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ABSTRACT

Deep latent variable models have achieved significant empirical successes in model-
based reinforcement learning (RL) due to their expressiveness in modeling complex
transition dynamics. On the other hand, it remains unclear theoretically and empiri-
cally how latent variable models may facilitate learning, planning, and exploration
to improve the sample efficiency of RL. In this paper, we provide a representa-
tion view of the latent variable models for state-action value functions, which
allows both tractable variational learning algorithm and effective implementation
of the optimism/pessimism principle in the face of uncertainty for exploration. In
particular, we propose a computationally efficient planning algorithm with UCB
exploration by incorporating kernel embeddings of latent variable models. The-
oretically, we establish the sample complexity of the proposed approach in the
online and offline settings. Empirically, we demonstrate superior performance over
current state-of-the-art algorithms across various benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) seeks an optimal policy that maximizes the expected accumulated
rewards by interacting with an unknown environment sequentially. Most research in RL is based
on the framework of Markov decision processes (MDPs) (Puterman, 2014). For MDPs with finite
states and actions, there is already a clear understanding with sample and computationally efficient
algorithms (Auer et al., 2008; Dann & Brunskill, 2015; Osband & Van Roy, 2014; Azar et al., 2017;
Jin et al., 2018). However, the cost of these RL algorithms quickly becomes unacceptable for large
or infinite state problems. Therefore, function approximation or parameterization is a major tool
to tackle the curse of dimensionality. Based on the parametrized component to be learned, RL
algorithms can roughly be classified into two categories: model-free and model-based RL, where the
algorithms in the former class directly learn a value function or policy to maximize the cumulative
rewards, while algorithms in the latter class learn a model to mimic the environment and the optimal
policy is obtained by planning with the learned simulator.

Model-free RL algorithms exploit an end-to-end learning paradigm for policy and value function
training, and have achieved empirical success in robotics (Peng et al., 2018), video-games (Mnih et al.,
2013), and dialogue systems (Jiang et al., 2021), to name a few, thanks to flexible deep neural network
parameterizations. The flexibility of such parameterizations, however, also comes with a cost in
optimization and exploration. Specifically, it is well-known that temporal-difference methods become
unstable or even divergent with general nonlinear function approximation (Boyan & Moore, 1994;
Tsitsiklis & Van Roy, 1996). Uncertainty quantization for general nonlinear function approximators
is also underdeveloped. Although there are several theoretically interesting model-free exploration
algorithms with general nonlinear function approximators (Wang et al., 2020; Kong et al., 2021; Jiang
et al., 2017), a computationally-friend exploration method for model-free RL is still missing.

Model-based RL algorithms, on the other hand, exploit more information from the environment during
learning, and are therefore considered to be more promising in terms of sample efficiency (Wang
et al., 2019). Equipped with powerful deep models, model-based RL can successfully reduce
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approximation error, and have demonstrated strong performance in practice (Hafner et al., 2019a;b;
Wu et al., 2022), following with some theoretical justifications (Osband & Van Roy, 2014; Foster
et al., 2021). However, the reduction of approximation error brings new challenges in planning
and exploration, which have not been treated seriously from the empirical and theoretical aspects.
Specifically, with general nonlinear models, the planning problem itself is already no longer tractable,
and the problem becomes more difficult with an exploration mechanism introduced. While theoretical
analysis typically assumes a planning oracle providing an optimal policy, some approximations are
necessary in practice, including dyna-style planning (Chua et al., 2018; Luo et al., 2018), random
shooting (Kurutach et al., 2018; Hafner et al., 2019a), and policy search with backpropagation through
time (Deisenroth & Rasmussen, 2011; Heess et al., 2015). These may lead to sub-optimal policies,
even with perfect models, wasting potential modeling power.

In sum, for both model-free and model-based algorithms, there has been insufficient work consid-
ering both statistical and computation tractability and efficiency in terms of learning, planning and
exploration in a unified and coherent perspective for algorithm design. This raises the question:

Is there a way to design a provable and practical algorithm to remedy both the statistical and
computational difficulties of RL?

Here, by “provable” we mean the statistical complexity of the algorithm can be rigorously character-
ized without explicit dependence on the number of states but instead the fundamental complexity
of the parameterized representation space; while by “practical” we mean the learning, planning and
exploration components in the algorithm are computationally tractable and can be implemented in
real-world scenarios.

This work provides an affirmative answer to the question above by establishing the representation
view of latent variable dynamics models through a connection to linear MDPs. Such a connection
immediately provides a computationally tractable approach to planning and exploration in the linear
space constructed by the flexible deep latent variable model. Such a latent variable model view also
provides a variational learning method that remedies the intractbility of MLE for general linear
MDPs (Agarwal et al., 2020; Uehara et al., 2022). Our main contributions consist of the following:

• We establish the representation view of latent variable dynamics models in RL, which naturally
induces Latent Variable Representation (LV-Rep) for linearly representing the state-action
value function, and paves the way for a practical variational method for representation learning
(Section 3);

• We provide computation efficient algorithms to implement the principle of optimistm and pes-
simism in the face of uncertainty with the learned LV-Rep for online and offline RL (Section 3.1);

• We theoretically analyze the sample complexity of LV-Rep in both online and offline settings,
which reveals the essential complexity beyond the cardinality of the latent variable (Section 4);

• We empirically demonstrate LV-Rep outperforms the state-of-the-art model-based and model-
free RL algorithms on several RL benchmarks (Section 6)

2 PRELIMINARIES

In this section, we provide brief introduction to MDPs and linear MDP, which play important roles in
the algorithm design and theoretical analysis. We also provide the required background knowledge
on functional analysis in Appendix D.

2.1 MARKOV DECISION PROCESSES

We consider the infinite horizon discounted Markov decision process (MDP) specified by the tuple
M = ⟨S,A, T ∗, r, γ, d0⟩, where S is the state space, A is a discrete action space, T ∗ : S × A →
∆(S) is the transition, r : S × A → [0, 1] is the reward, γ ∈ (0, 1) is the discount factor and
d0 ∈ ∆(S) is the initial state distribution. Following the standard convention (e.g. Jin et al., 2020),
we assume r(s, a) and d0 are known to the agent. We aim to find the policy π : S → ∆(A), that
maximizes the following discounted cumulative reward:

V π
T∗,r := ET∗,π

[∑∞
i=0 γ

ir(si, ai)

∣∣∣∣s0 ∼ d0

]
.
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We define the state value function V : S →
[
0, 1

1−γ

]
and state-action value function Q : S ×A →[

0, 1
1−γ

]
following the standard notation:

Qπ
T∗,r(s, a) = ET∗,π

[∑∞
i=0 γ

ir(si, ai)

∣∣∣∣s0 = s, a0 = a

]
, V π

T∗,r(s) = Ea∼π(·|s)
[
Qπ

T∗,r(s, a)
]
,

It is straightforward to see that V π
T∗,r = Es∼d0

[
V π
T∗,r(s)

]
, as well as the following Bellman equation:

Qπ
T∗,r(s, a) = r(s, a) + γEs′∼T∗(·|s,a)

[
V π
T∗,r(s

′)
]
.

We also define the discounted occupancy measure dπT∗ of policy π as follows:

dπT∗(s, a) = ET∗,π

[∑∞
i=0 γ

i1si=s,ai=a

∣∣∣∣s0 ∼ d0

]
.

By the definition of the discounted occupancy measure, we can see V π
T∗,r = E(s,a)∼dπ

T∗ [r(s, a)].
Furthermore, with the property of the Markov chain, we can obtain

dπT∗(s, a) = (1− γ)d0 · π(a|s) + γE(s̃,ã)∼dπ
T∗ (s,a) [T

∗(s|s̃, ã)× π(a|s)] .

2.2 LINEAR MDP

In the tabular MDP, where the state space |S| is finite, there exist lots of work on sample- and
computation-efficient RL algorithms (e.g. Azar et al., 2017; Jin et al., 2018). However, such methods
can still be expensive when |S| becomes large or even infinite, which is quite common for in real-
world applications. To address this issue, we would like to introduce function approximations into
RL algorithms to alleviate the statistical and computational bottleneck. The linear MDP (Jin et al.,
2020; Agarwal et al., 2020) is a promising subclass admits special structure for such purposes.

Definition 1 (Linear MDP (Jin et al., 2020; Agarwal et al., 2020)). An MDP is called a linear MDP
if there exists ϕ∗ : S × A → H and µ∗ : S → H for some proper Hilbert space H, such that
T ∗(s′|s, a) = ⟨ϕ∗(s, a), µ∗(s′)⟩H.

The complete definition of linear MDPs require ϕ∗ and µ∗ satisfy certain normalization conditions,
which we defer to Section 4 for the ease of presentation. The most significant benefit for linear MDP
is that, for any policy π : S → A, Qπ

T∗,r(s, a) is linear with respect to [r(s, a), ϕ∗(s, a)], thanks to
the following observation:

Qπ
T∗,r(s, a) = r(s, a)+γEs′∼T∗(·|s,a)

[
V π
T∗,r(s

′)
]
= r(s, a)+

〈
ϕ∗(s, a),

∫
S
µ∗(s′)V π

T∗,r(s
′)ds′

〉
H
.

(1)
Plenty of sample-efficient algorithms have been developed based on the linear MDP structure with
known ϕ∗ (e.g. Yang & Wang, 2020; Jin et al., 2020; Yang et al., 2020). This requirement limits their
practical applications. In fact, in most cases, we do not have access to ϕ∗ and we need to perform
representation learning to obtain an estimate of ϕ∗. However, the learning of ϕ relies on efficient
exploration for the full-coverage data, while the design of exploration strategy relies on the accurate
estimation of ϕ. The coupling between exploration and learning induces extra difficulty.

Recently, Uehara et al. (2022) designed UCB-style exploration for iterative finite-dimension repre-
sentation updates with theoretical guarantees. The algorithm requires the computaiton oracle for the
maximum likelihood estimation (MLE) to the conditional density estimation,

max
ϕ,µ

n∑
i=1

log⟨ϕ(si, ai), µ(s′i)⟩H, s.t. ∀(s, a),
〈
ϕ(s, a),

∫
S
µ(s′)ds′

〉
H

= 1, (2)

which is difficult as we generally do not have specific realization of (ϕ, µ) pairs to make the constraints
hold for arbitrary (s, a) pairs, and therefore, impractical for real-world applications.

3 LATENT VARIABLE MODELS AS LINEAR MDPS

In this section, we first reveal the linear representation view of the transitions with a latent vari-
able structure. This essential connection brings several benefits for learning, planning and ex-
ploration/exploitation. More specifically, the latent variable model view provides us a tractable
variational learning scheme, while the linear representation view inspires computational-efficient
planning and exploration/exploitation mechanism.
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We focus on the transition operator T ∗ : S ×A → ∆(S) with a latent variable structure, i.e., there
exist latent space Z and two conditional probability measure p∗(z|s, a) and p∗(s′|z), such that

T ∗(s′|s, a) =
∫
Z
p∗(z|s, a)p∗(s′|z)dµ, (3)

where µ is the Lebesgue measure on Z when Z is continuous and µ is the counting measure on Z
when Z is discrete.

Assume that p∗(·|s, a) ∈ L2(µ), p∗(s′|·) ∈ L2(µ), we have the equivalent formulation of (3) as
T ∗(s′|s, a) = ⟨p∗(·|s, a), p∗(s′|·)⟩L2(µ)

,

which obviously demonstrates the linear MDP structure following Defintion 1, and immediately
implies ϕ∗(s, a) = p∗z (·|s, a), and µ∗ (s′) = p∗(s′|·). We call p∗z (·|s, a) as Latent Variable Repre-
sentation (LV-Rep).

Connection to Ren et al. (2022b). To provide a concrete example of LV-rep, we consider the
stochastic nonlinear control model with Gaussian noise (Ren et al., 2022b), which is widely used in
most of model-based RL algorithms. Such a model can be understood as a special case of LV-Rep.
In Ren et al. (2022b), the transition operator is defined as

T ∗ (s′|s, a) =
(
2πσ2

)−d/2
exp

(
−∥s′ − f∗ (s, a)∥2 /(2σ2)

)
= ⟨p∗(·|s, a), p∗ (s′|·)⟩L2(µ)

, (4)

where p∗ (z|s, a) ∝ exp
(
−2 ∥z − f∗ (s, a)∥2 /σ2

)
and p∗ (s′|z) ∝ exp

(
−2 ∥z − s′∥2 /σ2

)
, both

following the Gaussian distributions. The proposed LV-Rep can exploit more general distributions
beyond Gaussian for p∗ (·|s, a) and p∗ (s′|z), that introduces more flexibility in transition modeling.

Our definition of LV-Rep is more general than the original definition (Definition 2) in Agarwal et al.
(2020), which assumes |Z| is finite. As shown by Agarwal et al. (2020), block MDPs (Du et al.,
2019; Misra et al., 2020) with finite latent state space Z have a latent variable representation where
S corresponds to the set of observation, Z corresponds to the set of latent state, and p∗(z′|s, a) is a
composition of deterministic p(z|s) and a transition p(z′|z, a). Agarwal et al. (2020) also remarks
that, compared with the latent variable representation, the original low-rank representation relaxes
the simplex constraint on the p∗(z|s, a), and thus, can be more compact with fewer dimensions.
However, the ambient dimension may not be a proper measure of the representation complexity. As
we will show in Section 4, even we work on the infinite Z , as long as p(z|s, a) ∈ Hk and k satisfies
standard regularity conditions, we can still perform sample-efficient learning. A proper measure of
the representation complexity is still an open problem to the whole community.

The LV-Rep with p∗(·|s, a) and p∗ (s′|·) naturally satisfies the distribution requirements, which brings
the benefits of efficient sampling and learning.

Efficient Simulation from LV-Rep. Specifically, we can easily draw samples from the learned
model T̂ (s′|s, a) =

∫
Z p̂(z|s, a)p̂(s

′|z)dµ by first sampling zi ∼ p̂(z|s, a), then sampling
s′i ∼ p(s′|zi), without the need to call other complicated samplers, e.g., MCMC, for the general un-
normalized transition operator in linear MDPs. Such a property is important for computation-efficient
planning on the learned model.

Variational Learning of LV-Rep. Another significant benefit of the LV-Rep is that, we can leverage
the variational method to obtain a tractable surrogate objective of MLE, which is also known as the
evidence lower bound (ELBO) (Kingma et al., 2019), that can be derived as follows:

log T (s′|s, a) = log

∫
p∗ (z|s, a) p∗(s′|z)dz = log

∫
p∗ (z|s, a) p∗(s′|z)

q(z|s, a, s′)
q(z|s, a, s′)dz

= max
q∈∆(Z)

Ez∼q(·|s,a,s′) [log p
∗(s′|z)]−DKL (q(z|s, a, s′)∥p∗(z|s, a)) , (5)

where q(z|s, a, s′) is an auxiliary distribution. The last equality comes from Jensen’s inequality, and
the equality only holds when q (z|s, a, s′) = p (z|s, a, s′) ∝ p (z|s, a) p (s′|z).
Compared with the standard MLE used in (Agarwal et al., 2020; Uehara et al., 2022), maximizing
the ELBO is more computation-efficient, as it avoids the computation of integration at any time.
Meanwhile, if the family of variational distribution q is sufficient flexible that contains the optimal
p(z|s, a, s′) for any possible (p(z|s, a), p(s′|z)) pair, then maximizing the ELBO is equivalent to
perform MLE, i.e., they share the same solution,
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Algorithm 1 Online Exploration with LV-Rep
1: Input: Model class P = {(p(z|s, a), p(s′|z))},Q = {q(z|s, a, s′)}, Iteration N .
2: Initialize π0(s) = U(A) where U(A) denotes the uniform distribution on A; D0 = ∅; D′

0 = ∅.
3: for episode n = 1, · · · , N do
4: Collect the transition (s, a, s′, a′, s̃) where s ∼ d

πn−1

T∗ , a ∼ U(A), s′ ∼ T ∗(·|s, a),a′ ∼
U(A), s̃ ∼ T ∗(·|s′, a′). Dn = Dn−1 ∪ {s, a, s′}, D′

n = D′
n−1 ∪ {s′, a′, s̃}.

5: Learn the latent variable model p̂n(z|s, a) with Dn ∪ D′
n via maximizing the ELBO in (5),

and obtain the learned model T̂n.
6: Set the exploration bonus b̂n(s, a) as (7).
7: Update policy πn = argmaxπ V

π
T̂n,r+b̂n

.
8: end for
9: Return π1, · · · , πN .

3.1 REINFORCEMENT LEARNING WITH LV-REP

As the transition operator is linear with respect to LV-Rep, the state-action function for arbitrary
policy can be linearly represented by LV-Rep. Once the LV-Rep is learned, we can execute planning
and exploration in the linear space formed by LV-Rep. Due to the space limit, we mainly consider
online exploration setting, and the offline policy optimization is explained in Appendix B.

Practical Parameterization of Q function. With the linear factorization of dynamics through
latent variable models (1), we have

Qπ
T∗,r(s, a) = r(s, a) + γEp∗(z|s,a) [w

π(z)] , (6)
where wπ(z) =

∫
S p

∗(z|s′)V π
T∗,r(s

′)ds′ can be viewed as a value function of the latent state. When
the latent variable is in finite dimension, i.e., |Z| is finite, we have w = [w(z)]z∈Z ∈ R|Z|, and the
expectation Ep∗(z|s,a) [w

π(z)] can be computed exactly by enumerating over Z .

However, when Z is not a finite set, generally we can not exactly compute the expectation, which
makes the representation of Q function through p∗(z|s, a) hard. Particularly, under our normalization
condition Assumption 2 shown later, we have wπ ∈ Hk where Hk is a reproducing kernel Hilbert
space with kernel k. When k admits a random feature representation (see Definition 13), we can then
express wπ as:

wπ(z) =

∫
Ξ

w̃π(ξ)ψ(z; ξ)dP (ξ),

where the concrete P (ξ) depends on the kernel k. Plug this representation of wπ(z) into (6), we
obtain the approximated representation of Qπ

T∗,r(s, a) as:

Qπ
T∗,r(s, a) = r(s, a) + γ

∫
Z
wπ(z)p∗(z|s, a)dµ

= r(s, a) + γ

∫
Z

∫
Ξ

w̃(ξ)ψ(z; ξ)dP (ξ) · p∗(z|s, a)dµ

≈ r(s, a) +
γ

m

∑
i∈[m]

w̃(ξi)ψ(zi; ξi),

which shows that we can approximate Qπ
T∗r(s, a) with a linear function on top of the random feature

φ(s, a) = [ψ(zi; ξi)]i∈[m] where zi ∼ p∗(z|s, a) and ξi ∼ P (ξ). This can be viewed as a two-layer
neural network with fixed first layer weight ξi and activation ψ and trainable second layer weight
w̃ = [w̃(ξi)]

m
i=1 ∈ Rm.

Planning and Exploration with LV-Rep. Following the idea of REP-UCB (Uehara et al., 2022),
we introduce an additional bonus to implement the principle of optimism in the face of uncertainty.
We use the standard elliptical potential for the upper confidence bound, which can be computed
efficiently as below,
φ̂n(s, a) = [ψ(zi; ξi)]i∈[m] , where {zi}i∈[m] ∼ p̂n(z|s, a), {ξi}i∈[m] ∼ P (ξ),

b̂n(s, a) =αnφ̂n(s, a)Σ̂
−1
n φ̂n(s, a), with Σ̂n =

∑
(si,ai)∈Dn

φ̂n(si, ai)φ̂n(si, ai)
⊤ + λI, (7)

where αn and λ are some constants, and Dn is the collected dataset.
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The planning can be then completed by Bellman recursion with bonus, i.e.,
Qπ (s, a) = r (s, a) + b̂n (s, a) + γET [V π (s′)] . (8)

We can exploit the augmented feature [r(s, a), φ(s, a), b̂n (s, a)] to linearly represented Qπ after
bonus introduced. However, there will be an extra O

(
m2
)

due to the bonus in feature. There-
fore, we consider a two-layer MLP upon φ to parametrize Q(s, a) = w0r(s, a) + w̃⊤

1 φ(s, a) +
w̃⊤

2 σ
(
w̃⊤

3 φ(s, a)
)
, where σ (·) is a nonlinear activation function, used for complement the effect of

the nonlinear b̂n. We finally conduct approximate dynamic programming style algorithm (e.g. Munos
& Szepesvári, 2008) with the Q parameterization.

The Complete Algorithm. We show the complete algorithm for the online exploration with LV-Rep
in Algorithm 1. Our algorithm follows the standard protocol for sequential decision making. In each
episode, the agent first executes the exploratory policy obtained from the last episode and collects
the data (Line 4). The data are later used for training the latent variable model by maximizing the
ELBO defined in equation 5 (Line 5). With the newly learned p̂n(z|s, a), we add the exploration
bonus defined in equation 7 to the reward (Line 6), and obtain the new exploratory policy by planning
on the learned model with the exploration bonus (Line 7), that will be used in the next episode. Note
that, in Line 4, we requires to sample s ∼ d

πn−1

T∗ , which can be obtained by starting from s0 ∼ dt,
executing πn−1, stopping with probability 1− γ at each time step t ≥ 0 and returning st. LV-Rep
can also be used for offline exploitation, and we defer the corresponding algorithm to Appendix B.

4 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of representation learning with LV-Rep. Before
we start, we introduce the following two assumptions, that are widely used in the community (e.g.
Agarwal et al., 2020; Uehara et al., 2022).
Assumption 1 (Finite Candidate Class with Realizability). |P| <∞ and (p∗(z|s, a), p∗(s′|z)) ∈ P .
Meanwhile, for all (p(z|s, a), p(s′|z)) ∈ P , p(z|s, a, s′) ∈ Q.
Remark 1. The assumption on P is widely used in the community (e.g. Agarwal et al., 2020; Uehara
et al., 2022), while the assumption on Q is to guarantee the estimator obtained by maximizing the
ELBO defined in equation 5 is identical to the estimator obtained by MLE. We would like to remark
that, the extension to other data-independent function class complexity (e.g. Rademacher complexity
(Bartlett & Mendelson, 2002)) can be straightforward with a refined non-asymptotic generalization
bound of MLE.
Assumption 2 (Normalization Conditions). ∀P ∈ P, (s, a) ∈ S ×A, ∥p(·|s, a)∥Hk

≤ 1. Further-
more, ∀g : S → R such that ∥g∥∞ ≤ 1, we have

∥∥∫
S p(s

′|·)g(s′)ds′
∥∥
Hk

≤ C.

Remark 2. Our assumptions on normalization conditions is substantially different from standard
linear MDPs. Specifically, standard linear MDPs assume that the representation ϕ(s, a) and µ(s′) are
of finite dimension d, with ∥ϕ(s, a)∥2 ≤ 1 and ∀∥g∥∞ ≤ 1,

∥∥∫
S µ(s

′)g(s′)ds′
∥∥
2
≤ d. When |Z| is

finite, as ∥f∥L2(µ) ≤ ∥f∥Hk
, our normalization conditions are more general than the counterparts

of the standard linear MDPs and we can use the identical normalization conditions as the standard
linear MDPs. However, when |Z| is infinite, if we assume ∥p(z|s, a)∥L2(µ) ≤ 1, we cannot provide
a sample complexity bound without polynomial dependency on |P|, which can be unsatisfactory.
Furthermore, we would like to note that, the assumption

∫
S p(s

′|z)g(s′)ds′ ∈ Hk is mild, which is
necessary for justifying the estimation from the approximate dynamic programming algorithm.
Theorem 1 (PAC Guarantee for Online Exploration, Informal). Assume the reproducing kernel k
satisfies the regularity conditions in Appendix E.1. If we properly choose the exploration bonus
b̂n(s, a), we can obtain an ε-optimal policy with probability at least 1− δ after we interact with the
environments for N = poly

(
C, |A|, (1− γ)−1, ε, log(|P|/δ)

)
episodes.

Remark 3. Although |Z| may not be finite, we can still obtain a sample complexity independent w.r.t.
|S|, while has polynomial dependency on C, |A|, (1− γ)−1 and ε and log |P| with the assumption
that p(·|s, a) ∈ Hk and some standard regularity conditions for the kernel k. This means that we
do not really need to assume a discrete Z with finite cardinality, but only need to properly control
the complexity of the representation class, by either the ambient dimension |Z|, or some “effective
dimension” that can be derived from the eigendecay of the kernel k (see Appendix E.1 for the details).
The formal statement for Theorem 1 and the proof is deferred to Appendix E.2. We also provide the
PAC guarantee for offline exploitation with LV-Rep in Appendix E.3.
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Remark 4. Our proof strategy is based on the analysis of REP-UCB (Uehara et al., 2022). However,
there are substantial differences between our analysis and the analysis of REP-UCB, as the representa-
tion we consider can be infinite-dimensional, and hence the analysis of REP-UCB, which assumes that
the feature is finite-dimensional, cannot be directly applied in our case. As we mentioned, to address
the infinite dimension issue, we assume the representation p(z|s, a) ∈ Hk and prove two novel
lemmas, one for the concentration of bonus (Lemma 17) and one for the ellipsoid potential bound
(Lemma 19) when the representation lies in the RKHS. We further note that, different from the work
on the kernelized bandit and kernelized MDP (Srinivas et al., 2010; Valko et al., 2013; Yang et al.,
2020) that assume the reward function and Q function lies in some RKHS, we assume the condition
density of the latent random variable lies in the RKHS and the Q function is the L2(µ) inner product
of two functions in RKHS. As a result, the techniques used in their work cannot be directly adapted to
our setting, and their regret bounds depend on the alternative notions of maximum information gain
and effective dimension of the specific kernel, which can be implied by the eigendecay conditions we
assume in Appendix E.1 (see Yang et al. (2020) for the details).

5 RELATED WORK

There are several other theoretically grounded representation learning methods under the assumption
of linear MDP. However, most of these work either consider more restricted model or totally ignore
the computation issue. Du et al. (2019); Misra et al. (2020) focused on the representation learning in
block MDPs, which is a special case of linear MDP (Agarwal et al., 2020), and proposed to learn
the representation via the regression. However, both of them used policy-cover based exploration
that need to maintain large amounts of policies in the training phase, which induces a significant
computation bottleneck. Uehara et al. (2022) and Zhang et al. (2022b) exploit UCB upon learned
representation to resolve this issue. However, their algorithms depend on some computational oracles,
i.e., MLE for unnormalized conditional distribution in (2) or a max−min−max optimization
solver motivated from Modi et al. (2021), respectively, that can be hard to implement in practice.

A variety of recent work have been proposed to replace the computational oracle with more tractable
estimators. For example, Ren et al. (2022b) exploited representation with the structure of Gaussian
noise in nonlinear stochastic control problem with arbitrary dynamics, which restricts the flexibility.
Zhang et al. (2022a); Qiu et al. (2022) proposed to use a contrastive learning approach as an alternative.
However, similar to other contrastive learning approach, both of their methods require the access to a
negative distribution supported on the whole state space, and their performance highly depends on
the quality of the negative distribution. Ren et al. (2022a) designed a new objective based on the idea
of the spectral decomposition. But the solution for their objective is not necessarily to be a valid
distribution, and the generalization bound is worse than the MLE when the state space is finite.

Algorithmically, many representation learning methods have been developed for different purposes,
such as state extractor from vision-based features (Laskin et al., 2020a;b; Kostrikov et al., 2020),
bi-simulation (Ferns et al., 2004; Gelada et al., 2019; Zhang et al., 2020), successor feature (Dayan,
1993; Barreto et al., 2017; Kulkarni et al., 2016), spectral representation from transition operator
decomposition (Mahadevan & Maggioni, 2007; Wu et al., 2018; Duan et al., 2019), contrastive
learning (Oord et al., 2018; Nachum & Yang, 2021; Yang et al., 2020), and so on. However, most of
these methods are designed for state-only feature, ignoring the action dependency, and learning from
pre-collected datasets, without taking the planning and exploration in to account and ignoring the
coupling between representation learning and exploratin. Therefore, there is no rigorously theoretical
characterization provided.

We would like to emphasize that the proposed LV-Rep is the algorithm which achieves both statistical
efficiency theoretically and computational tractability empirically. For more related work on model-
based RL, please refer to Appendix A.

6 EXPERIMENTS

We extensively test our algorithm on the Mujoco (Todorov et al., 2012) and DeepMind Control Suite
(Tassa et al., 2018). Before presenting the experiment results, we first discuss some details towards a
practical implementation of LV-Rep.
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Table 1: Performance on various MuJoCo control tasks. All the results are averaged across 4 random seeds and
a window size of 10K. Results marked with ∗ is adopted from MBBL. LV-Rep-C and LV-Rep-D use continuous
and discrete latent variable model respectively. LV-Rep achieves strong performance compared with baselines.

HalfCheetah Reacher Humanoid-ET Pendulum I-Pendulum

Model-Based RL

ME-TRPO∗ 2283.7±900.4 -13.4±5.2 72.9±8.9 177.3±1.9 -126.2±86.6
PETS-RS∗ 966.9±471.6 -40.1±6.9 109.6±102.6 167.9±35.8 -12.1±25.1
PETS-CEM∗ 2795.3±879.9 -12.3±5.2 110.8±90.1 167.4±53.0 -20.5±28.9
Best MBBL 3639.0±1135.8 -4.1±0.1 1377.0±150.4 177.3±1.9 0.0±0.0

Model-Free RL
PPO∗ 17.2±84.4 -17.2±0.9 451.4±39.1 163.4±8.0 -40.8±21.0
TRPO∗ -12.0±85.5 -10.1±0.6 289.8±5.2 166.7±7.3 -27.6±15.8
SAC∗ (3-layer) 4000.7±202.1 -6.4±0.5 1794.4±458.3 168.2±9.5 -0.2±0.1

Representation RL

DeepSF 4180.4±113.8 -16.8±3.6 168.6±5.1 168.6±5.1 -0.2±0.3
SPEDE 4210.3±92.6 -7.2±1.1 886.9±95.2 169.5±0.6 0.0±0.0
LV-Rep-C 5557.6±439.5 -5.8±0.3 1086±278.2 167.1±3.1 0.0±0.0
LV-Rep-D 4616.5±261.5 -6.0±0.2 1359.2 ±198.6 170.2 ± 4.2 0.0±0.0

Ant-ET Hopper-ET S-Humanoid-ET CartPole Walker-ET

Model-Based RL

ME-TRPO∗ 42.6±21.1 1272.5±500.9 -154.9±534.3 160.1±69.1 -1609.3±657.5
PETS-RS∗ 130.0±148.1 205.8±36.5 320.7±182.2 195.0±28.0 312.5±493.4
PETS-CEM∗ 81.6±145.8 129.3±36.0 355.1±157.1 195.5±3.0 260.2±536.9
Best MBBL 275.4±309.1 1272.5±500.9 1084.3±77.0 200.0±0.0 312.5±493.4

Model-Free RL
PPO∗ 80.1±17.3 758.0±62.0 454.3±36.7 86.5±7.8 306.1±17.2
TRPO∗ 116.8±47.3 237.4±33.5 281.3±10.9 47.3±15.7 229.5±27.1
SAC∗ (3-layer) 2012.7±571.3 1815.5±655.1 834.6±313.1 199.4±0.4 2216.4±678.7

Representation RL

DeepSF 768.1±44.1 548.9±253.3 533.8±154.9 194.5±5.8 165.6±127.9
SPEDE 806.2±60.2 732.2±263.9 986.4±154.7 138.2±39.5 501.6±204.0
LV-Rep-C 2511.8±460.0 2204.8±496.0 963.1±45.1 200.7±0.2 2523.5±333.9
LV-Rep-D 2436.0±603.1 2187.5±453.6 956.8± 87.5 198.5 ± 2.0 2209.0±589.2

6.1 IMPLEMENTATION DETAILS

As discussed, the latent variable representation is learned by minimizing the ELBO (5). We consider
two practical implementations. The first one applies a continuous latent variable model, where the
distributions are approximated using Gaussian with parameterized mean and variance, similarly to
(Hafner et al., 2019b). We call this method LV-Rep-C. The second implementation considers using a
discrete sparse latent variable model (Hafner et al., 2019b), which we call LV-Rep-D. As discussed
in line 7 of Algorithm 1, we apply a planning algorithm with the learned latent representation to
improve the policy. We use Soft Actor Critic (SAC) (Haarnoja et al., 2018) as our planner, where the
critic is parameterized as shown in (6). In practice, we find that it is beneficial to have more updates
for the latent variable model than critic. We also use a target network for the latent variable model to
stabilize training.

6.2 DENSE-REWARD MUJOCO BENCHMARKS

We first conduct experiments on dense-reward Mujoco locomotion control tasks, which are commonly
used test domains for both model-free and model-based RL algorithms. We compare LV-Rep with
model-based algorithms, including ME-TRPO (Kurutach et al., 2018), PETS (Chua et al., 2018),
and the best model-based results from (Wang et al., 2019), among 9 baselines (Luo et al., 2018;
Deisenroth & Rasmussen, 2011; Heess et al., 2015; Clavera et al., 2018; Nagabandi et al., 2018; Tassa
et al., 2012; Levine & Abbeel, 2014), as well as model-free algorithms, including PPO (Schulman
et al., 2017), TRPO (Schulman et al., 2015) and SAC (Haarnoja et al., 2018).

We compare all algorithms after running 200K environment steps. Table 1 presents all experiment
results, where all results are averaged over 4 random seeds. In practice we found LV-Rep-C provides
comparable or better performance (see Figure 1 for example), so that we report its result for LV-Rep
in the table. We present the best model-based RL performance for comparison. The results clearly
show that LV-Rep provides significant better or comparable performance compared to all model-based
algorithms. In particular, in the most challenging domains such as Walker and Ant, most model-
based methods completely fail the task, while LV-Rep achieves the state-of-the-art performance
in contrast. Furthermore, LV-Rep show dominant performance in all domains comparing to two
representative representation learning based RL methods, Deep Successor Feature (DeepSF) (Barreto
et al., 2017) and SPEDE (Ren et al., 2022b). LV-Rep also achieves better performance than the
strongest model-free algorithm SAC in most challenging domains except Humanoid.

8



Published as a conference paper at ICLR 2023

Table 2: Performance of on various Deepmind Suite Control tasks. All the results are averaged across four
random seeds and a window size of 10K. Comparing with SAC, our method achieves even better performance
on sparse-reward tasks.

cheetah run walker run humanoid run hopper hop

Model-Based RL Dreamer 542.0 ± 27.7 337.7±67.2 1.0±0.2 46.1±17.3

Model-Free RL PPO 227.7±57.9 51.6±1.5 1.1±0.0 0.7±0.8
SAC 453.4±57.9 488.5±40.2 1.1±0.1 10.8±6.6

Representation RL
DeepSF 295.3±43.5 27.9±2.2 0.9±0.1 0.3±0.1
Proto RL 305.5±37.9 433.5±56.8 0.3±0.6 1.0±0.2
LV-Rep 639.3±24.5 724.2±37.8 11.8±6.8 72.9±40.6

Finally, we provide learning curves of LV-Rep-C and LV-Rep-D in comparison to SAC in Figure 1,
which clearly shows that comparing to the SOTA model-free baseline SAC, LV-Rep enjoys great
sample efficiency in these tasks.
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Figure 1: We show the learning curves in Mujoco control compared to the baseline algorithms. The
x-axis shows the training iterations and y-axis shows the performance. All plots are averaged over 4
random seeds. The shaded area shows the standard error. We only compare to SAC as it has the best
overall performance in all baseline methods.

6.3 SPARSE-REWARD DEEPMIND CONTROL SUITE

In this experiment we show the effectiveness of our proposed methods in sparse reward problems.
We compare LV-Rep with the state-of-the-art model-free RL methods including SAC and PPO.
Since the proposed LV-Rep significantly dominates all the model-based RL algorithms in MuJoCo
from Wang et al. (2019), we consider a different model-based RL method, i.e., Dreamer (Hafner
et al., 2019b), and add another representation-based RL methods, i.e., Proto-RL (Yarats et al., 2021),
besides DeepSF (Barreto et al., 2017).

We compare all algorithms after running 200K environment steps across 4 random seeds. Results
are presented in Table 2. We report the result of LV-Rep-C for LV-Rep as it gives better empirical
performance. We can clearly observe that LV-Rep dominates the performance across all domains. In
relatively dense-reward problems, cheetah-run and walker-run, LV-Rep outperforms all baselines by
a large margin. Remarkably, for sparse reward problems, hopper-hop and humanoid-run, LV-Rep
provides reasonable results while other methods do not even start learning.

We also plot the learning curves of LV-Rep with all competitors in Figure 2. This shows that LV-Rep
outperforms other baselines in terms of both sample efficiency and final performance.
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Figure 2: We show the results in DeepMind Control Suite compared to the baseline algorithms. The
x-axis shows the training iterations and y-axis shows the performance. All plots are averaged over 4
random seeds. The shaded area shows the standard error.
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7 CONCLUSION

In this paper, we reveal the representation view of latent variable dynamics model, which induces
the Latent Variable Representation (LV-Rep). Based on the LV-Rep, a new provable and practical
algorithm for reinforcement learning is proposed, achieving the balance between flexibility and
efficiency in terms of statistical complexity, with tractable learning, planning and exploration. We
provide rigorous theoretical analysis, which is applicable for LV-Rep with both finite- and infinite-
dimension and comprehensive empirical justification, which demonstrates the superior performances.
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forcement learning. In International Conference on Machine Learning, pp. 263–272. PMLR,
2017.
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A MORE RELATED WORK

Our method is also closely related to the model-based reinforcement learning. These methods maintain
an estimation of the dynamics and reward from the data, and extract the optimal policy via planning
modules. The major differences among these methods are in terms of i), model parameterization and
learning objectives, and ii), the approximated algorithms used for planning.

Specifically, Gaussian processes are exploited in (Deisenroth & Rasmussen, 2011). A stochastic
deep dynamics with restricts Gaussian noise assumption is widely used (Heess et al., 2015; Kurutach
et al., 2018; Chua et al., 2018; Clavera et al., 2018; Nagabandi et al., 2018). Hafner et al. (2019a;b;
2020); Lee et al. (2020) recently exploits recurrent latent state space model, but focused on Partially
Observable MDP setting, which is beyond the scope of our paper. Different approximated planning
algorithms, including Dyna-style, shooting, and policy search with backpropagation through time,
have been tailored in these methods. Please refer to (Wang et al., 2019) for detailed discussion.

As we discussed in Section 1, these algorithms did not balance the flexibility in modeling and
tractability in planning and exploration, which may lead to sub-optimal performances. While the
proposed LV-Rep not only is more flexible beyond Gaussian noise assumption, but also lead to
provable and tractable learning, planning, and exploration, and thus, achieving better empirical
performances.

B ALGORITHMS AND THEORETICAL ANALYSIS FOR OFFLINE EXPLOITATION

Algorithm 2 Offline Exploitation with LV-Rep
1: Input: Model class P = {(p(z|s, a), p(s′|z))},Q = {q(z|s, a, s′)}, Offline Dataset Dn.
2: Learn the latent variable model p̂(z|s, a) with Dn via maximizing the ELBO defined in equation 5,

and obtain the learned model T̂ .
3: Set the exploitation penalty b̂(s, a) as equation 7.
4: Obtain policy π̂ = argmaxπ V

π
T̂ ,r−b̂

.
5: Return π̂.

In this section, we show the algorithms for offline exploitation. For offline exploitation, we have
the access to a offline dataset, which we assume is collected from the stationary distribution of the
fixed behavior policy πb, which we will denote as ρ. And we are not allowed to interact with the
environments to collect new data. The only difference between the algorithms for offline exploitation
and online exploration is that, as we do not have access to the new data from the environment, we
cannot further explore the state-action pair that the offline dataset do not cover. Hence, we need to
penalize the visitation to the unseen state action pair to avoid the risky behavior.

C IMPLEMENTATION DETAILS

Our algorithm is implemented using Pytorch. For DeepMind control, we use an open source
implementation as our SAC baseline (Yarats & Kostrikov, 2020). As discussed in Section 6.1, we
find it is beneficial to have more updates for the latent variable model than critic in practice. We use
a parameter feature-updates-per-step that decides how many updates are performed for the latent
variable model at each training step. For all Mujoco and DeepMind Control experiments, we tune
this parameter from {1, 3, 5, 10, 20} and report the best result. Finally, in Table 3, we list all other
hyperparameters and network architecture we use for our experiments.

For evaluation in Mujoco, in each evaluation (every 5K steps) we test our algorithm for 10 episodes.
We average the results over the last 4 evaluations and 4 random seeds. For Dreamer and Proto-RL,
we change their network from CNN to 3-layer MLP and disable the image data augmentation part
(since we test on the state space). We tune some of their hyperparameters (e.g., exploration steps in
Proto-RL) and report the best number across our runs.
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Table 3: Hyperparameters used for LV-Rep in all the environments in MuJoCo and DM Control Suite.
Hyperparameter Value

Actor lr 0.0003
Model lr 0.0003
Actor Network Size (MuJoCo) (256, 256)
Actor Network Size (DM Control) (1024, 1024)
LV-Rep Feature Embedding Dim (MuJoCo) 256
LV-Rep Feature Embedding Dim (DM Control) 1024
ERP Embedding Network Size (DM Control) (1024, 1024, 1024)
Critic Network Size (MuJoCo) (256, 256, 1)
Critic Network Size (DM Control) (1024, 1024, 1)
Discount 0.99
Critic Target Update Tau 0.005
Latent Variable Target Update Tau 0.005
Batch Size 256

D TECHNICAL BACKGROUNDS

In this section, we introduce several important concepts from functional analysis that will be repeat-
edly used in our theoretical analysis. We start from the concept of the R-vector space.
Definition 2 (R-vector space (Steinwart & Christmann, 2008)). An R-vector space is defined as
a triple (E,+, ·), where E is a non-empty set, + : E × E → E and · : R × E → E satisfies the
following properties:

• ∀x, y, z ∈ E, (x+ y) + z = x+ (y + z).

• ∀x, y ∈ E, x+ y = y + x.

• ∃ an element 0 ∈ E, such that ∀x ∈ E, x+ 0 = x.

• ∀x ∈ E, ∃ − x ∈ E, such that x+ (−x) = 0.

• ∀α, β ∈ R, x ∈ E, (αβ) · x = α · (β · x).

• ∀x ∈ E, 1 · x = x.

• ∀α, β ∈ R, x ∈ E, (α+ β) · x = α · x+ β · x.

• ∀α ∈ R, x, y ∈ E, α · (x+ y) = α · x+ α · y.

The · denotes the scalar multiplication will be omitted if there will be no confusion.
Definition 3 (Norm and Banach Space (Steinwart & Christmann, 2008)). Let E be a R-vector space.
A map ∥ · ∥ : E → [0,∞) is a norm on E if

• ∥x∥ = 0 ⇔ x = 0.

• ∀α ∈ R, x ∈ E, ∥αx∥ = α∥x∥.

• ∀x, y ∈ E, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

In this case, the pair (E, ∥ · ∥) is called a Banach space, and we use E to denote the Banach space
for simplicity if there will be no confusion.
Definition 4 (Bounded Linear Operator (Steinwart & Christmann, 2008)). Let E and F be two
Banach spaces. A map S : E → F is a bounded linear operator if

• ∀x, y ∈ E,S(x+ y) = Sx+ Sy.

• ∀α ∈ R, x ∈ E,S(αx) = α(Sx).

• S0 = 0.

Furthermore, S satisfies the following properties
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• ∃c ∈ [0,∞], such that ∀x ∈ E, ∥Sx∥F ≤ c∥x∥E .

Note that, all of the bounded linear operator itself can define an R-vector space, and we can define
an operator norm of S as ∥S∥op := supx∈BE

∥Sx∥F , where BE = {x ∈ E : ∥x∥E ≤ 1} is the unit
ball of E.
Definition 5 (Compact Operator (Steinwart & Christmann, 2008)). A bounded linear operator
S : E → F is compact if the closure of SBE is compact in F .
Definition 6 (Inner Product and Hilbert Space (Steinwart & Christmann, 2008)). A map ⟨·, ·⟩ :
H×H → R on a R-vector space is an inner product if

• ∀x, y, z ∈ H, ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

• ∀α ∈ R, x, y ∈ H, ⟨αx, y⟩ = α⟨x, y⟩.

• ∀x, y ∈ H, ⟨x, y⟩ = ⟨y, x⟩.

• ∀x ∈ H, ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 ⇔ x = 0.

If the norm induced by the inner product ∥x∥H :=
√

⟨x, x⟩ is complete, the pair (H, ⟨·, ·⟩) is called
a Hilbert space. We sometimes use H to denote the Hilbert space and use ⟨·, ·⟩H to distinguish
between different inner products. Note that, the inner product satisfies the following Cauchy-Schwartz
inequality:

∀x, y ∈ H, |⟨x, y⟩H| ≤ ∥x∥H∥y∥H.
Definition 7 ((Self-)Adjoint Operator (Steinwart & Christmann, 2008)). Let H1 and H2 be two
Hilbert spaces, For the operator S : H1 → H2, the adjoint operator S∗ : H2 → H1 is defined by

∀x ∈ H1, y ∈ H2, ⟨Sx, y⟩H2
= ⟨x, S∗y⟩H1

.

Furthermore, S is a self-adjoint operator, if S : H1 → H1, and
∀x, y ∈ H1, ⟨Sx, y⟩H1

= ⟨x, Sy⟩H1
.

For self-adjoint operator S, if ⟨Sx, x⟩ ≥ 0, S is called a positive semi-definite operator, and if
⟨Sx, x⟩ > 0, S is called a positive definite operator.
Remark 5. Note that, the definition of the adjoint operator can be generalized to Banach spaces. But
adjoint operators for Hilbert spaces are sufficient for our purposes. So we omit the definition of the
adjoint operators on Banach spaces.
Definition 8 (Orthonormal System and Orthonormal Basis (Steinwart & Christmann, 2008)). For the
Hilbert space H, the family {ei}i∈I , ei ∈ H is an orthonormal system if ⟨ei, ei⟩ = 1, and ⟨ei, ej⟩ = 0
if i ̸= j. Furthermore, if the closure of the linear span of {ei}i∈I equals to H, it is an orthonormal
basis. Note that, each Hilbert space H has an orthonormal basis, and if H is separable, H has a
countable orthonormal basis. Furthermore, ∀x ∈ H , we have

x =
∑
i∈I

⟨x, ei⟩ei.

Theorem 2 (Spectral Theorem (Steinwart & Christmann, 2008)). Let H be a Hilbert space and
T : H → H is compact and self-adjoint. Then their exists at most countable {µi(T )}i∈I converging
to 0 such that |µ1(T )| ≥ |µ2(T )| ≥ · · · > 0 and an orthonormal system {ei}i∈I , such that

∀x ∈ H, Tx =
∑
i∈I

µi(T )⟨x, ei⟩Hei.

Here {µi(T )}i∈I can be viewed as the set of eigen-value of T , as Tei = µi(T ).
Definition 9 (Trace and Trace class (Steinwart & Christmann, 2008)). For a compact and self-adjoint
operator T , if

∑∞
i=1 µi(T ) <∞, we say T is nuclear or of trace class, and define the nuclear norm

and the trace as:
∥T∥∗ = Tr(T ) =

∑
i∈I

µi(T ).

Definition 10 (Hilbert-Schmidt Operator (Steinwart & Christmann, 2008)). Let H1,H2 be two
Hilbert spaces. An operator S : H1 → H2 is Hilbert-Schmidt if

∥S∥HS :=

(∑
i∈I

∥Sei∥2H2

)1/2

<∞,
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where {ei}i∈I is an arbitrary orthonormal basis of H1. Furthermore, the set of Hilbert-Schmidt
operators defined on H → H where H is a Hilbert space is indeed a Hilbert space with the following
inner product:

⟨T1, T2⟩HS(H) =
∑
i∈I

⟨T1ei, T2ei⟩H, T1, T2 ∈ HS(H),

where {ei}i∈I is an arbitrary orthonormal basis of H.
Definition 11 (L2(µ) space). Let (X ,A, µ) be a measure space. The L2(µ) space is defined as the
Hilbert space consists of square-integrable function with respect to µ, with inner product

⟨f, g⟩L2(µ) :=

∫
X
fgdµ,

and the norm

∥f∥L2(µ) :=

(∫
X
f2dµ

)1/2

.

Throughout the paper, µ is specified as the Lebesgue measure for continuous X and the counting
measure for discrete X . Specifically, when X is discrete, we can represent f as a sequence [f(x)]x∈X ,
and the corresponding L2(µ) inner product and L2(µ) norm is identical to the ℓ2 inner product and
ℓ2 norm, which is defined as

⟨f, g⟩l2 =
∑
x∈X

f(x)g(x), ∥f∥l2 =

(∑
x∈X

f2(x)

)1/2

,

that is closely related to the inner product and norm of the Euclidean space.
Definition 12 (Kernel and Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950; Paulsen &
Raghupathi, 2016)). A function k : X × X → R is a kernel on non-empty set X , if there exists a
Hilbert space H and a feature map ϕ : X → H, such that ∀x, x′ ∈ X , k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.
Furthermore, if ∀n ≥ 1, {ai}i∈[n] ⊂ R and mutually distinct {xi}i∈[n],∑

i∈[n]

∑
j∈[n]

aiajk(xi, xj) ≥ 0,

the kernel k is said to be positive semi-definite. And if the inequality is strict, the kernel k is said to
be positive definite.

Given the kernel k, the Hilbert space Hk consists of R-valued function on non-empty set X is said to
be a reproducing kernel Hilbert space associated with k if the following two conditions hold:

• ∀x ∈ X , k(x, ·) ∈ Hk.

• Reproducing Property: ∀x ∈ X , f ∈ Hk, f(x) = ⟨f, k(x, ·)⟩Hk
.

Here k is also called the reproducing kernel of Hk. The RKHS norm of f ∈ Hk is defined as
∥f∥Hk

:=
√
⟨f, f⟩Hk

.

Some of the well-known kernels include:

• Linear Kernel: k(x, x′) = x⊤x′, where x, x′ ∈ Rd;
• Polynomial Kernel: k(x, x′) = (1 + x⊤x′)n, where x, x′ ∈ Rd, n ∈ N+.

• Gaussian Kernel: k(x, x′) = exp
(
−∥x−x′∥2

2

σ2

)
, where x, x′ ∈ Rd, σ > 0 is the scale

parameter.

• Matérn Kernel: k(x, x′) = 21−ν

Γ(ν) r
νBν(r), where x, x′ ∈ Rd, ν > 0 is the smoothness

parameter, l > 0 is the scale parameter, r =
√
2ν
l ∥x− x′∥, Γ(·) is the Gamma function and

Bν(·) is the modified Bessel function of the second kind.
Theorem 3 (Mercer’s Theorem (Riesz & Nagy, 2012; Steinwart & Scovel, 2012)). Let (X ,A, µ) be
a measure space with compact support X and strictly positive Borel measure ϕ. k is a continuous
positive definite kernel defined on X × X . Then there exists at most countable {µi}i∈I with µ1 ≥
µ2 ≥ · · · > 0 and {ei}i∈I where {ei}i∈I is the set of orthonormal basis of L2(µ), such that

∀x, x′ ∈ X , k(x, x′) =
∑
i∈I

µiei(x)ei(x
′),
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where the convergence is absolute and uniform.

Remark 6 (Spectral Characterization of RKHS). With the representer property, we know that∑
i∈I

µiei(x)ei(·) = k(x, ·) ∈ Hk.

Note that, for β-finite spectrum, we can choose I such that µi > 0. If we define the inner product〈∑
i∈I

aiei(·),
∑
i∈I

biei(·)

〉
Hk

=
∑
i∈I

aibi
µi

,

then we have the reproducing property〈∑
i∈I

aiei(·), k(x, ·)

〉
Hk

=

〈∑
i∈I

aiei(·),
∑
i∈I

µiei(x)ei(·)

〉
Hk

=
∑
i∈I

aiei(x).

With the spectral characterization, we know that∥∥∥∥∥∑
i∈I

aiei(·)

∥∥∥∥∥
Hk

=
∑
i∈I

a2i
µi

≥
∑

i∈I a
2
i

µ1
=

∥∥∑
i∈I aiei(·)

∥∥
L2(µ)

µ1
.

Hence, we know ∀f ∈ Hk, f ∈ L2(µ). Furthermore, note that

k(x, x) =

〈∑
i∈I

µiei(x)ei(·),
∑
i∈I

µiei(x)ei(·)

〉
Hk

=
∑
i∈I

µie
2
i (x).

Hence, ∑
i∈I

µi =

∫
X

∑
i∈I

µie
2
i (x)dµ =

∫
X
k(x, x)dµ.

The following Hilbert-Schmidt integral operator is useful in our analysis:

Tk : L2(µ) → L2(µ), Tkf =

∫
X
k(x, x′)f(x′)dµ.

Obviously, Tk is self-adjoint. Use the fact that k(x, x′) =
∑

i∈I µiei(x)ei(x
′), we know Tkei = µiei,

which means ei is the eigenfunction of Tk with the corresponding eigenvalue as µi.

With the spectral characterization of Tk, we can define the power operator Tk, by

T τ
k f : L2(µ) → L2(µ), T τ

k f =
∑
i∈I

µτ
i ⟨f, ei⟩ei.

And these power operators are all self-adjoint. Note that, ∥f∥Hk
= ⟨f, T−1

k f⟩L2(µ). Throughout
the paper, we work on the L2(µ) space, and all of the operators are defined on L2(µ) → L2(µ). As
Hk ⊂ L2(µ), all of these operators can also operator on the elements from Hk.

The power RKHS induced by the following kernel will be helpful in our analysis:

∀x, x′ ∈ X , k̃(x, x′) =
∑
i∈I

µ2
i ei(x)ei(x

′).

And it is straightforward to see ∥f∥H
k̃
= ⟨f, T−2

k f⟩L2(µ), which will be useful in the proof.

Definition 13 (Kernel with Random Feature Representation). A kernel k : X × X → R is said to
have a random feature representation if there exists a function ψ : X × Ξ → R and a probability
measure P over Ξ such that

k(x, x′) =

∫
Ξ

ψ(x; ξ)ψ(x′; ξ)dP (ξ).

We then show that, Hk coincides with the following R-valued function space{
f : X → R

∣∣∣∣ f(x) = ∫
Ξ

f̃(ξ)ψ(x; ξ)dP (ξ), f̃ ∈ L2(P )

}
,

with the inner product defined as ⟨f, g⟩Hk
=
∫
Ξ
f̃(ξ)g̃(ξ)dP (ξ). Note that, k̃(x, ·) = ψ(x; ξ). Hence,

it is straightforward to show that ∀x ∈ X , k(x, ·) ∈ Hk. Furthermore, we have

f(x) =

∫
Ξ

f̃(ξ)ψ(x; ξ)dP (ξ) =

∫
Ξ

f̃(ξ)k̃(x, ·)dP (ξ) = ⟨f, k(x, ·)⟩Hk
,
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which shows the reproducing property. As a result, we obtain an equivalent representation of the
RKHS Hk, which means ∀f ∈ Hk, we can obtain a random feature representation.

Examples of such kernel k includes the Gaussian kernel and the Matérn kernel. See Rahimi & Recht
(2007); Dai et al. (2014); Choromanski et al. (2018) for the details.

Definition 14 (ε-net and ε-covering number and i-th (dyadic) entropy number (Steinwart & Christ-
mann, 2008)). Let (T, d) be a metric space. S ⊂ T is an ε-net for ε > 0, if ∀t ∈ T , ∃s ∈ S, such that
d(s, t) ≤ ε. Furthermore, the ε-covering number N (T, d, ε) is defined as as the minimum cardinality
of the ε-net for T under metric d, and the i-th entropy number ei(T, d) is the minimum ε that there
exists an ε cover of cardinality 2i−1.

E MAIN PROOF

E.1 TECHNICAL CONDITIONS

Assumption 3 (Regularity Conditions for Kernel). Z is a compact metric space with the Lebesgue
measure µ if Z is continuous, and

∫
Z k(z, z)dµ ≤ 1.

Remark 7. Assumption 3 is mainly for the ease of presentation. The assumption that Z is compact
when Z is continuous can be relaxed to Z is a general domain but requires much more involved
techniques from e.g. Steinwart & Scovel (2012). Furthermore, with Mercer’s theorem (see Theorem 3
and Remark 6 for the details), we know

∑
i∈I µi =

∫
Z k(z, z)dµ ≤ 1. As ∀i ∈ I, µi > 0, we know

µ1 ≤ 1, and ∥f∥L2(µ) ≤ ∥f∥Hk
without any other absolute constant, that can keep the eventual

result clean. We can relax the assumption
∫
Z k(z, z)dµ ≤ 1 to

∫
Z k(z, z)dµ ≤ c for some positive

constant c > 1, at the cost of additional terms at most poly(c) in the sample complexity.

Assumption 4 (Eigendecay Conditions for Kernel). For the reproducing kernel k, we assume µi, the
i-th eigenvalue of the operator Tk : L2(µ) → L2(µ), Tkf =

∫
Z f(z

′)k(z, z′)dµ(z′), satisfies one of
the following conditions:

• β-finite spectrum: µi = 0, ∀i > β, where β is a positive integer.
• β-polynomial decay: µi ≤ C0i

−β , where C0 is an absolute constant and β > 1.
• β-exponential decay: µi ≤ C1 exp(−C2i

β), where C1 and C2 are absolute constants and
β > 0.

For ease of presentation, we use Cpoly to denote constants appeared in the analysis of β-polynomial
decay that only depends on C0 and β, and Cexp to denote constants appeared in the analysis of
β-exponential decay that only depends on C1, C2 and β. Both of them can be varied step by step.

Remark 8. We remark that, most of the existing kernels satisfy one of these eigendecay conditions.
Specifically, as discussed in Seeger et al. (2008); Yang et al. (2020), the linear kernel and the
polynomial kernel satisfy the β-finite spectrum condition, the Matérn kernel satisfies the β-polynomial
decay and the Gaussian kernel satisfies the β-exponential decay. Furthermore, for discrete Z , we can
directly observe that it corresponds to the case of β-finite spectrum with β ≤ |Z|.

E.2 PROOF FOR THE ONLINE SETTING

Theorem 4 (PAC Guarantee for Online Exploration, Formal). If we choose the bonus b̂n(s, a) as:

b̂n(s, a) = min
{
αn∥p̂n(·|s, a)∥L2(µ),Σ̂

−1
n,p̂n

, 2
}
,

where
Σ̂n,p̂n

: L2(µ) → L2(µ), Σ̂n,p̂n
:=

∑
(si,ai)∈Dn

[
p̂n(z|si, ai)p̂n(z|si, ai)⊤

]
+ λT−1

k ,

∥f∥L2(µ),Σ
:=
√
⟨f,Σf⟩L2(µ) for self-adjoint operator Σ, λ for different eigendecay conditions is

given by:

• β-finite spectrum: λ = Θ(β logN + log(N |P|/δ))
• β-polynomial decay: λ = Θ(CpolyN

1/(1+β) + log(N |P|/δ));
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• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |P|/δ));

and αn = Θ
(

γ
1−γ

√
|A| log(n|P|/δ) + λC

)
, then with probability at least 1− δ, After interacting

with the environments for N episodes where

• N = Θ
(

Cβ3|A|2 log(|P|/δ)
(1−γ)4ε2 log3

(
Cβ3|A|2 log(|P|/δ)

(1−γ)4ε2

))
for β-finite spectrum;

• N = Θ

Cpoly

(
|A|

√
C log(|P|/δ)
(1−γ)2ε log3/2

(√
C|A| log(|P|/δ)

(1−γ)2ε

)) 2(1+β)
β−1

 for β-polynomial de-

cay;

• N = Θ
(

CexpC|A|2 log(|P|/δ)
(1−γ)4ε2 log

3+2β
β

(
C|A|2 log(|P|/δ)

(1−γ)4ε2

))
for β-exponential decay;

we can obtain an ε-optimal policy with probability at least 1− δ.

Notation Following the notation of Uehara et al. (2022), we define

ρn(s) :=
1

n

n−1∑
i=1

dπi

T∗(s),

and with slight abuse of notation, we overload the above notation and define

ρn(s, a) :=
1

n

n−1∑
i=1

dπi

T∗(s, a).

Furthermore, we define ρ′n(s
′) as the marginal distribution of s′ for the following joint distribution
(s, a, s′) ∼ ρn(s)× U(A)× T ∗(s′|s, a).

Finally, we define the following operators in the space of L2(µ) → L2(µ):
Σρn×U(A),ϕ =nEs∼ρn,a∼U(A)

[
ϕ(s, a)ϕ⊤(s, a)

]
+ λT−1

k

Σρn,ϕ =nE(s,a)∼ρn

[
ϕ(s, a)ϕ⊤(s, a)

]
+ λT−1

k

Note that, by the spectral theorem, if
∥∥T−1/2x′

∥∥
L2(µ)

≤ ∞ for x′ ∈ L2(µ), we have the following
Cauchy-Schwartz inequality for weighted L2(µ) norm: ∀x ∈ L2(µ),

⟨x, x′⟩L2(µ)
=
〈
T 1/2x, T−1/2x′

〉
L2(µ)

≤ ∥x∥L2(µ),T ∥x′∥L2(µ),T−1 .

Lemma 5 (One Step Back Inequality for the Learned Model). Assume g : S × A → R such that
∥g∥∞ ≤ B, then conditioning on the event that the following MLE generalization bound holds:

Es∼ρn,a∼U(A)

[
∥T̂ (s, a)− T ∗(s, a)∥1

]
≤ ζn,

∀π, we have∣∣∣E(s,a)∼dπ
T̂n

[g(s, a)]
∣∣∣

≤γE(s̃,ã)∼dπ
T̂n

∥p̂n(·|s̃, ã)∥L2(µ),Σ
−1
ρn×U(A),p̂n

√
n|A|Es∼ρ′

n,a∼U(A) [g2(s, a)] + λB2C + nB2ζn

+
√
(1− γ)|A|Es∼ρn,a∼U(A)[g2(s, a)].

Proof. We start from the following equality:
E(s,a)∼dπ

T̂n

[g(s, a)] = γE(s̃,ã)∼dπ
T̂n

,s∼T̂n(·|s̃,ã),a∼π(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π(·|s)[g(s, a)],

(9)
which is obtained by the property of the stationary distribution. For the second term, with Jensen’s
inequality and an importance sampling step, we have that

(1− γ)Es∼d0,a∼π(·|s)[g(s, a)] ≤
√

(1− γ)|A|Es∼ρn,a∼U(A)[g2(s, a)].
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Now we consider the first term. With Cauchy-Schwartz inequality of L2(µ) inner product, we have
that

γE(s̃,ã)∼dπ
T̂n

,s∼T̂n(·s̃,ã),a∼π(·|s)[g(s, a)]

=γE(s̃,ã)∼dπ
T̂n

〈
p̂n(·|s̃, ã),

∫
S

∑
a∈A

p̂n(s|·)π(a|s)g(s, a)ds

〉
L2(µ)

≤γE(s̃,ã)∼dπ
T̂n

∥p̂n(·|s̃, ã)∥L2(µ),Σ
−1
ρn×U(A),p̂n

∥∥∥∥∥
∫
S

∑
a∈A

p̂n(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
L2(µ),Σρn×U(A),p̂n

Note that∥∥∥∥∥
∫
S

∑
a∈A

p̂n(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
2

L2(µ),Σρn×U(A),p̂n

=nEs̃∼ρn,ã∼U(A)

{
Es∼T̂n(·|s̃,ã),a∼π(·|s) [g(s, a)]

}2

+ λ

∥∥∥∥∥
∫
S

∑
a∈A

p̂n(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
Hk

≤nEs̃∼ρn,ã∼U(A)

{
Es∼T∗(·|s̃,ã),a∼π(·|s) [g(s, a)]

}2
+ λB2C + nB2ζn

≤nEs̃∼ρn,ã∼U(A),s∼T∗(·|s̃,ã),a∼π(·|s)
[
g2(s, a)

]
+ λB2C + nB2ζn

≤n|A|Es̃∼ρn,ã∼U(A),s∼T∗(·|s̃,ã),a∼U(A)

[
g2(s, a)

]
+ λB2C + nB2ζn

=n|A|Es∼ρ′
n,a∼U(A)

[
g2(s, a)

]
+ λB2C + nB2ζn

Substitute back, we obtain the desired result.

Lemma 6 (One Step Back Inequality for the True Model). Assume g : S × A → R such that
∥g∥∞ ≤ B, then

E(s,a)∼dπ
T∗ [g(s,a)] ≤E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρn,p∗

√
nγ|A|Es∼ρn,a∼U(A) [g2(s, a)] + λγ2B2C

+
√
(1− γ)|A|Es∼ρn,a∼U(A)[g2(s, a)].

Proof. By the property of the stationary distribution, we have
E(s,a)∼dπ

T∗ [g(s, a)] = γE(s̃,ã)∼dπ
T∗ ,s∼T∗(·|s̃,ã),a∼π(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π(·|s)[g(s, a)].

(10)
For the second term, we still use the following upper bound:

(1− γ)Es∼d0,a∼π(·|s)[g(s, a)] ≤
√
(1− γ)|A|Es∼ρn,a∼U(A)[g2(s, a)].

For the first term, with the Cauchy-Schwartz inequality, we have
γE(s̃,ã)∼dπ

T∗ ,s∼T∗(·s̃,ã),a∼π(·|s)[g(s, a)]

=γE(s̃,ã)∼dπ
T∗

〈
p∗(·|s̃, ã),

∫
S

∑
a∈A

p∗(s|·)π(a|s)g(s, a)ds

〉
L2(µ)

≤γE(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρn,p∗

∥∥∥∥∥
∫
S

∑
a∈A

p∗(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
L2(µ),Σ2

ρn,p∗

.

Note that∥∥∥∥∥
∫
S

∑
a∈A

p∗(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
2

L2(µ),Σ2
ρn,p∗

=nE(s̃,ã)∼ρn

{
Es∼T∗(·|s̃,ã),a∼π(·|s) [g(s, a)]

}2
+ λ

∥∥∥∥∥
∫
S

∑
a∈A

p̂n(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
Hk

≤nE(s̃,ã)∼ρn,s∼T∗(·|s̃,ã),a∼π(·|s)
[
g2(s, a)

]
+ λB2C

≤n|A|E(s̃,ã)∼ρn,s∼T∗(·|s̃,ã),a∼U(A)

[
g2(s, a)

]
+ λB2C
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=
n|A|
γ

Es∼ρn,a∼U(A)

[
g2(s, a)

]
+ λB2C

Substitute back, we obtain the desired result.

Lemma 7 (Almost Optimism at the Initial Distribution). Consider an episode n ∈ [N ], if we set

ζn = Θ
(

log(n|P|/δ)
n

)
(such that the MLE generalization bound holds by Lemma 16), λ for different

eigendecay condition as follows:

• β-finite spectrum: λ = Θ(β logN + log(N |P|/δ))

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N |P|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |P|/δ));

and αn = Θ
(

γ
1−γ

√
|A| log(n|P|/δ) + λC

)
, the following events hold with probability at least

1− δ:

∀n ∈ [N ], ∀π, V π
T̂n,r+b̂n

− V π
T∗,r ≥ −

√
|A|ζn

(1− γ)3
.

Proof. With Lemma 17 and a union bound over P , we know using the chosen λ, ∀T̂n ∈ P , with
probability at least 1− δ,

∥p̂n(·|s, a)∥L2(µ),Σ̂
−1
n,p̂n

= Θ
(
∥p̂n(·|s, a)∥−1

L2(µ),Σρn×U(A),p̂n

)
.

With Lemma 18, we have that

(1− γ)
(
V π
T̂n,r+b̂n

− V π
T∗,r

)
=E(s,a)∼dπ

T̂n

[
bn(s, a) + γET̂n(s′|s,a)

[
V π
T,r(s

′)
]
− γEP (s′|s,a)

[
V π
T,r(s

′)
]]

≿E(s,a)∼dπ
T̂n

[
min

{
αn ∥p̂n(·|s, a)∥L2(µ),Σ

−1
ρn×U(A),p̂n

, 2
}
+ γET̂n(s′|s,a)

[
V π
T∗,r(s

′)
]
− γET∗(s′|s,a)

[
V π
T∗,r(s

′)
]]
.

Denote fn(s, a) = TV(T ∗(s′|s, a), T̂n(s′|s, a)) with ∥fn∥∞ ≤ 2, with Hölder’s inequality, we have
that ∣∣∣E(s,a)∼dπ

T̂n

[
ET̂n(s′|s,a)

[
V π
T,r(s

′)
]
− ET∗(s′|s,a)

[
V π
T,r(s

′)
]]∣∣∣ ≤ E(s,a)∼dπ

T̂n

[
fn(s, a)

1− γ

]
.

With Lemma 5, we have that

E(s,a)∼dπ
T̂n

[
fn(s, a)

1− γ

]
≤E(s̃,ã)∼dπ

T̂n

∥p̂n(·|s, a)∥L2(µ),Σ
−1
ρn×U(A),p̂n

√
nγ2|A|Es∼ρ′

n,a∼U(A) [f2n(s, a)]

(1− γ)2
+

4λγ2C

(1− γ)2
+

4nγ2ζn
(1− γ)2

+

√
|A|Es∼ρn,a∼U(A) [f2n(s, a)]

1− γ

≤E(s̃,ã)∼dπ
T̂n

∥p̂n(·|s, a)∥L2(µ),Σ
−1
ρn×U(A),p̂n

√
nγ2|A|ζn
(1− γ)2

+
4λγ2C

(1− γ)2
+

4γ2nζn
(1− γ)2

+

√
|A|ζn
1− γ

Note that, we set αn such that√
nγ2|A|ζn
(1− γ)2

+
4λγ2C

(1− γ)2
+

4nγ2ζn
(1− γ)2

≲ αn,

which concludes the proof.

Lemma 8 (Regret). With probability at least 1− δ, we have that
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• For β-finite spectrum, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
β3/2|A|

√
CN log(N |P|/δ)
(1− γ)2

.

• For β-polynomial decay, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
Cpoly

√
C|A|N

1
2+

1
2(1+β) log(N |P|/δ)

(1− γ)2
.

• For β-exponential decay, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
Cexp|A|

√
CN(logN)

3+2β
2β log(N |P|/δ)

(1− γ)2
.

Proof. With Lemma 7 and Lemma 18, we have that
V π∗

T∗,r − V πn

T∗,r

≤V π∗

T̂n,r+bn
+

√
|A|ζn

(1− γ)3
− V πn

T∗,r

≤V πn

T̂n,r+bn
+

√
|A|ζn

(1− γ)3
− V πn

T∗,r

≤ 1

1− γ
E(s,a)∼dπn

T∗

[
bn(s, a) + γET̂n(s′|s,a)[V

πn

T̂n,r+bn
(s′)]− γET∗(s′|s,a)[V

πn

T̂n,r+bn
(s′)]

]
+

√
|A|ζn

(1− γ)3
.

Applying Lemma 6 and note that bn = O(1), we have that
E(s,a)∼dπn

T∗ [bn(s, a)]

≲E(s,a)∼dπn
T∗

[
min

{
αn ∥p̂n(·|s, a)∥L2(µ),Σ

−1
ρn×U(A),p̂n

, 2
}]

≲E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

√
nγ|A|α2

nEs∼ρn,a∼U(A)

[
∥p̂n(·|s, a)∥2L2(µ),Σ

−1
ρn×U(A),p̂n

]
+ λγ2C

+

√
(1− γ)|A|α2

nEs∼ρn,a∼U(A)

[
∥p̂n(·|s, a)∥2L2(µ),Σ

−1
ρn×U(A),p̂n

]
.

Note that,

nEs∼ρn,a∼U(A)

[
∥p̂n(·|s, a)∥2L2(µ),Σ

−1
ρn×U(A),p̂n

]
=Tr

(
nEs∼ρn,a∼U(A)

[
p̂n(·|s, a)p̂n(·|s, a)⊤

] (
nEs∼ρn,a∼U(A)

[
p̂n(·|s, a)p̂n(·|s, a)⊤

]
+ λT−1

k

)−1
)

=Tr

(
nEs∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)p̂n(·|s, a)⊤T 1/2

k

] (
nEs∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)p̂n(·|s, a)⊤T 1/2

k

]
+ λI

)−1
)

≤ log det
(
I +

n

λ
Es∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)⊤p̂n(·|s, a)T 1/2

k

])
,

where the first equality is due to the definition of Hilbert-Schmidt inner product and the expecta-
tion operator is a linear operator, the second equality is due to the fact that Tr(A(A + B)−1) =

Tr
((
B−1/2AB−1/2

) (
I +B−1/2AB−1/2

)−1
)

for positive semi-definite operator A and posi-
tive definite operator B, and the last inequality is due to the fact that if A has the eigensystem
{µi, ei}, then A(A + λI)−1 has the eigensystem { µi

µi+λ , ei}, and x
1+x ≤ log(1 + x). Here

det denotes the Fredholm determinant. Note that, if x ∈ BHk
, T 1/2

k x ∈ BH
k̃
, and we know

Es∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)⊤p̂n(·|s, a)T 1/2

k

]
is in the trace class and the Fredholm determinant is

well-defined. Invoking Lemma 19, we have that

• For β-finite spectrum, as λ = Θ(β logN + log(N |P|/δ)), we have n/λ = O(n)

log det
(
I +

n

λ
Es∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)⊤p̂n(·|s, a)T 1/2

k

])
= O (β log n) ,
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which means
E(s,a)∼dπn

T∗ [bn(s, a)] ≲
√
γ|A|α2

nβ log(n) + λγ2C · E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

+

√
(1− γ)|A|α2

nβ log(n)

n
.

• For β-polynomial decay, as λ = Θ(CpolyN
1/(1+β) + log(N |P|/δ)) and n ≤ N , we have

n/λ = O
(
Cpolyn

β
1+β

)
and

log det
(
I +

n

λ
Es∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)⊤p̂n(·|s, a)T 1/2

k

])
= O

(
Cpolyn

1
2(1+β) log(n)

)
,

This leads to

E(s,a)∼dπn
T∗ [bn(s, a)] ≲

√
γ|A|Cpolyα2

nn
1

2(1+β) log n+ λγ2C · E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

+

√
(1− γ)|A|Cpolyn

−1+ 1
2(1+β) log(n)α2

n.

• For β-exponential decay, as λ = Θ
(
Cexp(logN)1/β + log(N |P|/δ)

)
, we have n/λ =

O (Cexpn) and

log det
(
I +

n

λ
Es∼ρn,a∼U(A)

[
T

1/2
k p̂n(·|s, a)⊤p̂n(·|s, a)T 1/2

k

])
= O

(
Cexp(log n)

1+1/β
)
,

This leads to

E(s,a)∼dπn
T∗ [bn(s, a)] ≲

√
γ|A|Cexp(log n)1+1/βα2

n + λγ2C · E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

+

√
(1− γ)|A|Cexp(log n)1+1/βα2

n

n
.

For the remaining terms, denote fn(s, a) = TV(T ∗(s′|s, a), T̂n(s′)|s, a) with ∥fn∥∞ ≤ 2. With
Hölder’s inequality, we have∣∣∣E(s,a)∼dπn

T∗

[
ET̂n(s′|s,a)

[
V πn

T̂n,r+bn
(s′)
]
− ET∗(s′|s,a)

[
V πn

T̂n,r+bn
(s′)
]]∣∣∣ ≲ E(s,a)∼dπn

T∗

[
fn(s, a)

1− γ

]
.

With Lemma 6, we have that

E(s,a)∼dπn
T∗

[
fn(s, a)

1− γ

]
≤E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρn,p∗

√
nγ|A|Es∼ρn,a∼U(A) [f2n(s, a)]

(1− γ)2
+

4λγ2C

(1− γ)2

+

√
|A|Es∼ρn,a∼U(A)[f2n(s, a)]

1− γ

≤E(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρn,p∗

·

√
nγ|A|ζn
(1− γ)2

+
4λγ2C

(1− γ)2
+

√
|A|ζn
1− γ

≲αnE(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρn,p∗

+

√
|A|ζn
1− γ

Combine with the previous results and take the dominating terms out, we have that

• For β-finite spectrum,
V π∗

T∗,r − V πn

T∗

≲
1

1− γ

√
γ|A|α2

nβ log n+ λγ2C · E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

+

√
|A|α2

nβ log n

(1− γ)n
+

√
|A|ζn

(1− γ)3
.

• For β-polynomial decay,
V π∗

T∗,r − V πn

T∗
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≲
1

1− γ

√
γ|A|Cpolyα2

nn
1

2(1+β) log n+ λγ2C · E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥Σ−1
ρn,p∗

+

√
|A|Cpolyα2

nn
−1+ 1

2(1+β) log n

1− γ
+

√
|A|ζn

(1− γ)3
.

• For β-exponential decay,
V π∗

T∗,r − V πn

T∗

≲
1

1− γ

√
γ|A|Cexpα2

n(log n)
1+1/β + λγ2C · E(s̃,ã)∼dπn

T∗ ∥p
∗(·|s̃, ã)∥Σ−1

ρn,p∗

+

√
|A|Cexpα2

n(log n)
1+1/β

(1− γ)n
+

√
|A|ζn

(1− γ)3
.

Finally, with Cauchy-Schwartz inequality, we have
N∑

n=1

E(s̃,ã)∼dπn
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρn,p∗

≤

√√√√N

N∑
n=1

E(s̃,ã)∼dπn
T∗

〈
p∗(·|s̃, ã),Σ−1

ρn,p∗p∗(·|s̃, ã)
〉
L2(µ)

.

Note that
E(s̃,ã)∼dπn

T∗

〈
p∗(·|s̃, ã),Σ−1

ρn,p∗p∗(·|s̃, ã)
〉
L2(µ)

=E(s̃,ã)∼dπn
T∗

〈
p∗(·|s̃, ã),

(
nE(s,a)∼ρn

[
p∗(·|s, a)p∗(·|s, a)⊤

]
+ λT−1

k

)−1
p∗(·|s̃, ã)

〉
L2(µ)

=E(s̃,ã)∼dπn
T∗

〈
T

1/2
k p∗(·|s̃, ã),

(
nE(s,a)∼ρn

[
T

1/2
k p∗(·|s, a)p∗(·|s, a)⊤T 1/2

k

]
+ λI

)−1

T
1/2
k p∗(·|s̃, ã)

〉
L2(µ)

=Tr

(n
λ
E(s,a)∼ρn

[
T

1/2
k p∗(·|s, a)p∗(·|s, a)⊤T 1/2

k

]
+ I
)−1

,
E(s̃,ã)∼dπn

T∗

[
T

1/2
k p∗(·|s̃, ã)p∗(·|s̃, ã)T 1/2

k

]
λ


≤ log det

((n
λ
E(s,a)∼ρn

[
T

1/2
k p∗(·|s, a)p∗(·|s, a)⊤T 1/2

k

]
+ I
))

− log det

((
n− 1

λ
E(s,a)∼ρn−1

[
T

1/2
k p∗(·|s, a)p∗(·|s, a)⊤T 1/2

k

]
+ I

))
,

where in the last inequality, we use the fact that log det(X) is concave with positive definite operators
X and d log det(X)

dX = (X⊤)−1.

Telescoping and applying Lemma 19, we have that:

• For β-finite spectrum: as N/λ = O(N), we have
N∑

n=1

E(s̃,ã)∼dπn
T∗

〈
p∗(·|s̃, ã),Σ−1

ρn,p∗p∗(·|s̃, ã)
〉
L2(µ)

= O(β logN).

• For β-polynomial decay: as λ = Θ(CpolyN
1/(1+β) + log(N |P|/δ)), we have N/λ =

O
(
CpolyN

β
1+β

)
and

N∑
n=1

E(s̃,ã)∼dπn
T∗

〈
p∗(·|s̃, ã),Σ−1

ρn,p∗p∗(·|s̃, ã)
〉
L2(µ)

= O
(
CpolyN

1
2(1+β) logN

)
.

• For β-exponential decay:
N∑

n=1

E(s̃,ã)∼dπn
T∗

〈
p∗(·|s̃, ã),Σ−1

ρn,p∗p∗(·|s̃, ã)
〉
L2(µ)

= O
(
Cexp(logN)1+1/β

)
.

Hence, after we substitute αn and λ back and take the dominating term out, we can conclude that:
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• For β-finite spectrum, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
β3/2|A| logN

√
CN log(N |P|/δ)

(1− γ)2
.

• For β-polynomial decay, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
Cpoly|A|N

1
2+

1
1+β logN

√
C log(N |P|/δ)

(1− γ)2
.

• For β-exponential decay, we have
N∑

n=1

V π∗

T∗,r − V πn

T∗ ≲
Cexp|A|

√
CN log(N |P|/δ)(logN)

3+2β
2β

(1− γ)2
.

This finishes the proof.

Theorem 9 (PAC Guarantee for Online Setting). After interacting with the environments for N
episodes where

• N = Θ
(

Cβ3|A|2 log(|P|/δ)
(1−γ)4ε2 log3

(
Cβ3|A|2 log(|P|/δ)

(1−γ)4ε2

))
for β-finite spectrum;

• N = Θ

Cpoly

(
|A|

√
C log(|P|/δ)
(1−γ)2ε log3/2

(√
C|A| log(|P|/δ)

(1−γ)2ε

)) 2(1+β)
β−1

 for β-polynomial

decay;

• N = Θ
(

CexpC|A|2 log(|P|/δ)
(1−γ)4ε2 log

3+2β
β

(
C|A|2 log(|P|/δ)

(1−γ)4ε2

))
for β-exponential decay;

we can obtain an ε-optimal policy with high probability.

Proof. Note that, log log x = O(log x). We consider the case with different eigendecay conditions
separately.

• For β-finite spectrum, by taking the output policy as the uniform policy over {πi}i∈[n], we
can obtain a policy with the sub-optimality gap

O

(
β3/2|A| logN

√
C log(N |P|/δ)

(1− γ)2
√
N

)
.

Take N = Θ
(

Cβ3|A|2 log(|P|/δ)
(1−γ)4ε2 log3

(
Cβ3|A|2 log(|P|/δ)

(1−γ)4ε2

))
, we can see the sub-optimality

gap is smaller than ε, which finishes the proof for β-finite spectrum.

• For β-polynomial decay, by taking the output policy as the uniform policy over {πi}i∈[n],
we can obtain a policy with the sub-optimality gap

O

(
CpolyN

β−1
2(1+β) logN

√
C log(N |P|/δ)

(1− γ)2

)
.

Take N = Θ

Cpoly

(
|A|

√
C log(|P|/δ)
(1−γ)2ε log3/2

(√
C|A| log(|P|/δ)

(1−γ)2ε

)) 2(1+β)
β−1

, we can see

the sub-optimality gap is smaller than ε, which finishes the proof for β-exponential decay.

• For β-exponential decay, by taking the output policy as the uniform policy over {πi}i∈[n],
we can obtain a policy with the sub-optimality gap

O

(
Cexp|A|

√
C log(N |P|/δ)(logN)

3+2β
2β

(1− γ)2
√
N

)
.
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Take N = Θ
(

CexpC|A|2 log(|P|/δ)
(1−γ)4ε2 log

3+2β
β

(
C|A|2 log(|P|/δ)

(1−γ)4ε2

))
, we can see the sub-

optimality gap is smaller than ε, which finishes the proof for β-exponential decay.

As a result, we finish the proof for the PAC guarantee.

E.3 PROOF FOR THE OFFLINE SETTING

Similar to the online exploration case, we can obtain the upper bound of the statistical error for π̂,
which is stated in the following:

Theorem 10 (PAC Guarantee for Offline Exploitation). Define ω := maxs,a π
−1
b (a|s), and

C∗
π := sup

x∈L2(µ)

E(s,a)∼dπ
T∗

[
⟨p∗(·|s, a), x⟩L2(µ)

]2
E(s,a)∼ρ

[
⟨p∗(·|s, a), x⟩L2(µ)

]2 .

If the penalty and its corresponding parameters are identical to the bonus we define in Theorem 4, then
with probability at least 1−δ, for any competitor policy π including non-Markovian history-dependent
policy, we have

• For β-finite spectrum, we have

V π
T∗,r − V π̂

T∗,r ≲
ωβ3/2 log n

(1− γ)2

√
CC∗

π log(|P|/δ)
n

• For β-polynomial decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cpolyωn

1−β
2(1+β) log n

√
CC∗

π log(|P|/δ)
(1− γ)2

• For β-exponential decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cexpω(log n)

3+2β
2β

(1− γ)2

√
CC∗

π log(|P|/δ)
n

We start by showing that C∗
π can be viewed as a measure of the offline data quality, which can be

demonstrated by the following lemma, that was first introduced in Chang et al. (2021):

Lemma 11 (Distribution Shift Lemma). For any positive definite operator Λ : L2(µ) → L2(µ), we
have that

E(s,a)∼dπ
T∗ ⟨p

∗(·|s, a),Λp∗(·|s, a)⟩L2(µ) ≤ C∗
πE(s,a)∼ρ⟨p∗(·|s, a),Λp∗(·|s, a)⟩L2(µ).

Proof. We denote the eigendecomposition of Λ as Λ = UΣU where {σi, ui} is the eigensystem of
Λ. Then we have

E(s,a)∼dπ
T∗ ⟨p

∗(·|s, a),Λp∗(·|s, a)⟩L2(µ)

=
∑
i∈I

σiE(s,a)∼dπ
T∗ ⟨ui, p

∗(·|s, a)⊤⟩2L2(µ)

≤C∗
π

∑
i∈I

σiE(s,a)∼ρ⟨ui, p∗(·|s, a)⊤⟩2L2(µ)

=C∗
πE(s,a)∼ρ⟨p∗(·|s, a),Λp∗(·|s, a)⟩L2(µ),

which finishes the proof.

We also define the Σρ,ϕ : L2(µ) → L2(µ):
Σρ,ϕ := nE(s,a)∼ρ

[
ϕ(s, a)ϕ⊤(s, a)

]
+ λT−1

k ,

where ρ is the stationary distribution of πb.

Lemma 12 (One Step Back Inequality for the Learned Model in Offline Setting). Assume g :
S ×A → R, such that ∥g∥∞ ≤ B. Then conditioning on the following generalization bound:

E(s,a)∼ρ∥T̂ (s, a)− T ∗(s, a)∥21 ≤ ζ,
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we have that ∀π∣∣∣E(s,a)∼dπ
T̂
[g(s, a)]

∣∣∣
≤γE(s̃,ã)∼dπ

T̂
∥p̂(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p̂

√
nωγE(s,a)∼ρ [g2(s, a)] + λB2C + nB2ζ

+
√

(1− γ)ωE(s,a)∼ρ[g2(s, a)].

Proof. We still start from the following inequality:
E(s,a)∼dπ

T̂
[g(s, a)] = γE(s̃,ã)∼dπ

T̂
,s∼p̂n(·|s̃,ã),a∼π(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π(·|s)[g(s, a)].

For the second term, with Jensen’s inequality and an importance sampling step, we have that

(1− γ)Es∼d0,a∼π(·|s)[g(s, a)] ≤
√
(1− γ)ωE(s,a)∼ρ[g2(s, a)].

For the first term, with Cauchy-Schwartz inequality of L2(µ) inner product, we have that
γE(s̃,ã)∼dπ

T̂
,s∼T̂ (·|s̃,ã),a∼π(·|s)[g(s, a)]

=γE(s̃,ã)∼dπ
T̂

〈
p̂(·|s̃, ã),

∫
S

∑
a∈A

p̂(s|·)π(a|s)g(s, a)ds

〉
L2(µ)

≤γE(s̃,ã)∼dπ
T̂
∥p̂(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p̂

∥∥∥∥∥
∫
S

∑
a∈A

p̂(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
L2(µ),Σρ,p̂

.

Note that ∥∥∥∥∥
∫
S

∑
a∈A

p̂(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
2

L2(µ),Σρ,p̂

=nE(s̃,ã)∼ρ

{
Es∼T̂ (·|s̃,ã),a∼π(·|s)[g(s, a)]

}2

+ λ

∥∥∥∥∥
∫
S

∑
a∈A

p̂(s|·)π(a|s)g(s, a)ds

∥∥∥∥∥
Hk

≤nE(s̃,ã)∼ρ

{
Es∼T∗(·|s̃,ã),a∼π(·|s)[g(s, a)]

}2
+ λB2C + nB2ζ

≤nE(s̃,ã)∼ρ

{
Es∼T∗(·|s̃,ã),a∼π(·|s)[g

2(s, a)]
}
+ λB2C + nB2ζ

≤nωE(s̃,ã)∼ρ

{
Es∼T∗(·|s̃,ã),a∼πb(·|s)[g

2(s, a)]
}
+ λB2C + nB2ζ

≤nω
γ

E(s,a)∼ρ[g
2(s, a)] + λB2C + nB2ζ.

Substitute back, we have the desired result.

Lemma 13 (One Step Back Inequality for the True Model in Offline Setting). Assume g : S×A → R,
such that ∥g∥∞ ≤ B. Then we have that ∀π,∣∣∣E(s,a)∼dπ

T∗ [g(s, a)]
∣∣∣

≤γE(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p̂

√
nωγE(s,a)∼ρ [g2(s, a)] + λγ2B2C

+
√

(1− γ)ωE(s,a)∼ρ[g2(s, a)].

Proof. The proof for this lemma is nearly identical to the previous lemma, and we omit it for
simplicity.

Lemma 14 (Almost Pessimism at the Initial Distribution). If we set ζ = Θ
(

log(|P|/δ)
n

)
, λ for

different eigendecay condition as follows:

• β-finite spectrum: λ = Θ(β log n+ log(|P|/δ))

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|P|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|P|/δ));
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and α = Θ
(

γ
1−γ

√
ω log(|P|/δ) + λγ2C

)
, the following events hold with probability at least 1− δ:

∀π, V π
T̂ ,r−b

− V π
T∗,r ≤

√
ωζ

(1− γ)3
.

Proof. Note that, with the proof of Lemma 17 and a union bound over P (but not over n), we know
using the chosen λ, ∀T̂ ∈ P , with probability at least 1− δ,

∥p̂(·|s, a)∥L2(µ),Σ̂
−1
n,p̂

= Θ
(
∥p̂(·|s, a)∥−1

L2(µ),Σρ,p̂

)
.

With Lemma 18, we have that

(1− γ)
(
V π
T̂ ,r−b

− V π
T∗,r

)
=E(s,a)∼dπ

T̂

[
−b(s, a) + γET̂ (s′|s,a)

[
V π
T∗,r(s

′)
]
− γET∗(s′|s,a)

[
V π
T∗,r(s

′)
]]

≲E(s,a)∼dπ
T̂

[
−min

{
α ∥p̂(·|s, a)∥L2(µ),Σ

−1
ρ,p̂
, 2
}
+ γET̂ (s′|s,a)

[
V π
T∗,r(s

′)
]
− γET∗(s′|s,a)

[
V π
T∗,r(s

′)
]]

Denote f(s, a) = TV(T̂ (s, a), T ∗(s, a)), we know ∥f∥∞ ≤ 2. With Hölder’s inequality, we can
obtain that ∣∣∣ET̂ (s′|s,a)

[
V π
T∗,r(s

′)
]
− ET∗(s′|s,a)

[
V π
T∗,r(s

′)
]∣∣∣ ≤ E(s,a)∼dπ

T̂

[
f(s, a)

1− γ

]
.

With Lemma 12, we have that

E(s,a)∼dπ
T̂

[
f(s, a)

1− γ

]
≤E(s̃,ã)∼dπ

T̂
∥p̂(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p̂

√
nωγ2E(s,a)∼ρ[f2(s, a)]

(1− γ)2
+

4λγ2C

(1− γ)2
+

4nγ2ζ

(1− γ)2

+

√
ωE(s,a)∼ρ[f2(s, a)]

1− γ

≤E(s̃,ã)∼dπ
T̂
∥p̂(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p̂

√
nωγ2ζn
(1− γ)2

+
4λγ2C

(1− γ)2
+

4nγ2ζ

(1− γ)2
+

√
ωζ

1− γ
.

With the choice of α, we can conclude the proof.

Theorem 15 (PAC Guarantee for Offline Setting). With probability at least 1− δ, for any competitor
policy π including non-Markovian history-dependent policy, we have

• For β-finite spectrum, we have

V π
T∗,r − V π̂

T∗,r ≲
ωβ3/2 log n

(1− γ)2

√
CC∗

π log(|P|/δ)
n

• For β-polynomial decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cpolyωn

1−β
2(1+β) log n

√
CC∗

π log(|P|/δ)
(1− γ)2

• For β-exponential decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cexpω(log n)

3+2β
2β

(1− γ)2

√
CC∗

π log(|P|/δ)
n

Proof. With Lemma 14 and Lemma 18, we have that
V π
T∗,r − V π̂

T∗,r

≤V π
T∗,r − V π̂

T̂ ,r−b
+

√
ωζ

(1− γ)3
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≤V π
T∗,r − V π

T̂ ,r−b
+

√
ωζ

(1− γ)3

≤ 1

1− γ
E(s,a)∼dπ

T∗

[
b(s, a) + γET∗(s′|s,a)

[
V π
T∗,r(s

′)
]
− γET̂ (s′|s,a)

[
V π
T∗,r(s

′)
]]

+

√
ωζ

(1− γ)3
.

As b = O(1), with Lemma 13, we have that
E(s,a)∼dπ

T∗ [b(s, a)]

≲E
[
min

{
α ∥p̂(·|s, a)∥L2(µ),Σ

−1
ρ,p̂
, 2
}]

≲E(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p∗

√
nωγα2E(s,a)∼ρ

[
∥p̂(·|s, a)∥2L2(µ),Σ

−1
ρ,p̂

]
+ λγ2C

+

√
(1− γ)ωα2E(s,a)∼ρ

[
∥p̂(·|s, a)∥2L2(µ),Σ

−1
ρ,p̂

]
.

With the reasoning similar to the proof in Lemma 8, we have that

• For β-finite spectrum,

E(s,a)∼ρ

[
∥p̂(·|s, a)∥2L2(µ),Σ

−1
ρ,p̂

]
= O (β log n) ,

which leads to
E(s,a)∼dπ

T∗ [b(s, a)] ≲E(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p∗

√
ωγβα2 log n+ λγ2C

+

√
(1− γ)ωβα2 log n

n
.

• For β-polynomial decay,

E(s,a)∼ρ

[
∥p̂(·|s, a)∥2L2(µ),Σ

−1
ρ,p̂

]
= O

(
Cpolyn

1
2(1+β) log n

)
,

which leads to

E(s,a)∼dπ
T∗ [b(s, a)] ≲E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
ωγCpolyα2n

1
2(1+β) log n+ λγ2C

+

√
(1− γ)ωCpolyα2n−1+ 1

2(1+β) log n.

• For β-exponential decay,

E(s,a)∼ρ

[
∥p̂(·|s, a)∥2L2(µ),Σ

−1
ρ,p̂

]
= O

(
Cexp(log n)

1+1/β
)
,

which leads to

E(s,a)∼dπ
T∗ [b(s, a)] ≲E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
ωγCexpα2(log n)1+1/β + λγ2C

+

√
(1− γ)ωα2Cexp(log n)1+1/β

n
.

Furthermore, denote f(s, a) = TV(T̂ (s, a), T ∗(s, a)), we have ∥f∥∞ ≤ 2. With Hölder’s inequality,
we have∣∣∣E(s,a)∼dπ

T∗

[
ET∗(s′|s,a)

[
V π
T∗,r(s

′)
]
− ET̂ (s′|s,a)

[
V π
T∗,r(s

′)
]]∣∣∣ ≤ E(s,a)∼dπ

T∗

[
f(s, a)

1− γ

]
.

With Lemma 13, we have

E(s,a)∼dπ
T∗

[
f(s, a)

1− γ

]
≤ E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
nωγE(s,a)∼ρ[f2(s, a)]

(1− γ)2
+

4λγ2C

(1− γ)2

+

√
ωE(s,a)∼ρ[f2(s, a)]

1− γ

≤E(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p∗

·

√
nωγζ

(1− γ2)
+

4λγ2C

(1− γ)2
+

√
ωζ

(1− γ)
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≲αnE(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p∗

+

√
ωζ

1− γ
.

Combine with the previous results and take the dominating terms out, we have that

• For β-finite spectrum,
V π
T∗,r − V π̂

T∗,r

≲
1

1− γ
E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
ωγβα2 log n+ λγ2C

+

√
ωβα2 log n

(1− γ)n
+

√
ωζ

(1− γ)3
.

• For β-polynomial decay,
V π
T∗,r − V π̂

T∗

≲
1

1− γ
E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
ωγCpolyα2n

1
2(1+β) log n+ λγ2C

+

√
ωCpolyα2n−1+ 1

2(1+β) log n

1− γ
+

√
ωζ

(1− γ)3
.

• For β-exponential decay,
V π
T∗,r − V π̂

T∗,r

≲
1

1− γ
E(s̃,ã)∼dπ

T∗ ∥p
∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

√
ωγCexpα2(log n)1/β log log n+ λγ2C

+

√
ωCexpα2(log n)1+1/β

(1− γ)n
+

√
ωζ

(1− γ)3
.

We now deal with the term E(s̃,ã)∼dπ
T∗ ∥p∗(·|s̃, ã)∥L2(µ),Σ

−1
ρ,p∗

. With Lemma 11, we know

E(s̃,ã)∼dπ
T∗ ∥p

∗(·|s̃, ã)∥L2(µ),Σ
−1
ρ,p∗

≤
√

E(s̃,ã)∼dπ
T∗ ∥p∗(·|s̃, ã)∥

2
L2(µ),Σ

−1
ρ,p∗

≤
√
CE(s̃,ã)∼ρ ∥p∗(·|s̃, ã)∥

2
L2(µ),Σ

−1
ρ,p∗

.

Applying the identical method used in the proof of Lemma 8, we have that:

• For β-finite spectrum, we have

E(s̃,ã)∼ρ

[
∥p∗(·|s̃, ã)∥2L2(µ),Σ

−1
ρ,p∗

]
= O (β log n) .

• For β-polynomial decay, we have

E(s̃,ã)∼ρ

[
∥p∗(·|s̃, ã)∥2L2(µ),Σ

−1
ρ,p∗

]
= O

(
Cpolyn

1
2(1+β) log n

)
.

• For β-exponential decay, we have

E(s̃,ã)∼ρ

[
∥p∗(·|s̃, ã)∥2L2(µ),Σ

−1
ρ,p∗

]
= O

(
Cexp (log n)

1+1/β
)
.

Substitute α and λ back, we have that:

• For β-finite spectrum, we have

V π
T∗,r − V π̂

T∗,r ≲
ωβ3/2 log n

(1− γ)2

√
CC∗

π log(|P|/δ)
n
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• For β-polynomial decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cpolyωn

1−β
2(1+β) log n

√
CC∗

π log(|P|/δ)
(1− γ)2

• For β-exponential decay, we have

V π
T∗,r − V π̂

T∗,r ≲
Cexpω(log n)

3+2β
2β

(1− γ)2

√
CC∗

π log(|P|/δ)
n

This finishes the proof.

F AUXILLARY LEMMAS

We first state the MLE generalization bound from (Agarwal et al., 2020). Note that, when Assump-
tion 1 holds, the MLE generalization bound only depends on the complexity of P .

Lemma 16 (MLE Generalization Bound (Agarwal et al., 2020)). For a fixed episode n, with
probability at least 1− δ, we have that

Es∼0.5ρn+0.5ρ′
n,a∼U(A)

[∥∥∥T̂n(s, a)− T ∗(s, a)
∥∥∥2
1

]
≤ log(|P|/δ)

n
.

With a union bound, with probability at least 1− δ, we have that

∀n ∈ N+,Es∼0.5ρn+0.5ρ′
n,a∼U(A)

[∥∥∥T̂n(s, a)− T ∗(s, a)
∥∥∥2
1

]
≤ log(n|P|/δ)

n

Lemma 17 (Concentration of the Bonuses). Let µi be the conditional distribution of ϕ given
the sampled ϕ1, · · · , ϕi−1, define Σ : L2(µ) → L2(µ), Σn := 1

n

∑
i∈[n] Eϕ∼µi

ϕϕ⊤. Assume
∥ϕ∥Hk

≤ 1 for any realization of ϕ. If λ satisfies the following conditions for each eigendecay
condition:

• β-finite spectrum: λ = Θ(β logN + log(N/δ));

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β+log(N/δ)), where C3 is a constant depends
on C1 and C2;

then there exists absolute constant c1 and c2, such that ∀x ∈ Hk, the following event holds with
probability at least 1− δ:

∀n ∈ [N ], c1
〈
x,
(
nΣn + λT−1

k

)
x
〉
L2(µ)

≤

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

x

〉
L2(µ)

,

and

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

x

〉
L2(µ)

≤c2
〈
x,
(
nΣn + λT−1

k

)
x
〉
L2(µ)

.

In the same event above, the following event must hold as well:

∀n ∈ [N ],
1

c2

〈
x,
(
nΣn + λT−1

k

)−1
x
〉
L2(µ)

≤

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

x

〉
L2(µ)

and

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

x

〉
L2(µ)

≤ 1

c1

〈
x,
(
nΣn + λT−1

k

)−1
x
〉
L2(µ)

Proof. Note that, ∥T−1/2
k ϕ∥L2(µ) = ∥ϕ∥Hk

≤ 1. Hence, the operator norm of operators Σ̃n :=

T
−1/2
k ΣnT

−1/2
k that maps from L2(µ) to L2(µ) are upper bounded by 1. For notation simplicity, we
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define ϕ̃ := T
−1/2
k ϕ and µ̃i denotes the conditional distribution of ϕ̃ given the sampled ϕ̃1, · · · , ϕ̃i−1.

Note that ∀x ∈ Hk, T 1/2
k x ∈ Hk̃. We now prove the following equivalent form of the claim:

∀x ∈ Hk̃, ∀n ≥ 1,

c1

〈
x,
(
nΣ̃n + λT−2

k

)
x
〉
L2(µ)

≤

〈
x,

∑
i∈[n]

ϕ̃ϕ̃⊤ + λT−2
k

x

〉
L2(µ)

≤ c2

〈
x,
(
nΣ̃n + λT−2

k

)
x
〉
L2(µ)

It is sufficient to consider x with ∥x∥H
k̃
= 1. Note that, we have〈

x, ϕ̃ϕ̃⊤x
〉
L2(µ)

=
〈
x, ϕ̃

〉2
L2(µ)

≤ ∥x∥2L2(µ)
.

Denote Σ̃i := Eϕ∼µi
ϕ̃ϕ̃⊤. We have

Varϕ∼µi

[
⟨x, ϕ̃⟩2L2(µ)

]
≤ ∥x∥2L2(µ)

Eϕ̃∼µ̃i

[
⟨x, ϕ̃⟩2L2(µ)

]
= ∥x∥2L2(µ)

⟨x, Σ̃ix⟩L2(µ)

we can invoke a Bernstein-style martingale concentration inequality (Lemma 45, Zanette et al., 2021),
and obtain that with probability at least 1− δ∣∣∣∣∣∣ 1n
∑
i∈[n]

[
⟨x, ϕ̃i⟩2L2(µ)

]
− ⟨x, Σ̃x⟩L2(µ)

∣∣∣∣∣∣ ≤ c


√

∥x∥2L2(µ)
⟨x, Σ̃nx⟩L2(µ) log(2/δ)

n
+

∥x∥2L2(µ)
log(2/δ)

3n

 ,

where c is an absolute constant. We then show that, if we have λ = Ω(log(1/δ)), we have that

c


√

∥x∥2L2(µ)
⟨x, Σ̃x⟩L2(µ) log(2/δ)

n
+

∥x∥L2(µ)2 log(2/δ)

3n

 ≤ C

(
⟨x, Σ̃x⟩L2(µ) +

λ∥x∥2L2(µ)

n

)
.

where C < 1 is an absolute constant, following the similar reasoning in the proof of Lemma 39 in
(Zanette et al., 2021):

• ⟨x, Σ̃x⟩L2(µ) ≤
λ∥x∥2

L2(µ)

n : It’s sufficient to show that c
√
λ log(2/δ) ≤ Cλ

2 and c log(2/δ)
3 ≤

Cλ
2 , which can be achieved by λ = Ω(log 1/δ).

• ⟨x, Σ̃x⟩L2(µ) ≥
λ∥x∥2

L2(µ)

n : It’s sufficient to show that

λ ≥ c

C
log(2/δ) and

c

C

√
∥x∥2L2(µ)

log(2/δ)

n
≤
√
⟨x, Σ̃x⟩L2(µ).

As ⟨x, Σ̃x⟩L2(µ) ≥ λ∥x∥2
L2(µ)

n , when λ ≥ max
{

c
C ,

c2

C2

}
log(2/δ), these two conditions

hold simultaneously.

Hence, for any fixed x with ∥x∥H
k̃
= 1, we have∣∣∣∣∣∣ 1n

∑
i∈[n]

[
⟨x, ϕ̃i⟩2L2(µ)

]
− ⟨x, Σ̃x⟩L2(µ)

∣∣∣∣∣∣ ≤ C

〈
x,

(
Σ̃ +

λ

n
I

)
x

〉
L2(µ)

≤ C

〈
x,

(
Σ̃ +

λ

n
T−2
k

)
x

〉
L2(µ)

.

Now, assume such condition holds for an ε-net Bε of SH
k̃
, the unit sphere of RKHS Hk̃ (i.e.

{x : ∥x∥H
k̃
= 1}), under ∥ · ∥L2(µ). Then ∀x satisfies ∥x∥H

k̃
= 1, let x′ be the closest point of x in

Bε under ∥ · ∥L2(µ) (note that x′ ∈ Hk̃ by the definition of ε-net). We have that∣∣∣⟨x, Σ̃x⟩ − ⟨x′, Σ̃x′⟩
∣∣∣ ≤2ε∣∣∣∣∣∣

〈
x,

 1

n

∑
i∈[n]

ϕ̃iϕ̃
⊤
i

x

〉
−

〈
x′,

 1

n

∑
i∈[n]

ϕ̃iϕ̃
⊤
i

x′

〉∣∣∣∣∣∣ ≤2ε
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With a triangle inequality, ∀n, ∀∥x∥Hk
≤ 1, we have∣∣∣∣∣∣∣

〈
x,

 1

n

∑
i∈[n]

ϕ̃iϕ̃
⊤
i +

λ

n
T−2
k

x

〉
L2(µ)

−
〈
x,

(
Σ̃ +

λ

n
T−2
k

)
x

〉
L2(µ)

∣∣∣∣∣∣∣
≤C

〈
x,

(
Σ̃ +

λ

n
T−2
k

)
x

〉
L2(µ)

+ (4 + 2C)ε

Hence, we can choose ε = O
(
λ
n

)
, to guarantee that

C

〈
x,

(
Σ̃ +

λ

n
T−2
k

)
x

〉
L2(µ)

+ (4 + 2C)ε ≤ C ′
〈
x,

(
Σ̃ +

λ

n
T−2
k

)
x

〉
L2(µ)

,

where C ′ < 1 is an absolute constant.

Now we consider the covering number N (SH
k̃
, ∥ · ∥L2(µ), ε). We start from the entropy number

ei(SH
k̃
, ∥ · ∥L2(µ)). From (A.36) in Steinwart & Christmann (2008), we know

ei(BH
k̃
, ∥ · ∥L2(µ)) ≤ ei(SH

k̃
, ∥ · ∥L2(µ)) ≤ 2ei(BH

k̃
, ∥ · ∥L2(µ)),

where BH
k̃

is the unit ball in RKHS Hk̃ (i.e. {x : ∥x∥H
k̃
≤ 1}). With Carl’s inequality1 (Carl &

Stephani, 1990) (also see (Steinwart et al., 2009)), ∀p > 0,m ∈ N+, we have
sup
i∈[m]

i1/pei(id : Hk̃ → L2(µ))

≤cp sup
i∈[m]

i1/pµ
1/2
i

(
T 2
k : L2(µ) → L2(µ)

)
=cp sup

i∈[m]

i1/pµi (Tk : L2(µ) → L2(µ))

where cp = 128(32+16/p)1/p denotes a constant only depending on p. We then consider the entropy
number under different eigendecay conditions:

• For β-finite spectrum, as we have
∑

i∈I µi ≤ 1 from Assumption 3, and ∀i > β, µi(Tk :
L2(µ) → L2(µ)) = 0, we know for a fixed p,

ei(id : Hk̃ → L2(µ)) ≤ 128 ((32 + 16/p))
1/p

(β/i)1/p.

Take p = β/i, we know that
ei(id : Hk̃ → L2(µ)) ≤ 128(32β + 16)−i/β .

• For β-polynomial decay, take p = 2/β and obtain that
ei(id : Hk̃ → L2(µ)) ≤ 128C0(32 + 8β)β/2i−β .

• For β-exponential decay, note that, for a fixed p, direct computation shows the maximum of
i1/p exp(−C2i

β) is achieved when iβ = 1
C2βp

. Furthermore, i1/p exp(−C2i
β) is monoton-

ically increasing with respect to i when iβ < 1
C2βp

, while monotonically decreasing with
respect to i when iβ > 1

C2βp
. Hence, for a given i, we can choose p such that iβ > 1

C2βp
,

and obtain that
ei(id : Hk̃ → L2(µ)) ≤ 128(32 + 16/p)1/pC1 exp(−C2i

β).

As we can take p→ ∞, we have that
ei(id : Hk̃ → L2(µ)) ≤ 128C1 exp(−C2i

β).

We now convert the entropy number bound for different eigendecay conditions to the covering number
bound accordingly.

1A more formal claim is on the approximation number of the bounded linear operator, which, as shown in
Steinwart & Christmann (2008), is identical to the eigenvalue of the bounded linear operator if the bounded
linear operator is compact, self-adjoint and positive.

35



Published as a conference paper at ICLR 2023

• For β-finite spectrum, we fix a δ ∈ (0, 1) and an ε ∈ (0, 128], and assume the integer i ≥ 1
satisfies the condition:

128(1 + δ)(32β + 16)−(i+1)/β ≤ ε ≤ 128(1 + δ)(32β + 16)−i/β .

By the definition of the entropy number and covering number, we know
logN (BH

k̃
, ∥ · ∥L2(µ), ε)

≤ logN (BH
k̃
, ∥ · ∥L2(µ), 128(1 + δ)(32β + 16)−(i+1)/β)

≤i log(2)

≤β log(2) log
(
128(1 + δ)

ε

)
≤β log(2) log

(
256

ε

)
= O (β log(1/ε))

• For β-polynomial decay, with Lemma 6.21 in (Steinwart & Christmann, 2008), we have that

logN (BH
k̃
, ∥ · ∥L2(µ), ε) ≤ log(4)

(
128C0(32 + 8β)

β
2

ε

)1/β

= O
(
Cpolyε

−1/β
)
.

• For β-exponential decay, we fix a δ ∈ (0, 1) and an ε ∈ (0, 128C1], and assume the integer
i ≥ 1 satisfies the condition

128C1(1 + δ) exp(−C2(i+ 1)β) ≤ ε ≤ 128C1(1 + δ) exp(−C2i
β).

By the definition of the entropy number and covering number, we know
logN (BH

k̃
, ∥ · ∥L2(µ), ε)

≤ logN (BH
k̃
, ∥ · ∥L2(µ), 128C1(1 + δ) exp(−C2(i+ 1)β))

≤i log(2)

≤ log(2)

 log
(

128C1(1+δ)
ε

)
C2

1/β

≤ log(2)

(
log
(
256C1

ε

)
C2

)1/β

= O
(
Cexp log(1/ε)

1/β
)
,

where C3 is a constant depends on C1 and C2.

Note that n ≤ N . Hence, we can choose ε for different eigendecay conditions and lead to the first
claim as follows:

• For β-finite spectrum: we choose ε = Θ(n−1), and obtain the first claim with λ =
Θ(β logN + log(N/δ)) using a union bound over Bε and [N ].

• For β-polynomial decay: we choose ε = Θ(n−β/(1+β)), and obtain the first claim with
λ = Θ

(
CpolyN

1/(1+β) + log(N/δ)
)

using a union bound over Bε and [N ].

• For β-exponential decay: we choose ε = Θ(n−1), and obtain the first claim with λ =
Θ
(
Cexp(logN)1/β + log(N/δ)

)
using a union bound over Bε and [N ].

For the second claim, note that,〈
x,
(
nΣ̃n + λT−1

k

)
x
〉
=
〈
T

−1/2
k x, T

1/2
k

(
nΣ̃nT

1/2
k + λT−1

k

)
T

1/2
k T

−1/2
k x

〉
,〈

x,

(
n∑

i=1

ϕiϕ
⊤
i + λT−1

k

)
x

〉
=

〈
T

−1/2
k x, T

1/2
k

(
n

n∑
i=1

ϕiϕ
⊤
i + λT−1

k

)
T

1/2
k T

−1/2
k x

〉
.
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Note that, {T−1/2
k x, x ∈ Hk} spans the L2(µ), when the first claim holds, we have that, ∀x′ ∈ L2(µ),

∀n ∈ [N ]

1

c2

〈
x′, T

−1/2
k (nΣ+ λTk)

−1
T

−1/2
k x′

〉
L2(µ)

≤

〈
x′, T

−1/2
k

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

T
−1/2
k x′

〉
L2(µ)

,

and〈
x′, T

−1/2
k

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

T
−1/2
k x′

〉
L2(µ)

≤ 1

c1

〈
x′,
(
nΣ+ λT−1

k

)−1
T

−1/2
k x′

〉
L2(µ)

.

As ∀x ∈ Hk, Tkx ∈ L2(µ) and we can choose x′ = Tkx, which shows the second claim holds when
the first claim holds.

Remark 9. Here we follow the idea of Zanette et al. (2021, Lemma 45) and present a less involved
proof. However, it is also possible to use the Bernstein inequality for matrix martingale with intrinsic
dimension (e.g. Minsker, 2017) to prove the similar results.

Lemma 18 (Simulation Lemma). Suppose we have two MDP instances M = (S,A, P, r, d0, γ) and
M′ = (S,A, P ′, r + b, d0, γ). Then for any policy π, we have that

V π
P ′,r+b − V π

T,r =
1

1− γ
E(s,a)∼dπ

P

[
b(s, a) + γ

[
EP ′(s′|s,a)[V

π
P ′,r+b(s

′)]− EP (s′|s,a)[V
π
P ′,r+b(s

′)]
]]
,

V π
P ′,r+b − V π

T,r =
1

1− γ
E(s,a)∼dπ

P ′

[
b(s, a) + γ

[
EP ′(s′|s,a)[V

π
T,r(s

′)]− EP (s′|s,a)[V
π
T,r(s

′)]
]]
.

Proof. See Uehara et al. (2022, Lemma 20).

Lemma 19 (Potential Function Lemma for RKHS). If α = Ω(1), then for any distribution ν
supported on the unit ball of Hk̃, we have that,

• For β-finite spectrum:

log det
(
αEν [ϕϕ

⊤] + I
)
= O

(
β log

(
1 +

α

β

))
.

• For β-polynomial decay:

log det
(
αEν [ϕϕ

⊤] + I
)
= O

(
Cpolyα

1/(2β) logα
)
.

• For β-exponential decay:

log det
(
αEν [ϕϕ

⊤] + I
)
= O

(
Cexp(logα)

1+1/β
)
.

where operators are in the space of L2(µ) → L2(µ).

Meanwhile, when α = O(1), for any eigendecay conditions, we have that
log det

(
αEν [ϕϕ

⊤] + I
)
= O(1).

Proof. We consider the optimization problem:
sup
ν

log det
(
I + αEϕ∼ν

[
ϕϕ⊤

])
.

We first consider the optimality condition of ν. Note that, log det(X) is concave with respect to
positive definite X and Eϕ∼ν

[
ϕϕ⊤

]
is linear with respect to ν. Direct computation shows that

d log det
(
I + αEϕ∼ν

[
ϕϕ⊤

])
dν(ϕ′)

=Tr
(
α
(
I + αEϕ∼ν

[
ϕϕ⊤

])−1
ϕϕ⊤

)
=
〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

.
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Note that,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1 ⪯ αI . Hence, the inner product is well-defined. As ν is a
probability measure over the BH

k̃
, and if c ≥ 1,〈

cϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
cϕ′
〉
L2(µ)

=c2
〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

≥
〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

.

Hence, we can focus on the ν supported on SH
k̃
. Furthermore, with the optimality condition of the

probability measure, we know the optimal ν should satisfy that ∀ϕ′ ∈ supp(ν),〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

= C,

and ∀ϕ′ ∈ SH
k̃
, we have 〈

ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

≤ C,

where C is some constant.

We first show that, C ≥ αµ1(Tk)
2

αµ2
1(Tk)+1

, which can be shown by consider the following constraint
optimization problem

inf
ν

〈
ϕ′,

(
λ

n
I + Eϕ∼ν

[
ϕϕ⊤

])−1

ϕ′

〉
L2(µ)

,

where ν is from the space of probability measure supported on SH
k̃
. As ⟨x,A−1x⟩ is convex with

respect to positive definite A and Eϕ∼ν [ϕϕ
⊤] is linear with respect to ν, straightforward computation

shows that
d
〈
ϕ′,
(
λ
nI + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

dν
(
ϕ̃
) = −

〈
ϕ′,

(
λ

n
I + Eϕ∼ν

[
ϕϕ⊤

])−1

ϕ̃

〉2

L2(µ)

.

With the optimality condition, the optimal ν should satisfy that ∀ϕ ∈ supp(ν),〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ̃
〉2
L2(µ)

= C ′.

and ∀ϕ̃ ∈ SH
k̃
, we have 〈

ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ̃
〉2
L2(µ)

≤ C ′,

where C ′ is an absolute constant. With Cauchy-Schwartz inequality, we have〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ̃
〉2
L2(µ)

≤
∥∥∥Tk (α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
∥∥∥
L2(µ)

∥T−1
k ϕ̃∥L2(µ)

=
∥∥∥Tk (α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
∥∥∥
L2(µ)

,

where the maximum only achieves when
ϕ′ = c′

(
α−1I + Eϕ∼ν [ϕϕ

⊤]
)
T−2
k ϕ̃.

where c′ is an absolute constant to make sure ∥ϕ̃∥H
k̃
= 1. Hence, the optimal ν is a point measure

supported on ϕ̃, which further leads to(
α−1I + ϕ̃ϕ̃⊤

)
T−2
k ϕ̃ =

(
α−1T−2

k + I
)
ϕ̃,

Take ϕ′ = µ1(Tk)e1, as ei is the eigenfunction of T−2
k , we know ν should only support on µ1(Tk)e1,

and

inf
ν

〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
L2(µ)

=
αµ2

1(Tk)

αµ2
1(Tk) + 1

,

which means C ≥ αµ1(Tk)
2

αµ2
1(Tk)+1

.

38



Published as a conference paper at ICLR 2023

Now we consider the constraint optimization problem

max
ϕ′

〈
ϕ′,
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
ϕ′
〉
, s.t. ∥ϕ′∥H

k̃
≤ 1.

With the method of Lagrange multiplier, we know that CT−2
k −

(
α−1I − Eϕ∼ν

[
ϕϕ⊤

])−1 ⪰ 0,

and for all ϕ in the support of ν, we have
(
CT−2

k −
(
α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
)
ϕ = 0. Note that∥∥∥(α−1I + Eϕ∼ν

[
ϕϕ⊤

])−1
∥∥∥
op

≤ α. With Weyl’s inequality, we know that,

µi

(
CT−2

k −
(
α−1I − Eϕ∼ν

[
ϕϕ⊤

])−1
)
≥ Cµi(Tk)

−2 − α ≥ α

(
µ2
1(Tk)µ

−2
i (Tk)

αµ2
1(Tk) + 1

− 1

)
,

which means the support of ν is at most i0 dimension, where i0 is the largest integer that
µ2
1(Tk)µ

−2
i (Tk) ≤ αµ2

1(Tk) + 1.

When α = O(1), with Assumption 3, we know µi(Tk) ≤ 1 and i0 = O(1). Combined with Jensen’s
inequality, we finish the proof of the second claim.

We then consider the case when α = Ω(1) under different eigendecay conditions:

• β-finite spectrum: we know i0 ≤ β. As ∥ϕ∥L2(µ) ≤ ∥ϕ∥H
k̃

= 1, we have∥∥Eϕ∼ν

[
ϕϕ⊤

]∥∥
op

≤ 1. With Jensen’s inequality, we have

log det
(
I + αEϕ∼ν

[
ϕϕ⊤

])
= O

(
β log

(
1 +

α

β

))
.

• β-polynomial decay: we know i0 = O
(
Cpolyα

1/(2β)
)

dimension. As ∥ϕ∥L2(µ) ≤
∥ϕ∥H

k̃
= 1, we have

∥∥Eϕ∼ν

[
ϕϕ⊤

]∥∥
op

≤ 1. With Jensen’s inequality, we have

log det
(
I + αEϕ∼ν

[
ϕϕ⊤

])
= O

(
Cpolyα

1/(2β) logα
)
.

• β-exponential decay: we know the support of ν is at most O
(
Cexp(logα)

1/β
)

dimension.
As ∥ϕ∥L2(µ) ≤ ∥ϕ∥H

k̃
= 1, we have

∥∥Eϕ∼ν

[
ϕϕ⊤

]∥∥
op

≤ 1, With Jensen’s inequality, we
have

log det
(
I + αEϕ∼ν

[
ϕϕ⊤

])
= O

(
Cexp(logα)

1+1/β
)
.

Hence, we obtain the desired results.

G ADDITIONAL EXPERIMENT RESULT

G.1 TRAINING WITH 1M STEPS

This section provides the learning curves with 1M training steps compared to SAC in four Mujoco
control problems. We only tune the feature-updates-per-step parameter from {1, 3, 5} and report the
best result to save computations and running time. The results clearly demonstrate that LV-Rep also
achieves significantly better performance in the long run.
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Figure 3: We show the learning curves in Mujoco control compared to SAC. The x-axis shows the
training iterations and y-axis shows the performance. All plots are averaged over 4 random seeds.
The shaded area shows the standard error.
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G.2 ABLATION STUDY ON LATENT REPRESENTATION SIZE

In this section, we provide an ablation study on the latent representation dimension to show this
parameter affects the performance of LV-Rep. In all our experiments the latent feature dimension
is set to 256. We compare to latent feature dimension 64 and 128 in HalfCheetah. The results are
reported in Figure 4.
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Figure 4: Ablation study on the dimension of latent representations.
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