemipour et al., 2022). Concretely, we maintain K parameterized Q-networks

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

{Qϕk
}Kk=1 with corresponding target networks {Q̂ϕk

}Kk=1, and employ a lower confidence bound
(LCB) as the target value. The critic learning objective for each network is:

L(ϕi) =E(s,a,r,s′)∼D,a′∼πθ

[
r + γQLCB(s

′,a′)−Qϕi
(s,a)

]2
,

QLCB(s
′,a′) = E[Q̂(s′,a′)]− ρ

√
Var[Q̂(s′,a′)],

(20)

where ρ ≥ 0 controls the degree of pessimism, and E[Q̂] and Var[Q̂] denote the empirical mean and
variance across the target critics.

3.2.2 UNCERTAINTY-AWARE WEIGHTING.

For stable training, we maintain a target policy ϵ̂θ and target Q-ensemble {Q̂ϕk
}Kk=1 using expo-

nential moving averages (EMA). Given a batch {(s,a)}B1 sampled from D, we first add noise to a
following Equation (5), yielding {(s,at)}B1 . We then compute the alignment loss of each Q-network
relative to the predicted noise direction:

lkalign(s,a
t) = u⊤

θ ∇atQ̂ϕk
(s,at), uθ =

ϵθ(a
t, s, t)

∥ϵθ(at, s, t)∥
. (21)

It is then natural to estimate the heteroscedastic uncertainty σ2(s,at) using the variance of
{lkalign(s,at)}Kk=1:

σ2(s,at) =
1

K

K∑
k=1

(
lkalign(s,a

t)− l̄align(s,a
t)
)2
, l̄align(s,a

t) =
1

K

K∑
k=1

lkalign(s,a
t). (22)

Following Equation (17), for computational efficiency, we estimate ν2 using the empirical variance
of {l̄align(si,at

i)}Bi=1 within the batch, and update it using EMA:

ν̂2 =
1

B

B∑
i=1

(
l̄align(si,a

t
i)− ¯̄lalign

)2
, ¯̄lalign =

1

B

B∑
i=1

l̄align(si,a
t
i). (23)

Finally, we compute the uncertainty-aware weight λ(s,at) according to Equation (18), and intro-
duce a temperature hyperparameter τ to control the aggressiveness of the weighting:

λ(s,at) =
ν̂2

ν̂2 + σ2(s,at)/τ + δ
. (24)

When τ → 0, the weighting becomes more aggressive, sharply suppressing high-uncertainty gradi-
ents, while as τ →∞, it approaches uniform weighting. The complete QUAD training procedure is
summarized in Algorithm 1.

3.3 POLICY EXTRACTION

We denote πθ(a|s) as the diffusion policy trained via the denoising process with noise predictor
ϵθ(a

t, s, t). While πθ can directly generate actions, we further aim to reduce uncertainty during
evaluation. To this end, we draw a small batch of Na candidate actions from πθ(·|s) and select the
one with the highest ensemble-mean Q-value:

π∗(s) = arg max
a1,...,aNa∼πθ(·|s)

E
[
Q̂(s,a)

]
. (25)

This extraction strategy is commonly employed in settings where a stochastic actor is used for critic
learning, but a deterministic policy is deployed at evaluation. Because πθ is already trained to
approximate the target policy, only a small number of samples Na is needed. In our experiments,
QUAD achieves strong performance with Na = 10 following DAC, whereas SfBC and Diffusion
Q-learning typically require Na = 32 and Na = 50, respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RELATED WORK

4.1 OFFLINE RL

Offline RL aims to learn policies from fixed datasets, but suffers from distribution shift that leads to
value overestimation in the bootstrapping process (Levine et al., 2020). To address this issue, prior
works have developed strategies such as behavior regularization, conservative value estimation, and
explicit Bellman error modeling. Behavior-regularized methods constrain policies to stay close to
the behavior distribution via candidate-action generators or divergence penalties (Fujimoto et al.,
2019; Kumar et al., 2019; Wu et al., 2019). Conservative methods alleviate OOD effects by either
adding regularizers to the Q-learning objective (Kumar et al., 2020) or by learning in-sample con-
servative value functions (Kostrikov et al., 2021; Xu et al., 2023). Alternative approaches explicitly
model Bellman errors with a Gumbel distribution and directly learn soft value functions without
requiring action sampling (Garg et al., 2023). Our work is related to both behavior-regularized and
conservative approaches, as we model the behavior distribution with a diffusion policy and mitigate
overestimation bias via a pessimistic Q-ensemble.

4.2 DIFFUSION MODELS

Diffusion models are a class of generative models that consist of a forward diffusion process and a
reverse denoising process (Ho et al., 2020), which can also be interpreted as stochastic differential
equations (Song et al., 2020b). In the forward process, Gaussian noise is gradually added to the
data according to a variance schedule. In the reverse process, a neural network is trained to predict
the noise and iteratively recover the clean data. Several works improve efficiency by reducing the
number of denoising steps (Song et al., 2020a; Nichol & Dhariwal, 2021; Song et al., 2023). Others
explore alternative guidance strategies, such as classifier guidance (Dhariwal & Nichol, 2021) and
classifier-free guidance (Ho & Salimans, 2022). More recently, diffusion models have been extended
to sequential decision-making, where they are used to represent policies or trajectories (Janner et al.,
2022; Chi et al., 2023; Black et al., 2023). Our work builds on diffusion policies and introduces a
novel uncertainty-aware Q-gradient guidance mechanism to enhance policy learning in offline RL.

4.3 DIFFUSION-BASED OFFLINE RL

Diffusion-based offline RL combines diffusion models with offline RL techniques. A straightfor-
ward approach performs behavior cloning with diffusion models and then applies value-based se-
lection to choose high-value actions from the diffusion prior (Chen et al., 2022; Hansen-Estruch
et al., 2023). To reduce multi-step sampling cost, an efficient variant distills the diffusion prior into
a one-step Gaussian policy (Chen et al., 2024). Another line of work integrates Q-value informa-
tion directly into diffusion policy training (Wang et al., 2022). However, this approach requires
backpropagating Q-gradients through the entire denoising chain, which often causes vanishing or
exploding gradients. A more refined strategy applies Q-gradient guidance at each intermediate de-
noising step, rather than through all steps, as in DAC (Fang et al., 2024). Subsequent extensions
incorporate advantage modules or pathwise regularization to further stabilize training (Chen et al.,
2025; Gao et al., 2025). Despite their improved stability, these methods still suffer from unreli-
able Q-gradients when noisy actions deviate from the dataset distribution. Our method addresses
this limitation by employing a Q-ensemble to estimate gradient uncertainty and suppress unreliable
guidance, thereby improving the robustness of diffusion-based offline RL.

5 EXPERIMENTS

In our experiments, we aim to address the following questions:

• Does QUAD outperform state-of-the-art offline RL methods across diverse tasks?

• What is the effect of uncertainty-aware weighting on policy learning and performance?

• How sensitive is QUAD to the choice of uncertainty temperature τ?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average normalized scores of QUAD vs. baselines. Abbreviations: “m” = medium, “r” =
replay, “e” = expert, “u” = umaze, “div” = diverse, “l” = large. Bold numbers denote the best scores,
or the second-best if achieved by our method.

Dataset Onestep-RL CQL IQL IVR EQL Diffuser DTQL AlignIQL SfBC DQL DAC QUAD (ours)
halfcheetah-m 48.4 44.0 47.4 48.3 48.3 44.2 57.9 46.0 45.9 51.1 59.1 62.5 ± 0.6
hopper-m 59.6 58.5 66.3 75.5 74.2 58.5 99.6 56.1 57.1 90.5 101.2 98.7 ± 2.9
walker2d-m 81.8 72.5 78.3 84.2 84.2 79.7 89.4 78.5 77.9 87.0 96.8 92.9 ± 6.3
halfcheetah-m-r 38.1 45.5 44.2 44.8 45.2 42.2 50.9 41.1 37.1 47.8 55.0 57.2 ± 0.7
hopper-m-r 97.5 95.0 94.7 99.7 100.7 96.8 100.0 74.8 86.2 101.3 103.1 104.9 ± 0.2
walker2d-m-r 49.5 77.2 73.9 81.2 82.2 61.2 88.5 76.5 65.1 95.5 96.8 99.9 ± 0.4
halfcheetah-m-e 93.4 91.6 86.7 94.0 94.2 79.8 92.7 89.1 92.6 96.8 99.1 100.1 ± 0.4
hopper-m-e 103.3 105.4 91.5 111.8 111.2 107.2 109.3 107.1 108.6 111.1 111.7 111.1 ± 1.7
walker2d-m-e 113.0 108.8 109.6 110.2 112.7 108.4 110.0 111.9 109.8 110.1 113.6 115.5 ± 1.2
locomotion total 684.6 698.5 749.7 749.7 752.9 678.0 798.3 681.1 680.3 791.2 836.4 842.8

antmaze-u 64.3 74.0 87.5 93.2 93.8 - 94.8 94.8 92.0 93.4 99.5 100.0 ± 0.0
antmaze-u-div 60.7 84.0 62.2 74.0 82.0 - 78.8 82.4 85.3 66.2 85.0 85.0 ± 4.6
antmaze-m-play 0.3 61.2 71.2 80.2 76.0 - 79.6 80.5 81.3 76.6 85.8 89.5 ± 1.7
antmaze-m-div 0.0 53.7 70.0 79.1 73.6 - 82.2 85.5 82.0 78.6 84.0 90.5 ± 4.5
antmaze-l-play 0.0 15.8 39.6 53.2 46.5 - 52.0 65.2 59.3 46.4 50.3 61.0 ± 3.0
antmaze-l-div 0.0 14.9 47.5 52.3 49.0 - 66.4 54.0 45.5 56.6 55.3 63.0 ± 5.4
antmaze total 125.3 303.6 378.0 432.0 420.9 - 441.4 474.8 445.4 417.8 459.9 489.0

5.1 SETUP

Offline Datasets. We evaluate QUAD on the widely used D4RL benchmark (Fu et al., 2020),
which covers a variety of continuous control tasks with different dataset compositions. Specifically,
we consider standard locomotion tasks (HalfCheetah, Hopper, Walker2d) and the more challenging
AntMaze tasks. For locomotion, we use version “v0” datasets of three quality levels: medium (m),
medium-replay (m-r), and medium-expert (m-e). For AntMaze, we use version “v2” datasets: umaze
(u), umaze-diverse (u-div), medium-play (m-play), medium-diverse (m-div), large-play (l-play), and
large-diverse (l-div).

Baselines. We compare QUAD against a range of offline RL methods, including both non-diffusion
and diffusion-based approaches. Non-diffusion baselines include One-step RL (Brandfonbrener
et al., 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), IVR (Xu et al., 2023)
and EQL (Garg et al., 2023). Diffusion-based baselines include, Diffuser (Janner et al., 2022),
SfBC (Chen et al., 2022), Diffusion Q-learning (DQL) (Wang et al., 2022), DTQL (Chen et al.,
2024), AlignIQL (He et al., 2024a), and DAC (Fang et al., 2024).

Implementation Details. We implement QUAD on top of the publicly available DAC code-
base (Fang et al., 2024). For fair comparison, we adopt the same network architectures and hy-
perparameters as DAC for both the diffusion policy and the Q-ensemble, unless otherwise specified.
We set the ensemble size to K = 10 and the temperature to τ = 1.0 for uncertainty weighting,
based on preliminary tuning. All models are trained for 2 million gradient steps and evaluated ev-
ery 20,000 steps using 10 episodes per evaluation. We report the average normalized scores over
4 random seeds for each task, and the final results are averaged over the last 5 evaluations, which
typically exhibit stable performance, following the DAC protocol. For baselines, we use the results
reported in their respective papers. A complete summary of experimental configurations is provided
in Appendix B.

5.2 MAIN RESULTS

As shown in Table 1, QUAD outperforms most baselines across a variety of tasks, demonstrating the
effectiveness of uncertainty-aware weighting and Q-ensemble learning. In particular, QUAD consis-
tently achieves strong performance on the “medium-replay” locomotion datasets and the “medium,
large” AntMaze datasets, where broader dataset coverage is available. We hypothesize that in these
datasets, the discrepancy in Q-value accuracy between low-uncertainty and high-uncertainty regions
is more pronounced, making uncertainty-aware weighting especially beneficial.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDIES

Since our method builds on DAC, which can be viewed as the unweighted variant of QUAD, we
reproduce DAC results using the same codebase and training protocol as QUAD, indicated by DAC-
Rep. We evaluate both methods on locomotion tasks with “medium-replay” datasets and AntMaze
“medium” and “large” tasks, where Q-gradient uncertainty is more prevalent. All hyperparameters
are kept identical except for those related to uncertainty modeling. As shown in Table 2, QUAD
consistently outperforms DAC-Rep across these tasks and exhibits lower variance across random
seeds, indicating more stable learning. These gains can be attributed to QUAD’s ability to mitigate
the negative impact of unreliable Q-gradients. The improvements are particularly pronounced in the
challenging AntMaze tasks, where Q-gradients are especially uncertain during denoising.

Table 2: Uncertainty weight ablation on locomotion “medium-replay” datasets and AntMaze
“medium”/“large” tasks, comparing QUAD with its unweighted variant DAC-Rep. QUAD achieves
higher returns with lower variance, especially on AntMaze where Q-gradients are highly uncertain.

uncertainty weight
walker2d hopper halfcheetah antmaze

m-r m-r m-r m-p m-d l-p l-d

w/o. (DAC-Rep) 98.1 ± 1.5 103.4 ± 0.2 55.3 ± 0.2 88.5 ± 3.0 82.5 ± 17.7 41.5 ± 24.4 42.5 ± 11.1

w. (QUAD) 99.9 ± 0.4 104.9 ± 0.2 57.2 ± 0.7 89.5 ± 1.7 90.5 ± 4.5 61.0 ± 3.0 63.0 ± 5.4

5.4 SENSITIVITY ANALYSIS

To examine the sensitivity of QUAD to key hyperparameters, we vary the uncertainty temperature
τ ∈ {0.1, 0.5, 1.0, 10.0, 100}. We present results on “walker2d-medium” and “walker2d-medium-
replay” in Figure 3, while full tasks are reported in Appendix B.4. Our findings indicate that QUAD
is more sensitive to τ in “medium” than in “medium-replay”, likely because the former exhibits a
narrower data distribution, making uncertainty estimates less reliable than in “medium-replay”.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

walker2d-medium-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

walker2d-medium-replay-v2

=0.1
=0.5
=1
=10
=100

Figure 3: Sensitivity of QUAD to uncertainty temperature τ , with stronger effects in “medium” due
to its narrower data distribution.

6 CONCLUSION

We introduced QUAD, a diffusion-based offline RL method that incorporates uncertainty-aware Q-
gradient weighting to improve policy learning. By leveraging a Q-ensemble to estimate uncertainty,
QUAD mitigates the adverse effects of unreliable Q-gradients during denoising. Our theoretical
analysis shows that this weighting scheme stabilizes optimization and enhances policy performance.
Extensive experiments on the D4RL benchmark demonstrate that QUAD outperforms state-of-the-
art diffusion-based methods across diverse tasks, particularly in challenging high-uncertainty set-
tings. A limitation of QUAD lies in its reliance on the variance of Q-ensemble gradients for uncer-
tainty estimation. The diversity of the Q-ensemble is also crucial for reliable uncertainty estimates,
which may benefit from techniques such as data augmentation or ensemble diversity promotion. Fu-
ture work includes exploring more advanced uncertainty estimation methods and extending QUAD
to broader RL scenarios, such as offline meta-RL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. Advances in Neural Information Processing Systems, 37:50098–
50125, 2024.

Xuyang Chen, Keyu Yan, and Lin Zhao. Taming ood actions for offline reinforcement learning: An
advantage-based approach. arXiv preprint arXiv:2505.05126, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bing-Yi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. arXiv preprint arXiv:2405.20555, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Chenjun Xiao, Yang Yu, and Zongzhang Zhang.
Behavior-regularized diffusion policy optimization for offline reinforcement learning. arXiv
preprint arXiv:2502.04778, 2025.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Aligniql: Policy alignment in implicit
q-learning through constrained optimization. arXiv preprint arXiv:2405.18187, 2024a.

Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani,
Changliu Liu, and Guanya Shi. Omnih2o: Universal and dexterous human-to-humanoid whole-
body teleoperation and learning. arXiv preprint arXiv:2406.08858, 2024b.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learn-
ing. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Misra D Mish. A self regularized non-monotonic activation function. 2019. arXiv preprint
arXiv:1908.08681, 1908.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Yanjie Ze, Zixuan Chen, JoÃĢo Pedro AraÃšjo, Zi-ang Cao, Xue Bin Peng, Jiajun Wu, and C Karen
Liu. Twist: Teleoperated whole-body imitation system. arXiv preprint arXiv:2505.02833, 2025.

Hongtu Zhou, Ruiling Yang, Yakun Zhu, Haoqi Zhao, Hai Zhang, Di Zhang, Junqiao Zhao, Chen Ye,
and Changjun Jiang. Certain: Context uncertainty-aware one-shot adaptation for context-based
offline meta reinforcement learning. In International conference on machine learning, 2025.

11

https://github.com/ikostrikov/jaxrl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

THE USE OF LLMS

We thank ChatGPT-5 for its assistance in polishing the writing and proofreading of this paper. The
authors are responsible for the content and presentation.

A DETAILED PROOFS AND EXTENSIONS OF QUAD THEORY

In this appendix, we give complete derivations for the risk decomposition and the optimal per-sample
weight. Recall that for a state–action pair (s,at) and a unit direction u ≡ uθ(s,a

t, t), the oracle
alignment loss and the noisy measurement are

L∗
align ≜ u⊤g∗, Lalign ≜ u⊤ĝ = u⊤g∗ + u⊤ξ. (26)

The rescaled alignment loss is
Lλ

align ≜ λu⊤ĝ. (27)

Let ν2 ≜ E[(u⊤g∗)2] denote the second moment of the oracle target along u.

R(λ;σ2) ≜ E
[
(Lλ

align − L∗
align)

2 | σ2
]

= E
[
(λu⊤ĝ − u⊤g∗)2 | σ2

]
= E

[(
λ
(
u⊤ĝ − u⊤g∗)+ (λ− 1)u⊤g∗)2 |σ2

]
= E

[
λ2

(
u⊤ĝ − u⊤g∗)2 + 2λ(λ− 1)

(
u⊤ĝ − u⊤g∗)u⊤g∗ + (λ− 1)

2 (
u⊤g∗)2 |σ2

]
= λ2E

[(
u⊤ĝ − u⊤g∗)2 |σ2

]
+ 2λ(λ− 1)E

[(
u⊤ĝ − u⊤g∗)u⊤g∗|σ2

]
+ (λ− 1)

2 E
[(
u⊤g∗)2 |σ2

]
= λ2E

[(
u⊤ξ

)2 |σ2
]
+ 2λ(λ− 1)E

[(
u⊤ξ

) (
u⊤g∗) |σ2

]
+ (λ− 1)

2 E
[(
u⊤g∗)2 |σ2

]
= λ2σ2 + (λ− 1)

2
ν2

(28)

The last equality holds because the perturbation term u⊤ξ has zero expectation and variance
σ2(s,at),while the oracle component g∗(s,at) and thestochastic perturbation ξ(s,at) are inde-
pendent.

Expanding the quadratic form yields

R(λ;σ2) = λ2σ2 + (λ2 − 2λ+ 1)ν2 = (ν2 + σ2)λ2 − 2ν2λ+ ν2. (29)

Since ν2 + σ2 > 0, the function is strictly convex in λ. Taking the derivative and setting it to zero,

∂R
∂λ

= 2(ν2 + σ2)λ− 2ν2 = 0, (30)

we obtain the unique minimizer

λ∗(σ2) =
ν2

ν2 + σ2
. (31)

B DETAILS OF EXPERIMENTAL SETUP

We train all models for 2M gradient steps. Each environment is run with 4 independent seeds,
and performance is evaluated every 20k steps using 10 additional seeds, yielding 40 rollouts per
evaluation. We report the mean score over the final 50k steps without early stopping. Experiments
are conducted on 4 RTX 4090 GPUs, with each run taking about 2.5 hours including training and
evaluation. Our implementation builds on the jaxrl (Kostrikov, 2021) codebase.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.1 NETWORK ARCHITECTURE

Both the actor and critic adopt a 3-layer MLP with hidden size 256 and Mish activation (Mish, 1908).
Target networks are used to stabilize training: ϵ̂θ and Q̂ϕk

are initialized with the same parameters
as ϵθ and Qϕk

, and track their exponential moving averages (EMA). The target actor is updated
every 5 gradient steps, while the target critics are updated after each step.

B.2 HYPERPARAMETERS

We use consistent hyperparameter settings for the diffusion models and networks across all tasks.
The hyperparameters are specified as follows:

Table 3: Hyperparameters for all networks and tasks.
Hyperparameter Value
T (Diffusion Steps) 5
βt (Noise Schedule) Variance Preserving
K (Ensemble Size) 10
B (Batch Size) 256
Learning Rates (for all networks) 3e-4, 1e-3 (antmaze-large)
Learning Rate Decay Cosine
Optimizer Adam
ηinit (Initial Behavior Cloning Strength) [0.1, 1]
αη (for Dual Gradient Ascent) 0.001
αema (EMA Learning Rate) 5e-3
Na (Number of sampled actions for evaluation) 10
b (Behavior Cloning Threshold) [0.05, 1]
ρ (Pessimistic factor) [0, 2]

QUAD adopts the same hyperparameters as DAC for the diffusion policy and Q-ensemble, except
for AntMaze “large” tasks where a smaller η is used. We sweep over τ ∈ {0.1, 0.5, 1.0, 10.0, 100}
and report the best value for each task in Table 4.

Table 4: Hyperparameters settings for tasks.
Tasks τ b η ρ Regularization Type
hopper-medium-v2 10 1 - 1.5 Learnable
hopper-medium-replay-v2 0.1 1 - 1.5 Learnable
hopper-medium-expert-v2 0.1 0.05 - 1.5 Learnable
walker2d-medium-v2 100 1 - 1 Learnable
walker2d-medium-replay-v2 100 1 - 1 Learnable
walker2d-medium-expert-v2 100 1 - 1 Learnable
halfcheetah-medium-v2 0.1 1 - 0 Learnable
halfcheetah-medium-replay-v2 1.0 1 - 0 Learnable
halfcheetah-medium-expert-v2 100 0.1 - 0 Learnable
antmaze-umaze-v0 10 - 0.1 1 Constant
antmaze-umaze-diverse-v0 10 - 0.1 1 Constant
antmaze-medium-play-v0 10 - 0.1 1 Constant
antmaze-medium-diverse-v0 10 - 0.1 1 Constant
antmaze-large-play-v0 1 - 0.01 1.1 Constant
antmaze-large-diverse-v0 1 - 0.01 1 Constant

B.3 PSEUDO CODE OF QUAD

We provide the pseudo code of QUAD in Algorithm 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 QUAD: Q-gradient Uncertainty-aware Guidance Training
Require: offline dataset D, batch size B, learning rates αϕ, αθ, αη and αema, behavior cloning

threshold εb, pessimism factor ρ, initial Lagrangian multiplier ηinit, ensemble size K, uncertainty
temperature τ

1: Initialize: diffusion policy ϵθ, target diffusion policy ϵ̂θ = ϵθ, Q ensemble networks Qϕk
, target

Q ensemble networks Q̂ϕk
= Qϕk

(i = 1, 2, ...,K), Lagrangian multiplier η = ηinit
2: while training not convergent do
3: Sample a batch of B transitions {(s,a, r, s′)} ⊂ D
4: Sample a′ = a0 through denoising process using noise predictor ϵ̂θ(at, s, t).
5: for k in {1, 2, ...,K} do
6: Update ϕk ← ϕk − αϕ∇ϕk

L(ϕk) (Equation (20)) ▷ Q ensemble learning
7: end for
8: Sample ϵ ∼ N (0, I), t ∼ U(0, T) and compute at =

√
ᾱta+

√
1− ᾱtϵ

9: Estimate Q-gradient∇atQπi(s,a
t) using (Equation (10))

10: Estimate Q-gradient uncertainty weight λ(s,at) using (Equation (18))
11: θ ← θ − αθ∇θL(θ) (Equation (19)) ▷ Policy learning
12: η ← η + αη(||ϵθ(at, s, t)− ϵ||2 − εb) ▷ Dual gradient ascent (optional)
13: θ̂ ← (1− αema)θ̂ + αemaθ

14: ϕ̂i ← (1− αema)ϕ̂i + αemaϕi ▷ Update target networks using EMA
15: end while

B.4 SENSITIVITY ANALYSIS

We present the full sensitivity analysis of QUAD to uncertainty temperature τ on all tasks in Fig-
ure 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

walker2d-medium-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

walker2d-medium-replay-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

walker2d-medium-expert-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

hopper-medium-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

hopper-medium-replay-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

hopper-medium-expert-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

halfcheetah-medium-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

halfcheetah-medium-replay-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

halfcheetah-medium-expert-v2

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

antmaze-umaze-v0

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

antmaze-umaze-diverse-v0

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

antmaze-medium-play-v0

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

antmaze-medium-diverse-v0

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

antmaze-large-play-v0

=0.1
=0.5
=1
=10
=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

antmaze-large-diverse-v0

=0.1
=0.5
=1
=10
=100

Figure 4: Sensitivity of QUAD to uncertainty temperature τ on various tasks.

15

	Introduction
	Preliminaries
	Methods
	Theoretical Analysis of Q-Gradient Uncertainty-Aware Weighting
	Uncertainty in Q-gradient guidance
	Optimal uncertainty-aware weighting
	A practical uncertainty-aware weighting scheme

	Diffusion Policy with Q-Gradient Uncertainty-Aware Guidance
	Q-Ensemble Training.
	Uncertainty-Aware Weighting.

	Policy Extraction

	Related Work
	Offline RL
	Diffusion Models
	Diffusion-based Offline RL

	Experiments
	Setup
	Main Results
	Ablation Studies
	Sensitivity Analysis

	Conclusion
	Detailed Proofs and Extensions Of QUAD Theory
	Details of Experimental Setup
	Network Architecture
	Hyperparameters
	Pseudo code of QUAD
	Sensitivity Analysis

